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1 Introduction

Measurements are part of our everyday life, be it to determine the length of an object
with a ruler, to weigh flour while baking cakes or to stop the time for a 100 m run. In all
these cases, the effects of the measurement apparatus are often negligible or can be
minimized. Moreover, if an idealized classical measurement process is repeated many
times, one would always obtain the same outcome. In quantum mechanics, however,
measurements work quite differently. In quantum mechanics, the outcomes of mea-
surements can not be predicted with certainty and if the same measurement on an
object is done twice, the outcomes can vary.
POVMs (Positive Operator Valued Measures) are the most general kind of quantum
measurements. They can be used to perform the task of quantum state discrimination
and also play a fundamental role in entanglement distillation. Both of these aspects will
be discussed in this work and play an important role in quantum information process-
ing, such as quantum cryptography.
In quantum cryptography, two parties want to share a secret message with one another.
To do so, the receiving party should determine, by suitable measurements, the state
submitted by the transmitting party (and hence the intended message) out of a set of
possible states, which all have been prepared with known probabilities [1]. That is ex-
actly what quantum state discrimination describes. Quantum state discrimination is
the process of distinguishing between different quantum states using measurements.
But how can the efficiency of a POVM to perform quantum state discrimination be
quantified? And can POVMs be approximated by POVMs with few outcomes, what
would make the task of quantum state discrimination less complicated?
Key insights to these questions can be obtained by investigating the relation between
POVMs and special convex polytopes, called zonotopes and zonoids. Using fundamental
results for zonotopes and zonoids from convex geometry, important insights on quan-
tum measurements and quantum state discrimination can be gained, which is the
focus of the first part of this thesis.
Further, in quantum cryptography, maximally entangled states are needed in order to
guarantee secure communication. In practice, however, quantum states are usually
less entangled or partially mixed, due to decoherence effects. That is where entangle-
ment distillation comes in, which is dealt with in the second part of this thesis. With
entanglement distillation, a large number of mixed entangled states can be converted
into a smaller number of maximally entangled pure states using local operations (e.g.
POVMs) and classical communication.
But for which states does such a distillation process work? This question is also referred
to as the distillability problem and the focus of the second part of this thesis.
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1 Introduction

This thesis is structured as follows. Firstly, a mathematical introduction to Hilbert
spaces and operators is given (2). Further, density matrices and important proper-
ties of quantum states are discussed (3). This is followed by a convex geometry chapter
about zonotopes and zonoids (4), since there exists a connection between these geomet-
rical objects and quantum measurements. Especially, the approximation of zonoids by
zonotopes is outlined (4.2). Next, quantum measurements are discussed (5) with a spe-
cific focus on quantum state discrimination (5.2) and the relation between zonotopes
and POVMs (5.2.1). Then, quantum channels and Werner states (6) are described. The
main chapter in the second part of this thesis focuses on the distillation of entangle-
ment (7). We start by outlining the dichotomy between separability and entanglement
(7.1). Next, we ask ourselves, how to measure the proximity between two quantum
states and introduce the concept of fidelity (7.1.1). Furthermore, distillation is defined
and the distillability problem mathematically formulated (7.2). Finally, the distillability
of two qubit systems is analyzed (7.2.2).

2



2 Notation and useful definitions

Quantum mechanics is a mathematical-physical theory that describes the physical
properties of matter at the atomic and subatomic scale. Understanding the mathemat-
ical foundations is essential to grasp every physical theory. Therefore, this first chapter
describes the mathematical foundations for comprehending quantum objects and the
used notation. Firstly, Hilbert and Euclidean spaces are studied (2.1), followed by a
description of the Dirac notation (2.2). The chapter ends with a discussion of operators
and matrices (2.3).

2.1 Hilbert and Euclidean spaces

To gain a better understanding of quantum mechanics, the structure of the Hilbert
space, which underlies our physical objects, is studied. We begin by examining the
definitions.

Definition 2.1.1 (Pre-Hilbert space). A normed vector space (V, ∣∣ − ∣∣) is called pre-
Hilbert space if an inner product ⟨−,−⟩ is defined on V , which induces the norm ∣∣ − ∣∣,
e.g., ∣∣x∣∣2 = ⟨x, x⟩ for x ∈ V .

Definition 2.1.2 (Hilbert space). A normed vector space (V, ∣∣−∣∣) is called Hilbert space,
if (V, ∣∣ − ∣∣) is a complete pre-Hilbert space.

In a complex Hilbert space H, we adopt the convention that the inner product is linear
in the second argument and conjugate linear in the first argument, i.e., for ψ, ϕ ∈ H

and λ ∈ C [2]:

⟨λψ, ϕ⟩ = λ̄⟨ψ, ϕ⟩
⟨ψ, λϕ⟩ = λ⟨ψ, ϕ⟩.

Throughout this Bachelor thesis, all the considered normed spaces will be finite-dimensional.

Tensor products

Tensor products are essential for describing composite physical systems. For real or
complex finite-dimensional Hilbert spaces (Hi)1≤i≤k, we consider the tensor product over
the real or complex field, respectively,

H =

k

⨂
i=1

Hi = H1 ⊗H2 ⊗ ... ⊗Hk.

This tensor product is also called multipartite Hilbert space. For k = 2 we call it bipartite
Hilbert space [2].
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2 Notation and useful definitions

2.2 Bra-ket notation

As the Dirac notation, introduced by Dirac in 1939 (see [3]), is used throughout this
Bachelor thesis, the following section outlines the basics of this notation.
Notation 1 A vector ψ in a Hilbert space H is denoted by a ket and represented as ∣ψ⟩.
As H is a vector space, it has a dual vector space H

∗, which is known as the space of
linear functionals over the vector space. An element of the dual Hilbert space H

∗ is
called a bra and represented as ⟨ϕ∣. Each ket ∣ψ⟩ has exactly one corresponding dual
vector ⟨ψ∣ and vice versa. Technically, the hermitian conjugation transforms a vector
into its dual vector

∣ψ⟩† = ⟨ψ∣.

The result of applying the bra ⟨ϕ∣ to the ket ∣ψ⟩ is referred to as the bracket (bra-ket) of
the two vectors ϕ, ψ ∈ H. It represents the inner product of ϕ and ψ and is denoted by
⟨ϕ∣ψ⟩.
For an operator A ∈ B(H) and a vector ϕ ∈ H, we can form the linear functional ⟨ϕ∣A,
i.e., the linear map ψ ↦ ⟨ϕ∣Aψ⟩, which is generally written as

⟨ϕ∣A∣ψ⟩.

Notation 2 For any ϕ, ψ ∈ H, the expression ∣ϕ⟩⟨ψ∣ denotes the linear operator (see
section 2.3 for operator definition) on H given by

(∣ϕ⟩⟨ψ∣)(χ) = ∣ϕ⟩⟨ψ∣χ⟩ = ⟨ψ∣χ⟩∣ϕ⟩

which is also called the exterior product. In mathematical notation, ∣ϕ⟩⟨ψ∣ is the oper-
ator sending χ to ⟨ψ, χ⟩ϕ.
If the vectors are chosen to be each other’s dual vectors (∣ψ⟩) respectively, we get the
projection operators

P ∶= ∣ψ⟩⟨ψ∣
with the property P 2

= ∣ψ⟩⟨ψ∣ψ⟩⟨ψ∣ = ∣ψ⟩⟨ψ∣ = P [4,5].

2.3 Operators and matrices

In quantum mechanics, linear operators on vector spaces are used to represent phys-
ical quantities and are typically defined on Hilbert spaces. This section gives a short
introduction to operators and superoperators.

Definition 2.3.1 (Operator [6]). A map ψ ∶ V1 → V2 between two normed spaces is called
an operator.

If the map in Definition 2.3.1 is linear, the operator is called a linear operator.
For finite-dimensional Hilbert spaces H,H

′, we denote by B(H′
,H) the space of linear

operators from H
′ to H. Furthermore, the notation B(H) is used for linar operators

from H to H.
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2 Notation and useful definitions

Definition 2.3.2 (Adjoint operator [2, 7]). Consider an operator A ∈ B(H′
,H). The

unique operator A†
∈ B(H,H′) which satisfies for all vectors ψ ∈ H, ϕ ∈ H

′

⟨ψ,Aϕ⟩ = ⟨A†
ψ, ϕ⟩

is called the adjoint or Hermitian conjugate of the operator A.

The given definition implies (AB)† = B†
A

†. The adjoint operator A† is obtained by trans-
posing and then complex conjugating A. We denote by Bsa(H) the space of self-adjoint
operators satisfying A†

= A. Bsa(H) is a real vector subspace of B(H).
Every measurable quantity in a physical experiment (observable) is associated with a
self-adjoint linear operator.
Next, we want to define positive operators. Using positive operators, we will be able to
define quantum states in Chapter 3. From now on, the normed spaces V1 should be
pre-Hilbert spaces.

Definition 2.3.3 (Positive operator [7]). An operator A ∶ V1 → V1 is said to be positive if
A = A

† and for every x ∈ V1, ⟨x,Ax⟩ = ⟨x∣A∣x⟩ ≥ 0 holds.

A positive operator has non-negative eigenvalues.
If ⟨x∣A∣x⟩ is strictly greater than zero for all x ≠ 0 we say that A is positive definite [7].

Superoperators

The term superoperator is used to denote linear maps acting between spaces of opera-
tors or between spaces of matrices. In order to indicate the space on which the identity
map is defined, two different notations are employed [2]:

• IH is the identity operator on a Hilbert space (if H = Cn or H = Rn we use In)

• IdB(H) is the identity superoperator on B(H) (sometimes simply Id).

Trace

Similarly to the definition of the trace of a matrix as the sum of its diagonal elements,
the trace of an operator A is defined as the trace of any matrix representation of A [7].

Definition 2.3.4 (Trace [8]). The trace of an operator A acting on a Hilbert space H is
defined as

Tr(A) = ∑
i

⟨i∣A∣i⟩

where {∣i⟩} is some complete, orthonormal basis of H.

The trace operator is linear and cyclic.
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2 Notation and useful definitions

Partial trace

The partial trace is an important mathematical operation in quantum mechanics and
used to only trace over a part of a bipartite system. Unlike the trace, which has a scalar
as an output, the partial trace has an operator as an output which lives on a smaller
Hilbert space.

Definition 2.3.5 (Partial trace [2]). Consider a bipartite Hilbert space H = H1⊗H2. The
partial trace over H2 is the map TrH2 ∶ B(H1) ⊗B(H2) → B(H1) given by

IdB(H1) ⊗ Tr.

The partial trace acts on product operators the following way:

TrH2(A ⊗B) = (TrB)A

for A ∈ B(H1), B ∈ B(H2). Analogously, one can define the partial trace with respect to
H1.

Matrices

In the following chapters, we denote the space of m × n matrices by Mm,n and for m = n

by Mn. The matrix entries of M ∈ Mm,n get denoted by (mi,j)1≤i≤m,1≤j≤n. The Hermitian
conjugate of M , i.e., (mij)† = (m̄ji) gets denoted by M †. The subspace of Mm consisting of
Hermitian (self-adjoint) matrices (matrices M ∈ Mm for which M = M

†) will be denoted
by Msa

m .
Complex m×n matrices can be identified with operators from Cn to Cm and so we write
Mm,n = B(Cn,Cm), Mn = B(Cn) and Msa

n = B
sa(Cn).

As we will frequently work with matrices and operators, it is useful to have a good grasp
of the Frobenius inner product, which is an inner product on the linear space of real
or complex matrices.

Definition 2.3.6 (Frobenius inner product [9]). Consider the vector space Kn×n over
the real or complex field (R,C). The Frobenius inner product ⟨, ⟩F ∶ Kn×n × Kn×n

↦ K is
defined as:

⟨P,Q⟩F =

n

∑
i=1

n

∑
j=1

pijqij = Tr(P TQ) for P, Q ∈ Rn×n

⟨P,Q⟩F =

n

∑
i=1

n

∑
j=1

pijqij = Tr(P †
Q) for P, Q ∈ Cn×n.

6



3 Quantum states

As mentioned in the introduction (1), the goal of entanglement distillation is to obtain a
small number of maximally entangled states from a large number of weakly entangled
states. To understand entanglement distillation, it is essential to understand quan-
tum states first. In this chapter, firstly, quantum states are defined, and the density
operator language is motivated (3.1.1). Then, the Schmidt decomposition (3.1.2 gets
discussed as a useful mathematical tool in quantum mechanics. Further, the partial
transpose gets introduced (3.1.3), since it plays an important role in the distillability
problem (see 7.2.1). At the end of this chapter, qubits are briefly explained (3.2).

3.1 Quantum states

Quantum states are used to describe observations in quantum systems and are fun-
damentally different from classical states. The mathematical description of quantum
states is given in Definition 3.1.1.

Definition 3.1.1 (Quantum state [2]). A quantum state on a Hilbert space H is a pos-
itive self-adjoint operator of trace one. The set of states on H is denoted by D(H).

This means that every quantum state can be represented as a hermitian matrix, that
has trace one and non-negative eigenvalues.
If the state of a quantum system is exactly known, it is said to be in a pure state [7]. A
pure state can be represented by a single vector ∣ψ⟩ in the Hilbert space H. If the state
of a quantum system is not completely known, it is said to be in a mixed state, which is
a statistical distribution of pure states. In order to describe such distributions, density
operators are used.

3.1.1 Density operators

With the density operator language, quantum systems can be described, whose state is
not completely known. Consider a quantum system in one of a number of pure states
∣ψi⟩, where i is an index, with respective probabilities pi. We call {pi, ∣ψi⟩} an ensemble
of pure states. The density operator for the system is defined by

ρ ≡ ∑
i

pi∣ψi⟩⟨ψi∣.

In the density operator formulation, a pure state can be defined the following way.

7



3 Quantum states

Definition 3.1.2 (Pure quantum state [2]). A state ρ ∈ D(H) is called pure if it has rank
1, i.e., if there is a unit vector ψ ∈ H such that

ρ = ∣ψ⟩⟨ψ∣.

Conversly, a mixed state ρ is a mixture of the different pure states in the ensemble for
ρ [7].

Density operators can be characterized by the trace and positivity condition.

Theorem 3.1.1 (Characterization of the density operator [7]). An operator ρ is the den-
sity operator associated to an ensemble {pi, ∣ψi⟩} iff it satisfies the following two condi-
tions:

1. Trace condition ρ has trace equal to 1

2. Positivity condition ρ is a positive operator (see 2.3.3)

Proof. Suppose ρ = ∑i pi∣ψi⟩⟨ψi∣ is a density operator, then

Tr(ρ) = ∑
i

piTr(∣ψi⟩⟨ψi∣) = ∑
i

pi = 1.

So the first condition is satisfied.
For an arbitrary vector ∣ϕ⟩ in state space

⟨ϕ∣ρ∣ϕ⟩ = ∑
i

pi⟨ϕ∣ψi⟩⟨ψi∣ϕ⟩ = ∑
i

pi∣⟨ϕ∣ψi⟩∣2 ≥ 0

holds. So the second condition is also satisfied.
Conversely, suppose ρ is an arbitrary operator satisfying both conditions. Since ρ is
positive it must have a spectral decomposition

ρ = ∑
j

λj∣j⟩⟨j∣

where ∣j⟩ are orthogonal vectors and λj are real, non-negative eigenvalues of ρ. Using
the trace condition ∑j λj = 1 must hold. Thus, a system in state ∣j⟩ with probability λj
will have density operator ρ.

3.1.2 Schmidt decomposition

The Schmidt decomposition is a useful mathematical tool and additionally provides
insights into the nature of quantum entanglement.

Theorem 3.1.2 (Schmidt decomposition [7,10]). Suppose the composite system is in a
pure state Ψ ∈ H = HA ⊗HB described by the density operator ρ = ∣Ψ⟩⟨Ψ∣ ∈ D(HA ⊗HB).
Then there exists an orthonormal basis {∣ai⟩ ∣ i = 1, 2, 3...} in HA and {∣bi⟩ ∣ i = 1, 2, 3...}
in HB, such that
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3 Quantum states

∣Ψ⟩ = ∑
i

si∣ai⟩ ⊗ ∣bi⟩

or in terms of the density operator

ρ = ∑
i,k

sis
∗
k∣ai⟩⟨ak∣ ⊗ ∣bi⟩⟨bk∣

where ∑i ∣si∣
2
= 1.

The proof is omitted and can be found in [10] for example. The numbers (si, s2, ..., sd)
are called Schmidt coefficients of ∣Ψ⟩ and are uniquely determined if we require that
s1 ≥ s2 ≥ ... ≥ sd where d = min(d1, d2) with d1 = dim(HA) and d2 = dim(HB). The largest k
such that sk > 0 is called Schmidt rank of ∣Ψ⟩. It can be easily verified that s2

1 + ...+ s
2
d =

∣Ψ∣2.

3.1.3 Partial transpose

As we will see in section 7.2 the partial transpose of a state ρ ∈ D(HA ⊗ HB) is funda-
mental for characterizing the distillability of it.

Definition 3.1.3 (Partial transpose). If H is a bipartite Hilbert space, and if T denotes
the transposition on B(H1) (with respect to a specified basis) and Id is the identity
operator of B(H2) then the partial transpose is the operation

Γ = T ⊗ Id ∶ B(H1 ⊗H2) → B(H1 ⊗H2)

The partial transpose of a state ρ ∈ D(HA ⊗HB) is denoted by ρΓ
= Γ(ρ).

Definition 3.1.4 (PPT state). A state ρ ∈ D(HA ⊗ HB) has a positive partial transpose
(PPT) if the operator ρΓ is positive.

A state ρ ∈ D(HA ⊗HB) with a non-positive partial transpose, is called an NPT-state.

3.2 Qubits

Since the term qubit may appear in some places, it should be briefly explained.
In correspondence to a classical bit, which has either state 0 or state 1, a qubit also
has a state. Two possible qubit states are the states ∣0⟩ and ∣1⟩ which correspond to the
states 0 and 1 of a classical bit. What distinguishes qubits and bits is that a qubit can
be in a state other than ∣0⟩ or ∣1⟩. Furthermore, linear combinations of states, called
superpositions

∣ψ⟩ = α∣0⟩ + β∣1⟩
can be formed, where α and β are complex numbers. Expressed differently, the state
of a qubit is a vector in a two-dimensional complex vector space. The states ∣0⟩ and
∣1⟩ are the computational basis states, and form an orthonormal basis for this vector
space [7].
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4 Zonotopes and zonoids

In this chapter, we will explore some concepts of convex geometry, since there ex-
ists a connection to quantum measurements, which will be discussed in Chapter 5.
Firstly, zonotopes and zonoids are introduced and the construction of zonotopes is il-
lustrated (4.1). Further, the approximation of zonoids by zonotopes is discussed, which
will be converted to a similar statement for POVMs in Chapter 5.

4.1 Zonotopes and zonoids

In this section, firstly, zonotopes are defined, and their construction is illustrated with
a simple example. Then, zonoids, polar sets and extreme points are described.
Before describing zonotopes and zonoids, we introduce the Minkowski sum. The Minkowski
sum of two subsets A and B of a linear space is formed by adding each element in A to
each element in B, as described in Definition 4.1.1.

Definition 4.1.1 (Minkowski sum [2]). Given two sets A,B ⊂ Rn, the Minkowski sum is
defined by

A +B ∶= {x + y ∶ x ∈ A, y ∈ B}.

Using the Minkowski sum, zonotopes can be defined. Zonotopes are a special type of
convex polytopes.

Definition 4.1.2 (Zonotope [2, 11]). A convex body K ⊂ Rn is called a zonotope if it is
the Minkowski sum of finitely many segments (segments are compact one dimensional
convex sets):

K = I1 + I2 + . . . + Im (4.1)

where Ii is the line segment [xi, yi] with xi, yi ∈ Rn for i = 1, . . . ,m. The line segments
[xi, yi] for i = 1, . . . ,m are called the generators of the zonotope.

Zonotopes always have a center of symmetry, namely the sum of the centers of the
segments Ij [12]. Every face of a zonotope is again a zonotope and therefore all faces
of zonotopes have a center of symmetry (see [13] for proofs). In R2 centrally symmetric
polytopes, i.e., convex polygons, are zonotopes. A simple example for a zonotope gives
the cube [−1, 1]n since

[−1, 1]n = [−e1, e1] + [−e2, e2] + . . . + [−en, en],

where [−ei, ei] denotes the segment joining the ith canonical basis vector and its oppo-
site [2]. Next, the construction of a simple zonotope is illustrated, to get some intuition
for Definition 4.1.2.

10



4 Zonotopes and zonoids

Exemplary construction of zonotope

1. We start with finitely many segments and draw them. Then we pick an order
of our segments.
In this example, we choose four line segments and pick the order v1 ≡ green, v2 ≡ blue,
v3 ≡ red, v4 ≡ orange.

v1

v2
v3

v4

2. Now we draw the first segment and then the second segment originating from
each end of the first segment. Next, we connect the endpoints.

v1 v1v2

v2

v1v2

v2

v1

3. We repeat this process with the third segment. We draw the third segment
from each vertex of the parallelogram and then connect the endpoints.

v1

v1v2

v2

v3

v3

v3

v1

v1v2

v2

v3

v3

v3

v2

v1

4. We repeat the process with the other remaining vectors.
Note: To keep everything tidy, the invisible (dashed) edges were left out.

v1

v1v2

v2

v3

v3

v3

v2

v1

v4

v4

v4

v4

v1

v1v2

v2

v3

v3

v3

v2

v1

v4

v4

v4

v4
v3

v1

v2

The boundary of the shape at the end is a zonotope [14].
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4 Zonotopes and zonoids

Now, the Hausdorff distance is introduced as a measure for the distance of the subsets
of a metric space.

Definition 4.1.3 (Hausdorff distance [15]). Let (M,d) be a metric space and A,B ≠ ∅ be
subsets of M . We define the distance between a point x ∈ M and a non-empty subset
A ⊆M as

d(x,A) ∶= inf
a ∈ A

d(x, a)

Then the Hausdorff distance dH (A,B) between the two subsets A,B is given by

dH (A,B) = max {sup
a ∈ A

d(a,B), sup
b ∈ B

d(b, A)} . (4.2)

With the Hausdorff distance, zonoids can be defined.

Definition 4.1.4 (Zonoid). A convex body K ⊂ Rn is called a zonoid if it can be written
as a limit of zonotopes in the Hausdorff distance.

Every zonoid is a zonotope and, like zonotopes, zonoids are also centrally symmetric.
In Figure 4.1 a converging sequence of zonotopes is illustrated. The limit of such a
sequence is a zonoid.

Figure 4.1: A sequence of zonotopes and its limit, a zonoid. : figure from [16].

Next, polar sets and extreme points are discussed, since they are needed for describing
the relation between zonotopes and POVMs in Section 5.2.1.

Definition 4.1.5 (Minkowski functional). Let K be a subset of Rn. For x ∈ Rn the
Minkowski functional of K is given by

∣∣x∣∣K ∶= inf{t ≥ 0 ∶ x ∈ tK} (4.3)

where tK = {tx ∶ x ∈ K}.

Definition 4.1.6 (Polar set [2]). For A ⊂ Rn, the polar of A is given by

A
◦
∶= {y ∈ Rn ∶ ⟨x, y⟩ ≤ 1 for all x ∈ A}. (4.4)

In particular, ∣∣y∣∣A◦ = sup
x∈A∪{0}

⟨x, y⟩ holds.

An extreme point of a convex set K is a point that is interior for no interval contained
in this set [17].

12



4 Zonotopes and zonoids

Definition 4.1.7 (Extreme point). Let K ⊂ Rn be a convex set. A point x ∈ K is said to
be extreme if it cannot be written in a nontrivial way as a convex combination of points
of K,i.e., if the equality x = ty + (1 − t)z for t ∈ (0, 1) and y, z ∈ K implies that x = y = z.

The extreme points of a triangle are its vertices and the extreme points of a disk are
the points of its boundary circle [17] as illustrated in Figure 4.2.

A

B

C

D

Figure 4.2: A,B,C are the extreme points of the triangle. D is an extreme point of the red circle.

4.2 Support function and approximation of zonoids by zonotopes

In this section, firstly, the support function is defined (Definition 4.2.1). Then, specif-
ically, the support function of zonotopes is discussed. Further, signed measures and
the Hausdorff measure are introduced, followed by a theorem (Theorem 4.9) which gives
insight on the support function of zonoids. The section ends with a key result for the
approximation of zonoids by zonotopes (4.2.2).

Definition 4.2.1 (Support function [2]). Given a nonempty and bounded set K ⊂ Rn

and a vector u ∈ Rn, we define the quantity

w(K,u) ∶= sup
x∈K

⟨u, x⟩ (4.5)

If ∣u∣ = 1, then w(K,u) is called the support function of K in direction u and commonly
denoted by h(K,u).

If K is a convex body containing 0 in the interior, w(K,u) = ∣∣u∣∣K◦ holds (cf. 4.1.6).
Geometrically, w(K,u) is the distance from the origin to the supporting hyperplane
tangent to K in direction u, where u is normal to the hyperplane and outer to K, as
illustrated in Figure 4.3.

13



4 Zonotopes and zonoids

Figure 4.3: Illustration of the geometrical interpretation of w(K,u) for a convex body K. For
∣u∣ = 1 the sum w(K,u) + w(K,−u) is the width of the smallest strip in the direction orthogonal
to u which contains K : figure from [2].

For a zonotope Z = I1 + I2 + . . . + Im with Ii = conv{αivi,−αivi} where vi ∈ S
n−1 and αi > 0

for i = 1, . . . ,m, the support function of Z is given by

h(Z, ⋅) =
k

∑
i=1
αi∣⟨⋅, vi⟩∣. (4.6)

Conversely, if a convex body Z has a support function of this form it is a zonotope with
center at the origin [18].
Next, we want to generalize Equation 4.6 for zonoids (Theorem 4.2.1). To understand
Theorem 4.2.1, we firstly need to introduce some measure notions.

Signed measures and the Hausdorff measure

A signed measure (measure) on Sn−1 is a real-valued, σ−additive function on the σ−algebra
B(Sn−1) of Borel subsets of Sn−1. Signed measures and functions on S

n−1 are called even
if they are invariant under reflection in the origin [18].
The Hausdorff measure is a generalization of the Lebesgue measure to an arbitrary
metric space and is needed for the proof of Theorem 4.9 [19].

Definition 4.2.2 (Hausdorff measure [19] ). Let 0 ≤ s < ∞ and A ⊂ Rn. For 0 < δ ≤ ∞,
define

H
s
δ(A) = inf{∑

j

d(Cj)s ∶ A ⊂ ⋃
j

Cj , d(Cj) < δ, Cj ⊂ Rn} (4.7)

14



4 Zonotopes and zonoids

where d(C) is the diameter of C, i.e., d(C) = sup{∣x − y∣ ∶ x, y ∈ C} and ∣x − y∣ is the
Euclidean distance in Rn. The s−dimensional Hausdorff measure of A is defined as

H
s(A) = lim

δ→0
H
s
δ(A) = sup

δ>0
H
s
δ(A). (4.8)

With these tools we can finally generalize the support function of zonotopes (Equation
4.6) for zonoids.

Theorem 4.2.1 ( [18] ). A convex body K ⊂ Rn is a zonoid with center at 0 if and only
if its support function can be represented in the form

h(K,x) = ∫
Sn−1

∣⟨x, v⟩∣dρK (v) for x ∈ Rn (4.9)

with some even measure ρ ∶= ρK on S
n−1

.

Proof. “⇐”
Suppose Equation 4.9 holds. For k ∈ N we can decompose S

n−1 into finitely many
nonempty Borel sets Λk1, . . . ,Λ

k
m(k) with diameter <

1
k

and choose vki ∈ Λki . Then,

lim
k→∞

m(k)
∑
i=1

∣⟨x, vki ⟩∣ρ(Λki ) = ∫
Sn−1

∣⟨x, v⟩∣dρ(v),

uniformly for x ∈ S
n−1

. Thus, the zonotopes Zk defined by

Zk ∶=
m(k)
∑
i=1

ρ(Λki ) conv{vki ,−vki }

satisfy h(Zk, ⋅) → h(K, ⋅). Hence, Zk → K for k → ∞. According to Definition 4.1.4 K is a
zonoid.
“⇒”
We can rewrite Equation 4.6 using an even measure ρ concentrated in finitely many
points. Thus, we may assume that

h(Zk, ⋅) = ∫
Sn−1

∣⟨⋅, v⟩∣dρk(v) (4.10)

with an even measure ρk on S
n−1 with k ∈ N. Further, Zk → K for k → ∞. Now we can

integrate Equation 4.10 over Sn−1 and receive

∫
Sn−1

h(Zk, u)dHn−1(u) = ∫
Sn−1

∫
Sn−1

∣⟨u, v⟩∣dρk(v)dHn−1(u)
Fubini
= ∫

Sn−1
∫
Sn−1

∣⟨u, v⟩∣dHn−1(u)dρk(v) = c(n)ρk(Sn−1).

Note: H
n is the n-dimensional Hausdorff measure (cf. 4.2.2). Since the left-hand

side converges for k → ∞, (ρk(Sn−1))k∈N is bounded. One can show that some subse-
quence (ρki

)i∈N converges to a signed even measure ρ. The proof of this would exceed
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4 Zonotopes and zonoids

the scope of this work, but for details see [18]. Thus, we get

h(K,x) = lim
i→∞

h(Zki
, x) = lim

i→∞
∫
Sn−1

∣⟨x, v⟩∣dρki
(v)

= ∫
Sn−1

∣⟨x, v⟩∣dρ(v)

for each x ∈ Rn.

The next theorem (Theorem 4.2.2) will allow us to show that POVMs can be sparsified
in Section 5.2.2. Firstly, we need to define the support of a real-valued function, e.g.,
a measure.

Definition 4.2.3 (Support of real-valued function [20]). If f is a real-valued function
on a topological space, the support of f is the closure of the set {x ∶ f (x) ≠ 0}. Thus

supp(f ) = {x ∶ f (x) ≠ 0}. (4.11)

In the late 1980s J. Bourgain, J. Lindenstrauss, V. Milman, M. Talagrand and G. Schecht-
man investigated how zonoids can be approximated by zonotopes [12, 21, 22]. M. Ta-
lagrand compiled and supplemented the results (see [21]). One key result is stated in
Theorem 4.2.2.

Theorem 4.2.2 ( [2] ). For any 0−symmetric zonoid Y ⊂ Rn and ϵ > 0, there exists an
integer N ≤ Cn log(n)/ϵ2 and vectors x1, . . . , xN ∈ Rn such that Z ⊂ Y ⊂ (1 + ϵ)Z, where Z
denotes the zonotope

Z = [−x1, x1] + . . . + [−xN , xN ].

Moreover, we can ensure that supp ρZ ⊂ supp ρY , where the measures ρY and ρZ are
defined in Equation 4.9.

The proof is omitted, but can for example be found in the paper from M. Talagrand [21].
The last sentence gets clear by looking at the definition of the support of a measure
(4.2.3) and by using Z ⊂ Y (cf. construction of zonoids from zonotopes in the proof of
Theorem 4.9).
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5 Quantum measurements and quantum state
discrimination

In the following chapter, key principles of quantum measurements are outlined (5.1).
This will be especially useful in Chapter 7, since entanglement distillation relies on
local operations such as measurements, for example. Firstly, the measurement postu-
late (Postulate 3) is stated (5.1.1), followed by a description of projective measurements
(5.1.2). Further, the most general measurement formalism (POVM formalism) is intro-
duced (5.1.3), as it will be used for the description of local filtering in Section 7.2.1.
At the end of this chapter, quantum state discrimination is discussed (5.2) and the
relation between POVMs and zonoids is outlined (5.2.1).

5.1 Measurements

The third postulate provides a mean for the description of measurement effects on
quantum systems and will be described in Subsection 5.1.1. Projective measurements
are primarily used for many applications in quantum computation and quantum infor-
mation. They are a special case of the general measurement postulate (Postulate 3) and
will be discussed in Section 5.1.2. Further, POVMs will be defined as a generalization
of measurement (5.1.3).

5.1.1 Postulate 3 – Quantum measurement

The state space of a system refers to the mathematical space which describes all the
possible states the system can be in. In quantum mechanics, the state space is de-
scribed by a Hilbert space (cf. Chapters 2, 3).

Quantum measurements are described by a collection of measurement operators {Mm},
which act on the state space of the measured system. The index m refers to the mea-
surement outcomes that could occur in the experiment. For a quantum system in a
state ∣ψ⟩ immediately before the measurement, the probability that the result m occurs
is given by

p(m) = ⟨ψ∣M †
mMm∣ψ⟩

and the state of the system after the measurement gets described by:

Mm∣ψ⟩√
⟨ψ∣M †

mMm∣ψ⟩
.
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5 Quantum measurements and quantum state discrimination

The measurement operators satisfy the completeness relation

∑
m

M
†
mMm = I

which expresses that the probabilities sum to one

1 = ∑
m

p(m) = ∑
m

⟨ψ∣M †
mMm∣ψ⟩.

5.1.2 Projective measurements

A projective measurement is described by an observable, M , a Hermitian operator on
the state space of the system being observed. The observable has a spectral decompo-
sition

M = ∑
m

mPm

where Pm is the projector onto the eigenspace of M with eigenvalues m. The possible
measurement outcomes correspond to the eigenvalues of the observable. When mea-
suring a state ∣ψ⟩, the probability of receiving the measurement outcome m is given
by

p(m) = ⟨ψ∣Pm∣ψ⟩.

When the measurement outcome is m, the state of the quantum system immediately
after the measurement is

Pm∣ψ⟩√
p(m)

.

Projective measurements can be understood as a special case of Postulate 3. If the mea-
surement operators in Postulate 3, would satisfy the condition that Mm are orthogonal
projectors, i.e., Mm are hermitian and MmMm′ = δm,m′Mm in addition to the complete-
ness relation, Postulate 3 would reduce to a projective measurement as defined [7].

5.1.3 Generalization of measurements

Postulate 3 describes the measurement statistics, e.g, the respective probabilities of
the different possible measurement outcomes, as well as the post-measurement state
of the system. For some application, the post-measurement state of the system is of
little interest. Especially well adapted to the analysis of these measurements is the
POVM formalism.

Definition 5.1.1 (POVM [2]). A Positive Operator Valued Measure (POVM) on a Hilbert
space H is a finite family of positive operators (Mi)1≤i≤N with the property that ∑Mi = I.

What happens when a quantum system in a state ρ is measured with a POVM? We only
focus on the case of discrete POVMs, M = (Mi)1≤i≤N here. Continuous POVMs could be
treated as an approximation, then.
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5 Quantum measurements and quantum state discrimination

The POVM element Mm is associated with the measurement outcome m and the prob-
ability of obtaining m when making a measurement on the quantum state ρ is given
by,

p(m) = Tr(ρMm). (5.1)

This is also called Born’s rule.
For a pure state ρ = ∣ψ⟩⟨ψ∣ this reduces to

p(m) = Tr(∣ψ⟩⟨ψ∣Mm) = ⟨ψ∣Mm∣ψ⟩

where we used the cyclicity of the trace. This is exactly the probability we know from
projective measurements [7].

5.2 Quantum state discrimination

Quantum state discrimination is the process of distinguishing between different quan-
tum states using measurements, i.e., a quantum system is prepared in an unknown
state ρ or σ and the unknown state should be found. After measuring a quantum
system in an unknown state with the POVM M = (Mi)1≤i≤N , outcome i occurs with prob-
ability pi = Tr(ρMi) (see Equation 5.1) if the unknown state is ρ and with probability
qi = Tr(σMi) if the unknown state is σ. Therefore, we have the following strategy if
outcome i is observed:

• if pi > qi guess ρ

• if qi > pi guess σ

• if qi = pi guess ρ or σ.

The probability that the wrong state is guessed, which is also called probability of
failure, is given by

IPfailure =
1
2

N

∑
i=1

min(pi, qi) =
1
2 −

1
4

N

∑
i=1

∣pi − qi∣. (5.2)

We can introduce a distinguishability semi-norm ∣∣ ⋅ ∣∣M by

∣∣∆∣∣M =

N

∑
i=1

∣Tr(∆Mi)∣. (5.3)

∣∣ ⋅ ∣∣M is a norm if and if only span{Mi ∶ 1 ≤ i ≤ N} = Bsa(H).
Since IPfailure =

1
2 −

1
4 ∑

N
i=1 ∣pi− qi∣ = 1

2 −
1
4 ∣∣ρ−σ∣∣M (see 5.2, 5.3) the distinguishability norm

can be used to quantify the performance of POVMs for a state discrimination task. Note
that for any POVM M holds ∣∣ ⋅ ∣∣M ≤ ∣∣ ⋅ ∣∣1 with ∣∣A∣∣1 = ∑n

i=1 ∣λi∣ where λi is the i-th eigen-
value of A [2].
But why do we need POVMs for quantum state discrimination and can not just use pro-
jective measurements? The reason gets very clear by looking at the following example,
which also illustrates the task of state discrimination.
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5 Quantum measurements and quantum state discrimination

Example: State discrimination

Suppose we want to specify if a quantum state is either ∣ψ⟩ or ∣ϕ⟩, where ∣ψ⟩ and ∣ϕ⟩ are
non-orthogonal. With a projective measurement, we have no chance to discriminate
these states, since they are non-orthogonal. Suppose for example we choose a projec-
tive measurement described by the operators P0 = ∣ψ⟩⟨ψ∣ and P1 = ∣ψ⟩⊥⟨ψ∣⊥. Then we
obtain the result 0 with probability

p(0) = ⟨ψ∣P0∣ψ⟩ = ⟨ψ∣ψ⟩⟨ψ∣ψ⟩ = 1

if the unknown state is ∣ψ⟩. However, we also obtain the result 0 with probability

p(0) = ⟨ϕ∣P0∣ϕ⟩ = ⟨ϕ∣ψ⟩⟨ψ∣ϕ⟩ ϕ and ψ are not orthogonal
= ∣⟨ψ∣ϕ⟩∣2

if the unknown state is ∣ϕ⟩. Conversely, assume a POVM measurement is performed in
order to discriminate the states. Therefore, consider a POVM measurement specified
by the operators {M0,M1,M2} with

M0 = a(I − ∣ψ⟩⟨ψ∣)
M1 = a(I − ∣ϕ⟩⟨ϕ∣)
M2 = I −M0 −M1

where 1/2 < a < 1 and a is chosen such that M2 > 0 (POVM). We receive the outcome

• 0 with probability

p0 = Tr(∣ψ⟩⟨ψ∣M0)
Tr cyclic

= Tr(M0∣ψ⟩⟨ψ∣) = Tr((a(I − ∣ψ⟩⟨ψ∣))∣ψ⟩⟨ψ∣)
= aTr(∣ψ⟩⟨ψ∣ − ∣ψ⟩⟨ψ∣ψ⟩⟨ψ∣) = aTr(∣ψ⟩⟨ψ∣ − ∣ψ⟩⟨ψ∣) = 0

• 1 with probability

p1 = Tr(∣ψ⟩⟨ψ∣M1)
Tr cyclic

= Tr(M1∣ψ⟩⟨ψ∣) = Tr((a(I − ∣ϕ⟩⟨ϕ∣))∣ψ⟩⟨ψ∣)
= aTr(∣ψ⟩⟨ψ∣ − ∣ϕ⟩⟨ϕ∣ψ⟩⟨ψ∣) = aTr(∣ψ⟩⟨ψ∣) − aTr(∣ϕ⟩⟨ϕ∣ψ⟩⟨ψ∣)

= a(1 − ∣⟨ψ∣ϕ⟩∣2)

• 2 with probability p2 = 1 − p1

if the unknown state is ∣ψ⟩. Analogously, we receive the outcomes

• 0 with probability q0 = a(1 − ∣⟨ψ∣ϕ⟩∣2)

• 1 with probability q1 = 0

• 2 with probability q2 = 1 − q0

if the unknown state is ∣ϕ⟩. Therefore, if we receive the result 1 we know with certainty
that the original state was ∣ψ⟩ and if we receive the outcome 0 we know with certainty
that the original state was ∣ϕ⟩. However, if we receive the outcome 2, we can not tell
with certainty what the unknown state was [23].
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5 Quantum measurements and quantum state discrimination

5.2.1 Zonotope associated to a POVM

In this subsection, we want to derive a relation between POVMs and zonotopes. There-
fore, consider a POVM M. We denote by BM = {∣∣ ⋅ ∣∣M ≤ 1} the unit ball for the distin-
guishability norm and by

KM = (BM )◦ = {A ∈ B
sa(H) ∶ Tr(AB) ≤ 1 whenever ∣∣B∣∣M ≤ 1}

its polar (cf. Definition 4.1.6). KM is a compact convex set and has nonempty interior
if and only if ∣∣ ⋅ ∣∣M is a norm. Using the inequality ∣∣ ⋅ ∣∣M ≤ ∣∣ ⋅ ∣∣1 it follows that KM is
always included in the unit ball for the operator norm.
The following Proposition 5.2.1 draws a connection between zonotopes and POVMs.

Proposition 5.2.1 ( [2] ). Let K ⊂ B
sa(H) be a symmetric closed convex set. Then the

following statements are equivalent.

• K is a zonotope such that K ⊂ {∣∣ ⋅ ∣∣∞ ≤ 1} and ±I ∈ K.

• There exists a POVM M on H such that K = KM .

Note: ∣∣A∣∣∞ = ∣∣A∣∣op ∶= sup
∣x∣ ≤ 1

∣Ax∣ is the operator norm.

Proof. For a POVM M = (Mi)1≤i≤N we firstly want to show that

KM = [−M1,M1] + . . . [−MN ,MN ].

Therefore, we denote L ∶= [−M1,M1] + . . . [−MN ,MN ] and consider for every A ∈ B
sa(H)

the norm ∣∣A∣∣L◦ ,

∣∣A∣∣L◦ = sup{Tr(AB) ∶ B ∈ L} =
N

∑
i=1

∣Tr(AMi)∣ = ∣∣A∣∣K◦
M
,

where we used that according to Definition 4.2.1 w(L,A) = sup
B∈L

⟨A,B⟩ = ∣∣A∣∣L◦ holds.

Thus, L = KM .
Conversely, suppose that K is a zonotope such that K ⊂ {∣∣⋅∣∣∞ ≤ 1} and ±I ∈ K. Hence, I
is an extreme point of K (cf. Definition 4.1.7). According to the definition of a zonotope
(see Definition 4.1.2) there are operators (Mi)1≤i≤N such that

K = [−M1,M1] + . . . + [−MN ,MN ].

Any extreme point of K has the form ±M1 ±M2 . . . ±MN and therefore we may assume

I =M1 + . . . +MN

and change Mi into −Mi if necessary. Further, for every 1 ≤ i ≤ N is I −Mi ∈ K, hence
∣∣I −Mi∣∣∞ ≤ 1. Thus, Mi is positive and M = (Mi)i≤i≤N is a POVM such that KM = K.
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5 Quantum measurements and quantum state discrimination

5.2.2 Sparsification of POVMs

In this section should be investigated whether POVMs can be sparsified, i.e., approx-
imated by POVMs with few outcomes. Here, “approximation” refers to the associated
distinguishability norms: a POVM M is considered to be ϵ-close to a POVM M

′ when
their distinguishability norms satisfy

(1 − ϵ)∣∣ ⋅ ∣∣M ≤ ∣∣ ⋅ ∣∣M ′ ≤ (1 + ϵ)∣∣ ⋅ ∣∣M .

As a consequence of Theorem 4.2.2 about the approximation of zonotopes by zonoids
a result about the sparsification of POVMs can be obtained, namely that for any given
POVM M a POVM M

′ can be produced with relatively few outcomes, which performs
the task of state discrimination almost as well as M .

Theorem 5.2.2. There is a constant C such that the following holds: for every POVM
M = (Mi)1≤i≤N on Cn and every ϵ ∈ (0, 1), there exists another POVM M

′
= (M ′

j)1≤j≤N ′ with
N

′
≤ Cn

2 logn/ϵ2 outcomes such that

(1 − ϵ)∣∣ ⋅ ∣∣M ≤ ∣∣ ⋅ ∣∣M ′ .

Proof. Consider the convex set KM ⊂ Msa
n , which is according to Proposition 5.2.1 a

zonoid. According to Theorem 4.2.2 there exists a zonotope

Z = [−A1, A1] + . . . + [−AN ′ , AN ′]

with positive operators Ai and N
′
≤ Cn

2 logn/ϵ2, such that (1 − ϵ)KM ⊂ Z ⊂ KM . The
Ai are positive since according to Theorem 4.2.2 supp ρZ ⊂ supp ρY . Now we define
A0 = I − (A1+ . . .+AN ′). A0 is positive since Z ⊂ KM ⊂ S

n,sa
∞ , where Sn,sa

∞ is the unit ball for
the operator norm. Thus, M ′ ∶= (A0, A1, . . . AN ′) is a POVM such that (1− ϵ)KM ⊂ Z ⊂ KM ′

and therefore ∣∣ ⋅ ∣∣M ′ ≥ (1 − ϵ)∣∣ ⋅ ∣∣M as demanded.
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6 Channels and Werner states

In this chapter, quantum channels are introduced (6.1). In particular, the LOCC and
the twirling channel are explained (6.1.1, 6.1.2), since they play a crucial role in en-
tanglement distillation, what will be outlined in the next chapter 7. Further, Werner
states are discussed (6.1).

6.1 Channels

A fundamental concept in quantum information theory are quantum channels, which
are used to transfer quantum (or classical) information.
We start by looking at the definition of n-positivity and complete positivity first, since
these definitions are necessary for defining quantum channels. Therefore, let us con-
sider a linear map Φ ∶ B(H1) → B(H2), which is self-adjointness-preserving.

Definition 6.1.1 (Positive map). The map Φ is said to be positivity preserving (short:
positive) if the image of every positive operator is a positive operator.

Definition 6.1.2 (n-positivity [2]). The map Φ is said to be n-positive if
Φ ⊗ Id ∶ Bsa(H1 ⊗ Cn) → B

sa(H2 ⊗ Cn) is positive.

Definition 6.1.3 (Complete-positivity [2]). The map Φ is said to be completely-positive
if it is n-positive for every integer n.

One can observe that k-positivity is a necessary consequence of n-positivity for any
k < n. The set of completely positive maps from H1 to H2 is denoted by CP(H1,H2).
Using complete positivity, we can define quantum channels.

Definition 6.1.4 (Quantum channel [2]). A quantum channel is a map Φ ∶ B(H1) → B(H2) ,
satisfying the following two properties:

1. Φ is completely positive

2. Φ is trace preserving

A quantum channel Φ should represent some physically realizable process, therefore
states should be mapped to states. Thus, it is quite intuitive to demand from quantum
channels to preserve trace, positivity and self-adjointness (compare to definition 3.1).
However, demanding the preservation of positivity is not enough, since we want to apply
a quantum channel to one part of a larger system and still end up with a quantum state
at the end. By demanding complete positivity, we can apply our quantum channel on
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6 Channels and Werner states

one part of the system and leave the other parts unchanged and still have a quantum
state as an output as demanded.
The theorem of Kraus (1971) gives a simple representation of any quantum channel.

Theorem 6.1.1 (Kraus decomposition [24]). For any quantum channel Φ, there exists
a finite set of operators A1, A2, ..., AN ∈ B(H1,H2), such that for any X ∈ B(H1)

Φ(X) =
N

∑
i=1
AiXA

†
i with

N

∑
i=1
A

†
iAi = I.

A proof will be omitted, but the proof can be for example found in the original article of
Kraus from 1971 [25].
Using the Kraus decomposition, we can define separable maps. Therefore, assume that
H1 and H2 are bipartite spaces H1 = H11 ⊗H12 and H2 = H21 ⊗H22.

Definition 6.1.5 (Separable maps). A map Φ ∈ CP(H1,H2) is called separable if it ad-
mits a Kraus decomposition involving product operators, i.e., if there exist operators
A

(1)
i

∶ H11 → H21 and A
(2)
i

∶ H12 → H22 such that for any X ∈ B(H1)

Φ(X) =
N

∑
i=1

(A(1)
i ⊗A

(2)
i )X(A(1)

i ⊗A
(2)
i )†.

6.1.1 LOCC channel

Next, two common and useful quantum channels get introduced: the LOCC chan-
nel and the twirling channel. Local operations and classical communication channels
(LOCC channels) represent transformations of quantum states that can be implemented
by two parties, which can classically communicate with one another and furthermore
perform local operations [26,27].

Since the mathematical structure of LOCC is complex, an exact description of LOCC
would go beyond the scope of this work. Therefore, it will not be discussed in great
detail. For further reading, see [28]. We denote (without proof) that

• an LOCC channel is separable (see Definition 6.1.5)

• any convex combination of product channels (of the form Φ1 ⊗ Φ2) is an LOCC
channel

• the class of LOCC channels is stable under composition

• conv{product channels} ⊂ {LOCC channels } ⊂ {separable channels}

• the local filtering operation is LOCC (which will be further discussed in 7.2.1) [2]
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6 Channels and Werner states

6.1.2 Twirling channel

Another well-known channel is the Werner twirling channel, defined in Definition 6.1.6.

Definition 6.1.6 (Twirling channel). The quantum channel Υ ∶ B(C2 ⊗ C2) → B(C2 ⊗ C2)
defined as

Υ(ρ) = ∫ (U ⊗ U )ρ(U ⊗ U )†dη(U ) = E(U ⊗ U )ρ(U ⊗ U )†

for all ρ ∈ D(HA ⊗HA) is called the Werner twirling channel, where η denotes the Haar
measure on U (HA) (meaning that U ∈ U(2) is Haar - distributed).

For more information regarding the Haar measure, see [29].

6.2 Werner states

States that are invariant under a group of local unitaries play an important role in quan-
tum mechanics. In the following section, we will focus on the class of states which are
invariant under unitary transformations of the form U ⊗U (e.g., under twirling). These
states are called Werner states.
But before defining Werner states, we consider the symmetric and antisymmetric sub-
spaces.

6.2.1 Flip operator, symmetric and antisymmetric subspaces

Consider the flip operator F ∈ B
sa(Cd⊗Cd) defined on pure tensors by F (x⊗y) = y⊗x and

extended by linearity. The eigenspaces of the flip operator are the symmetric subspace

Symd = {ψ ∈ Cd ⊗ Cd ∶ F (ψ) = ψ}

and the antisymmetric subspace

Asymd = {ψ ∈ Cd ⊗ Cd ∶ F (ψ) = −ψ}

with the corresponding projectors PSymd
=

1
2 (I + F ) and PAsymd

=
1
2 (I − F ). Furthermore,

the symmetric and antisymmetric subspaces are irreducible for the action U → U ⊗ U

of the unitary group and dim Symd = d(d + 1)/2 and dim Asymd = d(d − 1)/2. Moreover,
the symmetric and antisymmetric states are defined as (see [2])

πs =
2

d(d + 1)PSymd
and πa =

2
d(d − 1)PAsymd

.

6.2.2 Werner states: What you need to know

Werner states were introduced by R. F. Werner in 1989 (see [30]).
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6 Channels and Werner states

Definition 6.2.1 (Werner states [30]). Consider two Hilbert spaces HA ≅ HB ≅ Cd with
equal finite dimension d. A bipartite quantum state ρ ∈ D(HA ⊗HB) that satisfies

ρ = (U ⊗ U )ρ(U †
⊗ U

†)

for all unitary operators U , is called Werner state.

Werner investigated which states are invariant under these transformations and showed
that all such states are of the following form (see [30]):

wλ =
1

d2 − dα
I − αF (6.1)

where λ ∈ [0, 1] and

α =
1 + d(1 − 2λ)

1 + d − 2λ ∈ [−1, 1]. (6.2)

Another equivalent expression for a Werner state is obtained as a convex combination
of the symmetric and antisymmetric state

wλ = λπs + (1 − λ)πa. (6.3)

The following proposition shows the correlation between Werner states and the twirling
channel.

Proposition 6.2.1 (Werner states and twirling channel [2]). The twirling channel is re-
lated to Werner states according to the following statements:

1. For any ρ ∈ D(Cd ⊗ Cd) the Werner twirling channel (see 6.1.6) satisfies
E(U ⊗ U )ρ(U ⊗ U )† = wλ with λ = Tr(ρPSymd

).

2. If ψ ∈ SCd is chosen uniformly at random, then E∣ψ ⊗ ψ⟩⟨ψ ⊗ ψ∣ = πs.

Proof. “1” By unitary invariance of the Haar measure

(V ⊗ V )Υ(ρ)(V ⊗ V )† = Υ(ρ)

holds for every V ∈ U (d). Thus, Υ(ρ) is invariant under unitary transformations and
satisfies Definition 6.2.1. Therefore, Υ(ρ) can be represented as

Υ(ρ) = wλ = λπs + (1 − λ)πa = λ
PSymd

dimPSymd

+ (1 − λ)
PAsymd

dimPAsymd

.

Furthermore, note that Werner states are invariant under twirling, i.e.,Υ(ρ) = ρ for any
Werner state ρ and that any quantum state ρ satisfies

1 = Tr(ρ) = Tr(ρI) = ⟨I, ρ⟩ = ⟨PSymd
+ PAsymd

, ρ⟩ = ⟨PSymd
, ρ⟩ + ⟨PAsymd

, ρ⟩ (6.4)
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6 Channels and Werner states

where we used that PSymd
+PAsymd

= 1/2(I +F )+1/2(I −F ) = I. Moreover, we can calculate
λ by using the orthogonality of PSymd

and PAsymd
.

⟨PSymd
,Υ(ρ)⟩ = ⟨PSymd

, λ
PSymd

dimPSymd

+ (1 − λ)
PAsymd

dimPAsymd

⟩ = λ.

Next, we note that
(U ⊗ U )PSymd

(U ⊗ U ) = PSymd

and
(U ⊗ U )PAsymd

(U ⊗ U ) = PAsymd
.

Therefore, we can rewrite λ = ⟨PSymd
,Υ(ρ)⟩ = ⟨Υ(PSymd

), ρ⟩ = ⟨PSymd
, ρ⟩ = Tr(ρPSymd

) [31].

“2” If we apply 1 to ρ = ∣x ⊗ x⟩⟨x ⊗ x∣ where x is a fixed unit vector in Cd we receive

wλ = E((U ⊗ U )∣x ⊗ x⟩⟨x ⊗ x∣(U ⊗ U )†) = E((U ⊗ U )∣x⟩ ⊗ ∣x⟩⟨x∣ ⊗ ⟨x∣(U ⊗ U )†)
= E(U ∣x⟩ ⊗ U ∣x⟩⟨x∣U †

⊗ ⟨x∣U †)

We note that unitary transformations are norm preserving ∣∣Ux∣∣ = ⟨Ux,Ux⟩ = xTUTUx =

∣∣x∣∣2) and define ∣ψ⟩ ∶= U ∣x⟩ ∈ SCd. Therefore, we get

wλ = E∣ψ ⊗ ψ⟩⟨ψ ⊗ ψ∣.

Furthermore,

λ = Tr(∣x ⊗ x⟩⟨x ⊗ x∣PSymd
) = Tr(∣x ⊗ x⟩⟨x ⊗ x∣12 (I + F ))

trace cyclic, linear
=

1
2Tr((I + F )∣x ⊗ x⟩⟨x ⊗ x∣) = 1

2Tr(I∣x ⊗ x⟩⟨x ⊗ x∣ + F ∣x ⊗ x⟩⟨x ⊗ x∣)

=
1
2Tr(∣x ⊗ x⟩⟨x ⊗ x∣ + ∣x ⊗ x⟩⟨x ⊗ x∣) = 1

2Tr(2∣x ⊗ x⟩⟨x ⊗ x∣) Tr(density matrix)=1
= 1

Thus, it follows that wλ = λπs + (1 − λ)πa = 1πs − 0πa = πs, what had to be shown.
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7 Entanglement distillation

In the last chapters, we did important preparatory work. In this chapter, we can finally
talk about entanglement and entanglement distillation. As mentioned in the introduc-
tion 1, the goal of entanglement distillation is to transform weakly entangled states into
maximally entangled states. But what are even entangled states, let alone highly and
weakly entangled states? How can entanglement be quantified? What are distillable
states and which states can be distilled? That all should be clarified within this chapter.
Firstly, separability and entanglement get discussed (7.1). Then the concepts of fidelity
is introduced (7.1.1) as a measure of proximity between quantum states, followed by a
section about distillable states 7.2, where distillation and the distillability problem is
explained.

7.1 Separability and Entanglement

In this section, the dichotomy between separability and entanglement for quantum
states is studied.
Suppose H is a complex Hilbert space, which can be tensor decomposed

H = H1 ⊗H2 ⊗ ... ⊗Hk.

Definition 7.1.1 (Separable pure state [2]). A pure state ρ = ∣χ⟩⟨χ∣ on H is said to be
pure separable if the unit vector χ is a product vector, i.e., if there exist unit vectors
χ1, ..., χk such that χ = χ1 ⊗ χ2 ⊗ ... ⊗ χk. In that case,

ρ = ∣χ1⟩⟨χ1∣ ⊗ ∣χ2⟩⟨χ2∣ ⊗ ... ⊗ ∣χk⟩⟨χk∣

To formulate a corresponding separability definition for mixed states convex combina-
tions have to be considered.

Definition 7.1.2 (Separable mixed state [2]). A mixed state on H is said to be separable
if it can be written as a convex combination of pure separable states. We denote by
Sep(H) (or simply by Sep) the set of separable states on H. Therefore,

Sep(H) = conv{∣χ1 ⊗ χ2 ⊗ ...χk⟩⟨χ1 ⊗ χ2 ⊗ ...χk∣ ∶ χ1 ∈ H1, χ2 ∈ H2..., χk ∈ Hk}. (7.1)

The cone of separable operators is given by SEP(H) = {λρ ∶ λ ≥ 0, ρ ∈ Sep(H)}.
Now we can finally define entangled states.

Definition 7.1.3 (Entangled state). Non-separable states are called entangled.
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7 Entanglement distillation

Furthermore, one can define k-entangled states.

Definition 7.1.4 (k-entangled states). A quantum state on H = H1 ⊗ H2 is said to be
k-entangled if it can be written as a convex combination

∑
i

λi∣ψi⟩⟨ψi∣

where each unit vector ψi ∈ H1 ⊗H2 has Schmidt rank at most k.

Separable states are 1-entangled states.

Maximally entangled states

The goal of entanglement distillation is to achieve a state that is close to a maximally
entangled state, how can such a state be mathematically described?

Definition 7.1.5 (Maximally entangled state [2]). A pure state ρ on Cd ⊗ Cd is called
maximally entangled if it has the form ρ = ∣ψ⟩⟨ψ∣ with

ψ =
1√
d

d

∑
i=1
ei ⊗ fi

where (ei)1≤i≤d and (fi)1≤i≤d are two orthonormal bases in Cd. Such a vector ψ is called a
maximally entangled vector.

For systems formed by 2 qubits (d = 2) the maximally entangled states are called Bell
states and are defined in Definition 7.1.6. The canonical basis of C2 is (∣0⟩, ∣1⟩) and often
the tensor product signs are dropped (for example ∣00⟩ ≡ ∣0⟩ ⊗ ∣0⟩).

Definition 7.1.6 (Bell states). The bell states are given by,

∣ϕ+⟩ = 1√
2
(∣00⟩ + ∣11⟩) ∣ϕ−⟩ = 1√

2
(∣00⟩ − ∣11⟩)

∣ψ+⟩ = 1√
2
(∣01⟩ + ∣10⟩) ∣ψ−⟩ = 1√

2
(∣01⟩ − ∣10⟩)

where ∣00⟩ = [1
0
]⊗[1

0
]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣01⟩ = [1
0
]⊗[0

1
]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣10⟩ = [0
1
]⊗[1

0
]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣11⟩ = [0
1
]⊗[0

1
]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The family of Bell vectors {ϕ+, ϕ−, ψ+

, ψ
−} is an orthonormal basis of C2 ⊗ C2 .

7.1.1 Fidelity

Our goal in entanglement distillation is to get “closer ” to a maximally entangled state
with every round of the distillation protocol. The “closeness” of two quantum states
can be mathematically formulated using the concept of fidelity. Fidelity is a measure of
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7 Entanglement distillation

distance between quantum states and can take values between 0 and 1. If the fidelity
is equal to 1, both states are identical. If the fidelity is equal to 0, the states can be
distinguished from one another with certainty by a quantum mechanical measurement.
The fidelity can be defined as follows,

Definition 7.1.7 (Fidelity). The fidelity of two states ρ and σ is defined as

F (ρ, σ) ≡ Tr
√
ρ1/2σρ1/2 (7.2)

One important special case of the fidelity is the fidelity between a pure state ρ = ∣ψ⟩⟨ψ∣
and an arbitrary state σ. Using equation 7.2 we see that

F (ρ, σ) = Tr
√
∣ψ⟩⟨ψ∣σ∣ψ⟩⟨ψ∣ = Tr

√
⟨ψ∣σ∣ψ⟩∣ψ⟩⟨ψ∣ =

√
⟨ψ∣σ∣ψ⟩Tr(

√
∣ψ⟩⟨ψ∣) =

√
⟨ψ∣ρ∣ψ⟩ (7.3)

where we used that pure states are idempotent (ρ2
= ∣ψ⟩⟨ψ∣ψ⟩⟨ψ∣ = ∣ψ⟩⟨ψ∣ = ρ) and Tr(ρ) = 1.

7.2 Distillable States

After gaining an understanding of relevant concepts and definition, we get to the central
question of this thesis: which categories of quantum states can be distilled and which
can not?
It is relatively easy to prove that states with a positive partial transpose (PPT) are not
distillable (see [32] for example). An ongoing open question is whether the converse
holds, e.g., whether all bipartite states with a non-positive partial transpose are distil-
lable. This is often referred to as the distillability problem.
In this section, we discuss some partial results, focusing on the case of two qubits. This
section is based on chapter 12 of the book “Alice and Bob Meet Banach. The Interface
of Asymptotic Geometric Analysis and Quantum Information Theory” by Aubrun and
Szarek [2].

7.2.1 Distillability problem

We start by mathematically describing distillation. Therefore, let us consider a bipartite
Hilbert space H = HA ⊗HB shared between two parties, which are commonly referred
to as Alice and Bob. The Hilbert space H

⊗n for n ∈ N with n ≥ 1 is also considered to be
bipartite by identifying it with H

⊗n
A ⊗H

⊗n
B . In the following section separability, LOCC,

partial transpose,. . . for states or channels on H
⊗n are always understood relative to the

A:B bipartition.

Definition 7.2.1 (Distillation [2]). Given two bipartite state ρ ∈ D(HA ⊗ HB) and σ ∈

D(H′
A ⊗H

′
B) we say σ can be distilled from (multiple copies of) ρ (ρ ⟿ σ) if for all ϵ > 0

exists an integer n ∈ N and an LOCC quantum channel
Φ ∶ B((HA ⊗HB)⊗n) → B(H′

A ⊗H
′
B) such that ∣∣Φ(ρ⊗n) − σ∣∣1 ≤ ϵ.
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7 Entanglement distillation

Note: ∣∣A∣∣1 = ∑n
i=1 ∣λi∣ where λi is the i-th eigenvalue of A.

Since many quantum information protocols use Bell states as a resource, the following
formulation for the distillability of bipartite states is motivated:
A bipartite state ρ ∈ D(HA ⊗ HB) is said to be distillable if ρ ⟿ ∣ψ+⟩⟨ψ+∣, where ∣ψ+⟩ is
the Bell state defined in 7.1.6.
The choice of the Bell vector ψ+ is arbitrary, what can be easily understood by consid-
ering the following: For two maximally entangled vectors x, y ∈ Cd ⊗ Cd exist U, V ∈ U(d)
such that y = (U ⊗ V )x. Since the channel ρ ↦ (U ⊗ V )ρ(U ⊗ V )† is a product channel
and therefore an LOCC channel, we receive that ∣x⟩⟨x∣ ⟿ ∣y⟩⟨y∣. This is also called
conjugating with local unitaries.
Therefore, the choice of the ψ+ is arbitrary, since we can obtain any other Bell state by
conjugating with local unitaries.
As mentioned in Subsection 6.1.1 the local filtering operation is LOCC.
Local filtering Given a state ρ on HA ⊗ HB, POVMs (Pi)i∈I on HA and (Qj)j∈J on HB,
and S ⊂ I × J , then ρ⟿ M

TrM (provided TrM > 0) , where

M = ∑
(i,j)∈S

(Pi ⊗Qj)ρ(Pi ⊗Qj).

To enhance the intuitive comprehension, the concept of local filtering is further illus-
trated. Given n copies of the state ρ, Alice and Bob can successively measure copies of
ρ locally using the POVMs (Pi) and (Qj) until they obtain outcomes i and j such that
(i, j) ∈ S. The post-measurement state is then given by M

TrM . If none of the n copies
gives an outcome in S the protocol fails. However, as n → ∞ the probability of failure
IPfailure → 0. If there is an outcome in S Alice and Bob verify that (i, j) ∈ S by classically
communicating.
As previously stated in the introduction to this section, the distillability problem pur-
sues whether all non-PPT states are distillable.
Distillability problem Is every non-PPT state distillable?
The distillability problem is graphically illustrated in FIG. 7.1.

7.2.2 Two qubits

In this section, we will prove a very interesting proposition, namely that every entangled
state on C2 ⊗ C2 is distillable. The Peres-Horodecki criterion and the two following
lemmas provide the foundation for the proof of the proposition.

Theorem 7.2.1 (Peres-Horodecki criterion [33,34]). If H = C2 ⊗C2 or H = C3 ⊗C2, then
every PPT state on H is separable.

The proof can be done using the Strømer and Woronowicz results (see [35, 36]) and is
omitted as it would exceed the scope of the work, it can be found in [33,34].
By contraposition, this statement is equivalent to the following: Every entangled (not
separable) state on H = C2 ⊗ C2 or H = C3 ⊗ C2 is NPT.
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separable

undistillable PPTundistillable NPT?

distillable

entangled
separable

Figure 7.1: Graphical illustration of the distillability problem. The set of separable states is
colored light green, the state of entangled states light blue. The big open question is if undis-
tillable states with a non-positive partial transpose exist.

In the following two Lemmas, we will work with states that are diagonal in the basis of
Bell vectors. Therefore, we denote

ρa,b,c,d = a∣ϕ+⟩⟨ϕ+∣ + b∣ϕ−⟩⟨ϕ−∣ + c∣ψ+⟩⟨ψ+∣ + d∣ψ−⟩⟨ψ−∣

for a, b, c, d ≥ 0 such that a + b + c + d = 1.
We associate the quantity

s(ρ) = max
χ ∈ C2 ⊗ C2

χ max. entangled

{⟨χ∣ρ∣χ⟩}

to each state ρ ∈ D(C2 ⊗ C2). By comparing s(⋅) with the fidelity Definition 7.1.1 one
can see that ⟨χ∣ρ∣χ⟩ is the square of F (ρ, ∣χ⟩⟨χ∣). Therefore, the functional s(⋅) measures
proximity to the set of maximally entangled states. Concretely, ρ is distillable iff there
exists a sequence (σn) in D(C2 ⊗ C2) such that s(σn) → 1 and that, for every n, ρ⟿ σn.
With this knowledge, we are well-equipped for the following lemmas.

Lemma 7.2.2 ( [2] ). ρ⟿ ρ
s(ρ), 1−s(ρ)

3 ,
1−s(ρ)

3 ,
1−s(ρ)

3

Proof. By conjugating with local unitaries s(ρ) = ⟨ψ−∣ρ∣ψ−⟩ can be obtained. The twirling
channel defined in Definition 6.1.6 belongs to the convex hull of the set of product
channels and is therefore according to 6.1.1 an LOCC channel. By using the result
from Theorem 6.1, plugging in λ and expressing wλ in form of Bell states

Υ(ρ) = s(ρ)∣ψ−⟩⟨ψ−∣ + 1 − s(ρ)
3 (∣ϕ+⟩⟨ϕ+∣ + ∣ϕ−⟩⟨ϕ−∣ + ∣ψ+⟩⟨ψ+∣)

can be obtained. Once again, we can conjugate with local unitaries and transform
ψ
− into ϕ

+. Thus ∣∣Υ(ρ) − ρ
s(ρ), 1−s(ρ)

3 ,
1−s(ρ)

3 ,
1−s(ρ)

3
∣∣1 = 0 ≤ ϵ and according to Definition 7.2.1

ρ⟿ ρ
s(ρ), 1−s(ρ)

3 ,
1−s(ρ)

3 ,
1−s(ρ)

3
holds.
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7 Entanglement distillation

For the proof of the following lemma, quantum gates are used, which should be briefly
introduced first.

Gates

A quantum gate is an elementary quantum circuit working on a small number of qubits.
Unlike classical gates, quantum gates can realize superposition and entanglement [37].
We will not go into much detail discussing quantum gates and just briefly discuss the
2-qubit CNOT-gate. For more information regarding quantum gates, see [37].

CNOT-gate [7]

The controlled-NOT or CNOT gate has two inputs qubits, known as control qubit and
target qubit. In FIG. 7.2 the schematic circuit for the controlled-NOT gate is shown.

Figure 7.2: Circuit representation for the CNOT gate: The top line represents the control qubit
and the bottom line the target qubit: figure from [7].

If the control qubit is set to 0, the target qubit stays the way it is. If the control qubit
is 1, the target qubit is flipped, e.g.,

∣00⟩ → ∣00⟩ ∣01⟩ → ∣01⟩ ∣10⟩ → ∣11⟩ ∣11⟩ → ∣10⟩ . (7.4)

Lemma 7.2.3 ( [2] ). Given a, b, c, d ≥ 0 with a + b + c + d = 1, denote α =
a

2+b2

N
, β =

2ab
N

,

γ =
a

2+b2

N
and δ = 2cd

N
, where N = (a + b)2 + (c + d)2. Then

ρa,b,c,d ⟿ ρα,β,γ,δ.

Proof. In the following HA,HB,H
′
A and H

′
B are all equal to C2. Consider ρa,b,c,d as a state

on HA ⊗ HB and ρa,b,c,d ⊗ ρa,b,c,d as a state on HA ⊗ HB ⊗ H
′
A ⊗ H

′
B. P = ∣00⟩⟨00∣ + ∣11⟩⟨11∣

and Q = I − P = ∣01⟩⟨01∣ + ∣10⟩⟨10∣ are rank 2 projectors acting on C2 ⊗ C2.
We equip all operators X respectively superoperators Φ acting on HA ⊗H

′
A respectively

B(HA ⊗ H
′
A) with a subscript A (XA, ΦA) and all operators respectively superoperators

acting on HB ⊗H
′
B respectively B(HB ⊗H

′
B) with a subscript B (XB, ΦB).

Now we consider the operator Π = PA ⊗ PB +QA ⊗QB acting on HA ⊗HB ⊗H
′
A ⊗H

′
B. Π is

an orthogonal projector on the subspace spanned by the vectors

ϕ
+
⊗ ϕ

+
ϕ
+
⊗ ϕ

−
ϕ
−
⊗ ϕ

+
ϕ
−
⊗ ϕ

−
ψ
+
⊗ ψ

+
ψ
+
⊗ ψ

−
ψ
−
⊗ ψ

+
ψ
−
⊗ ψ

−
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7 Entanglement distillation

what can be verified by checking Π2
= Π and ΠT

= Π and plugging into the definition for
the projection.
Let us consider a quantum channel Ψ ∶ B(C2 ⊗ C2) → B(C2) defined as

ρ → Tr2UρU
†

with the partial trace over the second factor Tr2 (see Definition 2.3.5) and the “CNOT”
(controlled - NOT gate, see 7.4) unitary transformation on C2 ⊗ C2 defined as

U (∣00⟩) = ∣00⟩ U (∣01⟩) = ∣01⟩ U (∣10⟩) = ∣11⟩ U (∣11⟩) = ∣10⟩.

Using this channel, for ϵ, η = ± holds

(ΨA ⊗ ΨB)(∣ϕϵ ⊗ ϕη⟩⟨ϕϵ ⊗ ϕη∣) = ∣ϕϵη⟩⟨ϕϵη∣
(ΨA ⊗ ΨB)(∣ψϵ ⊗ ψη⟩⟨ψϵ ⊗ ψη∣) = ∣ψϵη⟩⟨ψϵη∣

which can be verified by directly calculating and using sign multiplication rules. It
has to be emphasized that one has to be careful with the symbol ⊗ since it does not
always refer to the same bipartition. By using local filtering and then the LOCC channel
ΨA ⊗ ΨB it can be computed that

ρ⟿
Π(ρ ⊗ ρ)Π

TrΠ(ρ ⊗ ρ)Π ⟿ ρα,β,γ,δ.

Now we can discuss the main Proposition 7.2.4 of this subsection, which is a special
case of the distillability problem.

Proposition 7.2.4 ( [2] ). Every entangled state on C2 ⊗ C2 is distillable.

Proof. Consider an entangled state ρ ∈ D(HA ⊗ HB), which is according to the Peres-
Horodecki criterion 7.2.1 not PPT. Therefore, there exists a unit vector x ∈ C2 ⊗ C2

with ⟨x∣ρΓ∣x⟩ < 0. By conjugating with local unitaries, we can assume that the Schmidt
decomposition (see. 3.1.2) of x is x = a∣00⟩ + b∣11⟩. By using the operator

J = a∣0⟩⟨0∣ + b∣1⟩⟨1∣ = [a 0
0 b

]

we can express x the following way: x =
√
2(I ⊗ J )∣ϕ+⟩, which can easily be checked by

plugging in J . Further, J can be one of the operators of a POVM, since 0 ≤ J ≤ I. By
applying local filtering, we receive

ρ⟿ σ ∶=
(I ⊗ J )ρ(I ⊗ J )

Tr(I ⊗ J )ρ(I ⊗ J ) .

Furthermore, one can check that ⟨ϕ+∣σΓ∣ϕ+⟩ < 0. By using Tr(AΓ
B) = Tr(ABΓ) we get

0 > Tr(σ(∣ϕ+⟩⟨ϕ+∣)
Γ
) = Tr(σ(1

2I − ∣ψ−⟩⟨ψ−∣)) = 1
2 − ⟨ψ−∣σ∣ψ−⟩

⇔ ⟨ψ−∣σ∣ψ−⟩ > 1
2 ⇔ s(σ) > 1

2 .
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7 Entanglement distillation

Therefore, the problem is reduced to show that any state σ with s(σ) > 1/2 is distillable.
By successively applying Lemmas 7.2.2 and 7.2.3 on σ, we get that σ ⟿ σ

′ for a state
σ
′ for which s(σ′) ≥ ϕ(s(σ)) with

ϕ(t) =
t
2 + 1

9 (1 − t)2
1
9 (1 + 2t)2 + 1

9 (2 − 2t)2
=

1 − 2t + 10t2

5 − 4t + 8t2

holds. Since ϕ(t) > t for t ∈ (1/2, 1) limn→∞ϕ
n(s(σ)) = 1. By iterating the above described

process, one can receive that σ ⟿ σ
′′ for a state σ′′ such that s(σ′′) is as close to 1 as

demanded.
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