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1 Introduction

In quantum physics, a quantum state describes the properties of particles in the context
of quantum mechanics. From a mathematical point of view, a quantum state is a positive
semidefinite matrix ρ ∈ Matd1,d1(C)⊗Matd2,d2(C)⊗ ...⊗Matdn,dn(C) with d1, ..., dn ∈ N.
A quantum state can be either separable or entangled, which finds expression in differ-
ent physical behaviors, but also affects it’s mathematical properties (see definition 2.1).
To determine whether a quantum state is separable or entangled is an important task
in Quantum Information Theory. Gurvits demonstrated in 2003 that this problem is
NP-hard [5]. Therefore, it is a large research field to look for easy-to-use criterions to
determine if a quantum state is separable.
In this Bachelor’s thesis, we look solely at bipartite quantum states, meaning that we
only consider quantum states ρ with ρ ∈ Matd1,d1(C)⊗Matd2,d2(C). Due to the definition
of the tensor product of vector spaces, each such quantum state has a decomposition of
the form ρ =

∑m
i=1 Pi ⊗Qi, with Pi ∈ Matd1,d1(C), Qi ∈ Matd2,d2(C). The minimum m

that can be chosen for this decomposition is called the operator Schmidt rank of ρ.
The main theorem in this work states that every bipartite quantum state with operator
Schmidt rank 2 is separable. This was first proven by Cariello in [1]. In this work,
the proof formulated by Gemma De las Cuevas, Tom Drescher, and Tim Netzer in [3]
is lined out and explained in detail. The original proof by Cariello is very direct and
specific, while the proof by De las Cuevas, Drescher and Netzer uses the theory of opera-
tor systems and spectrahedra which originally comes from the field of Convex Algebraic
Geometry.
After a short overview of the important properties of the tensor product and positive
semidefinite matrices in Section 2, Section 3 introduces the spectrahedron and its gen-
eralization, the free spectrahedron. We then demonstrate that a free spectrahedron is
an operator system. This is the motivation to investigate selected properties of operator
systems, following the results of Tobias Fritz, Tim Netzer, and Andreas Thom [4]. There-
after, we have all the necessary tools to put the proof of the main theorem together.
In Section 4 an example is provided to show that there are non-separable bipartite quan-
tum states with operator Schmidt rank 3. In preparation, we introduce the PPT-criterion,
a necessary condition for separability. This criterion was first mentioned by Peres and
Horodecki [6], [8] and is also called the Peres-Horodecki criterion.
The first counterexample was found by Cariello in [2] and is presented in this work. This
example is then generalized to find a set of non-separable quantum states. Cariello’s
counterexample is in Mat3,3(C) ⊗Mat3,3(C), but we show that it can be modified to a
counterexample in Mat4,4(C)⊗Mat4,4(C).
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2 Notation

A positive semidefinite matrix ρ ∈ Matd1,d1(C) ⊗Matd2,d2(C) ⊗ ... ⊗Matdn,dn(C) with
d1, ..., dn ∈ N is named quantum state [3]. It is often also required that Trace(ρ) = 1,
but the condition is not relevant for this work and hence we drop it.
Also we look solely at quantum states ρ ∈ Mats,s(C)⊗Matt,t(C).
Therefore ρ has a depiction as sum of monomial tensor products

ρ =

m∑
i=1

Pi ⊗Qi

where m ∈ N, Pi ∈ Mats,s(C), Qi ∈ Matt,t(C) for all i ∈ {1, ...,m}.
The minimumm that can be chosen for this decomposition is called the operator Schmidt
rank of ρ. It is shown in [3] Lemma 14 that, without loss of generality, we can assume
Pi, Qi to be hermitian matrices if ρ is hermitian.
The set of positive semidefinite d× d matrices over C is denoted by PSDd

Upon review of the properties of these quantum states, it has been shown that the
property of separability is relevant for applications in physics.

Definition 2.1 (Separability). A quantum state ρ ∈ Mats,s(C) ⊗ Matt,t(C), with ρ
positive semidefinite, is separable if there exists a m̃ ∈ N and matrices P̃i ∈ PSDs, Q̃i ∈
PSDt for all i ∈ {1, ..., m̃} such that

ρ =
m̃∑
i=1

P̃i ⊗ Q̃i.

So a separable quantum state has a depiction consisting of positive semidefinite ma-
trices, often referred to as separable decomposition.
To study quantum states and their behaviors, we first look at the basic concepts used in
the definitions above.

2.1 Tensor product

A common depiction of the tensor product of two matrices is the Kronecker product,
which we use in this work. It is defined in the following way:

Definition 2.2 (Tensor product). Let A ∈ Matn,m(C), B ∈ Mats,t(C). The tensor
product of A and B is given by

A⊗B =


A11B A12B . . . A1mB
A21B A22B . . . A2mB

...
...

. . .
...

An1B An2B . . . AnmB


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Here, we basically multiply every entry of A with every entry of B and arrange them
into a single, lager matrix. The Kronecker product satisfies all properties of a regular
tensor product. In particular, it has the universal property of tensor products (see Defi-
nition 4.2), which will be useful in Chapter 4.

Lemma 2.3 (Properties of the Kronecker product). For A, C ∈ Matn,n(C) and B, D ∈
Matm,m(C) it holds that

(A⊗B)(C ⊗D) = AC ⊗BD (1)

and

(A⊗B)∗ = A∗ ⊗B∗ (2)

Proof. A simple calculation shows that this lemma is true.

2.2 Properties of positive semidefinite matrices

A matrix A ∈ Hert(C) is said to be positive semidefinite, or short A ≥ 0, if all eigenvalues
of A are greater or equal zero. This is equivalent to the following condition:

∀v ∈ Ct : v∗Av ≥ 0 (3)

This follows from the fact, that a hermitian matrix can be orthogonally diagonalised.

Lemma 2.4. The set of positive semidefinite matrices of dimension t × t, short PSDt,
is closed under addition and multiplication with a non-negative factor.

Proof. Let A,B ∈ PSDt, a ∈ R≥0 and v ∈ Ct be arbitrary. Then

v∗(A+ aB)v = v∗Av + av∗Bv ≥ 0.

3 The main theorem

Here we look at the main theorem this thesis is about and derive the proof in detail.
This theorem is taken from [3], Corollary 10.

Theorem 3.1 (Main Theorem). For any choice of P1, P2 ∈ Hers(C) and Q1, Q2 ∈
Hert(C) with

ρ = P1 ⊗Q1 + P2 ⊗Q2 ≥ 0

ρ is separable and admits a separable decomposition with at most two terms.

For the proof we must introduce the concept of convex cones and operator systems on
such convex cones.
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3.1 Convex cones

Definition 3.2 (Convex cone). A subset C of a vector space V over R or C is called a
convex cone, if ∀a, b ∈ C and ∀α, β ∈ R≥0 it holds that

αa+ βb ∈ C.

Definition 3.3 (Salient convex cone). A convex cone C is said to be salient, if and only
if C ∩ −C = {0}.

A non-salient convex cone always contains not less than one linear subset of dimension
at least one. A salient cone is always peaked at 0.
For example the half plain C1 = {(x, y) ∈ R2|x ≥ 0} is non-salient because it contains
the linear subset {(0, y)|y ∈ R} which is also a contained in −C1 = {(x, y) ∈ R2|x ≤ 0}.
Conversely, the positive orthant

C2 =

{
n∑
i=1

ai(1, 0) + bi(0, 1)| n ∈ N, ai, bi ∈ R≥0 for i ∈ {1, ..., n}

}

is salient as no vector with a negative component is in the cone. Both cones are depicted
in Figure 1.

Figure 1: The half plain, non-salient, and the positive orthant, salient

The for the proof relevant convex cone is the spectrahedron of the matrices P1, P2

which is defined as follows:

Definition 3.4 (Spectrahedron). The spectrahedron generated by the matrices
A1, ..., Am ∈ Hers(C) is given by

S(A1, .., Am) := {(b1, ..., bm) ∈ Rm|
m∑
i=1

b1A1 ≥ 0}.

Generalizing the spectrahedron for the non-commutative case leads to the definition
of the free spectrahedron.
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Definition 3.5 (Free spectrahedron). The r-level of the free spectrahedron defined by
A1, ..., Am ∈ Hers(C) with r ∈ N is given by

FSr(A1, ..., Am) :=

{
(B1, ..., Bm) ∈ Herr(C)m|

m∑
i=1

Ai ⊗Bi ≥ 0

}

The free spectrahedron defined by A1, ..., Am is the collection of the above:

FS(A1, ..., Am) := (FSr(A1, ..., Am))r∈N

Note that the 1-level of the free spectrahedron equals the spectrahedron.

Lemma 3.6. For r ∈ N and linear independent A1, ..., Am ∈ Hers(C), the r-level of the
free spectrahedron defined by A1, ..., Am is a closed salient convex cone.

Proof. Short calculation shows that FSr(A1, ..., Am) is a convex cone.
Let (B1, ..., Bm) ∈ FSr(A1, ..., Am)\{0}, then

∑m
i=1Ai ⊗ Bi ≥ 0. Due to the lin-

earity of the tensor product it follows that
∑m

i=1Ai ⊗ (−Bi) = −
∑m

i=1Ai ⊗ Bi is
negative semidefinite. If

∑m
i=1Ai ⊗ Bi = 0 the linear independence of the Ai in-

duces that B1 = ... = Bm = 0 which contradicts our choice of the Bi. Therefore
−(B1, ..., Bm) 6∈ FSr(A1, ..., Am).
It is known that the r-level of the free spectrahedron is closed, as the property of being
positive semidefinite is a closed condition. For each vector v, v∗Av ≥ 0 is already a closed
condition.

3.2 Operator system

Generally, an operator system is a complex construction (see [4]), but in our case it
suffices to use a slightly simplified but less general definition.

Definition 3.7 (Operator system). An operator system is a set of non-empty closed
salient convex cones (Cr)r≥1 with

1) C1 ⊂ Her1(C)m ' Rm

C2 ⊂ Her2(C)m = {(A1, ..., Am)| Ai ∈ Her2(C) , i = 1, ...,m}
C3 ⊂ Her3(C)m

...
2) ∀r, s ∈ N ∀V ∈ Matr,s(C) ∀(A1, ..., Am) ∈ Cr : (V ∗A1V, ..., V

∗AmV ) ∈ Cs

Lemma 3.8 (Free spectrahedron is operator system). If Cr = FSr(A1, ..., Am) for
A1, ..., Am ∈ Hers(C) and r ∈ N then (Cr)r≥1 is an operator system.

Proof. Per definition (FSr(A1, ..., Am) := {(B1, ..., Bm) ∈ Herr(C)m|
∑m

i=1Ai⊗Bi ≥ 0},
see 3.5) it holds that for r ∈ N : Cr ⊂ Herr(C)m.
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Let r, s ∈ N, V ∈ Matr,s(C) and (B1, ..., Bm) ∈ Cr be arbitrary. With the help of Lemma
2.3 we can show that

m∑
i=1

Ai ⊗ V ∗BiV = (Id⊗ V )∗

(
m∑
i=1

Ai ⊗Bi

)
(Id⊗ V ).

If a matrix A ∈ Herr(C) is positive semidefinite, then V ∗AV is positive semidefinite as
well for any V ∈ Matr,s(C). If x ∈ Cs then x∗V ∗AV x = (V x)∗A(V x) ≥ 0.
Combining these two results we get (V ∗B1V, ..., V

∗BmV ) ∈ Cs.

The following two definitions are taken from [4] Section 3.

Definition 3.9 (Minimal operator system). Let C ⊂ Rm be a closed salient convex cone.
We define the minimal operator system containing C as Cmin = (Cmin

s )s≥1 with

Cmin
s :=

{∑
i

ci ⊗ Pi| ci ∈ C, Pi ∈ PSDs

}

Lemma 3.10. The minimal operator system is minimal in the sense that for all operator
systems (Ds)s≥1 with D1 = C it follows that ∀s ∈ N : Cmin

s ⊆ Ds.

Proof. Let (Ds)s≥1 be an operator system with D1 = C. Part 2) in the definition
of operator systems (3.7) yields that for each matrix V ∈ Mat1,s(C) and for every
(c1, ..., cm) ∈ C = D1, it holds that (V ∗c1V, ..., V

∗cmV ) ∈ Ds for an arbitrary s ∈ N.
Because ci ∈ R we get V ∗ciV = ci(V

∗V ) = ci ⊗ (V ∗V ). Now ∀x ∈ Cs : x∗V ∗V x =
(V x)∗(V x) = 〈V x, V x〉 ≥ 0. Therefore V ∗V ∈ PSDs.
On the other hand each positive semidefinite matrix A can be factorized, such that
A =

∑
i viv

∗
i for some column vectors vi ∈ Cs. Then we can write A =

∑
i V
∗
i Vi with

Vi = v∗i .
Therefore an element

∑
i ci ⊗ Pi ∈ Cmin

s can be written as∑
i

ci ⊗ Pi =
∑
i

ci ⊗
∑
j

V ∗i,jVi,j

=
∑
i

∑
j

V ∗i,jciVi,j ∈ Ds (4)

That (4) holds follows from the fact that Vi,j ∈ Mat1,s and from using part 2) in the
definition of operator systems.

Definition 3.11 (Maximal operator system). Let C ⊂ Rm be a closed salient convex
cone. Then the maximal operator system containing C is given by:

Cmax
s = {(B1, ..., Bm) ∈ Hers(C)m| ∀v ∈ Cs (v∗B1v, ..., v

∗Bm) ∈ C} .

We write Cmax as short form for the family (Cmax
s )s≥1
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Lemma 3.12. Cmax is the maximal operator system, where maximal in this context
means that for any operator system (Dr)r≥1 with D1 ⊆ C it holds that Ds ⊆ Cmax

s .

Proof. Let (Dr)r≥1 be an operator system with D1 ⊆ C. If (B1, ..., Bm) ∈ Ds then
Definition 3.7 2) shows us that ∀v ∈ Cs : (v∗B1v, ..., v

∗Bmv) ∈ D1 ⊆ C. Therefore
(B1, ..., Bm) ∈ Cmax

s .

Definition 3.13 (Simplex cone). A cone C ⊆ Rd is said to be a simplex cone if it is
generated by d linear independent elements, i.e.
there exist c1, ..., cd ∈ C linear independent, such that

C =

{
d∑
i=1

λici| λi ∈ R≥0

}

Lemma 3.14 (Max = Min for simplex cone). If C ⊆ Rd is a simplex cone, then it is
isomorphic to the positive orthant Rd≥0. Moreover, Cmin = Cmax if C is a simplex cone.
[ [4], Thm. 4.7]

Proof. Let C ⊆ Rd be a simplex cone. There exist c1, ..., cd ∈ C linear independent
vectors generating C. Mapping the ci to the standard basis vectors gives us the isomor-
phism:

ϕ : C → Rd≥0 which is linear, with
ci 7→ ei := (0, ..., 0, 1, 0, ..., 0) where the i-th entry is 1 and the rest 0. i ∈ 1, ..., d.

Therefore we can now assume that C = Rd≥0. Let s ∈ N be arbitrary.
Then, using the characterization of positive semidefinite (see (3)), we obtain

Cmax
s =

{
(A1, ..., Ad) ∈ Hers(C)d| ∀v ∈ Cs (v∗A1v, ..., v

∗Adv) ∈ C
}

=
{
(A1, ..., Ad) ∈ Hers(C)d| ∀v ∈ Cs (v∗A1v, ..., v

∗Adv) ∈ Rd≥0
}

=
{
(A1, ..., Ad) ∈ Hers(C)d| Ai ≥ 0, i ∈ {1, ..., d}

}
.

Similarly, we get

Cmin
s =

{∑
i

ci ⊗ Pi| ci ∈ C = Rd≥0, Pi ∈ Hers(C), Pi ≥ 0

}
.

The tensor product used here is again the Kronecker product, where ci can be treated as
a 1× d matrix.
Therefore,

∑
i

ci ⊗ Pi =

(∑
i

(ci)1Pi, ...,
∑
i

(ci)dPi

)
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As Cmax is the maximal operator system containing C, we already get the inclusion
Cmin
s ⊆ Cmax

s for every s ∈ N.
To show the other inclusion, let (A1, ..., Ad) ∈ Cmax

s , in particular Ai ≥ 0.
Set ci = ei ∈ Rd≥0. Then

(A1, ..., Ad) =

d∑
i=1

ci ⊗Ai ∈ Cmin
s

⇒ Cmin
s = Cmax

s

3.3 Proof

Now it is time to bring together all the above results to prove the main theorem of this
thesis:

Theorem 3.1 (Main Theorem). For any choice of P1, P2 ∈ Hers(C) and Q1, Q2 ∈
Hert(C) with

ρ = P1 ⊗Q1 + P2 ⊗Q2 ≥ 0

ρ is separable and admits a separable decomposition with at most two terms.

Proof. Let P1, P2 ∈ Hers(C), Q1, Q2 ∈ Hert(C) and ρ = P1 ⊗Q1 + P2 ⊗Q2 be positive
semidefinite.
Note that if P1, P2 are linear dependent there exists a λ ∈ C such that P2 = λP1 and

ρ = P1 ⊗Q1 + (λP1 ⊗Q2)

= P1 ⊗Q1 + P1 ⊗ (λQ2)

= P1 ⊗ (Q1 + λQ2)

= P1 ⊗ Q̃

with Q̃ = Q1 + λQ2 ∈ Hert(C). Here, we can use the same argument as in the second
case below to show that ρ is separable.
From now on we will therefore assume that P1, P2 are linear independent.
There are three possible cases for C := FS1(P1, P2) ∈ R2:

1. C = {0}

2. C contains a vector different from 0, with all other elements being generated by
the first, thus C is a single ray.

3. C contains two linear independent elements. Then C is generated by two linear
independent vectors v1, v2 ∈ C, i.e. ∀w ∈ C ∃a, b ∈ R≥0 : w = av1 + bv2. Hence C
is a simplex cone.

We will now look at the three cases separately and prove the statement of the theorem,
namely that ρ is separable, for each case.
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First case

Assume that C = FS1(P1, P2) = {(b1, b2) ∈ R2| b1P1 + b2P2 ≥ 0} = {0}. Since ρ ≥ 0 it
holds for every v ∈ Cs and every w ∈ Ct that

0 ≤(v ⊗ w)∗ρ(v ⊗ w)
=v∗P1v ⊗ w∗Q1w + v∗P2v ⊗ w∗Q2w (5)
=v∗P1v · w∗Q1w + v∗P2v · w∗Q2w (6)
=v∗(w∗Q1wP1 + w∗Q2wP2)v

To get from line (5) to line (6) we use that w∗Qiw is a scalar and therefore the tensor
product simplifies to the scalar product.
As the inequality holds for every v ∈ Cs, w∗Q1wP1 + w∗Q2wP2 is positive semidefinite
and therefore (w∗Q1w,w

∗Q2w) ∈ C. But then w∗Q1w = 0 and w∗Q2w = 0 for all
w ∈ Ct, which yields that Q1 = Q2 = 0. In total, we have that ρ = 0 and therefor ρ is
separable, with the separable decomposition being the tensor product of the zero matrix
of dimension s with the zero matrix of dimension t.

Second case

Let C be a single ray, meaning that there exists one element b = (b1, b2) ∈ C such that
for each element c ∈ C there exists a scalar λ ∈ R with c = λb.
Now, without loss of generality, we can assume that (b1, b2) = (1, 0), using the isomor-
phism defined by mapping (b1, b2) to (1, 0).
Using the same argument as in case one, we see that for any w ∈ Ct : (w∗Q1w,w

∗Q2w) ∈
C = {λ(1, 0)| λ ∈ R}. Therefore Q2 = 0 has to hold, so ρ = P1 ⊗Q1.
As ρ is positive semidefinite we get for every v ∈ Cs and every w ∈ Ct:

0 ≤(v ⊗ w)∗ρ(v ⊗ w)
=v∗P1v ⊗ w∗Q1w

=v∗P1v · w∗Q1w

This shows that either P1, Q1 are both positive semidefinite or both negative semidefinite.
In the first case ρ = P1⊗Q1 is already a separable decomposition and ρ is separable. In
the second case −P1,−Q1 are positive semidefinite and (−P1)⊗ (−Q1) = P1 ⊗Q1 = ρ.
Hence in this case ρ is also separable.

Third case

Let C be a simplex cone.
From Lemma 3.14 we know that in this case the minimal operator system containing C
equals the maximal operator system containing C. Hence all operator systems containing
C must be the same.
Additionally, we have already shown in Lemma 3.8 that the free spectrahedron is an
operator system and therefore equal to Cmin.

11



Recalling the Definition 3.5 of the free spectrahedron and adapting it to this case, we
get FSt(P1, P2) =

{
(B1, B2) ∈ Hert(C)2| P1 ⊗B1 + P2 ⊗B2 ≥ 0

}
. As ρ = P1 ⊗ Q1 +

P2 ⊗ Q2 is positive semidefinite it follows that (Q1, Q2) ∈ FSt(P1, P2) = Cmin
t =

{
∑

i vi ⊗Hi| vi ∈ C, Hi ∈ PSDt}. Hence there exist v1, ..., vn ∈ C and H1, ...,Hn ∈
PSDt such that (Q1, Q2) =

∑n
j=1 vj ⊗Hj .

Due to the fact that C is a simplex cone, we can choose two generating elements
a = (a1, a2) ∈ C and b = (b1, b2) ∈ C and find positive scalars λj , βj ∈ R≥0 such
that vj = λja+ βjb for all j. This motivates the following transformation:

n∑
j=1

vj ⊗Hj =

n∑
j=1

(λja+ βjb)⊗Hj

=
n∑
j=1

a⊗ λjHj +
n∑
j=1

b⊗ βjHj

=a⊗

 n∑
j=1

λjHj

+ b⊗

 n∑
j=1

βjHj


=(a1H̃1 + b1H̃2, a2H̃1 + b2H̃2)

Here H̃1 :=
∑n

j=1 λjHj and H̃2 :=
∑n

j=1 βjHj , both matrices being positive semidefi-
nite.
Therefore, we get that Qi = aiH̃1 + biH̃2 for i = 1, 2. Substituting this in the represen-
tation of ρ yields:

ρ =P1 ⊗ (a1H̃1 + b1H̃2) + P2 ⊗ (a2H̃1 + b2H̃2)

=(a1P1 + a2P2)⊗ H̃1 + (b1P1 + b2P2)⊗ H̃2 (7)

Now a1P1 + a2P2 and b1P1 + b2P2 are positive semidefinite, because a, b ∈ C =
FS1(P1, P2). Therefore (7) gives us a separable decomposition of ρ, proving that ρ
is separable.

While cases one and two are quite straightforward, all the results from Chapter 2 and
3 were used to prove the theorem in the third case. The concept for the proof in the
third case was taken from [3].

4 Counterexample

So far we have proven that each quantum state of the form ρ = P1 ⊗ Q1 + P2 ⊗ Q2

is separable. This naturally leads to the question whether a quantum state with op-
erator Schmidt rank 3 is still always separable. In the proof of the operator Schmidt
rank 2 scenario, we have used that there are only three possible cases for the cone
C = FS1(P1, P2) ⊆ R2. When looking at a quantum state ρ = P1⊗Q1+P2⊗Q2+P3⊗Q3,
the relevant cone C would be C := FS1(P1, P2, P3) ⊆ R3. But in R3 a salient convex
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cone might need infinitely many generators, for example if it is round, like the cone{
(x, y, z) ∈ R3|z ≥

√
x2 + y2

}
. Its boundary can be seen in Figure 2.

Thus we can not directly adapt the proof from the operator Schmidt rank 2 case to the

Figure 2: Boundary of a convex cone with infinite amount of generators

operator Schmidt rank 3 case. Therefore, it seems more likely to find a counterexample
for this case. Specifically, we search for a quantum state ρ = P1⊗Q1+P2⊗Q2+P3⊗Q3

which is not separable, i.e. entangled.
To show that a quantum state is not separable using the definition of separability, we
would have to go through all possible representations of ρ and show that none consists
of positive semidefinite matrices only.
Therefore the first part of this section (4.1) presents an easy-to-test criterion for entangle-
ment, the PPT-criterion. In the second part (4.2) we will see an explicit counterexample
and analyze it.

4.1 PPT-criterion

Definition 4.1 (Partial transposition). The partial transposition (in the second compo-
nent) of a quantum state ρ =

∑m
j=1 Pj ⊗Qj ∈ Mats,s(C)⊗Matt,t(C) is defined as

ρt2 :=
m∑
j=1

Pj ⊗QT
j .

At first it might seem that this definition depends on the representation of ρ and is
therefore not well defined. It would be difficult to prove that the definition is well-defined
using direct computation. However, it can be shown using the universal property of the
tensor product:

Definition 4.2 (Universal property of the tensor product). For vector spaces M,N,P
over a field K and the tensor product ϕ :M ×N →M ⊗N it holds that
for all K-bilinear maps ψ :M ×N → P exists a unique linear map ψ̃ :M ⊗N → P such
that ψ = ψ̃ ◦ ϕ.
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In other words, the universal property says, that the diagram below has to be commu-
tative.

M ×N ϕ //

ψ
&&

M ⊗N

∃!ψ̃
��
P

In the case of the partial transpose, we have thatM = Mats,s(C), N = Matt,t(C), P =
Mats,s(C)⊗Matt,t(C),

ψ : Matt,t(C)×Mats,s(C)→ Matt,t(C)⊗Mats,s(C)
(A,B) 7→ (A,BT) 7→ A⊗BT.

In this case, the commutative diagram looks the following way:

Matt,t(C)×Mats,s(C)
⊗ //

ψ **

Matt,t(C)⊗Mats,s(C)

∃!ψ̃
��

Matt,t(C)⊗Mats,s(C)

ψ is the composition of transposing the second element of a tuple of matrices, which is
bilinear, and forming the tensor product of these two matrices, which also is bilinear.
Therefore, ψ is a bilinear map and the universal property tells us that there exists a
unique map ψ̃ : Matt,t(C)⊗Mats,s(C)→ Matt,t(C)⊗Mats,s(C) with:

ψ̃

(
m∑
i=1

Pi ⊗Qi

)
=

m∑
i=1

ψ((Pi, Qi)) =
m∑
i=1

Pi ⊗QT
i

This proves that the partial transpose is well-defined and independent of the represen-
tation of a quantum state.
Now we can use this tool to create the PPT-criterion needed to prove entanglement of a
quantum state.

Definition 4.3 (PPT-Criterion). A quantum state ρ ∈ Matt,t(C) ⊗ Mats,s(C) is said
to be positive under partial transposition (PPT), if its partial transpose ρt2 is positive
semidefinite.

Lemma 4.4 (Separable implies PPT). Every separable quantum state is PPT.

Proof. Let ρ =
∑m

i=1 Pi ⊗Qi be a separable quantum state, with Pi, Qi ≥ 0 for all i.
We must show that ρt2 is positive semidefinite, which we do by showing that

14



1. If A ≥ 0 then AT ≥ 0.

2. If A,B ≥ 0 then A⊗B ≥ 0.

To prove 1. we look at the characteristic polynomial of a matrix A ≥ 0:

χA(λ) = det (λId−A)
= det

(
(λId−A)T

)
= det

(
λId−AT)

= χAT(λ)

So A and its transpose have the same characteristic polynomial. The eigenvalues of A are
the roots of the characteristic polynomial. Therefore A and AT have the same eigenvalues
and hence AT is positive semidefinite if and only if A is positive semidefinite.
To prove 2. let A ∈ PSDt with eigenvalues λ1, ..., λt and corresponding eigenvectors
v1, ..., vt ∈ Ct, B ∈ PSDs with eigenvalues γ1, ..., γs and corresponding eigenvectors
w1, ..., ws ∈ Cs. Then for any i ∈ {1, ..., t} and j ∈ {1, ..., s}

(A⊗B)(vi ⊗ wj) =Avi ⊗Bwj (8)
=λivi ⊗ γjwj
=λiγj(vi ⊗ wj)

In line 8 we use Lemma 2.3.
This shows that for each i ∈ {1, ..., t} and j ∈ {1, ..., s} λiγj is an eigenvalue of A ⊗ B
corresponding to the eigenvector vi ⊗ wj giving a total of t · s eigenvalues. As A ⊗ B ∈
Matts,ts(C), we already found all possible eigenvalues.
If A and B have only non-negative eigenvalues then so does A⊗B.
Combining these two parts completes the proof.

We have shown that every separable quantum state is PPT. Therefore, if a state is not
PPT it is not separable.
As the PPT criterion is easy to test, we can now start looking for an entangled quantum
state with operator Schmidt rank 3.

4.2 Example

Cariello discovered an example for an entangled quantum state with operator Schmidt
rank 3 in [2], which we present and analyse.
In this example, we first define two matrices, D ∈ Mat3,3(C) being a diagonal matrix
and A ∈ Mat3,3(C) being an antisymmetric matrix.

D =

1 0 0
0 3 0
0 0 −10

 ; A =

 0 1 1
−1 0 1
−1 −1 0


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Let mq be the smallest eigenvalue of D ⊗D −A⊗A. Then we set the matrix C to be:

C := |mq|Id⊗ Id+D ⊗D −A⊗A
= |mq|Id⊗ Id+D ⊗D + (iA)⊗ (iA) (9)

Per construction, C is positive semidefinite. In (9), C has the usual form of a quantum
state as a sum of tensor products of each two hermitian matrices. It is easy to see, that
Id,D,A are linear independent, thus C cannot be expressed with less addends and has
operator Schmidt rank 3.
Now, to show that C is not separable, we check whether C is PPT.

Ct2 = |mq|Id⊗ Id+D ⊗D + (iA)⊗ (−iA)
= |mq|Id⊗ Id+D ⊗D +A⊗A

The simplest way to show that C is not PPT is to use a Computer Algebra System
(CAS), calculate the eigenvalues of Ct2 and see that at least one of them is negative.
Mathematica [7] gives a value of approximately −31.08315516 for mq. Continuing the
calculation with the exact value in Mathematica yields the following eigenvalues of Ct2 :

131.1, 40.29, 35.19, 33.17, 32.02, 22.05, 19.95, 2.006,−0.05639

As shown above, the last eigenvalue is negative and this by a significant amount, with
the second decimal being different from zero. If the true eigenvalue would be positive,
this result is unlikely to be gained by numerical computation errors.
Therefore C is not PPT and hence it is not separable.

In addition to performing numerical computations we can also show this analytically.
We do this by proving that the smallest eigenvalue of D ⊗ D + A ⊗ A is negative and
smaller than the smallest eigenvalue of D ⊗D − A ⊗ A, which is also negative (see [2],
Lemma 5.1).
Using a CAS we get the characteristic polynomial of D ⊗D +A⊗A

p(x) =− x9 + 36x8 + 5420x7 + 104400x6 − 427924x5 − 14134608x4 + 11251344x3

+ 415328832x2 − 1106058240x+ 671846400 (10)

and the characteristic polynomial of D ⊗D −A⊗A

q(x) =− x9 + 36x8 + 5420x7 + 104400x6 − 427924x5 − 14134608x4 + 10924160x3

+ 415328832x2 − 1106058240x+ 671846400. (11)

Observe that p(x)− q(x) = kx3 for some k > 0. As D⊗D+A⊗A and D⊗D−A⊗A
are real symmetric matrices, p and q have only real roots. Notice that neither p nor q
has 0 as a root. As p(x)− q(x) = kx3, p and q do not have a common root.
We can factorize the polynomials, writing

p(x) = (−1)(x− r1) · · · (x− r9)
q(x) = (−1)(x− s1) · · · (x− s9)
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with r1, ...r9, s1, ..., s9 ∈ R.
Assume that all roots of p and q are positive. Then all coefficients of

p(−x) =(−1)(−x− r1) · · · (−x− r9)
=(x+ r1) · · · (x+ r9)

and analogous q(−x), would be positive.
Looking at the polynomials (10), (11), we see that the coefficient at x7 is negative in
both p(−x) and q(−x). Therefore, p and q have negative roots.
Let mq be the smallest root of q and mp the smallest root of p.
Suppose, for the sake of contradiction, that mq < mp.
Then mq < mp ≤ ri for all i. Therefore, p(mq) = (−1)(mq − r1) · · · (mq − r9) is positive
as a product of 10 negative numbers.
On the other hand p(mq) = p(mq)− q(mq) = k(mq)

3 < 0, which contradicts p(mq) > 0.
As p and q have no common roots, we have shown that mp < mq.
|mq|+mp is an eigenvalue of Ct2 = |mq|Id⊗ Id+D⊗D+A⊗A. From above, we know
that 0 > mp−mq = mp+ |mq|, as mq is negative. Thus, Ct2 is not positive semidefinite
and therefore C is not PPT.

Therefore, we found one counterexample. This leads to the question whether this is
the only one, or if there are more non-separable quantum states.
First we test variations of the asymmetric matrix A.

C̃ = |mc|Id⊗ Id+D ⊗D − (cA)⊗ (cA)

withmc being the smallest eigenvalue ofD⊗D−(cA)⊗(cA). Calculating the eigenvalues
of the partial transpose for c ∈ {1/2, 2, 5, 50,−5} shows that C̃ is entangled in this cases.
The testing indicates that many more values for c might be possible, even c ∈ R\{0}.
The analytic proof for the explicit counterexample from above uses three properties of
the characteristic polynomials p and q:

1. p(x)− q(x) = kx3 with k > 0

2. p(0) 6= 0 and q(0) 6= 0

3. p(−x), q(−x) have a negative coefficient.

Using Mathematica, we get the characteristic polynomial p of D ⊗D + (cA)⊗ (cA)

p(x) = 729000000− 58320000c4 + 1166400c8 − 1108890000x

+ 1101600c4x+ 1730160c8x+ 385236000x2 + 29342160c4x2

+ 750672c8x2 + 8425800x3 + 2556724c4x3 + 163592c6x3

+ 105228c8x3 − 13505580x4 − 630648c4x4 + 1620c8x4

− 376561x5 − 51282c4x5 − 81c8x5 + 104904x6 − 504c4x6

+ 5402x7 + 18c4x7 + 36x8 − x9
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and the characteristic polynomial q of D ⊗D − (cA)⊗ (cA)

q(x) = 729000000− 58320000c4 + 1166400c8 − 1108890000x

+ 1101600c4x+ 1730160c8x+ 385236000x2 + 29342160c4x2

+ 750672c8x2 + 8425800x3 + 2556724c4x3 − 163592c6x3

+ 105228c8x3 − 13505580x4 − 630648c4x4 + 1620c8x4

− 376561x5 − 51282c4x5 − 81c8x5 + 104904x6 − 504c4x6

+ 5402x7 + 18c4x7 + 36x8 − x9

We now check, whether points 1. - 3. are satisfied:

1. p(x)− q(x) = 327184c6x3, k = 327184c6 > 0 for all c ∈ R\{0}

2. p(0) = q(0) = 729000000− 58320000c4 + 1166400c8 6= 0 for all c ∈ R\{−
√
5,
√
5}

3. The coefficient of x7 of p(−x) and q(−x) is −(5402 + 18c4) < 0 for all c ∈ R.

We see that all three point are satisfied for c ∈ R\{−
√
5, 0,
√
5}, therefore, following the

proof from above, C̃ is entangled for all c ∈ R\{−
√
5, 0,
√
5}.

Using the same method, we can also show that

C2 = |m|Id⊗ Id+ (eD)⊗ (eD)− (cA)⊗ (cA)

is entangled for all e ∈ R\{0} and c ∈ R\{−
√
5e, 0,

√
5e}. Here m is again the smallest

eigenvalue of (eD)⊗ (eD)− (cA)⊗ (cA).
We now adapt this counterexample to the case of A and D being 4× 4 matrices. Set

D =


1 0 0 0
0 3 0 0
0 0 6 0
0 0 0 −10

 ; A =


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0


and m as the smallest eigenvalue of D ⊗D −A⊗A. Then

C := |m|Id⊗ Id+D ⊗D −A⊗A

is not separable, which can be proven by calculating the eigenvalues of Ct2 with a CAS.
This indicates that there likely are entangled bipartite quantum states in higher dimen-
sions as well. So the general rule for operator Schmidt rank 2 quantum states cannot be
transferred to states with operator Schmidt rank 3.
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5 Conclusion

This thesis on Operator Systems and Separability of Quantum States outlines the proof
of Theorem 3.1, which states that every bipartite quantum state with operator Schmidt
rank 2 is separable. It also highlights an example of an entangled state with operator
Schmidt rank 3. First, we have introduced the underlining concepts of separability, the
tensor product and positive semidefinite matrices, then we have given the definition of
convex cones, (free) spectrahedra and operator systems. We have further exhibited that
a free spectrahedron is an operator system and that there is a minimal and a maximal
operator system containing a given convex cone. After introducing the simplex cone,
we have shown that the maximal and the minimal operator system containing a given
simplex cone are equal and hence any operator system containing this cone is equal to
the minimal operator system. This presented all the tools required to start the proof of
the main theorem.
Given a quantum state ρ = P1 ⊗Q1 + P2 ⊗Q2, the spectrahedron C = S(P1, P2) ∈ R2,
can have three different shapes: C = {0}, C is single ray or C is a simplex cone. While
we have used a direct way to proof the theorem for cases one and two, case three needed
the poof that the free spectrahedron FS(P1, P2) equals the minimal operator system
containing C.
In Section 4 we defined the PPT-criterion, proved that it is well defined and a necessary
condition for separability. Afterwards we used it to see that an explicit quantum state
with operator Schmidt rank 3 is not separable. Therefore, Theorem 3.1 is not true for
quantum states with operator Schmidt rank 3.
We further revealed that the counterexample provided is not the only one, but that there
is a whole set of entangled matrices of this kind.
Overall, we have demonstrated that every bipartite quantum state with operator Schmidt
rank 2 is separable, but not every state with operator Schmidt rank 3 is separable. We
also clarified the connection between the theory of quantum states and the theory of
operator systems and free spectrahedra.
In literature, only a few additional criterions for separability can be found, with no general
solution to this problem. However, not many approaches were made using operator
systems and free spectrahedra, thus looking at the problem from this angle might lead
to even more insights in the field of quantum states.
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