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1 Introduction

The conjecture of Van der Waerden stood unproven for several years. In 1926 Van der
Waerden stated that
if A ∈ Rn×n is a doubly stochastic matrix then

per(A) ≥ n!

nn

and equality holds if and only if aij = 1/n for all i, j ∈ {1, . . . , n}. This conjecture
which is now a theorem, was first proven in 1980 by the russian mathematician G.P.
Egorychev. The purpose of this bachelor’s thesis is to make an almost self contained
elementary proof which needs little to no prior knowledge. The first part of my thesis
is very much guided by the work of Donald E. Knut [1], we will follow the same path to
prove Van der Waerden’s Theorem but with more eye for detail. In chapter 7 we will
discuss an approach to define the permanent for block matrices.

2 Quadratic forms

A quadratic form f(x1, . . . , xn) of n variables is an expression of the following form

f(x1, . . . , xn) =
∑
i,j

fijxixj . (2.1)

Every quadratic form can be defined by a matrix F ∈ Rn×n with entries fij which are
the coefficients of the monomial xixj . Due to the identity xixj = xjxi we can assume
F to be in upper triangle or even symmetric form. We will always consider F to be a
symmetric matrix. For example these 3 matrices all describe the same quadratic form1 2 3

4 5 6
7 8 9

 ,

1 6 10
0 5 14
0 0 9

 ,

1 3 5
3 5 7
5 7 9

 .

Quadratic forms are called equivalent if their corresponding matrices are congruent.
Two matrices A and B are called congruent if there is an invertible matrix P such that
A = P ⊺BP . We use the notation r(F ) for the rank and p(F ) for the number of positive
eigenvalues of F. We will now look at a few lemmas to further grasp the concept of
quadratic forms so we can later make a connection to the permanent of a matrix.

Lemma 2.1. Let f(x1, . . . , xn) =
∑

i,j fi,jxixj be a quadratic form and let the vector
(a1, . . . , an) of real numbers be such that a1 ̸= 0 and f(a1, . . . , an) = c ̸= 0. Then the
nonsingular transformation defined by

xi = ai

y1 −
∑
j≥2

yj
∑
k

fjkak
1

c

+ yi ∗ (i ≥ 2) (2.2)
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y1 =
∑
i,j

fijaixj
1

c
, yi = xi − x1ai

1

a1
for i ≥ 2 (2.3)

makes f(x1, . . . , xn) = cy21 + g(y2, . . . yn), where g is a quadratic form in n− 1 variables.
The notation (i ≥ 2) denotes 1 if i ≥ 2 and 0 otherwise.

Proof. It is easy to verify that (2.2) and (2.3) are inverses of each other by substituting yi
into (2.2) and xi into (2.3). That concludes the nonsingularity of the transformation. To
complete the proof we have to show that the coefficient of y21 is c and the coefficient of y1yu
is 0 for any u ≥ 2. If we take a look at our quadratic form f(x1, . . . , xn) =

∑
i,j fijxixj

and use the given definition of xi we can write

f(x1, . . . , xn) =
∑
i,j

fij

aiaj
y21 − 2y1

∑
l≥2

yl
∑
k

flkak
1

c
+

∑
l≥2

yl
∑
k

flkak
1

c

2
+ aiy1yj(j ≥ 2)− ai

∑
l≥2

yl
∑
k

flkak
1

c
yj(j ≥ 2) + ajy1yi(i ≥ 2)

−aj
∑
l≥2

∑
k

flkak
1

c
yi(i ≥ 2) + yiyj(i ≥ 2)(j ≥ 2)


By extracting the only term that includes y21 we can see that the coefficient must be∑

i,j fijaiaj = c. To find the coefficient of y1yu with u ≥ 2 we only consider the terms
that contribute to it and the following coefficient remains

∑
i,j

fij

(
−2aiaj

∑
k

flkak
1

c
+ ai(j = k) + aj(i = k)

)
= −2

∑
k

flkak +
∑
i

fikai +
∑
j

fkjaj = 0.

For the last equality we used the symmetry of F .

A crutial theorem for quadratic forms is Sylvester’s law of inertia we can use this law to
find a very simple form for every quadratic form. We will only need the following part
of it.

Theorem 2.2. Every symmetric matrix A ∈ Rn×n is congruent to a matrix D =
diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0). The number of ones equals the number of positive
eigenvalues and the number of −1 equals the number of negative eigenvalues of A. Two
symmetric matrices are congruent if and only if they have the same number of positive
and negative eigenvalues.
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Proof. Let A ∈ Rn×n be a symmetric matrix. According to the finite-dimensional spec-
tral Theorem there exists an orthogonal matrix P such that diag(λ1, . . . , λn) = P ⊺AP .
Where λ1 ≥ · · · ≥ λn are the eigenvalues of A, w.l.o.g. λk+1 = λk+2 = · · · = λn = 0.
By permuting the columns with permutation matrices we can get the eigenvalues in
the correct order and all there is left to do is scaling them to 1 or −1 if they are
nonzero. This can be done by multiplication from left and right by matrices Q = Q⊺ =
diag( 1√

|λ1|
, . . . , 1√

|λk|
, 1, . . . , 1). If we multiply all the used matrices together and call

the result of that product T , we get diag(1, . . . , 1,−1 . . . ,−1, 0 . . . , 0) = T ⊺AT where T
is nonsingular.

Lemma 2.3. Every quadratic form is equivalent to a simple quadratic form

g(y1, . . . , yn) = y21 + · · ·+ y2p − y2p+1 − · · · − y2r

and the numbers p and r are unique. In other words, if we have equivalent quadratic
forms

y21 + · · ·+ y2p − y2p+1 − · · · − y2r and z21 + · · ·+ z2q − z2q+1 − · · · − z2s

then p = q and r = s

Proof. Follows directly by Theorem 2.2.

Lemma 2.4. Let fθ(x1, . . . , xn) be the quadratic form
fθ(x1, . . . , xn) = (1− θ)f0(x1, . . . , xn) + θf1(x1, . . . , xn) that changes from f0 to f1 as θ
varies from 0 to 1. If r(fθ) = n for 0 ≤ θ ≤ 1 then p(f0) = p(f1)

Proof. fθ is a quadratic form and the corresponding matrix is therefore symmetric and
diagonalizable. r(Fθ) = n is equivalent to saying that Fθ has no zeroes as eigenvalues.
If we use the symmetric Gauss algorithm we get a diagonalized matrix congruent to Fθ

(P ⊺FθP = Dθ). The symmetric Gauss algorithm can be looked at as a composition
of continuous functions. Therefore we can in this case state, that the determination of
eigenvalues is continuous. Due to the continuity the sign of the eigenvalues can’t change
if we vary θ from 0 to 1.

3 Quadratic forms and permanents

The permanent of an n× n matrix A = (aij) is defined by

per(A) =
∑
π

n∏
i=1

aiπ(i),

taken over all permutations π of {1, . . . , n}. We will write ai for the i-th row (ai1, . . . ain)
of A, and per(A) = per(a1, . . . , an) if we enumerate its rows. From now on Aij is the
(n− 1)× (n− 1) matrix obtained by removing row i and column j from A.
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A basic fact about permanents that we will need is the following identity which looks
very similar to the Laplace-expansion of the determinant.

per(A) =
∑
j

aijper(Aij) =
∑
i

aijper(Aij) (3.1)

The next part of the theory is a proof of two lemmas, which are proved simultaneously
by induction on n.

Lemma 3.1. Let a1 . . . an−1 be vectors of nonnegative numbers in which at least n+1−i
elements of ai are positive, and suppose that b = (b1, . . . bn) is any vector of real numbers
such that

per(a1, . . . an−1, b) = 0. (3.2)

Then

per(a1, . . . , an−2, b, b) ≤ 0 (3.3)

Furthermore, per(a1, . . . , an−2, b, b) = 0 if and only if b1 = · · · = bn = 0.

Lemma 3.2. Let a1, . . . , an−2 be as in Lemma 3.1 and let f be the quadratic form

f(x1, . . . , xn) = per(a1, . . . , an−2, x, x) =
∑
i,j

fi,jxixj (3.4)

where x stands for the vector (x1, . . . , xn). Then r(F ) = n and p(F ) = 1.

Proof. We begin the induction by showing both results for n = 2. Let’s start with
Lemma 3.1 where a1 = (a11, a12) with a11, a12 > 0 and b = (b1, b2) such that

per

(
a11 b1
a12 b2

)
= a11b2 + a12b1 = 0.

Now this can only hold true if b1 and b2 have different sign or both are equal to zero. If
they have different sign then per(b, b) = 2b1b2 < 0. Therefore Lemma 3.1 holds true for
n = 2. We continue with Lemma 3.2.

f(x1, x2) = per

(
x1 x2
x1 x2

)
= 2x1x2 ⇒ F =

(
0 1
1 0

)
By diagonalizing the matrix F we can obtain that the eigenvalues of F are 1 and −1.
Therefore Lemma 3.2 also holds true for n = 2.
From now on we assume n ≥ 3 and both lemmas hold true for n − 1. In the quadratic
form (3.4) fij is the permanent of the (n− 2)× (n− 2) matrix (a1, . . . , an−2) obtained
by removing columns i and j. Obviously there is no x2i in (3.4) therefore fii = 0 for all
i. Let’s assume r(F ) < n, it follows that the matrix F is singular so there is a nonzero
vector (c1, . . . cn) such that

∑
j fijcj = 0 for all i.
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This is equivalent to saying that

per(a1, . . . , an−2, c, x) =
∑
i,j

fijcixj = 0

for all x, in particular per(a1, . . . , an−2, c, c) = 0.
Furthermore we have perj(a1, . . . , an−2, c) = 0 for all j where perj denotes the permanent
obtained by removing column j. This can be seen, by looking at the Laplace-expansion
of the matrix A = (a1, . . . , an−2, c, x):

0 = per(a1, . . . , an−2, c, x) =
∑
k

per(Ank)xk,

where Ank is obtained by removing row n and column k of A. This equation holds true
for all x. We now choose x = (0, . . . 0, 1, 0, . . . , 0) where the 1 is at position j. It follows
that perj(a1, . . . , an−2, c) = per(Anj) = 0. By using the induction step for n− 1 we get
perj(a1, . . . , an−3, c, c) ≤ 0. Now

0 = per(a1, . . . , an−2, c, c) =
∑
j

a(n−2)jperj(a1, . . . , an−3, c, c) ≤ 0

hence we have perj(a1, . . . , an−3, c, c) = 0 whenever a(n−2)j > 0, this occurs at least 3
times and by using the induction step for n − 2 it follows that c1 = · · · = cn = 0, a
contradiction. We have now proven the first part of Lemma 3.2, the fact that r(F ) = n.
For the other half it suffices to compute p(F ) in the special case that a1 = · · · = an−2 =
(1, . . . , 1) since we can transform the rows one by one from this case into (3.4) by Lemma
2.4

θ


a11 . . . a1n
...

. . .
...

a(n−2)1 . . . a(n−2)n

x1 . . . xn
x1 . . . xn

+ (1− θ)


1 . . . 1
...

. . .
...

1 . . . 1
x1 . . . xn
x1 . . . xn


and r(F ) = n for all intermediate quadratic forms. In our special case f(x1, . . . , xn) =
per(a1, . . . , an−2, x, x) is defined by the Matrix

F = (n− 2)!


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 . . . . . . 0


for simplification we can ignore the factor (n− 2)! and by multiplying F with the vector
(1, . . . , 1) we see that (n − 1) is an eigenvalue with multiplicity 1. Similarly by multi-
plying F with the vector (1, . . . , 0,−1, 0, . . . , 0) where the −1 is at position j we get the
eigenvalue −1 for every 1 < j ≤ n, hence p(F ) = 1.
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We now turn to the proof of Lemma 3.1. The hypothesis on a1, . . . , an−1 implies
per(a1, . . . , an−1, an−1) > 0, hence we have f(a(n−1)1, . . . , a(n−1)n) = c > 0, in terms
of the quadratic form (3.4). We assume without loss of generality that a(n−1)1 > 0.
Therefore if we apply Lemma 2.1 we obtain

f(x1, . . . , xn) = cy21 + g(y2, . . . , yn).

We know by Lemma 3.2 that p(F ) = 1. Therefore we know that g(y2, . . . , yn) ≤ 0 for all
(y2, . . . , yn) and g(y2, . . . , yn) = 0 if and only if (y2, . . . , yn) = 0. By Lemma 2.1 we have

y1 =
∑

1≤i,j≤n

fija(n−1)ixj/c = per(a1, . . . , an−1, x)/c (3.5)

The second equality can be achieved by definition of the quadratic form in Lemma 3.2.
This together with our hypothesis (3.2), implies that f(b1, . . . , bn) ≤ 0. At last we have
to show that f(b1, . . . , bn) = 0 if and only if b1 = · · · = bn = 0. Obviously, if b1 = · · · =
bn = 0 it follows that f(b1, . . . , bn) = 0. And if we have f(b1, . . . , bn) = 0 it follows by
(3.5) that y1 = 0 and our argument from before implies that y2 = · · · = yn = 0

Theorem 3.3. Let a1, . . . an−1 be nonnegative vectors such that ai contains at least
n+ 1− i positive entries, and let an be any vector of real numbers. Then

per(a1, . . . , an−1, an)
2 ≥ per(a1, . . . , an−1, an−1)per(a1, . . . , an, an), (3.6)

and equality holds if and only if an = λan−1 for some real number λ.

Proof. Let per(a1, . . . , an−1, an) = λper(a1, . . . , an−1, an−1), then λ is well defined since
per(a1, . . . , an−1, an−1) > 0. If we set b = an − λan−1, we get (3.2) since the permanent
is a multilinear function in all of it’s rows. Hence Lemma 3.1 tells us that

0 ≥ per(a1, . . . , an−2, b, b)

= per(a1, . . . , an−2, b, an)− λper(a1, . . . , an−2, b, an−1)

= per(a1, . . . , an−2, an, an)− 2λper(a1, . . . , an) + λ2per(a1, . . . , an−2, an−1, an−1)

= per(a1, . . . , an−2, an, an)− λ2per(a1, . . . , an−2, an−1, an−1)

= per(a1, . . . , an−2, an, an)−
per(a1, . . . , an)

2

per(a1, . . . , an−2, an−1, an−1)
.

Equality holds if and only if b = 0.

Corollary 3.4. Let a1, . . . , an−1 be nonnegative vectors and let an be arbitrary. Then
the inequality (3.6) holds.

Proof. This holds true because of the monotonicity of the limit and can be observed by
looking at the vectors ai + (ϵ, . . . , ϵ).
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4 Doubly stochastic matrices

We will now take a closer look at doubly stochastic matrices, which brings us a step
closer to proving Van der Waerden’s Theorem. A doubly stochastic matrix A has the
following properties.

� aij ≥ 0

�

∑
i aij =

∑
j aij = 1

The sum over each row and column must always equal 1. Thus each row and column
can be seen as a probability distribution and that is why these matrices are stochastic
in a double sense. Doubly stochastic matrices have some nice properties which are easy
to prove.

Proposition 4.1. If A and B are doubly stochastic so is AB = C

Proof. Obviously it holds that cij ≥ 0 but we still have to prove that the row and column
sums are equal to 1. Let’s consider an arbitrary i ∈ {1, . . . , n}∑

i

cij =
∑
i

∑
k

aikbkj =
∑
k

bkj
∑
i

aik =
∑
k

bkj1 = 1

The proof works analogous for the row sums.

Proposition 4.2. If A and B are doubly stochastic so is θA+ (1− θ)B for θ ∈ [0, 1].

Proof. Obviously the entries of the resulting matrix are still nonnegative. We have to
show that the row and column sums are egual to 1 for all θ ∈ [0, 1]. Let’s consider an
arbitrary i ∈ {1, . . . , n} and θ0 ∈ [0, 1]∑

i

cij = θ0(a1j + · · ·+ anj) + (1− θ0)(b1j + · · ·+ bnj) = θ0 + (1− θ0) = 1

The proof works analogous for the sum over j.

Now that we are more familiar with the concept of a doubly stochastic matrix we want
to deepen our understanding and we will do this by looking at a lemma by Garrett
Birkhoff which he proved in 1946. The simplest kind of a doubly stochastic matrix is
a permutation matrix. Garrett Birkhoff stated that permutation matrices can be seen
as the corners of a polygon in which all doubly stochastic matrices are contained. In
simple terms this means that all doubly stochastic matrices are convex combinations of
permutation matrices.

Lemma 4.3. The n× n matrix A is doubly stochastic if and only if there exist nonneg-
ative numbers tπ and permutation matrices Pπsuch that

A =
∑
π

tπPπ and
∑
π

tπ = 1 (4.1)

where the sums are over all n! permutations π of {1, . . . , n}.
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Proof. Obviously every matrix of the form (4.1) is doubly stochastic, the more difficult
part is to show that every doubly stochastic matrix can be represented in terms of
permutation matrices.

Lemma 4.4. Consider n men and n women such that each man-woman pair is either
,,compatible” or ,,incompatible”. If there is no way to match the men and women into
n compatible marriages, then for some k > 0 there is a set of k men who are compatible
with only k − 1 women.

Proof. Suppose that there is a way to obtain m compatible marriages but no way to
obtain m+1 for some m < n, and let x be an unmarried man in one of these maximum
matchings. Consider all chains of relationship of the form

i1 → j1 ⇒ i2 → j2 ⇒ · · · ⇒ ir → jr (4.2)

where x = i1, and the relation i → j means ,,man i is compatible with woman j” while
j ⇒ i means ,,woman j is married to man i”. In every such chain the woman jr must be
married because otherwise it would be possible to create m+1 marriages by performing
r − 1 divorces and then marrying il with jl for 1 ≤ l ≤ r. Consider now the set S of all
men il appearing in chains (4.2) and the set T of all women jl that appear. Then each
women in T is married to a man in S, and each man in S (except x) is married to a
woman in T . Therefore S contains k elements while T contains only k − 1.

Proof. Returning now to the proof of Lemma 4.3, let A be doubly stochastic and let us
imagine n men and women such that man i is compatible with woman j if and only if
aij > 0. In these circumstances a set of n compatible marriages is possible, for if S were
a set of k men that are compatible with only k − 1 women in a set T we get a block
matrix that looks like this (

⋆ 0

⋆ ⋆

)
Where the ⋆ block at the top left is of dimension k × (k − 1). This already cannot
happen since the sum

∑
i∈S,j∈T aij = k because it includes all nonzero elements of k

rows. But the sum also can’t be larger than k−1 because it involves only k−1 columns,
a contradiction.
Thus there is a permutation π such that alπ(l) > 0 for 1 ≤ l ≤ n. Let tπ = min(a1π(1), . . . , anπ(n)).
If tπ = 1, A is a permutation matrix, and has trivially the form (4.1). Otherwise we
write A as

A = tπPπ + (1− tπ)B

Where B is constructed in the following way

bij =
aij

1− tπ
if j ̸= π(i)

biπ(i) =
aiπ(i) − tπ

1− tπ
.
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We will now show that A = tπPπ + (1− tπ)B and that B is doubly stochastic.

(tπPπ + (1− tπ)B)i,j = 0 + (1− tπ)
aij

1− tπ
= aij if j ̸= π(i)

(tπPπ + (1− tπ)B)i,π(i) = tπ + (1− tπ)
aiπ(i) − tπ

1− tπ
= aiπ(i)

Trivially all entries of B are nonnegative, so it remains to show that column and row
sums of B are equal to 1.

∑
i

bij =
∑

i,j ̸=π(i)

aij
1− tπ

+
aiπ(i) − tπ

1− tπ
=

1

1− tπ

(∑
i

aij − tπ

)
=

1

1− tπ
(1− tπ) = 1

The proof remains the same for the row sums, which concludes that B is doubly stochas-
tic and we can indeed decompose A in that way. Due to the construction, B contains at
least one more zero than A. By induction on the number of nonzero entries, we can do
the same process with B, and this yields the desired representation of A.

We will now look at yet another property of matrices which we also need to proof
our desired result. The matrix A is called decomposable if the set {1, . . . , n} can be
partitioned into nonempty disjoint subsets S and T such that aij = 0 whenever i ∈ S
and j ∈ T . This is equivalent to saying that there is a permutation matrix P such that
PAP ⊺ is a block upper triangle form. Before we finish this chapter we will proof two
lemmas which will help us on the coming pages.

Lemma 4.5. If x = (x1, . . . , xn) is an eigenvector for the eigenvalue 1 of a doubly
stochastic matrix A (Ax = x) having some components unequal, then A is decomposable.

Proof. If (x1, . . . , xn) is a vector such that Ax = x, so is (x1 + c, . . . , xn + c), hence
we can assume that all components of x are nonnegative and at least one is zero. Let
S = {i|xi = 0} and T = {i|xi > 0}, then

∑
j aijxj = xi implies that aij = 0 whenever

i ∈ S and j ∈ T .

This proof of Lemma 4.5 uses only the ,,single stochastic” property of A but doubly
stochastic matrices satisfy an even stronger condition.

Lemma 4.6. If A is a doubly stochastic decomposable matrix then aij = 0 unless i, j ∈ T
or i, j ∈ S, which is equivalent to saying that there is a permutation matrix P such that
PAP ⊺ is a block diagonal matrix.

Proof. Due to the decomposability we already know that aij = 0 whenever i ∈ S and
j ∈ T . It is left to prove that aij = 0 for i ∈ T and j ∈ S if additionally A is doubly
stochastic.∑

i,j∈S
aij =

∑
i∈S

∑
1≤j≤n

aij =
∑
i∈S

1 =
∑
j∈S

1 =
∑
j∈S

∑
1≤i≤n

aij =
∑
i,j∈S

aij +
∑

i∈T,j∈S
aij

11



5 Minimal matrices

For the purpose of this discussion we shall say that an n×n matrix A is minimal if it is
doubly stochastic and if it has the smallest permanent among all n×n doubly stochastic
matrices. There is at least one minimal matrix since the permanent is a continuos
function of the matrix elements and the set of doubly stochastic matrices is a closed
and bounded subset of n2-dimensional space. Lemma 3.1 implies that the permanent of
A must be bigger than 0, because we can write for any doubly stochastic matrix A =
tπ1Pπ1 +B where B is the rest of the convex combination. Obviously per(tπ1Pπ1) = tnπ1

and all entries of B are nonnegative which implies that per(A) ≥ tnπ1
> 0. Another basic

fact about permanents is the following equation.

per(A+ ϵB) = per(A) + ϵ
∑
i,j

bijper(Aij) +O(ϵ2) (5.1)

This can be obtained by looking at the definition of the permanent:

per(A+ ϵB) = per

a11 + ϵb11 . . . a1n + ϵb1n
...

. . .
...

an1 + ϵbn1 . . . ann + ϵbnn

 =
∑
π

n∏
i=1

(aiπ(i) + ϵbiπ(i))

Obviously the terms without ϵ is exactly per(A). If we look for the terms with ϵ1 we
find that those are the ones where we multiply with ϵbiπ(i) only once and for the rest of
the product always choose aiπ(i). If we do that we get ϵ

∑
i,j bijper(Aij) and we use the

big-O notation for the terms with higher order.

If A is doubly stochastic we call B a valid modification for A if the row sums and column
sums of B are zero and if bij ≥ 0 whenever aij = 0. It follows immediately by definition
of B that the column and row sums of A+ ϵB are equal to 1. We also know that bij < 0
is only possible if aij > 0 so if we choose ϵ small enough then aij + ϵbij > 0. Hence
A+ ϵB is doubly stochastic.

Lemma 5.1. If A is a minimal matrix and if B is a valid modification for A, then∑
i,j

bijper(Aij) ≥ 0

Proof. If we look at per(A + ϵB) as a polynomial function in ϵ then the slope at ϵ = 0
is given by

∑
i,j bijper(Aij). Because of per(A) ≤ per(D) for all doubly stochastic

matrices D we know that per(A) ≤ per(A + ϵB) for all ϵ > 0. Therefore it holds that∑
i,j bijper(Aij) ≥ 0.

Lemma 5.2. A minimal matrix is indecomposable.

Proof. Suppose that A is a minimal matrix and decomposable. Therefore it follows by
Lemma 4.6 that aij > 0 if and only if i, j ∈ S or i, j ∈ T , where S and T are sets of
decomposability for A.
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We know that per(A) > 0, so there must be a permutation π with aiπ(i) > 0 for all
i. Let’s consider s ∈ S, t ∈ T and let B be a matrix that is entirely zero except that
bsπ(s) = btπ(t) = −1 and bsπ(t) = btπ(s) = 1. We know that π(s) ∈ S and π(t) ∈ T because
asπ(s), atπ(t) > 0 and since biπ(j) ≥ 0 for all i ̸= j the matrix B is a valid modification for
A. Therefore

per(Asπ(t)) + per(Atπ(s))− per(Asπ(s))− per(Atπ(t)) ≥ 0

by Lemma 5.1. But this cannot happen, because per(Asπ(s)), per(Atπ(t)) > 0 since A
without row s, (t) and column π(s), (π(t)) still has a positive permanent if we use the
same permutation π from before. Furthermore per(Asπ(t)) and per(Atπ(s)) are zero.
per(Atπ(s)) is zero because Atπ(s) has k rows corresponding to S in which all nonzero
entries occur in only k − 1 columns corresponding to S − {π(s)}.

Lemma 5.3. If A is a minimal matrix, then per(Aij) > 0 for all i, j.

Proof. If per(Aij) = 0, it has some set S of k > 0 rows in which all nonzero entries occur
in k−1 columns, this follows directly from the proof of Lemma 4.3. Let T = {1, . . . , n}−S
and note that T is not empty because we know from the proof of Lemma 5.2 that i and
j cannot be in the same set otherwise per(Aij) > 0. Let’s assume w.l.o.g that i ∈ T and
j ∈ S. We can now permute the columns of A such that all of the nonzero entries for
the k rows of S appear in the k columns of S. A is obviously still minimal and in upper
triangle form, hence decomposable, which contradicts Lemma 5.2.

Lemma 5.4. If A is a minimal matrix and aij > 0,then per(Aij) = per(A).

Proof. To prove this lemma we are first going to show that there are constants λi and
µj such that

per(Aij) = λi + µj if aij > 0. (5.2)

We know that per(A) > 0 therefore we can assume, by permuting the columns of A,
that aii > 0 for all i. We will now have to prove a small lemma from graph theory for
the following part.
Let us write i → j if aij > 0, thus i → i for all i. If A is decomposable there must be a
,,path”

1 = j0 → j1 → · · · → jl = j (5.3)

from 1 to all j.

Proof. Let’s assume there is an index x with no path to index y. Then we consider
the set T = {j ∈ {1, . . . , n}| there is a path from j to y}. Obviously x ̸∈ T and y ∈ T .
Now we consider S = {1, . . . , n}\T = {i ∈ {1, . . . , n}| there is no path from i to y}, so
S and T are both nonempty strict subsets of {1, . . . , n}. In total we have T ∩S = ∅ and
S ∪ T = {1, . . . , n} with aij = 0 for i ∈ S and j ∈ T .

13



This is because if we had aij ̸= 0 for i ∈ S and j ∈ T then there must be a path from i to
j by our definition of a path above. Due to the path from j to y it follows immediately
that there is a path from i to y. Therefore S and T are sets which satisfy the definition
of decomposability and we get a contradiction.

We say that j is at distance l if the shortest such path is of length l. To make these
paths unique we call p(j) the smallest index at distance l − 1 such that p(j) → j for
every j > 1 and from now on insist that jk−1 = p(jk) for all 1 ≤ k ≤ l. Now we can
interpret every path as a branch of an oriented tree emanating from point 1. We call i
an ancestor of j (and we write i ≺ j) if i = p(j) or i = p(p(j)) or ..., the notation i ⪯ j
means that i = j or i ≺ j.
Now we can start our proof of (5.2). We will define λi and µj inductively and begin by
saying λ1 = 0 and µ1 = per(A11). Then for the indices j > 1 with 1 = p(j) we can define
µj so that per(A1j) = 0 + µj holds. After that we can define λj for the same indices
such that per(Ajj) = µj + λj holds. Then we can repeat this procedure and use λj to
define µk for k = p(j) and we go on with that until we have assigned values for all λi

and µi.
The construction above assigns values for λ1, . . . , λn and µ1, . . . , µn in the situation that
aij > 0, i = p(j) or i = j. We must now proof, that this construction also holds for the
pairs (̂i, ĵ) such that aîĵ > 0, î ̸= ĵ and î ̸= p(ĵ). Consider the matrix B whose entries
are all zero except bîĵ = 1 and

bjj = (j ≺ ĵ)− (j ⪯ î), for 1 ≤ j ≤ n (5.4)

bp(j)j = (j ⪯ î)− (j ⪯ ĵ), for 1 ≤ j ≤ n

where the notation means that (j ≺ ĵ) = 1 if j ≺ ĵ and 0 otherwise. Now we show that
B is a valid modification for A (row and column sums must be zero). The following part
needs some explanation so we will first only look at the column sums. Keep in mind
that the j in the following equation is arbitrary but fixed.∑

i

bij = (j = ĵ) + ((j ≺ ĵ)− (j ⪯ î)) + ((j ⪯ î)− (j ⪯ ĵ)) = 0

The iterating i will at some point reach î and if j = ĵ we need to add 1 because bîĵ = 1 so
that’s where the fist summand comes from. Now the second and third summand is just
for the cases i = j and i = p(j) which will both only happen once in the sum because
for every j there is exactly one i = p(j). Now we look at the row sums which are more
difficult to explain.∑

j

bij = (i = î) + ((i ≺ ĵ)− (i ⪯ î)) + ((i ≺ î)− (i ≺ ĵ)) = 0

Now the first two summands can be explained in the same way as before, the third one
is a bit trickier. Firstly it doesn’t matter if we write j ⪯ î or i ≺ î because in this case
the i is fixed but arbitrary and i = p(j). Essentially we have to show that the sum over
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all bij where i = p(j) is equal to (i ≺ î)− (i ≺ ĵ). For this we will perform a distinction
of all possible cases.

1. i ≺ î and i ≺ ĵ

1.1 î and ĵ are in the same path
W.l.o.g j1 ≺ î and j1 ≺ ĵ, so it follows that∑

j,i=p(j)

bij = ((j1 ⪯ î)− (j1 ⪯ ĵ)) + · · ·+ ((jn ⪯ î)− (jn ⪯ ĵ))

= (1− 1) + (0− 0) + · · ·+ (0− 0) = 0

1.2 î and ĵ are not in the same path
W.l.o.g j1 ≺ î and j2 ≺ ĵ, so it follows that∑

j,i=p(j)

bij = ((j1 ⪯ î)− (j1 ⪯ ĵ)) + · · ·+ ((jn ⪯ î)− (jn ⪯ ĵ))

= (1− 0) + (0− 1) + · · ·+ (0− 0) = 0

2. i ≺ î and i ̸≺ ĵ
W.l.o.g j1 ≺ î so it follows that∑

j,i=p(j)

bij = ((j1 ⪯ î)− (j1 ⪯ ĵ)) + · · ·+ ((jn ⪯ î)− (jn ⪯ ĵ))

= (1− 0) + · · ·+ (0− 0) = 1

3. i ̸≺ î and i ≺ ĵ
Analog to case 2.

4. i ̸≺ î and i ̸≺ ĵ∑
j,i=p(j)

bij = ((j1 ⪯ î)− (j1 ⪯ ĵ)) + · · ·+ ((jn ⪯ î)− (jn ⪯ ĵ))

= (0− 0) + · · ·+ (0− 0) = 0

i

j1

. . .

ĵ î

. . . jn

case 1.1

i

j1

. . .

ĵ

. . .

î

jn

case 1.2

i

j1 . . .

î / ĵ

jn

case 2 / 3

i

j1 . . . jn

case 4
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We can now see, that all these cases have the same result as ((i ≺ î)− (i ≺ ĵ)) thus we
have shown that the column sums are also equal to zero.
Thus B is a valid modification for A and so is −B because of aii, aip(i) > 0. Therefore
Lemma 5.1 suggests that

∑
i,j bijper(Aij) = 0, hence it finally follows that

∑
i,j

bijper(Aij) =
∑
i,j

(λi − λi + µj − µj)bij

=
∑
i,j

(per(Aij)− λi − µj)bij

= per(Aîĵ)− λî − µĵ = 0.

For the second to last equality we used that per(Aij) = λi + µj holds for all pairs (i, j)
such that bij ̸= 0 except possibly for the given pair (̂i, ĵ). Thus (5.2) holds in general.
Now we can complete the proof. We know that aijper(Aij) = aij(λi + µj) for all i, j,
hence by (3.1) we get

per(A) = λi +
∑
j

aijµj = µj +
∑
i

aijλi (5.5)

for all i, j. In matrix notation this equals, λ + Aµ = µ + A⊺λ = per(A)e, where e is a
column vector of all one’s. Since Ae = A⊺e = e, we have A⊺λ + A⊺Aµ = per(A)e and
Aµ+AA⊺λ = per(A)e, hence

µ = A⊺Aµ and λ = AA⊺λ.

If we can proof that A⊺A and AA⊺ are indecomposable then our proof is completed by
using Lemma 4.5. So for the final step we proof the following implication which we can
use for our purpose by contraposition.
If A⊺A or AA⊺ is decomposable then A is also decomposable.

Proof. We will do the proof for A⊺A, the proof for AA⊺ works analogous. It obviously
holds that (A⊺A)i,j = ⟨ai, aj⟩ where ai is the i-th row of A. Due to the decomposability
of A⊺A there must be sets S and T such that (A⊺A)i,j = ⟨ai, aj⟩ = 0 if i ∈ S and j ∈ T .
Because of the nonnegativity of aij this implies that if aik > 0 then ajk = 0. At the
beginning of the proof we assumed w.l.o.g that aii > 0. Therefore if i ∈ S and j ∈ T
it follows that aij = 0, which is the definition of decomposability and concludes the
proof.

Now we know that A⊺A and AA⊺ are also indecomposable. As µ is an eigenvector for
A⊺A and λ is an eigenvector for AA⊺ with eigenvalue 1 we know by contraposition of
Lemma 4.5 that λ1 = · · · = λn = 0 and µ1 = · · · = µn = per(A11). Remembering (5.2)
we get that per(Aij) = µj if aij > 0 and if we put it all together we get by (5.5)

per(A) = µj +
∑
i

aijλi = µj = per(Aij) if aij > 0
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Lemma 5.5. If A is a minimal matrix, then per(Aij) ≥ per(A) for all i and j.

Proof. Because of Lemma 5.4 we only have to consider (i, j) such that aij = 0, w.l.o.g
assume that i = j = 1 and a11 = 0. By Lemma 5.3 we know that per(A11) > 0, hence
we can achieve that ajj > 0 for 2 ≤ j ≤ n by permuting rows. Now let B = I−A a valid
modification for A, obviously it holds that bij ≥ 0 if aij = 0 and the row and column
sums are zero. By Lemma 5.1 and equation (3.1) we have

0 ≤
∑
i,j

bijper(Aij) =
∑
j

per(Ajj)−
∑
i,j

aijper(Aij)

= per(A11) + (n− 1)per(A)− nper(A) = per(A11)− per(A)

Where the first equality follows by the definition of B and by Lemma 5.4 per(Ajj) =
per(A) for j > 1.

6 Egorychev’s Theorem

We can now combine our results to complete the proof of Van der Waerden’s Theorem.

Lemma 6.1. If A is a minimal matrix, then per(Aij) = per(A) for all i and j.

Proof. Due to Lemma 5.5 we only have to proof that per(Aij) > per(A) cannot happen.
Permuting rows and columns doesn’t change the value of the permanent, therefore we
can assume w.l.o.g that i = j = n. We further assume that per(Ann) > per(A) and
a(n−1)n > 0. Then n > 1 and Corollary 3.4 implies that

per(A)2 = per(a1, . . . , an)
2 ≥ per(a1, . . . , an−2, an−1, an−1)per(a1, . . . , an−2, an, an).

But per(a1, . . . , an−2, an−1, an−1) =
∑

j a(n−1)jper(Anj) >
∑

j a(n−1)jper(A) = per(A),
and per(a1, . . . , an−2, an, an) =

∑
j anjper(A(n−1)j) ≥

∑
j anjper(A) = per(A). Which

leads to the contradiction per(A)2 > per(A)2.

Lemma 6.2. If A is a minimal matrix of order n, with aij > 0 for all i and j except
possibly when i = n, then aij = 1/n for all i and j.

Proof. We already know that

per(a1, . . . , an−2, an, an) =
∑
j

anjper(A(n−1)j) =
∑
j

anjper(A) = per(A)

by Lemma 5.1, (3.1) and the fact that
∑

j anj = 1.
Similarly we get per(a1, . . . , an−2, an−1, an−1) = per(A). Therefore equality holds in
(3.6) and Theorem 3.3 implies that an = λan−1 for some λ. Obviously λ = 1 because
A is doubly stochastic, hence an = an−1. Similarly, all rows of A are equal. Therefore
all columns of A consist of identical elements. It follows directly that all elements of A
must be equal to 1/n.
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Theorem 6.3. If A is a minimal matrix of order n, then aij = 1/n for all i and j,
hence

per(A) = n!/nn

Proof. Let B be the matrix obtained from A by replacing some row ai by some other
row ak, then per(B) =

∑
j akjper(Aij) =

∑
j akjper(A) = per(A). Similarly we can

construct a matrix C by replacing the row ak by ai. Obviously it holds that per(A) =
per(B) = per(C). Now B and C don’t have to be doubly stochastic but

D =
1

2
(B + C) =



−a1−
...

−1
2(ai + ak)−

...
−1

2(ai + ak)−
...

−an−


surely is. The row sums are trivially equal to 1 and all entries are nonnegative. To see
that D is doubly stochastic we make sure that the column sums are equal to 1. So we
choose an arbitrary index j and calculate

∑
l

dlj = a1j + · · ·+ 1

2
(aij + akj) + · · ·+ 1

2
(aij + akj) + · · ·+ anj = 1

Now we will confirm that per(D) = per(A) by using the multilinearity of the permanent.

per(D) =
1

4


per



−a1−
...

−ak−
...

−ak−
...

−an−


+ per



−a1−
...

−ai−
...

−ak−
...

−an−


+ per



−a1−
...

−ak−
...

−ai−
...

−an−


+ per



−a1−
...

−ai−
...

−ai−
...

−an−




=

1

4
(per(B) + 2per(A) + per(C))

= per(A)

So D is a minimal matrix.
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By a finite number of averaging steps like the ones that formed D we are able to achieve
a matrix E with the same bottom row as A, but with eij = 0 only if i = n or a1j = a2j =
· · · = a(n−1)j = 0. The second case cannot happen since A would then be decomposable
with the sets S = {n} and T = {1, . . . , n− 1}.
Hence E is a minimal matrix satisfying the condition from Lemma 6.2 it follows that all
it’s rows are ei = (1/n, . . . , 1/n) and so an = (1/n, . . . , 1/n). With the same procedure
we can achieve the same result for all other rows of A. Therefore A is the matrix with
all entries aij = 1/n and the permanent then calculates to n!

nn

7 Block matrices

In this chapter we will discuss an approach to define the permanent for block matrices.

Definiton 7.1. Let A be a n× n block matrix with entries Aij ∈ Rm×m. Aij is positive
semidefinit (psd) and

∑
iAij =

∑
j Aij = I for all i, j. Then we define the permanent

of A as follows

per(A) =
1

n!

∑
π

∑
τ

n∏
i=1

Aτ(i)π(τ(i)) (7.1)

where both τ and π iterate over all permutations of {1, . . . , n}

The idea behind the definition is to take the arithmetic mean of all possible matrix
products to counter the non-commutativity of matrices. The symmetry of the permanent
is also secured this way, because every combination of every product is part of the sum
and therefore transposing doesn’t change the result. If we want this definition to be
reasonable we require per(A) ∈ Rm×m to be a psd matrix to match the nonnegativity of
the permanent. Let’s take a look at an instructive example

Example 7.2.

per

(
A11 A12

A21 A22

)
=

1

2
(A11A22 +A22A11 +A21A12 +A21A12)

If the block matrix A is of dimension 2× 2 then it is quite easy to prove that the above
definition for the permanent is psd.

Theorem 7.3. If A ∈ R2×2 is a block matrix with entries Aij ∈ Rm×m which are psd
with

∑
iAij =

∑
j Aij = I, then per(A) by Definition 7.1 is psd.

Proof. If A =

(
A11 A12

A21 A22

)
with corresponding permanent as in Example 7.2 we get this

system of linear equations:

A11 +A12 = I A11 +A21 = I

A12 +A22 = I A21 +A22 = I

which implies that A =

(
A11 A12

A12 A11

)
and the permanent simplifies to per(A) = A2

11+A2
12.
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� symmetry
(A11A11 +A12A12)

⊺ = (A⊺
11A

⊺
11 +A⊺

12A
⊺
12) = A11A11 +A12A12

� psd
x⊺(A11A11 +A12A12)x = x⊺A⊺

11A11x+ x⊺A⊺
12A12x = (A11x)

⊺A11x+ (A12x)
⊺A12x

= ||A11x||2 + ||A12x||2 ≥ 0

Therefore it follows that the permanent is a psd matrix.

It seems like the proof for higher dimensions is more difficult. Perhaps we can gain
something from well known facts of linear algebra that will help us with the proof.

Lemma 7.4. If A,B ∈ Rn×n are psd matrices so is A+B.

Proof. For any arbitrary x ∈ Rn it holds that

x⊺(A+B)x = x⊺Ax+ x⊺Bx ≥ 0

So if each summand that appears in the permanent is psd we have solved our problem.
Unfortunately that is not true.

Lemma 7.5. If A,B ∈ Rn×n are psd then AB is psd if and only if AB is normal i.e.
(AB)⊺AB = AB(AB)⊺.

Proof. For a matrixX, we denote σ(X) for the set of all eigenvalues ofX. First note that
for two arbitrary matrices X and Y it holds that σ(XY ) = σ(Y X). By a known result of

linear algebra we can write AB = A
1
2A

1
2B where A

1
2 is psd. Thus σ(AB) = σ(A

1
2BA

1
2 ).

Now choose any arbitrary x ∈ Rn and it holds that x⊺A
1
2BA

1
2x = (A

1
2x)⊺B(A

1
2x) ≥ 0.

Therefore the eigenvalues of AB must be nonnegative. Finally, since AB is normal we
can use the spectral theorem and it follows that AB = UDU⊺ for some diagonal matrix
D and unitary matrix U , therefore AB is psd.

One can also use Sylvester’s law of inertia to prove that if A is spd and B is symmetric
then the eigenvalues of AB have the same sign as the eigenvalues of B. So if we would
demand all entries of the block matrix to be spd we could achieve that all summands of
the permanent have positive eigenvalues. But this also doesn’t work because the sum of
two matrices with positive eigenvalues can have negative eigenvalues.
Since we couldn’t prove that our definition holds true for all block matrices we try to
find a counterexample to our definition and proof that the permanent cannot be defined
in that way for block matrices.

It is easy to find two psd matrices such that their product is not symmetric anymore
and therefore not psd, but we also know by the proof of Lemma 7.5 that the eigenvalues
are always nonnegative.
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Example 7.6.

A =

(
1 2
2 5

)
, B =

(
1 −1
−1 2

)
, AB =

(
−1 3
−3 8

)
If we consider products of 3 psd matrices we easily find A,B and C psd such that the
product ABC has negative eigenvalues even with the condition A + B + C = I. As
a matter of fact we can also look at the symmetric product ABC + ACB + BAC +
BCA+CAB+CBA and still find 3 matrices with the conditions from above such that
the symmetric product has negative eigenvalues. Thus the summands of the permanent
don’t have to be psd. To achieve this just run this python code and it will find a counter
example rather fast.

import numpy as np

def psd(dim):

erg = np.eye(dim)

while all(i >= 0 for i in np.linalg.eig(erg)[0]): #Eigenvalues ≥ 0
A = np.random.uniform(-1,1,(dim,dim))

B = np.random.uniform(-1,1,(dim,dim))

A = np.matmul(A,np.transpose(A)) #A is psd

B = np.matmul(B,np.transpose(B)) #B is psd

C = np.eye(dim) - (A+B) #Symmetric by construction

if all (i>=0 for i in np.linalg.eig(C)[0]): #Check if C is psd

erg = A@B@C + A@C@B + B@A@C + B@C@A + C@A@B + C@B@A

return np.linalg.eig(erg)[0], A, B, C

It is easy to see how this code works. At first we define two random matrices A and B
and multiply them with their transpose. This generates two random psd matrices. The
proof that AA⊺ is psd for any arbitrary matrix A is trivial. Choose an arbitrary matrix
A ∈ Rn×n and a vector x ∈ Rn×n

x⊺AA⊺x = (A⊺x)⊺A⊺x = y⊺y =

n∑
i

y2i ≥ 0

Thus the result is psd. Then we create the matrix C in such a way that A+B +C = I
holds true. By doing this C is always symmetric by construction. In the next step we
check if C has nonnegative eigenvalues and therefore is psd. If that is true, we finally
compute the symmetric product. This is done until we find a matrix with a negative
eigenvalue.
But we not only want to find a summand with negative eigenvalues, we want to find
matrices such that the permanent has negative eigenvalues. The first approach one cold
make to achieve this is to set up an arbitrary 3× 3 block matrix and the corresponding
equations.

P =

 A B C
D E F
G H J
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A+B + C = I A+D +G = I

D + E + F = I B + E +H = I

G+H + J = I C + F + J = I

This is a system with 6 equations and 9 unknowns and therefore 3 degrees of freedom.
To solve this we choose A,B and D (psd) and then solve the system of equations to get
a unique solution for all entries of P . If we set up a program to run through many possi-
bilities for psd matrices A,B and D it always finds solutions for the system of equations
but the corresponding matrices are not all psd and the code gets stuck in a permanent
loop.

In order to set up a code that finds suiting block matrices and checks if their permanent
has negative eigenvalues we are going to look at latin [2] and semi classical magic squares
[3].

Definiton 7.7. A n×n block matrix A is called latin magic square if there are n different
psd matrices of dimension m × m such that each matrix appears exactly once in each
column and row. Furthermore it must hold true that

∑
iAij =

∑
j Aij = I.

Example 7.8. Let X,Y, Z ∈ Rm×m be psd such that X + Y + Z = I.

A =

X Y Z
Y Z X
Z X Y


Then A is a latin magic square.

Definiton 7.9. A n× n block matrix A is called semiclassical magic square if it can be
constructed in the following way.

A =
∑
π

Pπ ⊗ qπ (7.2)

where qπ are m×m psd matrices with
∑

π qπ = I, Pπ ∈ Rn×n are permutation matrices
and ⊗ is the Kronecker product.

By this definition we get
∑

iAij = I automatically. This can be obtained in the following
way. If we have a n × n block matrix, then there are n! permutation matrices. For an
arbitrary entry i, j there are (n − 1)! permutation matrices with a 1 at that entry. So
we have (n − 1)! of the existing n! coefficients in that entry. The same holds for any
other entry in that row i. Therefore we have n ∗ (n− 1)! = n! coefficients (qπ) in row i.
And because the permutation matrices that had a 1 at i, j cannot have a 1 at any other
entry in the row i, every qπ appears exactly once in that row. Therefore it follows that∑

iAij = I.
Once again we can look at an instructive example to make the definition more clear.
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Example 7.10.

A =

(
1 0
0 1

)
⊗
(
2/3 1/4
1/4 1/2

)
+

(
0 1
1 0

)
⊗
(

1/3 −1/4
−1/4 1/2

)
=


2/3 1/4 1/3 −1/4
1/4 1/2 −1/4 1/2

1/3 −1/4 2/3 1/4
−1/4 1/2 1/4 1/2


To try and find a counterexample for the psd property of the permanent of 3 × 3 latin
magic squares we can look at this short python code.

import numpy as np

def latin3(dim):

erg = np.eye(dim)

while all(i >= 0 for i in np.linalg.eig(erg)[0]): #Eigenvalues ≥ 0
A = np.random.uniform(-0.5,0.5,(dim,dim))

B = np.random.uniform(-0.5,0.5,(dim,dim))

A = np.matmul(A,np.transpose(A)) #A is psd

B = np.matmul(B,np.transpose(B)) #B is psd

C = np.eye(dim) - (A+B) #Symmetric by construction

if all(i >= 0 for i in np.linalg.eig(C)[0]): #Check if C is psd

erg = A@A@A + B@B@B + C@C@C + 1/2*(A@B@C + A@C@B + B@A@C +

B@C@A + C@A@B + C@B@A)

return np.linalg.eig(erg), A,B,C

This code works analogous to the code above but instead of the symmetric product of
A,B and C we calculate the whole permanent of the matrix. The code does not find
any counter examples so it seems logic to try again in higher dimensions. The next code
is for 4× 4 latin magic squares and does the same thing.
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import numpy as np

def latin4(dim):

erg = np.eye(dim)

while all(i >= 0 for i in np.linalg.eig(erg)[0]): #Eigenvalues ≥ 0
A = np.random.uniform(-0.5,0.5,(dim,dim))

B = np.random.uniform(-0.5,0.5,(dim,dim))

C = np.random.uniform(-0.5,0.5,(dim,dim))

A = np.matmul(A,np.transpose(A)) #A is psd

B = np.matmul(B,np.transpose(B)) #B is psd

C = np.matmul(C,np.transpose(C)) #C is psd

D = np.eye(dim) - (A+B+C) #Symmetric by construction

if all(i >= 0 for i in np.linalg.eig(D)[0]): #Check if D isd psd

erg = (A@A@A@A + B@B@B@B + C@C@C@C + D@D@D@D) + 1/24*8*(

A@B@C@D + A@B@D@C + A@C@B@D + A@C@D@B + A@D@B@C + A@D@C@B

+ B@A@C@D + B@A@D@C + B@C@A@D + B@C@D@A + B@D@A@C +

B@D@C@A + C@A@B@D + C@A@D@B + C@B@A@D + C@B@D@A + C@D@A@B

+ C@D@B@A + D@A@B@C + D@A@C@B + D@B@A@C + D@B@C@A +

D@C@A@B + D@C@B@A)\ + 1/24*2*4*(A@A@B@B + A@B@A@B +

A@B@B@A + B@A@A@B + B@B@A@A + B@A@B@A + A@A@D@D + A@D@A@D

+ A@D@D@A + D@A@A@D + D@D@A@A + D@A@D@A + A@A@C@C +

A@C@A@C + A@C@C@A + C@A@A@C + C@C@A@A + C@A@C@A + D@D@B@B

+ D@B@D@B + D@B@B@D + B@D@D@B + B@B@D@D + B@D@B@D +

C@C@B@B + C@B@C@B + C@B@B@C + B@C@C@B + B@B@C@C + B@C@B@C

+ D@D@C@C + D@C@D@C + D@C@C@D + C@D@D@C + C@C@D@D +

C@D@C@D)

return np.linalg.eig(erg), A,B,C

Just as the code for 3 × 3 latin magic squares this one also finds no counter example.
Since we cannot find a counter example we write a program for semiclassical magic
squares which include more different block matrices than just the latin magic squares.
To understand this code we need to look at an arbitrary 3×3 semiclassical magic square.

A =

q1 + q2 q3 + q4 q5 + q6
q3 + q6 q1 + q5 q2 + q4
q4 + q5 q2 + q6 q1 + q3

 (7.3)

where
∑

i qi = I must hold true. We proceed as follows, we define Q1, . . . Q5 and multiply
with their transpose to once again get random psd matrices. After that we generate Q6

such that
∑

iQi = I holds true and check if it’s eigenvalues are nonnegative. If all of
that checks out we can compute the permanent as before according to our definition and
Equation 7.3.
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import numpy as np

def semi(dim):

erg = np.eye(dim)

while all(i >= 0 for i in np.linalg.eig(erg)[0]):

Q1 = np.random.uniform(-0.5,0.5,(dim,dim))

Q2 = np.random.uniform(-0.5,0.5,(dim,dim))

Q3 = np.random.uniform(-0.5,0.5,(dim,dim))

Q4 = np.random.uniform(-0.5,0.5,(dim,dim))

Q5 = np.random.uniform(-0.5,0.5,(dim,dim))

Q1 = np.matmul(Q1,np.transpose(Q1))

Q2 = np.matmul(Q2,np.transpose(Q2))

Q3 = np.matmul(Q3,np.transpose(Q3))

Q4 = np.matmul(Q4,np.transpose(Q4))

Q5 = np.matmul(Q5,np.transpose(Q5)) #Q1, . . . , Q5 are all psd

Q6 = np.eye(dim) - (Q1 + Q2 + Q3 + Q4 + Q5)

A = Q1 + Q2; B = Q3 + Q4; C = Q5 + Q6

D = Q3 + Q6; E = Q1 + Q5; F = Q2 + Q4

G = Q2 + Q5; H = Q4 + Q6; J = Q1 + Q3

#A, . . . , J are all psd if Q6 is psd

if all(i >= 0 for i in np.linalg.eig(Q6)[0]): #Check if Q6 is psd

erg = 1/6*(A@E@J + A@J@E + E@A@J + E@J@A + J@A@E + J@E@A\

+ A@F@H + A@H@F + F@A@H + F@H@A + H@A@F + H@F@A\

+ B@D@J + B@J@D + J@B@D + J@D@B + D@B@J + D@J@B\

+ B@F@G + B@G@F + F@G@B + F@B@G + G@B@F + G@F@B\

+ C@E@G + C@G@E + E@C@G + E@G@C + G@C@E + G@E@C\

+ C@D@H + C@H@D + D@C@H + D@H@C + H@C@D + H@D@C)

return np.linalg.eig(erg)[0], Q1,Q2,Q3,Q4,Q5,Q6

It turns out that alike the codes above this one also fails to find a counterexample. By
this outcome one could assume that Definition 7.1 might work...
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