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Chapter 1

Introduction

In his seminal paper Computing Machinery and Intelligence Alan Turing proposed the famous

Turing test, also called the imitation game, a test that supposedly assesses a machine’s level of

intelligence. Basically, it is an A/B test in which an interrogator communicates with both a hu-

man being and a human-imitating machine not knowing which one is which. According to Alan

Turing a machine displays human levels of intelligence if the interrogator is not able to discern

between the two. Even though, this type of test is considered �awed in many ways one can never-

theless state how important the role of language is for perceived intelligence. Thus, linguists and

computer scientists alike study the interface of human language and machines. This area of re-

search is commonly referred to as natural language processing and involves the parsing, modelling

and processing of human language in a machine readable format.

A very important part of natural language processing is the modelling of semantics, i.e. the

meaning that is baked into the words and the structure of sentences. Many modern language

models like the all-famous GPT-3 rely on distributional semantics which is a modelling approach

that uses vast amounts of text to deduce meaning from co-occurrence. This way of semantic

analysis also lends itself to deep learning algorithms and may explain its relevance in many present-

day implementations.

This bachelor thesis is all about the mathematical framework for a certain problem in dis-

tributional semantics, namely, the composition of semantic entities like words and phrases in a

matrix-based model of meaning. Imagine every word has its meaning represented by a matrix.

What is the natural way to combine these? Mappings, one might intuitively say. At this point

we can bring mathematics to the table. A very natural way of looking at matrices is in terms of

C∗-algebras, where mappings satisfy several properties we will come back to at a later time.

For now, let us continue asking questions. Given some mapping to combine words in to

sentences with what are the semantic implications? We clearly want to lose as little information as

possible but there is a wide range of linguistic phenomena that one could focus on like synonymy,

antonymy, meronymy, hyponymy and many more. The one this thesis focuses on is hyponymy

because mappings between matrix algebras can be completely positive which ensures that the

hyponym-hypernym relationship between two semantic units is preserved under composition.

In the beginning we will kick things o� with a 101 in linguistics. Not many readers (apart

from linguists) are familiar with terms like semantic or hyponymy, therefore a short introduction

will cover the most basic terminology and give some examples. Then there will be a chapter on

the topic ofC∗-algebras, operator spaces and completely positive maps. This will culminate in a

2



proof of Choi’s theorem on completely positive maps which forms the basis of a class of composi-

tional maps presented in [1]. Therefore, this thesis �nishes by deriving and analysing these maps

and bringing together linguistics and mathematics.
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Chapter 2

Linguistics – a very short introduction

According to the Oxford dictionary linguistics is “the scienti�c study of language and its struc-

ture, including the study of grammar, syntax, and phonetics”. The �eld of study we know today

encompasses a vast amount of subdisciplines like sociolinguistics, the study of society’s in�uence

on language and vice versa, psycholinguistics, which is concerned with the brain’s faculty to pro-

duce and understand language or dialectology, the study of dialects, only to name a few. An area

of utmost topicality that developed in the 1950s is computational linguistics.

2.1 Computational linguistics and semantics
The Association for Computational Linguistics describes computational linguistics as the sub�eld

of linguistics that is concerned with language from the point of view of a computer. They give a

very nice summary of a computational linguist’s area of interest.

“Computational linguists are interested in providing computational models of vari-

ous kinds of linguistic phenomena. These models may be ‘knowledge-based’ (‘hand-

crafted’) or ‘data-driven’ (‘statistical’ or ‘empirical’). Work in computational lin-

guistics is in some cases motivated from a scienti�c perspective in that one is try-

ing to provide a computational explanation for a particular linguistic or psycholin-

guistic phenomenon; and in other cases the motivation may be more purely tech-

nological in that one wants to provide a working component of a speech or natural

language system. Indeed, the work of computational linguists is incorporated into

many working systems today, including speech recognition systems, text-to-speech

synthesizers, automated voice response systems, web search engines, text editors,

language instruction materials, to name just a few.”
1

Computational linguists are thus concerned with developing theories and models that allow for

a computer-based representation of natural, i.e. human, language.

A popular comic series by Bill Watterson involving Calvin, an imaginative six-year-old boy,

and Hobbes, an energetic and sardonic tiger, is known for their funny dialogues. One of them

1https://www.aclweb.org/portal/
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goes:

Calvin: I like to verb words.

Hobbes: What?

Calvin: I take nouns and adjectives and use them as verbs.

Remember when “access” was a thing? Now it’s something you do. It got verbed.

Calvin: Verbing weirds language.

Hobbes: Maybe we can eventually make language a complete impediment to understanding.

This goes to show that language is messy and a model that properly understands “weird” as an

adjective might have a hard time picking up on the conversion, which is the technical term for

creating a word from an existing one and is exactly what Calvin does when he “verbs a word”.

The computer modelling of the meaning of words is commonly referred to as computational
semantics. We now want to take a closer look at a certain type of model, one that is based on

statistical properties of text corpora.

2.2 Distributional semantics
As early as the 1950s prominent linguists were turning their attention towards distributional mod-

els that is analysing speech based on descriptive qualities. In 1954 Zellig S. Harris, an American

linguist and mathematical syntactician, published Distributional Structure [2] a paper arguing

that language can be completely understood in terms of distributional facts. He writes:

“At various times it has been thought that one could only state the normative rules

of grammar (e.g. because colloquial departures from these were irregular) or the

rules for a standard dialect but not for ‘sub-standard’ speech or slang; or that dis-

tributional statements had to be ampli�ed by historical derivation (e.g. because the

earlier form of the language was somehow more regular). However, in all dialects

studied it has been possible to �nd elements having regularities of occurrence; and

while historical derivation can be studied both independently and in relation to the

distribution of elements, it is always also possible to state the relative occurrence of

elements without reference to their history (i.e. ‘descriptively’).”

Then he goes on to explain how regularities in text might translate to meaning representations.

For example, not every adjective might pair with a certain noun, so thereby one can infer a dif-

ference in meaning. Having two words A and B that are more di�erent in meaning than A and

another wordC often entails thatA andB are more di�erent in the way that they are distributed

in some text than A and C . Put di�erently, Harris points out a correlation between di�erence

of meaning and di�erence of distribution. As an example, he considers the words oculist and eye-
doctor. Only in very few cases is it not possible to switch out these two words in a given sentence

because they mean the same for the most part (they are what linguists call synonyms). The possib-

ility of oculist and eye-doctor occurring in the same “environements” is much more likely than that

of oculist and lawyer. This clearly illustrates how environments of meaning and environments of

distribution might correlate. In his publication Zellig Harris also proposes a conceptual method
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of analysis breaking speech down into irreducible elements �rst and analysing them based on sim-

ilarity, dependence and substitutability. In essence, he recommends analysing co-occurrence and

this is why we will now take a closer look at a vector-based model of meaning that tries to do just

that.

2.3 Vector-based models of meaning
Many models in distributional semantics use high dimensional vector spaces where distributional

and thus semantic similarities are expressed in terms of similarities between vectors. A well-

known vector-based model of meaning is called word2vec. The program classi�es as a neural

network that learns words from a large corpus of text. It autonomously chooses vector represent-

ations such that the angle between two vectors indicates the level of semantic similarity between

the words represented by them. This is called the cosine similarity of the vectors and is de�ned by

similarity(v, w) :=
v · w
‖v‖‖w‖

= cos(θ)

where v, w are two vectors in a high dimensional vector space and θ is the angle between them.

To conclude this section on vector-based models let us take a look at a toy example from [3] that

will illustrate in very broad terms what a vector representation looks like and to which we will

come back to in chapter 4.

Imagine the noun pet and suppose that we have three types of pets: a pug, a goldfish and a

tabby cat. These nouns might co-occur in some text with a bunch of adjectives, say furry, domestic,
working and aquatic. For example, furry could be an adjective that is either directly before or not

far from the noun pug in some naturally produced sentence. As a simple model lets imagine a

count of all co-occurrences, something like in table 2.1 where we take the columns of this matrix

pug gold�sh tabby cat

furry 3 0 5
domestic 4 5 5
working 0 0 0
aquatic 0 6 0

Table 2.1: A simple toy model

as the vector representations of the three nouns pug, goldfish and tabby cat.
Later on, we will return to this example as it is simple yet very illustrative. For now, we

know all the historical and linguistic basics we need and we shall continue with the mathematical

centrepiece.
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Chapter 3

Operator theory and completely positive
maps

This chapter builds in part upon Vern Paulsen’s book Completely bounded maps and operator
algebras [5] which relies on Banach algebra techniques in operator theory [6] for several de�nitions

and focuses on the groundwork relevant to certain compositional models of meaning. The theory

of operator algebras and their mappings is an interesting area of research in its own right and this

chapter can certainly be read independently of computational semantics.

3.1 Introduction
Let us start by revisiting and de�ning basic concepts such as algebras and Banach spaces.

De�nition 3.1 (Algebra over a �eld). Let K be a �eld, A a ring and Z(A) its centre. Then A
together with a ring homomorphismK → Z(A) constitutes an algebra over the �eldK . 4

Remark/Example 3.2. (i) An algebra can thus be thought of as a kind of vector space over the

�eld K where in addition to the scalar multiplication there exists a multiplication between the

elements ofA themselves. A typical example of an algebra over a �eld is the matrix algebra. Square

matrices of size n × n with entries in K form a ring and the scalar multiplication is de�ned by

scaling every entry. In terms of the ring homomorphism

µ : K → Z (Matn(K))

k 7→ diag(k, . . . , k︸ ︷︷ ︸
n times

)

one can think of the scalar multiplication ask·A := µ(k)A = Aµ(k) sinceµ(k) being diagonal

obviously commutes with every element in Matn(K).

(ii) Note especially thatA in the de�nition above does not have to be a commutative ring. Still,

the ring elements that represent scalars ofK need to commute with every other element inA.

(iii) Furthermore, the ring homomorphism is necessarily injective as its domain is a �eld and

thereby its kernel always {0}.

(iv) We will abbreviate the name algebra over a field by algebra orK-algebra if we want to expli-

citly state the �eld over which the algebra is constructed. 4
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De�nition 3.3 (Algebra homomorphism). Given twoK-algebrasA andB, we callϕ : A→ B
a (unital) algebra homomorphism i�ϕ is a ring homomorphism for the corresponding rings, i.e.

for all a, b ∈ A

ϕ(a+ b) = ϕ(a) + ϕ(b)

ϕ(a · b) = ϕ(a) · ϕ(b)

ϕ(1A) = 1B

and furthermore for all a ∈ A and k ∈ K

ϕ(k a) = k ϕ(a)

where k a and k ϕ(a) are scalar multiplications in the respective algebras as we have seen earlier.

4

Remark/Example 3.4. Observe that unital merely states that the ring units are mapped to each

other. Contrary to the zero elements which are linked by the �rst property of ring homomorph-

isms

ϕ(0A) = ϕ(0A + 0A) = ϕ(0A) + ϕ(0A) =⇒ ϕ(0A) = 0B

we need to axiomatically state that ϕ(1) = 1. This property cannot be deduced from the other

axioms. 4

Let us take the concept of algebras a little further. For the application in computational se-

mantics we need to introduce the notion of C∗-algebras which in someway resemble and build

upon theK-algebras over a �eld we have seen so far.

De�nition 3.5 (Banach space). A Banach space is a complex linear spaceH with a norm ‖ · ‖
satisfying

(i) ‖f‖ = 0 if and only if f = 0,

(ii) ‖λf‖ = |λ|‖f‖ for λ in C and f ∈ H and

(iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for f and g ∈ H,

such thatH is complete in the metric given by this norm. 4

De�nition 3.6 (Banach algebra). A Banach algebraB is an algebra over the �eld C with identity

1 which has a norm making it into a Banach space, satisfying ‖1‖ = 1 and the inequality ‖fg‖ ≤
‖f‖‖g‖ for f and g in B. 4

Remark/Example 3.7. Even though this de�nition might seem abstract there are several ex-

amples of Banach algebras that might feel familiar.

(i) The �eld of complex numbers C equipped with the usual addition and multiplication and

the absolute value as the norm is a Banach algebra.

(ii) If K is a compact Hausdor� space, then C(K) is a Banach algebra where the addition and

multiplication are de�ned pointwise and the norm is given by ‖f‖∞ := supt∈K |f(t)|.

8



(iii) An interesting example, especially for our purposes in computational semantics, is the set

of n× n real or complex matrices equipped with a submultiplicative matrix norm. 4

De�nition 3.8 (Involution). If B is a Banach algebra, then an involution on B is a mapping

a 7→ a∗ which satis�es:

(i) a∗∗ = a for a ∈ B,

(ii) (λa+ µb)∗ = λ̄a∗ + µ̄b∗ for a, b ∈ B and λ, µ ∈ C,

(iii) (ab)∗ = b∗a∗ for a, b ∈ B; 4

De�nition 3.9 (C∗-algebra). Let B be a Banach algebra with an involution a 7→ a∗. If

‖a∗a‖ = ‖a‖2

for all a ∈ B, then B is called aC∗-algebra. 4

Remark/Example 3.10. (i) First, observe that for any element a of aC∗-algebra the inequality

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖

implies that ‖a‖ ≤ ‖a∗‖ and hence ‖a‖ = ‖a∗‖ because the same argument can be made for a∗

since a∗∗ = a. Thus, the involution on aC∗-algebra is an isometry.

(ii) There is a canonical way to de�ne homomorphisms between C∗-algebras. In essence, we

want a mapping to be compatible with the involution, i.e. for two C∗-algebrasA,B an algebra

homomorphism ϕ : A → B is called a ∗-homomorphism if

ϕ(a∗) = ϕ(a)∗

for each a ∈ A. A bijective ∗-homomorphism is called a ∗-isomorphism.

(iii) Importantly, the Banach algebra Matn(C) equipped with the operator norm ‖ · ‖ induced

by the euclidean norm onCn
turns into aC∗-algebra if we let the involutionA 7→ A∗ be de�ned

by the conjugate transpose. 4

There is one �nal de�nition left before we can dive into completely positive maps. Bounded

operators are a matter of peculiar interest since we want to look at elements of C∗-algebras as

bounded operators on Hilbert spaces.

De�nition 3.11 (Bounded operator). LetH andK be two Hilbert spaces and T : H → K an

operator. Then T is called bounded if there exists someC ≥ 0 such that for all x ∈ H

‖Tx‖K ≤ C‖x‖H.

We denote the set of all bounded linear operators on a Hilbert spaceH byB(H). 4
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3.2 Completely positive maps
Having now laid all the groundwork we turn our attention to completely positive maps between

C∗-algebras. There exists a theorem due to Isreal Gelfand and Mark Naimark (1943) which states

that everyC∗-algebra is isometrically ∗-isomorphic to some subalgebra of bounded operators on

a Hilbert space.

From now on we will often focus solely on the special case where theC∗-algebra is the matrix

algebra Matn(C) because the connection to operators is readily understandable. Every �nite

dimensional Hilbert space has a basis and the inner product induces a norm, thus we can look at

these maps through linear algebraic spectacles associating elements of Matn(C) with maps from

a n-dimensional Hilbert space onto itself.

De�nition 3.12 (Positivity). LetA be aC∗-algebra. An elementA is called positive if it satis�es

(i) A = A∗ and

(ii) {λ ∈ C : A− λ is not invertible inA} ⊆ [0,∞).

The set in (ii) is called the spectrum ofA. 4

Remark/Example 3.13. (i) If A = Matn(C), it is clear that the positive elements consist of

all Hermitian matrices with nonnegative eigenvalues, i.e. positive semide�nite matrices, since the

spectral theorem from linear algebra tells us that eigenvalues of Hermitian matrices are always

real.

(ii) It can also be shown that the positivity of an elementA ∈ A can be characterised by

〈Ax, x〉 ≥ 0 for all x ∈ H

whereA generally needs to be interpreted in terms of operators via the Gelfand-Naimark theorem

andH is the corresponding Hilbert space. Yet in the case ofA = Matn(C) this is an alternative

characterisation of positive semide�nite matrices most readers will be familiar with.

(iii) Furthermore, an elementA is positive i�A = S∗S for some S ∈ A. IfA = S∗S, then

〈S∗Sx, x〉 = ‖Sx‖2 ≥ 0.

Conversely, it can be shown that for every positive operatorA there exists a unique, positive op-

erator Q with Q2 = A. Therefore, one can de�ne S :=
√
A = Q. Again, for the �nite

dimensional case this is clear by the spectral theorem for Hermitian matrices. 4

De�nition 3.14 (Positive and completely positive maps). (i) Let A and B be C∗-algebras. A

linear map ϕ : A → B is said to be positive if for allA ∈ A

A ≥ 0 =⇒ ϕ(A) ≥ 0.

(ii) Again letA and B be C∗-algebras and Matn(A) and Matn(B) the sets of n × n matrices

with components inA and B respectively. Then, Matn(A) and Matn(B) are also C∗-algebras

de�ning the involution by the conjugate transpose and the norm via the Gelfand-Naimark the-

orem as follows. SinceA is isometrically ∗-isomorphic to some subalgebra of bounded operators
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on a Hilbert space, we can embed A ⊆ B(H). Now Matn(A) ⊆ Matn(B(H)) ∼= B(Hn)
and thus we can de�ne the norm of any element in Matn(A) by the norm of the corresponding

element inB(Hn). The same is true for Matn(B). Then, every linear map ϕ : A → B induces

another map ϕn : Matn(A)→ Matn(B) viaa11 · · · a1n
...

. . .
...

an1 · · · ann

 7→
ϕ(a11) · · · ϕ(a1n)

...
. . .

...

ϕ(an1) · · · ϕ(ann)

 .

The map ϕ is called n-positive if ϕn is a positive map.

(iii) For two C∗-algebras A and B a map ϕ : A → B is called completely positive if ϕ is n-

positive for all n ∈ N. 4

Remark/Example 3.15. (i) It is easy to see that every ∗-homomorphism is positive since for any

positive elementA

ϕ(A) = ϕ(S∗S) = ϕ(S∗)ϕ(S) = ϕ(S)∗ϕ(S) = ‖ϕ(S)‖2 ≥ 0

for some S ∈ A.

(ii) ∗-homomorphisms are even completely positive. For such a map ϕ : A → B we need to

take a look at ϕn : Matn(A) → Matn(B) for any n ∈ N. Let A,B ∈ Matn(A) and λ ∈ A.

Then

(a) ϕn is an algebraic homomorphism because

(ϕn(A+B))ij = ϕ(Aij +Bij) = ϕ(Aij) + ϕ(Bij) = (ϕn(A))ij + (ϕn(B))ij,

(ϕn(AB))ij = ϕ

(
n∑

k=1

AikBkj

)
=

n∑
k=1

ϕ(Aik)ϕ(Bkj) =
n∑

k=1

(ϕn(A))ik(ϕn(B))kj

and

(ϕn(λA))ij = ϕ(λAij) = λϕ(Aij) = λ(ϕn(A))ij.

(b) In addition, ϕn is compatible with the involution. We get that

(ϕn(A∗))ij = ϕ(A∗ji) = ϕ(Aji)
∗ = (ϕn(A)∗)ij

Therefore, ϕn is a ∗-homomorphism itself and thus a positive map for every n ∈ N meaning ϕ
is completely positive.

(iii) Not every positive map is completely positive though. Let ϕ : Matn(C) → Matn(C) be

de�ned by ϕ(A) = AT
. Then it is true that

ϕ(A∗A) = (A∗A)T = AT (A∗)T = AT (AT )∗ = ‖AT‖ ≥ 0

since the involution on Matn(C) is the conjugate transpose. Thus, ϕ is positive but not com-

pletely positive as the following example will show. Consider the case n = 2 and

ϕ2 : Mat2(Mat2(C)) ∼= Mat4(C)→ Mat2(Mat2(C)) ∼= Mat4(C).

11



Let

A :=


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


which is positive since

〈Ax, x〉 = (x1 + x4)x1 + (x1 + x4)x4 = (x1 + x4)
2 ≥ 0

On the other hand

ϕ2(A) =

ϕ
(

1 0
0 0

)
ϕ

(
0 1
0 0

)
ϕ

(
0 0
1 0

)
ϕ

(
0 0
0 1

)
 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


which is not positive as

〈ϕ2(A)(0, 1,−1, 0)T , (0, 1,−1, 0)T 〉 = −2

shows.

(iv) Another example of a completely positive map we will get to see later in more detail is the

following. LetA be aC∗-algebras andB ∈ A arbitrary. De�neϕ : A → A byϕ(A) = B∗AB.

Then

ϕ(A∗A) = B∗A∗AB = (AB)∗AB = ‖AB‖2 ≥ 0.

Thus, ϕ is positive. For ϕn : Matn(A)→ Matn(A)

(ϕn(A))ij = ϕ(Aij) = B∗AijB

and therefore

ϕn(A) = diagn(B)∗A diagn(B)

where diagn(B) is the diagonal n× nmatrix withB in each diagonal entry and zero elsewhere.

IfA ∈ Matn(A) is positive, thenA = N∗N for someN ∈ Matn(A) and thereby

diagn(B)∗A diagn(B) = (N diagn(B))∗ (N diagn(B)) ≥ 0.

This shows the complete positivity of the so called conjugation. 4

3.3 Choi’s theorem on completely positive maps
In 1975 Man-Duen Choi published a theorem characterising completely positive maps between

complex matrix algebras [7].

Theorem 3.16 (Choi’s theorem, 1975). Let Φ : Matn(C) → Matm(C) be a linear map. Then
Φ is completely positive i� Φ is of the form Φ(A) =

∑nm
i=1 V

∗
i AVi for allA ∈ Matn(C) where Vi

are n×mmatrices.
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Proof. As we have seen in section 3.2 every map of the form
∑nm

i=1 V
∗
i AVi is completely positive,

thus we only need to prove the converse. Each 1× nmmatrix v can be regarded as a 1× n block

matrix (x1, ..., xn) with 1×mmatrices as entries xj . Therefore, we associate with it the n×m
matrix V which has xj as the j-th row. According to this association

(V ∗EjkV )1≤j,k≤n = (x∗jxk)1≤j,k≤n = v∗v

since Ejk is 1 at the component (j, k) and 0 elsewhere. Suppose Φ : Matn(C) → Matm(C)
is completely positive. The matrix (Ejk)1≤j,k≤n is positive by the association above for V = In,

so (Φ(Ejk))1≤j,k≤n ∈ Matn(Matm(C)) must be positive by the complete positivity of Φ. By

decomposing into eigenvectors we get

(Φ(Ejk))jk =
nm∑
i=1

v∗i vi

and because of the calculation above it holds true that

(Φ(Ejk))jk =
nm∑
i=1

(V ∗i EjkVi)jk.

Extending the result by linearity we get that

Φ(A) =
nm∑
i=1

V ∗i AVi

for allA.

The preceding proof came down to realising that (Ejk)1≤j,k≤n is a positive element thus

(Φ(Ejk))1≤j,k≤n is positive too. This is why we can now easily formulate another character-

isation of completely positive maps.

Corollary 3.17. Let Φ : Matn(C) → Matm(C) be a linear map from. Then Φ is completely
positive i� (Φ(Ejk))1≤j,k≤n is positive.

Proof. If Φ is a completely positive map, then (Φ(Ejk))1≤j,k≤n is positive by the argument in

theorem 3.16. Conversely, if (Φ(Ejk))1≤j,k≤n is positive and we take a look at said theorem, then

Φ allows for a decomposition of the form

Φ(A) =
nm∑
i=1

V ∗i AVi

and is thereby completely positive.

We have seen that the original proof of Choi’s theorem merely uses methods from linear al-

gebra which is remarkable in itself. Yet, there is another way of looking at the result above. In 1955

William Forrest Stinespring proved a dilation theorem from which Choi’s results can be deduced.
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Theorem 3.18 (Stinespring’s dilation theorem, 1955). LetA be a unitalC∗-algebra,H a Hilbert
space and B(H) the bounded operators onH. Let Φ : A → B(H) be a completely positive map.
Then there exists a Hilbert space K, a unital ∗-homomorphism π : A → B(K) and a bounded
operator V : H → K with ‖Φ(1)‖ = ‖V ‖2, such that

Φ(a) = V ∗π(a)V for all a ∈ A.

Proof. Let us consider the vector space A ⊗ H. De�ne a symmetric bilinear function 〈·, ·〉 on

A⊗H by

〈a⊗ x, b⊗ y〉 := 〈Φ(b∗a)x, y〉H with a, b ∈ A, x, y ∈ H

and extend it bilinearly, where 〈·, ·〉H is the inner product onH.

Since Φ is completely positive it follows that 〈·, ·〉H is positive semide�nite. Indeed, for any

n ≥ 1, a1, . . . , an ∈ A and x1, . . . , xn ∈ H we have〈
n∑

j=1

aj ⊗ xj,
n∑

i=1

ai ⊗ xi

〉
=

n∑
i,j=1

〈Φ(a∗i aj)xj, xi〉H

=

〈
Φn((a∗i aj))

x1...
xn

 ,

x1...
xn

〉
H(n)

≥ 0,

where 〈·, ·〉H(n) denotes the inner product on the direct sumH(n)
of n copies ofH, given by〈x1...

xn

 ,

x1...
xn

〉
H(n)

:= 〈x1, y1〉H + . . .+ 〈xn, yn〉H.

Positive semide�nite bilinear forms satisfy the Cauchy-Schwarz inequality,

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉,

hence

N := {u ∈ A⊗H | 〈u, u〉 = 0} = {u ∈ A⊗H | ∀v ∈ A⊗H : 〈u, v〉 = 0}

is a subspace ofA⊗H. This means that

〈u+N , v +N〉 := 〈u, v〉

is an inner product on the quotient spaceA⊗H/N . LetK be the completion of this space to a

Hilbert space. For an element a ∈ A, de�ne π(a) : A⊗H → A⊗H by

π(a)
(∑

ai ⊗ xi
)

:=
∑

(aai)⊗ xi.

Because of the properties of the tensor product π(a) is clearly linear. π(a) also satis�es the fol-

lowing inequality

〈π(a)u, π(a)u〉 ≤ ‖a‖2〈u, u〉 for all u ∈ A⊗H. (3.1)

14



To see this, observe that a∗b∗ba ≤ ‖b‖2a∗a in anyC∗-algebra. It follows that

(a∗i a
∗aaj) ≤ ‖a‖2(a∗i aj)

is satis�ed in Matn(A)+, i.e. the set of positive semide�nite n× nmatrices overA. Therefore,〈
π(a)

(∑
j

aj ⊗ xj

)
, π(a)

(∑
i

ai ⊗ xi

)〉
=
∑
i,j

〈Φ(a∗i a
∗aaj)xj, xi〉H

≤ ‖a‖2
∑
i,j

〈Φ(a∗i aj)xj, xi〉H

= ‖a‖2
〈∑

i

aj ⊗ xj,
∑
j

ai ⊗ xj

〉
.

Inequality 3.1 shows that π(a) leavesN invariant since

u ∈ N ⇐⇒ 〈u, u〉 = 0.

By said inequality for any u ∈ N

〈π(a)u, π(a)u〉 = 0

and thus π(a)u ∈ N . This is why we can view π(a) as a linear operator onA⊗H/N which we

will still denote byπ(a). Again by 3.1 we can see thatπ(a) is bounded, i.e. ‖π(a)‖ ≤ ‖a‖. There-

fore, it extends to a bounded linear operator onK, which we still denote by π(a). Furthermore,

π : A → B(K) is a unital ∗-homomorphism and we end by de�ning V : H → K via

V x = 1⊗ x+N .

Clearly, V is linear and we have that V is bounded since

‖V x‖2 = 〈1⊗ x, 1⊗ x〉
= 〈Φ(1)x, x〉H
≤ ‖Φ(1)‖‖x‖2

for x ∈ H by the Cauchy-Schwarz inequality. Thus,

‖V ‖2 = sup{‖V x‖2 : ‖x‖ ≤ 1}
= sup{〈Φ(1)x, x〉H : ‖x‖ ≤ 1} = ‖Φ(1)‖

because Φ(1) is a bounded operator onH. Finally,

〈V ∗π(a)V x, y〉H = 〈π(a)1⊗ x, 1⊗ y〉K = 〈Φ(a)x, y〉H

for all x and y inH hence V ∗π(a)V = Φ(a) which completes the proof.
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Remark/Example 3.19. The triple (π, V,K) is called a Stinespring representation of Φ. If

we let

K1 := spanK(π(A)VH) = spanK({π(a)V h : a ∈ A and h ∈ H}),
then VH lies inK1 since π is unital. Therefore, we can assume that V : H → K1. In addition

π(a)(K1) lies inK1 for all a ∈ A since π is multiplicative and continuous. So (π1, V,K1) is also

a Stinespring representation of Φ with the additional property that K1 is the closed linear span

of π(A)VH. Such a representation is called a minimal Stinespring representation of Φ. A

minimal representation is unique up to some unitary operator. 4

Having now proven Stinespring’s dilation theorem we want go on proving Choi’s theorem as

a corollary. In order to do so, we need some more information about unital ∗-homomorphisms.

Lemma 3.20. Let π : Matn(C) → B(K) be a unital ∗-homomorphism. Then there exists a
Hilbert spaceH such that

K ∼= H⊕ . . .⊕H︸ ︷︷ ︸
n times

.

and π : Matn(C) → B(K) ∼= Matn(B(H)) satisfies π(Eij) = Ẽij for all i, j = 1, . . . , n

whereEij and Ẽij are the canonical basis elements in Matn(C) and Matn(B(H)) respectively.

Proof. De�neHi := π(Eii)K for all i = 1, . . . , n. ThenK = H1 ⊕ . . .⊕Hn which is easy to

see as π is a unital ∗-homomorphism and therefore

H1 + . . .+Hn = π(E11)K + . . .+ π(Enn)K
= (π(E11) + . . .+ π(Enn))K
= π(In)K = K

and

〈Hi, Hj〉 = 〈π(Eii)K, π(Ejj)K〉
= 〈K, π(Eii)

∗π(Ejj)K〉
= 〈K, π(E∗ii)π(Ejj)K〉
= 〈K, π(EiiEjj)K〉 = 0

which meansHi ⊥ Hj for i 6= j. We claim thatH1, . . . ,Hn are isometric isomorphic. Since

the range of π(Eji) lies inHj , Uji := π(Eji)|Hi
is well-de�ned as an operator fromHi toHj .

Clearly, Uji is linear and since π(Eij)K lies inHi and Ujiπ(Eij)x = π(Ejj)x, Uji is surjective.

Again for an element π(Eii)x ofHi

〈Ujiπ(Eii)x, Ujiπ(Eii)y〉 = 〈π(Eji)x, π(Eji)y〉
= 〈π(Eji)x, π(Eij)

∗y〉
= 〈π(Eii)x, y〉 = 〈π(Eii)x, π(Eii)y〉.

This means thatUji is surjective and preserves the inner product and is thus one-to-one. Finally,

〈π(Eii)x, π(Eii)y〉 = 〈π(Eii)x, y〉
= 〈π(EijEji)x, y〉
= 〈π(Eji)x, π(Eji)y〉
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thus U−1ji = Uij . Every operator on K = H1 ⊕ . . . ⊕ Hn can be represented by a n × n
matrix with operator entries. We see that π(Eij) corresponds to the matrix which is Uij in the

i, j-th entry and 0 elsewhere sinceUij = π(Eij)|Hj
by de�nition. We have shown above that the

operator Uij mapsHi andHj isometrically and bijectively onto each other and now for h ∈ K

π(Eij) π(Ejj)h︸ ︷︷ ︸
∈Hj

= π(EijEjj)h = π(Eij)h ∼= h

meaning π(Eij) = Ẽij .

In order to prove the corollary we want to take a closer look at the �nite dimensional case.

Lemma 3.21. LetK be a finite dimensional Hilbert space and π : Matn(C)→ B(K) be a unital
∗-homomorphism. Then

K ∼= Cn ⊕ . . .⊕ Cn︸ ︷︷ ︸
r times

where r := dimK/n. Furthermore, π : Matn(C) → B(K) ∼= B(Cn ⊕ . . . ⊕ Cn) ∼=
Matr(B(Cn)) ∼= Matr(Matn(C)) satisfies

π(A) =


A 0 · · · 0
0 A · · · 0
...

... . . . ...
0 · · · · · · A


Proof. By the lemma aboveK ∼= Cr ⊕ . . .⊕ Cr︸ ︷︷ ︸

n times

such that

π : Matn(C)→ B(K) ∼= B(Cr ⊕ . . .⊕ Cr) ∼= Matn(B(Cr)) ∼= Matn(Matr(C))

satis�es

π(A) =

a11Ir · · · a1nIr
...

. . .
...

an1Ir · · · annIr


where Ir is the identity in Cr

. Be reshu�ing rows and columns we obtain the desired result.

Corollary 3.22 (Choi’s theorem). Let Φ : Matn(C) → Matk(C) be completely positive. Then
there exist at most nk linear maps Vi : Ck → Cn such that Φ(A) =

∑
i V
∗
i AVi for all A ∈

Matn(C).

Proof. Let (Φ, V,K) be a Stinespring representation for Φ. Having a look at the proof for Stine-

spring’s dilation theorem we know that dimK ≤ dim(Matn(C) ⊗ Ck) = n2k. Since π is a

unital ∗-homomorphism, we can write

K ∼= Cn ⊕ . . .⊕ Cn︸ ︷︷ ︸
r times
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with r ≤ nk by the lemma above such that π : Matn(C) → B(K) ∼= B(Cn ⊕ . . . ⊕ Cn) ∼=
Matr(B(Cn)) ∼= Matr(Matn(C)) satis�es

Φ(A) =


A 0 · · · 0

0 A · · · ...

...
...

. . .
...

0 · · · · · · A

 .

V : Ck → K ∼= Cn ⊕ . . .⊕ Cn
can be represented as a column operator matrix

V =

V1...
Vr


for some Vi : Ck → Cn

and so V ∗ = (V ∗1 , . . . , V
∗
r ). Therefore,

Φ(A) = V ∗π(A)V = (V ∗1 , . . . , V
∗
r )


A 0 · · · 0

0 A · · · ...

...
...

. . .
...

0 · · · · · · A


V1...
Vr

 =
r∑

i=1

V ∗i AVi

giving us the desired result.
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Chapter 4

Hyponymy and compositional models of
meaning

After an introduction to computational linguistics and vector-based models of meaning followed

by some theory on operators and completely positive maps culminating in Choi’s theorem we

want to amalgamate the two. Our goal is to combine word representations by some map and get

representations for combinations of words, e.g. for sentences or phrases.

4.1 From vectors to matrices
First, we turn our vector representations into matrices by computing the outer product which

means for a word v we compute

v vT .

Words are now generally represented by rank-one matrices and furthermore representations are

symmetric and positive semide�nite since

(v vT )T = (vT )T vT = v vT

and

hT (v vT )h = (hT v) (vT h) = 〈h, v〉2 ≥ 0.

Even though straight forward, this is a smart way to associate words with matrices for two reasons.

On the one hand taking v to be an element of Rn
for some, possibly large, n ∈ N we get that the

representations satisfy de�nition 3.12 and are thus positive elements of theC∗-algebra Matn(C).

On the other hand, the set of positive semide�nite matrices forms a convex cone which hints at

summation for representing higher level concepts, i.e. some word ρmight be de�ned by

ρ =
∑
i

vi v
T
i

for some words vi. In section 2.3 we have introduced a toy example from [3] and with its help let

us contextualise the approach above. First, we need to turn the columns of table 2.1 into matrices
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by use of the outer product

pug =


9 12 0 0
12 16 0 0
0 0 0 0
0 0 0 0

 goldfish =


0 0 0 0
0 25 0 30
0 0 0 0
0 30 0 36

 tabby =


25 25 0 0
25 25 0 0
0 0 0 0
0 0 0 0


and then the concept of pet can be expressed by the sum like so

pet = pug + goldfish + tabby =


34 37 0 0
37 66 0 30
0 0 0 0
0 30 0 36

 .

One can already guess with this set-up that the sum of words re�ects a semantic phenomenon.

In the next section we therefore want to introduce the notion of hyponymy.

4.2 Hyponymy
Second, we want to model the semantic relation of hyponymy. So, what is hyponymy? The Greek

roots ὑπό and ὄνυµα– meaning “under” or “beneath” and “name” respectively – already give away

the core concept. Hyponymy denotes the relation between a hyponym which is a subtype and a

hypernym which is a supertype. For example, banana is a hyponym of the hypernym fruit and

at least for nouns hyponymy can be characterised by a type-of-relationship, e.g. a bus is a type of
vehicle. Still, the idea extends to various word classes since for example to walk is a hyponym of to
move.

In summary, hyponymy is a relation on the set of all words in our vector space. From the

description above we can state that the relation is

(i) re�exive: This might give reason for philosophical debate but arguably “A banana is a type

of banana.” is, though tautological, a true statement.

(ii) antisymmetric: A banana is a type of fruit yet a fruit is not a type of banana.

(iii) transitive: The Cavendish is a type of banana and a banana is a type of fruit; thus the

Cavendish is a type of fruit.

The mathematically inclined might spot this as the very de�nition of a partial ordering and since

the positive semide�nite matrices form a convex cone and every convex cone induces a partial

ordering on its elements we can de�ne a “natural” ordering.

Lemma 4.1. If C ⊆ Rn is a salient convex cone, i.e. C ∩ (−C) = {0}, there exists a partial
ordering 6 of the vector space defined by

x 6 y :⇐⇒ y − x ∈ C.

Proof. (i) Since by the de�nition of a convex cone 0 ∈ C , it is true that x− x = 0 ∈ C for any

x ∈ Rn
. So x 6 x, proving the re�exivity.
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(ii) Since C is salient C ∩ (−C) = {0} which implies x = y for any x, y ∈ Rn
with x 6 y

and y 6 x since

y − x ∈ C and x− y ∈ C =⇒ y − x ∈ C ∩ (−C) = {0}.

(iii) For x, y, z ∈ Rn
with x 6 y and y 6 z

y − x ∈ C and z − y ∈ C.

SinceC is convex

(y − x) + (z − y) ∈ C

implying z − x ∈ C thus x 6 z.

The preceding lemma now motivates the Löwner order on the convex cone of positive semi-

de�nite matrices.

De�nition 4.2 (Löwner order). LetA andB be two Hermitian matrices. Then

A 6 B :⇐⇒ B − A is positive semide�nite. 4

By the construction of supertypes in section 4.1 it is clear how the Löwner order can be used

for modelling hyponymy. Let us again take a look at the pet example. Intuitively, pug is a hyponym

of the hypernym pet and by construction

pet− pug =


34 37 0 0
37 66 0 30
0 0 0 0
0 30 0 36

−


9 12 0 0
12 16 0 0
0 0 0 0
0 0 0 0

 =


25 25 0 0
25 50 0 30
0 0 0 0
0 30 0 36


is a positive semide�nite matrix having the eigenvalues

1
2

(
111±

√
2621

)
and 0. This means

pug 6 pet.

4.3 Composition
It is now we start to wonder how our model should re�ect the composition of words into sen-

tences and phrases. If words are represented by positive semide�nite matrices and we assume, for

simplicity’s sake, that every matrix has the same dimensions, say n × n, then we would like to

de�ne a map like the following

ϕ : Matn(R)×Matn(R)→ Matn(R).

Here, we explicitly want the composition to be of the same dimensions as the arguments which

eases the use of ϕ in iterative composition, i.e. ϕ(s, ϕ(o, v)) makes sense for any subject s, verb

v and object o representing the sentence s v o.

The next few pages are taken from [1] where a framework for compositional maps that relies

on Choi’s theorem from chapter 3 is proposed. Henceforth, let Matn(R)+ denote the set of real,

positive semide�nite matrices. We start by stating the minimal requirements for our map ϕ.
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(i) Preserves positivity
If n, v are positive semide�nite then ϕ(n, v) should be too, i.e.

ϕ : Matn(R)+ ×Matn(R)+ → Matn(R)+.

(ii) Preserves hyponymy
Using the Löwner order as introduced above to model hyponymy we require for all words

n1, n2, v1, v2 ∈ Matn(R) satisfying

n1 6 n2 and v1 6 v2

that

ϕ(n1, v1) 6 ϕ(n2, v2).

(iii) Bilinearity
For α ∈ R and n, n′, v, v′ ∈ Matn(R):

(a) ϕ(αn, v) = αϕ(n, v)

(b) ϕ(n, αv) = αϕ(n, v)

(c) ϕ(n+ n′, v) = ϕ(n, v) + ϕ(n′, v)

(d) ϕ(n, v + v′) = ϕ(n, v) + ϕ(n, v′)

Actually, properties (i) and (iii) already imply (ii). Take n2 > n1 and v2 > 0. Then by (i)
it is true that ϕ(n2 − n1, v2) > 0 and by the bilinearity ϕ(n1, v2) 6 ϕ(n2, v2). By the same

argument ϕ(n1, v1) 6 ϕ(n1, v2) and using the transitivity of 6 we get that

ϕ(n1, v1) 6 ϕ(n2, v2).

Additionally, we might want to exclude maps where ϕ(n, v) = ϕ(v, n) since these lead to non-

sensical representations, e.g. “Calvin likes Hobbes” and “Hobbes likes Calvin” would have the

same meaning representation.

Initially, imagine that we have already found a mapϕwith the properties (i)–(iii). Then, by

the bilinearity we can reformulate the map somewhat

Matn(R)→ Lin(Matn(R),Matn(R))

v 7→ (ϕ(·, v) : n 7→ ϕ(n, v)).

The linearity in the �rst component ensures that the image is a linear map whereas the second

component turns the map itself into a linear one. Let us denote this map by

Φ : Matn(R)→ Lin(Matn(R),Matn(R)).

It is clear that if we know Φ we also know ϕ and since Matn(R) ∼= Rn2
we see that

Lin(Matn(R),Matn(R)) ∼= Matn2(R)
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To be more precise, we take a look at Choi’s isomorphism

Lin(Matn(R),Matn(R))→ Matn(R)⊗Matn(R)

ϕ 7→
∑
i,j

ϕ(ei e
T
j )⊗ ei eTj

where {e1, . . . , en} are the standard basis vectors in Rn
. Since ϕ ful�ls property (i) we have

that Φ maps positive semide�nite matrices in Matn(R) to positivity preserving linear maps in

Lin(Matn(R),Matn(R)). From the de�nition of the isomorphism we see that these positivity

preserving maps correspond to the tensor elements
∑

iAi⊗Bi that ful�l the following property

of positivity ∑
i

v∗Aiv · w∗Biw ≥ 0

for any two vectors v, w ∈ Cn
. These are called block positive matrices.

Still, we have no explicit description of Φ. This is where Choi’s theorem on completely posit-
ive maps comes in. Remember that in the proof of said theorem we have looked at the matrix

(Eij)1≤i,j≤n using the complete positivity to show that the map allows for a decomposition.

Since eie
T
j = Eij , we see that Choi’s isomorphism maps completely positive maps onto pos-

itive semide�nite matrices in Matn(R) ⊗Matn(R) ∼= Matn2(R) and is exactly what we have

used in chapter 3. So additionally, we require Φ to be completely positive itself, i.e.

Φ : Matn(R)+ → Matn2(R)+

allowing us to �nally write the map as

Φ : Matn(R)→ Matn(R)⊗Matn(R) ∼= Matn2(R)

v 7→
n2∑
i=1

V ∗i vVi

by Choi’s theorem.

Now, one might ask in what way this description is any better. Admittedly,
∑n2

i=1 V
∗
i vVi is

still rather abstract but in [1] the authors also make use of a diagrammatic calculus to systematic-

ally categorise these maps and obtain explicit descriptions which can then be tested against other

compositional maps from the literature on whether the preservation of hyponymy is better or

worse using real world test data. This part of the paper will not be discussed in this thesis and

neither will the diagrammatic calculus. The interested reader is thus referred to [1] and [9].
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Chapter 5

Summary

It is time for a recap. The problem of creating meaning representations for semantic objects that

are more complex than single words raises the question whether hyponymy can be preserved un-

der such circumstances. The title of [1] explains the goal �ttingly: Cats climb entails mammals
move – where cat being a hyponym of mammal and climb a hyponym of move the combination

should satisfy the hyponym-hypernym relation. In a sense, we have put the cart before the horse

because we initially assumed to have already found a map that by de�nition satis�es the preserva-

tion of hyponymy.

The succeeding analysis is at its core not very di�cult to understand. Every bilinear map ϕ
can be turned into Φ by the manner presented in chapter 4 and identifying linear maps between

two �nite n2
-dimensional vector spaces with n2 × n2

matrices is relatively straightforward. Still,

the class of maps that satis�es the constraining properties cannot be described explicitly – save a

subset of mappings satisfying one more condition: complete positivity.

Equipped with Choi’s theorem on completely positive maps (or Stinespring’s dilation theorem

for that matter) we could come to grips with these unruly and abstract de�nitions of mappings

between matrix algebras by requiring one more thing, namely the complete positivity of the map

Φ.

From the perspective of the 1950s and 1960s when distributional semantics was still in its in-

fancy it is surprising that operator theory and completely positive maps show up in linguistics,

especially since these mathematical concepts are also tied to quantum physics creating an inter-

esting link between the natural sciences and the study of human language. This just goes to show

how unpredictable the application of mathematics can be and that a theorem might �nd its use

in many di�erent settings unbeknownst to the author coming up with the initial proof.
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