Home • Publications • Teaching • Staff
Teaching - Tim Netzer
Office hours (virtual) as Dean of Studies
Every Monday, 16:00-18:00, no registration necessary, via BigBlueButton
- VO Lineare Algebra 1
- VO Algebra 1
- SE MIP-Seminar
- Lineare Algebra (video lectures can be found here)
- Algebra
- Algebraische Geometrie / Algebraic Geometry
- Reelle Algebra und Geometrie / Real Algebra and Geometry
- Algebraische Topologie
- Minimal Operator Systems
Markus Dannemüller, ongoing - Positive and Invariant Tensor Decompositions: Approximations and Applications
Andreas Klingler, completed in September 2024 (with Gemma De les Coves) - Where Convex Cones Meet Tensor Products: A Dimension Free Perspective
Mirte van der Eyden, completed in June 2024 (with Gemma De les Coves) - On the Free Carathéodory Number and Operator Systems over the Cone of Positive Semidefinite Matrices
Martin Berger, completed in November 2022 - Approximation Techniques for Positive Matrices
Paria Abbasi, completed in February 2022 - Stability of Non-Commutative Quadratic Modules
Philipp Jukic, completed in March 2020 - Free Convex Semi-Algebraic Geometry - The Limits of Quantifier Elimination, Projection Properties, and Operator Systems
Tom Drescher, completed in September 2018
- Die Sätze von Radon und Helly (LA)
Angelika Moser, ongoing - K-Theory for Operator Algebras
Maximilian Illmer, ongoing - Guarding a Museum (LA)
Lisa Giner, ongoing - On Quantum Random Walks
Andreas Mair, Winter Term 2023/24 (with Ecaterina Sava-Huss) - Geometry of (Joint) Numerical Ranges
Beatrice Maier, Winter Term 2023/24 - Completing Latin and Quantum Latin Squares
Wolfgang Wetscher, Summer Term 2023 - Das Lösen von linearen Gleichungssystemen über kommutativen Ringen (LA)
Maria Wurzer, Summer Term 2023 - Wie findet oder zählt man Nullstellen? (LA)
Diana Held, Summer Term 2022 - Quantum Generalizations of Magic Squares and Latin Squares
Inga Valentiner-Branth, Winter Term 2021/22 (with Gemma De las Cuevas) - Primzahlen und ihre Bedeutung in der Kryptographie (LA)
Daniela Aichner, Winter Term 2021/22 - Quantifier Elimination in Matrix Rings
Clemens Brüser, Winter Term 2021/22 - Free Separation and Entanglement Witnesses
Ralph Gorbach, Summer Term 2021 - Decidability of Algebra-valued Tensor Networks
Joshua Graf, Summer Term 2021 (with Gemma De las Cuevas) - Von den rationalen Zahlen zur Nichtstandardanalysis (LA)
Matthias Knapp, Winter Term 2020/21 - Der Eulersche Polyedersatz (LA)
Iacun Maria Prugger, Winter Term 2020/21 - On the Free Separation Theorem
Manuel Astner, Winter Term 2020/21 - Axiomatische Geometrie (LA)
Iris Wohlgemuth, Summer Term 2020 - Knotentheorie (LA)
Jasmina Massoudy, Summer Term 2020 - Gewöhnliche homogene lineare Differenzengleichungen erster und zweiter Ordnung mit konstanten Koeffizienten (LA)
Nadja Hofer, Summer Term 2020 - Das Lemma von Sperner: Anwendung und Schulbezug (LA)
Magdalena Berger, Summer Term 2020 - Sphärische Geometrie im Schulunterricht (LA)
Franz Gänsluckner, Winter Term 2019/20 - Quantitative Aspects of Polytopes and Spectrahedra
Johanna Lercher, Summer Term 2019 - Kryptographie im Schulunterricht (LA)
Aygül Koc, Summer Term 2019 - Freie Polytope und Polyeder
Beatrix Huber, Summer Term 2019 - Zum Satz des Pythagoras (LA)
Sara Tirler, Winter Term 2018/19 - Axiomatische projektive Geometrie
Laurens Wittchow, Winter Term 2018/19 - University of Leipzig - Eine Erweiterung der Oberschelpschen Klassenlogik samt einem einfachen Proof-Checker
Milon Brunner, Winter Term 2018/19 - University of Leipzig - Lineare Optimierung in der Schule mit Geogebra (LA)
Theres Mair, Winter Term 2017/18 - Graphentheorie im Schulunterricht (LA)
Theresa Müssigang, Winter Term 2017/18 - In wie viele Teile teilen n Linien die Ebene? (LA)
Barbara Pritzi, Winter Term 2017/18 - Axiomatisches Origami (LA)
Michael Strobl, Winter Term 2017/18 - Topological Data Analysis
Martin Berger, Winter Term 2017/18 (with Tobias Hell) - Exakte Algorithmen zur Lösung von linearen Matrixungleichungen
Craig Antweiler, Summer Term 2016 - University of Leipzig - Determinantal Representations and Kirchhoff's Theorem
Tom Drescher, Winter Term 2012/13 - University of Leipzig (with Andreas Thom) - Matrixstellensätze
Randolf Ihrig, Winter Term 2008/09 - University of Konstanz (with Claus Scheiderer)
- Inclusion Index for Convex Cones
Svenja Sturma, ongoing - Primärzerlegung von Idealen
Alexander Bindhammer, ongoing - Zyklische Codes
Patrick Pircher, ongoing - Tensorrang und Matrixmultiplikation
Emma Erharter, ongoing - Sheaf Cohomology and Network Coding
Nadia Fellin, Summer Term 2024 - Dimension and Degree of Ideals
Judith Lindtner, Winter Term 2023/24 - Slack Matrices of Polytopes
Julia Überbacher, Winter Term 2023/24 - Unendliche Galois Theory
Anna Medwed, Winter Term 2023/24 - Über Quaternionen-Algebren
Valentin Ferst, Winter Term 2023/24 - Sums of Squares of Rational Polynomials
Elias Brenn, Winter Term 2023/24 - Die Mathematik hinter einem Navigationssystem (LA)
Theresa Floß, Summer Term 2023 - Universal Embedding Theorems in Combinatorial Game Theory
Michael Reitmeir, Summer Term 2023 - The Theorem of Seifert and van Kampen
Kenneth Ehi, Summer Term 2023 - On van der Waerden's Permanent Conjecture
Sandro Mignelli, Summer Term 2023 - Quantum State Discrimination and the Distillability Problem
Jasmin Matti, Summer Term 2023 - Numerische Irreduzible Zerlegung
Noah Kleinschmidt, Summer Term 2023 - Abstandsmatrizen und Abstammungsbäume (LA)
Angelika Moser, Summer Term 2022 - Primzahlverteilung im Schulunterricht (LA)
Roshan Kreuzer, Summer Term 2022 - Topologische Beweise des Fundamentalsatzes der Algebra
Maximilian Illmer, Summer Term 2022 - Geometric Aspects of Sets of States (Physics)
Stefan Kremminger, Summer Term 2022 (with Gemma De las Cuevas) - Darstellungstheorie endlicher Gruppen
Florian Willmann, Winter Term 2021/22 - Von magischen Quadraten zu magischen Würfeln
Sabina Malik, Winter Term 2021/22 - Hilbert's 3. Problem
Oliver Zeilerbauer, Summer Term 2021 - Der Fundamentalsatz der Algebra
Magdalena Steuxner, Summer Term 2021 - Completely Positive Maps in Natural Language Processing
Andreas Mair, Summer Term 2021 - Coxetergruppen
Mathias Gschwendtner, Winter Term 2020/21 - Zur axiomatischen Methode (LA)
Romana Würtenberger, Winter Term 2020/21 - On the Sheldon-Conjecture
Alexander Obernauer, Winter Term 2020/21 - Der kombinatorische Nullstellensatz (LA)
Matthias Schwab, Winter Term 2020/21 - Approximation konvexer Mengen durch Polytope
Thomas Rottensteiner, Summer Term 2020 - Vollständig positive und kopositive Matrizen
Sigrid Schwarzer, Summer Term 2020 - The Theorem of Nagata-Higman
Oliver Mayr, Summer Term 2020 - Rubiks Cube als gruppentheoretisches Problem
Josef Königsrainer, Summer Term 2020 - Matrix Completion Problems
Hannah Entner, Summer Term 2020 - Subgroups of Free Groups
Wolfram Gröbner, Summer Term 2019 - Das Amitsur-Levitsky Theorem
Florian Stolz, Summer Term 2019 - Approximation von niedrigem Rang in semidefiniter Optimierung und Quadratsummen
Hannes Lerchner, Summer Term 2019 - Operator Systems and Separability of Quantum States
Inga Valentiner-Branth, Summer Term 2019 - Simplification Methods for Sums of Squares Programming
Mirco Berner, Summer Term 2018 - Random Walks on Finite Graphs and Groups
Sarah Schneeberger, Summer Term 2018 - Finding Closest Points in Polytopes
Carolina Carvalhido, Summer Term 2018 - Cylindrical Algebraic Decomposition for Semialgebraic Sets
Daniel Niederlechner, Summer Term 2017 - Zum inversen Galois-Problem
Julia Jöchler, Summer Term 2017 - Die Vermutung von Casas-Alvero
Johanna Lercher, Summer Term 2016 - On the Positive Semidefinite Polytope Rank
David Trieb, Summer Term 2016 - Quadratsummen von rationalen Polynomen
Eva-Kristin Schneider, Winter Term 2014/15 - University of Leipzig - Die Algebra des Rubik's Cube
Tom Medak, Summer Term 2014 - University of Leipzig - Geschichte der mathematischen Rechenhilfsmittel
Carolin Koser, Winter Term 2013/14 - University of Leipzig
- Linear Algebra
- Algebra
- Algebraic Geometry
- Real Algebraic Geometry
- Operator Algebra
- Geometry of Linear Matrix Inequalities
- Convexity
- Logic and Model Theory
- Gödel's Incompleteness Theorems
- Discrete Structures for Computer Scientists
- Basic Algebra and Number Theory for Teachers
- History and Philosophy of Mathematicas