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Introduction 1
It is probably safe to say that every human plays games from a young

age on, many of which are of the combinatorial nature we focus on

here. Games like Chess and Go are even played at world-renowned

tournaments. The surprising discovery from a mathematical point of

view is that playing games leads to a very intricate, transfinite algebraic

structure. Games can be added, where the sum of two games is obtained

by “playing both games at once”. Asking which player has an advantage

in a given game induces a partial order on games, where the value of a

game describes which player can win the game at hand, depending on

who moves first. Through this, we will see that the games exhibit the

structure of a partially ordered abelian group, which we will denote by Pg.

But the fascinating thing is that Pg do not just form any group. The

partially ordered abelian group of games (or rather game values) is

actually the biggest such group, in the sense that every other such group

can be found as a subgroup of Pg. This is roughly what is meant by

saying that the games satisfy a universal embedding property.

The collection of games is however not the only structure from combina-

torial game theory with such universality properties. Among the vast

range of games are hidden some which very much behave like numbers.

These surreal numbers, which we denote by No, include all the familiar

real numbers, as well as all the transfinite ordinal numbers encountered

in set theory. There is even a suitable definition of multiplication on these

numbers, which turns the No into an ordered field. And again, this ordered

field is universally embedding, meaning that every other ordered field

is isomorphic to a subfield of No. In this sense, the surreals are said to

encompass “all numbers great and small”.

In order to arrive at these universal embedding theorems, we will first

look at the construction and the basic properties of Pg and No in chapters

2 and 3, respectively. In chapter 4 we will then have a look at the universal

embedding properties of No, since these are significantly easier to prove

than those for Pg. The fact that No is a universally embedding ordered

field was published by John H. Conway (who also discovered the surreals

in the first place) in 1976, whereas the corresponding theorem for Pg stood

as a conjecture until 2002, where a proof was published by Jacob Lurie.

We describe this proof in chapter 5. Finally in chapter 6, we show that,

under appropriate set theoretic assumptions, Pg and No are characterized

up to isomorphism by their universal embedding properties. We will

also use this last chapter as a place to discuss some more technical details

omitted in earlier chapters.

Preliminaries

This thesis is aimed at readers who have finished an undergraduate

degree in mathematics or are close to doing so. We will give references

to suitable textbooks whenever using material that might not be covered

in undergraduate courses and, in most cases, also briefly summarize the

results used. This also means that, other than being familiar with Zorn’s
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lemma, no deeper knowledge of set theory is necessary to understand

everything but some technical details. In particular, we will define ordinal

numbers within the surreal numbers and prove some basic properties

within this setting without assuming previous knowledge of how ordinals

are usually defined in set theory.

The term proper class will pop up quite often over the course of this thesis.

A reader that is unfamiliar with that notion may think of proper classes

simply as collections that are too big to be sets (like, for example, the

collection of all sets). How this is formalized does not really concern

us here. The terms class, or just simply collection, are then used to refer

to something that is either a set or a proper class. We denote proper

classes in boldface (e.g., Pg, No, U) and will from now on capitalize

algebraic structures that are proper classes (e.g., Pg is a Group, rather

than a group).

In the event that a reader really does not

want to use proper classes, we give an

alternative in section 6.1. We will how-

ever stick to proper classes for the main

part of the thesis, since this constitutes

the most general case.

Pg

No[i]
No

On ℂ 𝔾

ℝ

ℚ

𝔻

ℕ

Figure 1.1: Overview of the structures of

numbers and games that appear in this

thesis.

Pg game values (def. 2.4.9)

No surreal numbers (def. 3.0.1)

No[i] surcomplex numbers (p. 28)

On ordinal numbers (def. 3.4.1)

𝔾 short game values (def. 6.1.1)

ℝ real numbers

ℂ complex numbers

ℚ rational numbers

𝔻 dyadic rationals (fig. 3.2)

ℕ natural numbers
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bush . . . . . . . . . . . . . . 5
2.2 Abstract Game Definition . 7
2.3 Arithmetic of Games . . . . 8
2.4 Ordering Games . . . . . . 10

This chapter covers the preliminaries of combinatorial game theory

necessary to understand the main topic of this thesis. This kind of game

theory, alongside with the surreal numbers, was first introduced in [1]

[1]: Conway (2001), On Numbers and
Games

. In

[2]

[2]: Berlekamp et al. (2001), Winning Ways
for Your Mathematical Plays

, the theory was developed further and applied to numerous example

games. For a more modern textbook on the topic, see [3]

[3]: Siegel (2013), Combinatorial Game The-
ory

. This chapter

loosely follows those sources.

Combinatorial game theory studies so-called partisan games, which are

defined by having the following properties:

▶ Two players (usually called Left and Right) take alternating turns.

▶ A player who does not have a legal move loses.

▶ The game will always end in a finite number of moves, no matter

what choices the players make.
1

1: This restriction is dropped for so-

called loopy games. However, in this thesis,

we only consider loop-free games.

▶ Both players have perfect information about the game at all times.

No chance is involved.

A key part of this definition is that, in contrast to the simpler impartial
games, we do not demand that both players have the same moves available

to them.

As we will see shortly, every partisan game can be described by a neat

abstract definition of a game. However, it is often useful for intuition to

have some concrete games in mind when studying this theory.

2.1 Domineering and Hackenbush

In Domineering, the two players Left and Right alternately place dominoes

on a square grid, with the following restrictions:

▶ Each domino must exactly cover two adjacent cells of the grid.

▶ Dominoes are not allowed to overlap.

▶ Left is only allowed to place dominoes vertically, whereas Right is

only allowed to place dominoes horizontally.

Another typical combinatorial game is Hackenbush. In this game, the

playfield consists of one line, called the ground (here drawn as a dashed

line), as well as several blue, red (here depicted in orange), and green

line segments. Each of these segments is either directly connected to

the ground, or indirectly connected to the ground by a chain of other

segments.

Now, in each of their turns, Left and Right remove (“cut”) one of the

segments, with the following rules in place:

▶ Blue lines may only be cut by Left.

▶ Orange lines may only be cut by Right.

▶ Green lines may be cut by either player.
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Right begins

R L R

Left has no legal move,

Right wins!

Left begins

L R

Left has no legal move,

Right wins!

Right begins and

has no legal move,

Left wins!

Left begins

L R

Left has no legal move,

Right wins!

Right begins

R L

Right has no legal move,

Left wins!

Figure 2.1: Examples of a few games of Domineering with different playfields and different starting players.

Right begins

R L R L

Right has no legal move,

Left wins!

Left begins

L R L

Right has no legal move,

Left wins!

Left begins

L R L

Right has no legal move,

Left wins!

Right begins

R L R

Left has no legal move,

Right wins!

Left begins

L R

Left has no legal move,

Right wins!

Figure 2.2: Examples of a few games of Hackenbush with different playfields and different starting players.
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If some segments are no longer connected to the ground after a cut, they

get removed as well (they “fall down”).

Notice that in both of these games, making a move is essentially the

same thing as making the playfield smaller. The game then continues

on this subposition of the previous position. The key concept behind

combinatorial game theory is that we mathematically model a game

via those subpositions. We describe a game by a pair of two sets, the

first being all the subpositions Left can choose, whereas the second set

contains all of Right’s options.

We illustrate this on the following Domineering position.

= { ︸︷︷︸
={ ︸︷︷︸

={ | }

| }

, , | , , }

As depicted in the example, we can do this recursively and also describe

all the subpositions by their subpositions, and so on. Since we demand

that partisan games always end in finitely many moves, after finitely

many steps, we have to reach { | }, the game where none of the players

have any options to move to.

This concept motivates how we mathematically define a game.

2.2 Abstract Game Definition

Definition 2.2.1 (Game)
A game is a pair {𝐿 | 𝑅}, where 𝐿 and 𝑅 are sets of games.

While this is the shortest and most elegant way to define games, it might

be confusing at first. One strange aspect might be that the definition

appears to be circular: games are defined in terms of games. However,

this turns out not to be a problem, because even by this definition, we

have at least one game: {∅ | ∅} is a game, since the empty set is a set of

games (because every “for all”-statement quantifying over the empty set

is trivially true). More briefly, we denote this game by 0 := { | }. It is

also called the empty game or the endgame.

Once we have 0, the above definition turns out to be inductive rather

than circular, since we can now form the following new games:

−1 := { | 0}, ∗ := {0 | 0}, 1 := {0 | }

0 = =

1 = =

−1 = =

∗ = =

Figure 2.3: The simplest four games and

their representation in Domineering and

Hackenbush.

Now we can form the games where the left and right sets consist of 0, 1,

−1 and ∗. For example:

{0, 1 | }, {1 | −1}, {∗ | ∗}, {−1 | ∗}, { | −1, ∗}, . . .
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Here we use a standard notational shorthand by leaving out the curly

braces around the sets of left and right options.

This process of forming new games from previously created games can

now continue indefinitely. In particular, observe that our definition does

not demand the left and right sets to be finite. After having formed all

games that can be created from 0 in finitely many steps, we can, for

example, form the game that has all of those games in its left set. This

means we are actually dealing with transfinite induction, where even after

infinitely many steps, there is always another step to make. We further

discuss games with infinitely many options in section 3.4 on ordinal

numbers.

One consequence of the inductive nature of games is that we can also

prove basically all properties of games by induction. In order to prove

that all games have a certain property, we assume that all the left options

𝑔L
and right options 𝑔R

of an arbitrary game 𝐺 have said property, and

then show that this implies that 𝐺 also has the property. Another way to

interpret this is that we show that 𝐺 has a certain property if all simpler
games (i.e., games created before 𝐺) have this property. Note that we will

never have to consider a base case for induction since trivially all games

in the empty set will have the desired property, and thus by the inductive

step 0 will have the desired property, and so on.

2.3 Arithmetic of Games Figure 2.4: After a couple of moves, this

game of Domineering turned into a sum

of smaller games.

When playing Domineering on a large playfield, it often occurs that

after a couple moves, the dominoes separate the playfield into multiple

disjoint parts (see fig. 2.4). Now for each move, the players have to choose

exactly one part in which they want to play, and they loose if they have

no move in any of the parts. This is how we define the sum of games.

Definition 2.3.1 (Addition of Games)
For two games 𝐺 and 𝐻, we define their sum as

𝐺 + 𝐻 := {𝑔L + 𝐻, 𝐺 + ℎL | 𝑔R + 𝐻, 𝐺 + ℎR}. 𝐺 = 1 𝐻 = ∗

𝐺 + 𝐻

1 + ∗ = { , | }
= {∗, 1 | 1}

Figure 2.5: The sum of two simple domi-

neering positions.

In definitions like this, 𝑔L
is to be understood to range over all left options

of 𝐺, whereas 𝑔R
ranges over all right options of 𝐺, and similarly for

ℎL
and ℎR

. This definition is again inductive: the sum of two games is

defined in terms of sums where one game is simpler. Definitions like

these are called genetic.

With the intuition that the sum of two Domineering or Hackenbush

positions is just the two positions put next to each other, the following

properties of addition should not come as a surprise.

Theorem 2.3.2 (Properties of Addition)
For games 𝐺, 𝐻, 𝐾 we have

(a) 𝐺 + 0 = 𝐺 (neutral element),
(b) 𝐺 + 𝐻 = 𝐻 + 𝐺 (commutativity),

(c) (𝐺 + 𝐻) + 𝐾 = 𝐺 + (𝐻 + 𝐾) (associativity).
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Proof. We prove all of these properties by induction. The inductive

hypothesis is going to be that the property we are trying to show holds if

we replace 𝐺, 𝐻, or 𝐾 by one of its left or right options. The spots where

the inductive hypothesis is used are marked by I. H.

Neutral element: Since 0 has neither a left or a right option, those terms

just do not appear in the sum. With that, we get:

𝐺 + 0 = {𝑔L + 0 | 𝑔R + 0} I.H.

= {𝑔L | 𝑔R} = 𝐺.

Commutativity:

𝐺 + 𝐻 = {𝑔L + 𝐻, 𝐺 + ℎL | 𝑔R + 𝐻, 𝐺 + ℎR}
I.H.

= {ℎL + 𝐺, 𝐻 + 𝑔L | ℎR + 𝐺, 𝐻 + 𝑔R} = 𝐻 + 𝐺.

Associativity:

(𝐺 + 𝐻) + 𝐾 = {𝑔L + 𝐻, 𝐺 + ℎL | 𝑔R + 𝐻, 𝐺 + ℎR} + 𝐾
= {(𝑔L + 𝐻) + 𝐾, (𝐺 + ℎL) + 𝐾, (𝐺 + 𝐻) + 𝑘L |

| (𝑔R + 𝐻) + 𝐾, (𝐺 + ℎR) + 𝐾, (𝐺 + 𝐻) + 𝑘R}
I.H.

= {𝑔L + (𝐻 + 𝐾), 𝐺 + (ℎL + 𝐾), 𝐺 + (𝐻 + 𝑘L) |
| 𝑔R + (𝐻 + 𝐾), 𝐺 + (ℎR + 𝐾), 𝐺 + (𝐻 + 𝑘R)}

= 𝐺 + {ℎL + 𝐾, 𝐻 + 𝑘L | ℎR + 𝐾, 𝐻 + 𝑘R}
= 𝐺 + (𝐻 + 𝐾).

Games can also be negated. The idea behind this is that we swap Left’s

and Right’s roles in the game, i.e., recursively swapping Left’s and Right’s

options.

Definition 2.3.3 (Negation of Games)
For a game 𝐺, we define

−𝐺 := {−𝑔R | −𝑔L}.

−

−0 = 0

−

−(−1) = 1

−

∗ = −∗

Figure 2.6: Negation of the four simplest

games.

In our two example games, negation is simple to conceptualize. In

Domineering, negation just means rotating the playfield by 90 degrees,

whereas in Hackenbush, negation just means swapping the colors blue

and orange.

Theorem 2.3.4 (Properties of Negation)
For games 𝐺 and 𝐻 we have

(a) −(−𝐺) = 𝐺,

(b) −(𝐺 + 𝐻) = −𝐺 − 𝐻.

Proof. With induction, we have

−(−𝐺) = −{−𝑔R | −𝑔L} = {−(−𝑔L) | −(−𝑔R)} I.H.

= {𝑔L | 𝑔R} = 𝐺,
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as well as

−(𝐺 + 𝐻) = −{𝑔L + 𝐻, 𝐺 + ℎL | 𝑔R + 𝐻, 𝐺 + ℎR} =
= {−(𝑔R + 𝐻),−(𝐺 + ℎR) | −(𝑔L + 𝐻),−(𝐺 + ℎL)}
I.H.

= {(−𝑔R) + (−𝐻), (−𝐺) + (−ℎR) | (−𝑔L) + (−𝐻), (−𝐺) + (−ℎL)}
= (−𝐺) + (−𝐻).

−

Figure 2.7: Hackenbush-dog, and its evil

cousin.

Notice that we do not have 𝐺 − 𝐺 = 0 yet. For example:

1 + (−1) = {−1 | 1} ≠ { | } = 0.

However, subtraction will behave like the inverse of addition under the

right equivalence relation, which will be introduced in the next section.

2.4 Ordering Games

One thing we have not looked at yet is who wins in a given game. This

will lead us to a partial order on the games, which intuitively orders the

games by how much of an advantage one of the players has.

Definition 2.4.1 (Outcome Classes)
We say a player has a winning strategy in a game, if they can always win

the game, no matter how their opponent plays. We call a game 𝐺

▶ positive, if Left has a winning strategy, no matter who begins.

▶ negative, if Right has a winning strategy, no matter who begins.

▶ zero, if the player who moves second has a winning strategy.

▶ fuzzy, if the player who moves first has a winning strategy.

The four simplest games we mentioned

before, 0, 1, −1 and ∗, are zero, positive,

negative and fuzzy, respectively.

The following lemma gives a way to determine which outcome class a

game belongs to if one already knows the outcome classes of its left and

right options. If one finds the above definition by winning strategies not

rigorous enough, this could be used as an alternative, inductive definition

of the outcome classes.

Lemma 2.4.2 (Genetic Characterization of Outcome)
A game 𝐺 is

(a) positive, iff there exists a positive or zero left option, and all of

its right options are positive or fuzzy.

(b) negative, iff there exists a negative or zero right option, and all of

its left options are negative or fuzzy.

(c) zero, iff all left options are negative or fuzzy, and all right options

are positive or fuzzy.

(d) fuzzy, iff there exists a positive or zero left option, and there exists

a negative or zero left option.

Each game belongs to exactly one of these outcome classes.
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Proof. The first four properties are proven simply by looking at all possible

cases of who begins and which move this player could make. To prove that

an arbitrary game 𝐺 is either positive, negative, zero or fuzzy, suppose

that such is true for all 𝑔L
and 𝑔R

, and notice that the cases (a) to (d)

cover all possible situations and exclude each other. Thus the statement

is true by induction.

Theorem 2.4.3 (Outcome Classes and Addition)

(a) The sum of two positive games is again positive.

(b) The sum of two negative games is again negative.

(c) Addition of a zero game does not change the outcome class.

Proof.2 2: If one prefers, this can also be proven

symbolically rather than combinatori-

cally using induction and lemma 2.4.2.

(a) If we have two positive games, that means Left has a winning

strategy for both of the games individually. For each move of Right

in one of the games, Left can move in the same game according to

their winning strategy for that game, and will thus never run out of

moves. So Left has a winning strategy in the sum of the two games.

(b) This is proven analogously to the positive case.

(c) Let 𝐺 be any game, and let 𝑍 be a zero game. Now whoever has

a winning strategy in 𝐺 can reply to their opponents move in 𝐺

by picking a move according to that strategy. If their opponent

however moves in 𝑍, they can also move in 𝑍 according to the

winning strategy for the second player to move. This means the

player who has a winning strategy in 𝐺 will never run out of moves

in 𝐺 + 𝑍, and thus also have a winning strategy in this sum.

Theorem 2.4.4 (Outcome Classes and Negation)

(a) The negation of a positive game is negative.

(b) The negation of a negative game is positive.

(c) The negation of a zero game is zero.

(d) The negation of a fuzzy game is fuzzy.

(e) For any game 𝐺, the difference 𝐺 − 𝐺 is zero.

Proof. The statements (a) to (d) are clear, since negation just swaps the

roles of both players (or alternatively by induction using lemma 2.4.2).

As for (e): In the game 𝐺 − 𝐺, the second player can always pick the

negative of the move that the first player just picked. With this strategy,

the second player will never run out of moves, which means 𝐺 − 𝐺 is

zero.

With these properties, we see that the outcome classes can be used to

order the games.

≡

Figure 2.8: A surprising equivalence be-

tween Domineering and Hackenbush (cf.

[3, p. 13]).

Definition 2.4.5 (Equivalence and Order)
For games 𝐺, 𝐻 we define

▶ 𝐺 > 𝐻 iff 𝐺 − 𝐻 is positive.

▶ 𝐺 < 𝐻 iff 𝐺 − 𝐻 is negative.

▶ 𝐺 ≡ 𝐻 iff 𝐺 − 𝐻 is zero.
3

▶ 𝐺 ∥ 𝐻 iff 𝐺 − 𝐻 is fuzzy.
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We also define the following combinations:

▶ 𝐺 ≥ 𝐻 iff 𝐺 − 𝐻 is positive or zero.

▶ 𝐺 ≤ 𝐻 iff 𝐺 − 𝐻 is negative or zero.

▶ 𝐺 |▷ 𝐻 iff 𝐺 − 𝐻 is positive or fuzzy.

▶ 𝐺 ◁| 𝐻 iff 𝐺 − 𝐻 is negative or fuzzy.

3: Note that we define this in the op-

posite way than Conway in [1]. In most

sources on combinatorial game theory,

= is a defined relation and has the same

meaning as our equivalence. Then Con-

way uses the symbol ≡ to denote identical
games, i.e., games with the same left and

right sets. We chose the opposite notation

since it is closer to how the symbol ≡ is

used in other areas of mathematics. Also

we will soon only be talking about equiv-

alence classes of games anyway, where

we will be able to write = instead of ≡
again.

For 𝐺 ≡ 𝐻 we say that the games 𝐺 and 𝐻 are equivalent, for 𝐺 ∥ 𝐻 we

say that 𝐺 and 𝐻 are incomparable, or confused (with each other).

We also want to characterize order in a genetic way. This will be used

frequently in the following chapters, since it will be easier to analyze

games symbolically rather than combinatorically once we get into more

abstract territory. Again, this characterization could also be used to

inductively define the order on games in the first place.

Lemma 2.4.6 (Genetic Characterization of Order)
For games 𝐺 and 𝐻, we have 𝐺 ≤ 𝐻 iff there is no 𝑔L

with 𝐻 ≤ 𝑔L
and

no ℎR
with ℎR ≤ 𝐺.

4

Proof.

4: This characterization gives us an in-

tuition that is good to keep in mind: an

inequality between games holds, unless
there is a reason to the contrary.We have 𝐺 ≤ 𝐻 iff 𝐺 − 𝐻 ≤ 0, so iff

𝐺 − 𝐻 = {𝐺 − ℎR , 𝑔L − 𝐻 | 𝐺 − ℎL , 𝑔R − 𝐻}

is zero or negative. By lemma 2.4.2, this is equivalent to one of the

following two statements being true:

1. (∀ℎR
: 𝐺 − ℎR ◁| 0) ∧ (∀𝑔L

: 𝑔L − 𝐻 ◁| 0), and

(∀ℎL
: 𝐺 − ℎL |▷ 0) ∧ (∀𝑔R

: 𝑔R − 𝐻 |▷ 0).
2. (∃ℎR

: 𝐺 − ℎR ≥ 0) ∨ (∃𝑔L
: 𝑔L − 𝐻 ≥ 0), and

(∀ℎL
: 𝐺 − ℎL |▷ 0) ∧ (∀𝑔R

: 𝑔R − 𝐻 |▷ 0).

The respective first lines in both bullet points are logical opposites, so

one of them is certainly true. The respective second lines are the same.

So in total, we get that 𝐺 ≤ 𝐻 is equivalent to

(∀ℎL

: 𝐺 − ℎL |▷ 0) ∧ (∀𝑔R

: 𝑔R − 𝐻 |▷ 0),

which is in turn equivalent to there being no 𝑔L
with 𝐻 ≤ 𝑔L

and no ℎR

with ℎR ≤ 𝐺.

By setting 𝐺 = 𝐻, we immediately get the following result:

Corollary 2.4.7 (A game lies “between” its left and right options.)
For any game 𝐺, we have 𝑔L ◁| 𝐺 ◁| 𝑔R

.

Theorem 2.4.8 (Properties of Equivalence and Order)
For games 𝐺, 𝐻, 𝐾, we have

(a) ≡ is an equivalence relation.

(b) < and > are transitive.

(c) 𝐺 > 𝐻 iff 𝐻 < 𝐺.

(d) If 𝐺 > 𝐻 and 𝐾 ≡ 𝐺, then 𝐾 > 𝐻, and analogously for < and ∥.

(e) If for every 𝑔L
and every 𝑔R

, there are ℎL
and ℎR

, such that

𝑔L ≡ ℎL
and 𝑔R ≡ ℎR

, and vice-versa, then 𝐺 ≡ 𝐻.
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(f) 𝐺 ≡ 𝐻 iff 𝐺+𝐾 ≡ 𝐻 +𝐾, and analogously for the other relations.

(g) 𝐺 > 𝐻 iff −𝐺 < −𝐻.

(h) 𝐺 ≡ 𝐻 iff −𝐺 ≡ −𝐻 and 𝐺 ∥ 𝐻 iff −𝐺 ∥ −𝐻.

Proof. To prove all of these claims, we just need to collect results that we

have already proven. The reflexivity of ≡ follows from 2.4.4 (e), whereas

the symmetry follows from 2.4.4 (c) and 2.3.4. For the transitivity, we

assume that𝐺−𝐻 and𝐻−𝐾 are zero, which gives us that (𝐺−𝐻)+(𝐻−𝐾)
is zero using 2.4.3 (c), which by 2.3.2 equals (𝐺 − 𝐾) + (𝐻 − 𝐻). Since

𝐻 − 𝐻 is zero, 𝐺 − 𝐾 is also zero. The transitivity of < and > follows

similarly.

The equivalence of 𝐺 > 𝐻 and 𝐻 < 𝐺 is obtained from 2.4.4 (a) and (b),

as well as 2.3.4.

If 𝐾 ≡ 𝐺, that means that 𝐾 −𝐺 is zero, so 𝐺 −𝐻 is in the same outcome

class as (𝐺 − 𝐻) + (𝐾 − 𝐺) = (𝐾 − 𝐻) + (𝐺 − 𝐺), which again is in the

same outcome class as 𝐾 − 𝐻 since 𝐺 − 𝐺 is zero. This proves (d).

For (e), consider the game 𝐺 −𝐻, and assume WLOG that Left plays first

and picks the move 𝑔L
in 𝐺, resulting in the game 𝑔L −𝐻. Then Right has

a winning move by picking −ℎL
in −𝐻 such that ℎL ≡ 𝑔L

, resulting in the

zero position 𝑔L − ℎL
, which Right can now win. All cases considered,

this means that the second player to move always has a winning strategy

in 𝐺 − 𝐻, and thus 𝐺 ≡ 𝐻.

For the equivalence of 𝐺 ≡ 𝐻 and 𝐺 + 𝐾 ≡ 𝐻 + 𝐾, we notice that 𝐺 − 𝐻
has the same outcome class as 𝐺−𝐻 + (𝐾 −𝐾) = (𝐺+𝐾) − (𝐻 +𝐾) since

𝐾 − 𝐾 is zero. The argument for the other relations works exactly the

same.

The statements 𝐺 > 𝐻 ⇔ −𝐺 < −𝐻, 𝐺 ≡ 𝐻 ⇔ −𝐺 ≡ −𝐻 and

𝐺 ∥ 𝐻 ⇔ −𝐺 ∥ −𝐻 follow directly from 2.4.4.

With this, we can define the structure that is central to this thesis.

Definition 2.4.9 (Game Value)
For a game 𝐺, we define its value as the equivalence class of 𝐺 under ≡.

If 𝐺 = {𝐿 | 𝑅}, we denote the equivalence class of 𝐺 by ⟨𝐿 | 𝑅⟩.
We denote the collection of all game values by Pg (for partisan games).5

5: There is a small problem with this:

since the definition of games is so gen-

eral, the equivalence class of any game

is going to be a proper class. Therefore,

we technically can not form the class of

all of those equivalence classes, since

proper classes cannot be members of

other classes. Otherwise, one would get

similar contradictions as the ones that

arise when treating the collection of all

sets as a set.

This problem is, however, easily

sidestepped by identifying each equiva-

lence class with its unique simplest repre-

sentative, which is a standard technique

in set theory known as Scott’s trick [4, sec-

tion 8.6]. Here simplest means the game

with minimal birthday (def. 3.4.5), where

one of course needs to use the standard

set theoretic ordinals instead to avoid

circular reasoning. For the sake of sim-

plicity, we leave it at that and ignore this

technicality in further discussions.

We define the arithmetic and order of game values via their underlying

games. Theorem 2.4.8 (f), (h) and (d) tell us that addition, negation and

order of elements of Pg are well-defined. Theorem 2.3.2, together with

Theorem 2.4.4 (e) tell us that Pg forms an abelian Group.
6

6: Technically Pg is not a group, since

groups are usually defined via sets,

whereas Pg is a proper class. We denote

this distinction by saying that Pg is a

Group (with a capitalized first letter), and

not a group. We will do the same for

other algebraic structures.

Theorem 2.4.8

also tells us that ≤ and ≥ are partial order relations (where antisymmetry

follows from the fact that the difference of two games cannot be positive

and negative at the same time), and specifically from (f) we get addition

is compatible with order. Thus, Pg forms a partially ordered abelian Group
(POA Group for short).

A partially ordered abelian group is an

abelian group 𝑋 together with a partial

order relation ≤ on 𝑋, such that 𝑎 ≤ 𝑏

implies 𝑎 + 𝑐 ≤ 𝑏 + 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑋.



Surreal Numbers 3
3.1 Multiplication . . . . . . . . 15
3.2 Division . . . . . . . . . . . . 17
3.3 Real Numbers . . . . . . . . 19
3.4 Ordinal Numbers . . . . . . 21

Some games behave a lot like numbers. We already gave this away a bit

by naming games 0, 1 and −1, but there are many more. For example:

2 = ⟨0, 1 | ⟩, 3 = ⟨0, 1, 2 | ⟩, −3 = ⟨ | −2,−1, 0⟩, 1

2
= ⟨0 | 1⟩.

Those names are all justified by the arithmetic of games. Let us look at

the case of
1

2
:

1

2
+ 1

2
− 1 = ⟨ 1

2
| 1 + 1

2
⟩ − 1 = ⟨ 1

2
− 1︸︷︷︸

⟨−1|0, 1

2
⟩

| 1

2
, 1 + 1

2
⟩

⟨0 | 1⟩ ⟨0 | 1⟩ (−1)+ + = 0

Figure 3.1: The second player to move

can always win this game of Hackenbush,

which implies ⟨0 | 1⟩ = 1

2
.

Now we can use lemma 2.4.2 to first get that
1

2
is positive (since it has

a zero left option and only positive right options), then that
1

2
− 1 is

negative (since it has only negative left options and a zero right option),

and finally that
1

2
+ 1

2
− 1 is zero (since it has only negative left and only

positive right options).

What makes ⟨0 | 1⟩ behave like a number? When thinking of (real)

numbers, we usually think of a total rather than a partial order, i.e., we

want every number to be comparable with each other (which in particular

rules out fuzzy games). For example, in corollary this means 2.4.7, instead

of 𝑔L ◁| 𝐺 ◁| 𝑔R
we would rather have 𝑔L < 𝐺 < 𝑔R

, which is true for

⟨0 | 1⟩.

𝑛

〈
0

��� 1

2
𝑛−1

, . . . ,
1

2

, 1

〉
=

1

2
𝑛

Figure 3.2: By adding and subtracting

games of this form, all dyadic rationals

(that is, rational numbers of the form
𝑚
2
𝑛 )

can be realized within Hackenbush.

This can also be understood nicely using blue-red Hackenbush: If we want

to eliminate fuzzy games, we can try to just leave out all green lines in

Hackenbush. This changes the game a lot, since now every time a player

moves, they will be deleting one line in their own color, resulting in a

playfield where they now have less of an advantage over their opponent

(since even if a lot of their opponent’s lines fall down, the line below them

is always “worth more”). So left will always have to move to a position

𝑔L
which is less than 𝐺, whereas right will always move to a position 𝑔R

which is greater than 𝐺, giving us 𝑔L < 𝐺 < 𝑔R
.

It turns out that it is actually enough to demand 𝑔L < 𝑔R
. From this

𝑔L < 𝐺 < 𝑔R
will follow inductively.

Definition 3.0.1 (Surreal Number)
A game 𝐺 = {𝐿 | 𝑅} is called a form of a number, if all 𝑔L ∈ 𝐿 and all

𝑔R ∈ 𝑅 are forms of numbers and satisfy 𝑔L < 𝑔R
.

A game value 𝑥 ∈ Pg is called a surreal number (or for short just number),
if 𝑥 is the equivalence class of a form of a number. We denote the

collection of all surreal numbers by No.

The games values 0, 1 and −1 are numbers, while ∗ is not. The above

1

2
is also a number, since 0 < 1. We commit some abuse of notation

here: When writing the usual symbols for numbers (like 0, 1,
1

2
, etc.), we

will not distinguish whether we mean numbers (equivalence classes) or

games. We will also write numbers as options of numbers, even though

strictly speaking the notation ⟨𝑎, 𝑏, . . . | 𝑥, 𝑦, . . .⟩ is only defined when 𝑎,
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𝑏, etc. are games. This is justified by theorem 2.4.8 (e). When writing 𝑥L

and 𝑥R
for possible left and right options of a number 𝑥, we will, unless

mentioned otherwise, implicitly assume 𝑥L
and 𝑥R

to be numbers as well,

even though they could be other game values, as in 0 = ⟨∗ | ∗⟩.
1

2

1

4

1

8

7

8

Figure 3.3: Albeit in a much more com-

plicated way, the dyadic rationals can

also be represented within Domineering.

It can even be done if one requires the

playing field to be connected (cf. [5, p.

10–13]).

Theorem 3.0.2 (Properties of Numbers)

(a) For 𝑥 ∈ No, we have 𝑥L < 𝑥 < 𝑥R
for all 𝑥L

, 𝑥R
.

(b) The surreal numbers are totally ordered.

(c) For 𝑥, 𝑦 ∈ No, we have 𝑥 ≤ 𝑦 iff 𝑥L < 𝑦 and 𝑥 < 𝑦R
for all 𝑥L

and 𝑦R
.

(d) The surreal numbers are closed under addition and negation.

Proof. (a) We will show 𝑥L < 𝑥, the other inequality can be proven

analogously. Assume for induction that 𝑥L
is greater than all its

left options, i.e., 𝑥LL < 𝑥L
. The value 𝑥 − 𝑥L

has 𝑥L − 𝑥L = 0 as a

left option, so to prove that 𝑥 − 𝑥L
is positive, it suffices to show

that all of its right options are positive or fuzzy (see lemma 2.4.2).

Those are either of the form 𝑥R − 𝑥L
or of the form 𝑥 − 𝑥LL

. The

former is positive since 𝑥 is a number. For the latter we use 𝑥 |▷ 𝑥L

to get 𝑥 − 𝑥LL |▷ 𝑥L − 𝑥LL > 0, which can only be true if 𝑥 − 𝑥LL
is

positive or fuzzy.

(b) Assume 𝑥 ◁| 𝑦 for numbers 𝑥, 𝑦. Then there is a 𝑥R
with 𝑥R ≤ 𝑦, or

there is a 𝑦L
with 𝑥 ≤ 𝑦L

(lemma 2.4.6). Since 𝑥 < 𝑥R
and 𝑦L < 𝑦

by (a), we get 𝑥 < 𝑦 in either case.

(c) This follows immediately from the previous point and lemma 2.4.6.

(d) For numbers 𝑥 and 𝑦, we see that in

𝑥 + 𝑦 = ⟨𝑥L + 𝑦, 𝑥 + 𝑦L | 𝑥R + 𝑦, 𝑥 + 𝑦R⟩,

all left options are smaller than all the right options by (a). Similarly,

−𝑥 = ⟨−𝑥R | −𝑥L⟩ is a number, since 𝑥L < 𝑥R
gives us −𝑥R < −𝑥L

.

3.1 Multiplication

In contrast to general game values, the surreal numbers can also be

equipped with a sensible multiplication operation. We will first define

the product of games and then show that it is well-defined for numbers.
1

1: The following example shows that

there cannot be a multiplication for gen-

eral game values that has all the expected

properties:

0 = 1

2
· 0 = 1

2
· (∗ + ∗) = 1

2
· (1 + 1) · ∗ = ∗.

Definition 3.1.1 (Multiplication)
For games 𝐺 and 𝐻, we define their product as

𝐺 · 𝐻 := {𝑔L · 𝐻 + 𝐺 · ℎL − 𝑔L · ℎL , 𝑔R · 𝐻 + 𝐺 · ℎR − 𝑔R · ℎR |
| 𝑔L · 𝐻 + 𝐺 · ℎR − 𝑔L · ℎR , 𝑔R · 𝐻 + 𝐺 · ℎL − 𝑔R · ℎL}.

The idea behind this definition is that for numbers 𝑥 and 𝑦, we have

𝑥L < 𝑥 < 𝑥R
and 𝑦L < 𝑦 < 𝑦R

. So if we want to have a multiplication
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with the usual properties, the following inequalities ought to hold:

(𝑥 − 𝑥L)(𝑦 − 𝑦L) > 0 (𝑥 − 𝑥R)(𝑦 − 𝑦R) > 0

(𝑥 − 𝑥L)(𝑦 − 𝑦R) < 0 (𝑥 − 𝑥R)(𝑦 − 𝑦L) < 0

These are equivalent to

𝑥𝑦 > 𝑥L𝑦 + 𝑥𝑦L − 𝑥L𝑦L 𝑥𝑦 > 𝑥R𝑦 + 𝑥𝑦R − 𝑥R𝑦R

𝑥𝑦 < 𝑥L𝑦 + 𝑥𝑦R − 𝑥L𝑦R 𝑥𝑦 < 𝑥R𝑦 + 𝑥𝑦L − 𝑥R𝑦L ,

which gives us the left and right options for 𝑥𝑦.

Theorem 3.1.2 (Properties of Multiplication)
For all games 𝐺, 𝐻, 𝐾, we have:

(a) 𝐺 · 0 = 0

(b) 𝐺 · 1 = 1

(c) 𝐺 · 𝐻 = 𝐻 · 𝐺
(d) (𝐺 · 𝐻) · 𝐾 ≡ 𝐺 · (𝐻 · 𝐾)
(e) (𝐺 + 𝐻) · 𝐾 ≡ 𝐺 · 𝐾 + 𝐻 · 𝐾

Proof. The first property is true because 0 has no left or right options.

The next two properties are immediate by induction.

The last two are also straight-forward proofs by induction, but they only

give us equivalence, since the fact that 𝐺 − 𝐺 ≡ 0 for any game 𝐺 is

used.

Theorem 3.1.3 (Multiplication of Numbers)
Let 𝑥, 𝑦, 𝑥1, 𝑦1, 𝑥2, 𝑦2 be forms of numbers. Then:

(a) The product 𝑥𝑦 is also a form of a number.

(b) If 𝑥1 ≡ 𝑥2, then 𝑥1𝑦 ≡ 𝑥2𝑦.

(c) If 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2, then 𝑥1𝑦2 + 𝑥2𝑦1 ≤ 𝑥1𝑦1 + 𝑥2𝑦2, where

the last inequality is strict if the first two are.

(d) If 𝑥 and 𝑦 are positive, then so is 𝑥𝑦.

Proof. We prove these claims simultaneously by induction, i.e., we assume

for induction that all claims hold when the variables are replaced by any

combination of the games 𝑥, 𝑦, 𝑥1, 𝑦1, 𝑥2, 𝑦2, as long as at least one of

these games is replaced by one of its options. We denote the statement of

(c) by 𝑃(𝑥1 , 𝑥2 : 𝑦1 , 𝑦2).

(a) By induction (and since the forms of numbers are closed under

addition and negation), all of the options of 𝑥𝑦 are forms of numbers.

So it suffices that all left options of 𝑥𝑦 are less than all right options

of 𝑥𝑦. For this we prove

𝑥L1 𝑦 + 𝑥𝑦L − 𝑥L1 𝑦L < 𝑥L2 𝑦 + 𝑥𝑦R − 𝑥L2 𝑦R ,

where 𝑥L1
and 𝑥L2

are left options of 𝑥. The other cases are proven

analogously. If 𝑥L1 ≤ 𝑥L2
, we can deduce

𝑥L1 𝑦 + 𝑥𝑦L − 𝑥L1 𝑦L ≤ 𝑥L2 𝑦 + 𝑥𝑦L − 𝑥L2 𝑦L < 𝑥L2 𝑦 + 𝑥𝑦R − 𝑥L2 𝑦R
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by using 𝑃(𝑥L1 , 𝑥L2
: 𝑦L , 𝑦) and 𝑃(𝑥L2 , 𝑥 : 𝑦L , 𝑦R). If on the other

hand 𝑥L2 ≤ 𝑥L1
, then we get

𝑥L1 𝑦 + 𝑥𝑦L − 𝑥L1 𝑦L < 𝑥L1 𝑦 + 𝑥𝑦R − 𝑥L1 𝑦R ≤ 𝑥L2 𝑦 + 𝑥𝑦R − 𝑥L2 𝑦R

by using 𝑃(𝑥L1 , 𝑥 : 𝑦L , 𝑦R) and 𝑃(𝑥L2 , 𝑥L1
: 𝑦, 𝑦R). So in both cases,

the desired inequality is true.

(b) For this we show that 𝑥1𝑦 lies between the left/right options of

𝑥2𝑦 and vice-versa. Then we get 𝑥1𝑦 ≡ 𝑥2𝑦 by Theorem 3.0.2 (c).

We will only prove

𝑥L

1
𝑦 + 𝑥1𝑦

L − 𝑥L

1
𝑦L < 𝑥2𝑦,

the other inequalities are proven analogously. Inductively we know

𝑥1𝑦
L ≡ 𝑥2𝑦

L
, and

𝑥L

1
𝑦 + 𝑥2𝑦

L < 𝑥L

1
𝑦L + 𝑥2𝑦

from 𝑃(𝑥L

1
, 𝑥2 : 𝑦L , 𝑦). Combining these two facts yields the desired

inequality.

(c) If 𝑥1 ≡ 𝑥2 or 𝑦1 ≡ 𝑦2, the claim follows from (b). Now we consider

𝑥1 < 𝑥2 and 𝑦1 < 𝑦2. From the former, we get that either there is an

𝑥R

1
with 𝑥1 < 𝑥R

1
≤ 𝑥2, or there is an 𝑥L

2
with 𝑥1 ≤ 𝑥L

2
< 𝑥2. In the

first case, the desired inequality follows by adding 𝑃(𝑥1 , 𝑥
R

1
: 𝑦1 , 𝑦2)

and 𝑃(𝑥R

1
, 𝑥2 : 𝑦1 , 𝑦2) after cancelling like terms. In the second case,

we do the same with 𝑃(𝑥1 , 𝑥
L

2
: 𝑦1 , 𝑦2) and 𝑃(𝑥L

2
, 𝑥2 : 𝑦1 , 𝑦2).

(d) This is simply 𝑃(0, 𝑥 : 0, 𝑦).

This last theorem shows that multiplication is well-defined on No, thus

making No a totally ordered Ring.

A totally ordered ring is a commutative

ring𝑅 together with a total order relation

≤ on 𝑅, such that for all 𝑎, 𝑏, 𝑐 ∈ 𝑅:

▶ If 𝑎 ≤ 𝑏, then 𝑎 + 𝑐 ≤ 𝑏 + 𝑐.
▶ If 0 ≤ 𝑎 and 0 ≤ 𝑏, then 0 ≤ 𝑎𝑏.3.2 Division

Definition 3.2.1 (Inverse)
For a positive form of a number 𝑥, we define its inverse as the game 𝑦

equal to{
0,

1 + (𝑥R − 𝑥)𝑦L

𝑥R

,
1 + (𝑥L − 𝑥)𝑦R

𝑥L

����1 + (𝑥L − 𝑥)𝑦L

𝑥L

,
1 + (𝑥R − 𝑥)𝑦R

𝑥R

}
,

where 𝑥L
ranges over all the positive left options of 𝑥, and

1

𝑥L
,

1

𝑥R
are

the inverses of 𝑥L
and 𝑥R

, respectively.

For a negative form of a number 𝑥, we define its inverse as the negative

of the inverse of −𝑥.

This definition is different from the inductive definitions we have encoun-

tered before. Not only does the definition of the inverse 𝑦 of 𝑥 make use

of the “previously constructed” inverses of the options of 𝑥, it also makes

use of the options of 𝑦. This is to be understood as feeding the already

constructed options of 𝑦 back into the definition, and taking the left and

right sets of 𝑦 as all the options 𝑦L
and 𝑦R

which have been created by

this process in finitely many steps.
2

2: For a more precise definition, we

could set 𝑌L

0
:= {0} and 𝑌R

0
:= ∅, and

then recursively define 𝑌L

𝑛+1
as the set

containing all

1 + (𝑥R − 𝑥)𝑦L

𝑥R

and

1 + (𝑥L − 𝑥)𝑦R

𝑥L

for 𝑦L ∈ 𝑌L

𝑛 and 𝑦R ∈ 𝑌R

𝑛 , and similarly

define𝑌R

𝑛+1
. Then the inverse of 𝑥 will be

𝑦 := {⋃𝑛∈ℕ 𝑌L

𝑛 | ⋃𝑛∈ℕ 𝑌R

𝑛 }.

However, for what follows, we will work

with 𝑦 as given in 3.2.1 as essentially a

shorthand notation for this more rigor-

ous definition.
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As an example, let’s look at
1

3
. We take the form 𝑥 = {2 | } of the surreal

number 3. Since there is no 𝑥R
, the definition of 𝑦 reduces to{

0,
1 + (𝑥L − 𝑥)𝑦R

𝑥L

���� 1 + (𝑥L − 𝑥)𝑦L

𝑥L

}
=

{
0,

1 − 𝑦R

2

���� 1 − 𝑦L

2

}
since 𝑥L − 𝑥 = 2 − 3 = −1. From the starting value 𝑦L = 0, we get the

new right option
1

2
(1 − 0) = 1

2
, which in turn gives us the left option

1

2
(1 − 1

2
) = 1

4
. This then generates the right option

1

2
(1 − 1

4
) = 3

8
, and so

on, yielding

1

3
= {0, 1

4
, 5

16
, . . . | 1

2
, 3

8
, 11

32
, . . .}.

1

3

2

3

−4

7

Figure 3.4: Rational numbers, whose de-

nominator is not a power of 2, are not

the value of any game with only finitely

many options. They can however be rep-

resented by games with infinitely many

options.

Now we show that this notion of inverse is well-defined for surreal

numbers, and actually gives 𝑥𝑦 = 1. We will only consider positive 𝑥 for

this; it is clear that analogous statements follow for negative 𝑥.

Theorem 3.2.2 (Inverses of Numbers)
For a positive form of a number 𝑥, and 𝑦 as in definition 3.2.1:

(a) 𝑥𝑦L < 1 < 𝑥𝑦R
for all 𝑦L

and 𝑦R
.

(b) 𝑦 is a form of a number

(c) 𝑥𝑦 = 1

Proof. For 𝑦L = 0, the inequality from (a) is clear. All other options 𝑦′′ of

𝑦 are generated by an option 𝑦′ through

𝑦′′ =
1 + (𝑥′ − 𝑥)𝑦′

𝑥′
,

where 𝑥′ is a positive option of 𝑥. Multiplying by (−𝑥) and adding 1 gives

1 − 𝑥𝑦′′ = 𝑥′ − 𝑥 − 𝑥(𝑥′ − 𝑥)𝑦′
𝑥′

=
𝑥′ − 𝑥
𝑥′

(1 − 𝑥𝑦′)

Since 0 is a left option of
1

𝑥′ , we have
1

𝑥′ > 0. So
𝑥′−𝑥
𝑥′ is positive if 𝑥′ is a

right option, and negative if 𝑥′ is a left option. Assuming that 𝑦′ satisfies

the inequality (a), we get that 1− 𝑥𝑦′′ is negative if 𝑥′ and 𝑦′ are both left

or both right options, which is the case when 𝑦′′ is a right option. On the

other hand, 1 − 𝑥𝑦′′ is positive if 𝑥′ and 𝑦′ are different kinds of options,

which is the case when 𝑦′′ is a left option. So (a) is true by induction.

From this we immediately get (b), since 𝑦L ≥ 𝑦R
would contradict

𝑥𝑦L < 𝑥𝑦R
(𝑥 is positive).

Since 𝑥 and 𝑦 are positive, so is 𝑧 := 𝑥𝑦. For (c), it thus suffices to show

𝑧L < 1 < 𝑧R
for all 𝑧L

, 𝑧R
(see theorem 3.0.2 (c)).

An option of 𝑧 = 𝑥𝑦 has the form

𝑧′ = 𝑥′𝑦 + 𝑥𝑦′ − 𝑥′𝑦′,

where again 𝑥′ and 𝑦′ are options of 𝑥 and 𝑦, respectively. In the case

that 𝑥′ is negative, it must be a left option (since 𝑥 is positive), and the

inequalities reduce to the case of a positive option of 𝑥:
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Let 𝑥L1
be negative and 𝑥L2

be positive. If 𝑦′ is a left option, then 𝑧′ is

also a left option and we get

𝑧′ = 𝑥L1(𝑦 − 𝑦′)︸       ︷︷       ︸
<0

+𝑥𝑦′ < 𝑥L2(𝑦 − 𝑦′)︸       ︷︷       ︸
>0

+𝑥𝑦′,

whereas if 𝑦′ is a right option, then 𝑧′ is also a right option, and

𝑧′ = 𝑥L1(𝑦 − 𝑦′)︸       ︷︷       ︸
>0

+𝑥𝑦′ > 𝑥L2(𝑦 − 𝑦′)︸       ︷︷       ︸
<0

+𝑥𝑦′.

So it suffices to show the inequalities for positive 𝑥′. Assuming 𝑥′ · 1

𝑥′ = 1,

we can multiply 𝑦′′ as above with 𝑥′ to get 𝑥′𝑦′′ = 1 + 𝑥′𝑦′ − 𝑥𝑦′, and

thus

𝑧′ = 1 + 𝑥′(𝑦 − 𝑦′′).

If 𝑥′ and 𝑦′ are both left or both right options, then 𝑧′ is a left option of 𝑧

and 𝑦′′ is a right option of 𝑦, so 𝑦 − 𝑦′′ > 0, giving us 𝑧L < 1. If 𝑥′ and

𝑦′ are different kinds of options, then 𝑧′ is a right option and 𝑦′′ is a left

option, so 𝑦 − 𝑦′′ < 0, yielding 𝑧R > 1.

This shows that for every surreal number 𝑥 (other than zero), there exists

a surreal number 𝑦 such that 𝑥𝑦 = 1. The surreal numbers thus form

an ordered Field. Since the multiplicative inverse in a field is unique, this

implies that our definition of inverse is well-defined in No.

An ordered field is a field 𝐾 together with

a total order relation ≤ on 𝐾, such that

for all 𝑎, 𝑏, 𝑐 ∈ 𝐾:

▶ If 𝑎 ≤ 𝑏, then 𝑎 + 𝑐 ≤ 𝑏 + 𝑐.
▶ If 0 ≤ 𝑎 and 0 ≤ 𝑏, then 0 ≤ 𝑎𝑏.

3.3 Real Numbers

One of the main goals of this thesis is to show that No contains every

ordered field as a subfield. Here we look at a special case of this, and

show that No contains all real numbers. This furthers our understanding

of No, and allows one to make a lot of statements about the structure of

No (see e.g., [1, chapter 3] on the Conway normal form). In particular, [1]: Conway (2001), On Numbers and
Games

through this, the property that ℝ is a real closed field can be lifted from

ℝ to No, which we will make use of later.

One way to find the reals within the surreals is to notice that our

construction of No is very similar to the construction of ℝ using Dedekind
cuts (cf. [6, p. 27]). Since No is an ordered Field, it must contain an [6]: Rudin (1976), Principles of Mathemati-

cal Analysis
isomorphic copy of the rational numbers, which means that we can

replicate Dedekind cuts within No. For simplicity, we will not distinguish

ℚ from its analogue inside No.

Lemma 3.3.1 (Monotone Function is Determined by Dense Set)
Let 𝑋, 𝑌 be totally ordered sets and 𝐷 ⊆ 𝑋 a dense subset (in the

sense that for any 𝑎, 𝑏 ∈ 𝑋 with 𝑎 < 𝑏, there is a 𝑑 ∈ 𝐷 with

𝑎 < 𝑑 < 𝑏). Assume that 𝑓 , 𝑔 : 𝑋 → 𝑌 are monotone functions such

that 𝑓 (𝑑) = 𝑔(𝑑) for all 𝑑 ∈ 𝐷, and 𝑓 (𝐷) = 𝑔(𝐷) is a dense subset in 𝑌.

Then 𝑓 = 𝑔.

Proof. WLOG we consider 𝑓 and 𝑔 to be increasing. Assume, for the sake

of contradiction, that 𝑓 ≠ 𝑔, so WLOG 𝑓 (𝑥) < 𝑔(𝑥) for an 𝑥 ∈ 𝑋. Then,
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since 𝑓 (𝐷) is dense in 𝑌, there is a 𝑑 ∈ 𝐷 with 𝑓 (𝑥) < 𝑓 (𝑑) < 𝑔(𝑥). Then

we have 𝑑 > 𝑥, since the opposite would imply 𝑓 (𝑑) ≤ 𝑓 (𝑥). But this on

the other hand implies 𝑓 (𝑑) = 𝑔(𝑑) ≥ 𝑔(𝑥), a contradiction.

−
√

2 e

1

𝜋

Figure 3.5: All real numbers can be rep-

resented as an infinitely tall Hackenbush

stalk. This is done via the so-called sign
expansion of a surreal number, which is

related to the binary expansion of real

numbers (see [1, p. 30–31, 89–91]).

Theorem 3.3.2 (The surreals contain the reals.)
Define for 𝑥 ∈ ℝ as well as for 𝑥 ∈ No:

𝐿(𝑥) := {𝑞 : 𝑞 ∈ ℚ, 𝑞 < 𝑥} 𝑅(𝑥) := {𝑞 : 𝑞 ∈ ℚ, 𝑞 > 𝑥}.

Let 𝜄 : ℝ → No : 𝑥 ↦→ ⟨𝐿(𝑥) | 𝑅(𝑥)⟩. Then:

(a) 𝜄 is strictly increasing.

(b) 𝑧 ∈ 𝜄(ℝ), iff there is an 𝑛 ∈ ℕ with −𝑛 < 𝑧 < 𝑛 and

𝑧 =

〈
𝑧 − 1, 𝑧 − 1

2

, 𝑧 − 1

3

, . . .

���� 𝑧 + 1, 𝑧 + 1

2

, 𝑧 + 1

3

, . . .

〉
.

(c) 𝜄(ℝ) is closed under addition and multiplication.

(d) 𝜄 is a field homomorphism.

Proof. For real numbers 𝑥 < 𝑦, pick a rational number 𝑞 with 𝑥 < 𝑞 < 𝑦.

Then 𝑞 ∈ 𝑅(𝑥) and 𝑞 ∈ 𝐿(𝑦), so 𝜄(𝑥) < 𝑞 < 𝜄(𝑦). This proves that 𝜄 is

increasing.

Now we show (b). For 𝑥 ∈ ℝ, there is of course an 𝑛 ∈ ℕ with−𝑛 < 𝑥 < 𝑛.

Thus −𝑛 ∈ 𝐿(𝑥) and 𝑛 ∈ 𝑅(𝑥), so −𝑛 < 𝜄(𝑥) < 𝑛. We define

𝑧 =

〈
𝜄(𝑥) − 1, 𝜄(𝑥) − 1

2

, 𝜄(𝑥) − 1

3

, . . .

���� 𝜄(𝑥) + 1, 𝜄(𝑥) + 1

2

, 𝜄(𝑥) + 1

3

, . . .

〉
and show 𝑧 = 𝜄(𝑥) by proving 𝑧 ≤ 𝜄(𝑥) and 𝑧 ≥ 𝜄(𝑥) using 3.0.2 (c).

Obviously the left options of 𝑧 are less than 𝜄(𝑥). Now a right option

of 𝜄(𝑥) is 𝑞 for a rational 𝑞 > 𝑥. We can pick an 𝑚 ∈ ℕ such that also

𝑞 − 1

𝑚 > 𝑥. Therefore 𝑞 > 𝜄(𝑥) + 1

𝑚 , which is a right option of 𝑧, showing

that the right option 𝑞 of 𝜄(𝑥) is greater than 𝑧. This proves 𝜄(𝑥) ≥ 𝑧, the

other inequality is proven analogously.

For the other direction, let 𝑧 be a surreal number of the form given in (b).

Since −𝑛 < 𝑧 < 𝑛, both 𝐿(𝑧) and 𝑅(𝑧) are non-empty, and we have 𝑙 < 𝑟

for all 𝑙 ∈ 𝐿(𝑧), 𝑟 ∈ 𝑅(𝑧). For 𝑙 ∈ 𝐿, 𝑙 < 𝑧 means that one of the following

cases occurs:

▶ There is a 𝑧L
with 𝑙 ≤ 𝑧L

, i.e., 𝑙 ≤ 𝑧 − 1

𝑚 for some natural number

𝑚. So 𝑙 + 1

2𝑚 is still less than 𝑧 and thus an element of 𝐿(𝑧).
▶ There is an 𝑙R with 𝑙R ≤ 𝑧. From the definitions of the product and

the inverse, it is easy to see that every rational number has a form

where all of its options are also rational numbers. Since inequalities

between game values are all independent of the chosen form, we

can take 𝑙R to be a rational less than or equal to 𝑧. Then 𝑙 < 𝑙R

implies that
1

2
(𝑙 + 𝑙R) is a rational which is strictly less than 𝑧, and

thus an element of 𝐿(𝑥).

In either case, we have found a rational number greater than 𝑙 which is

still in 𝐿(𝑥). This shows that 𝐿(𝑧) has no largest element, and similarly

𝑅(𝑧) has no smallest element, which means there is a unique real number

𝑥 such that 𝑙 < 𝑥 < 𝑟 for all 𝑙 ∈ 𝐿(𝑧), 𝑟 ∈ 𝑅(𝑧). With this we again show
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𝑧 ≤ 𝜄(𝑥) and 𝑧 ≥ 𝜄(𝑥) using 3.0.2 (c). The left options of 𝜄(𝑥) are exactly

the members of 𝐿(𝑧), so less than 𝑧. A right option of 𝑧 is of the form

𝑧 + 1

𝑚 for a natural number 𝑚. We can pick a 𝑞 ∈ 𝑅(𝑧) that is less than

𝑧+ 1

𝑚 , giving us 𝑧+ 1

𝑚 > 𝑞 > 𝑥. This shows 𝑧 ≥ 𝜄(𝑥). The other inequality

is analogous, concluding the proof of (b).

With this form, it becomes simple to show that 𝜄(ℝ) is closed under

addition and multiplication. For 𝑎, 𝑏 ∈ 𝜄(ℝ), a left option 𝑎L
looks like

𝑎 − 1

𝑛 , which means the left options of 𝑎 + 𝑏 are of the form 𝑎 + 𝑏 − 1

𝑛 .

The same holds for the right options, showing that

𝑎 + 𝑏 =
〈
𝑎 + 𝑏 − 1, 𝑎 + 𝑏 − 1

2

, . . .

���� 𝑎 + 𝑏 + 1, 𝑎 + 𝑏 + 1

2

, . . .

〉
∈ 𝜄(ℝ).

For multiplication, take 𝑎L = 𝑎− 1

𝑛 and 𝑏L = 𝑏− 1

𝑚 . Then the corresponding

left option of 𝑎𝑏 is

𝑎L𝑏 + 𝑎𝑏L − 𝑎L𝑏L = 𝑎𝑏 − (𝑎 − 𝑎L)(𝑎 − 𝑏L) = 𝑎𝑏 − 1

𝑚𝑛
.

The other options of 𝑎𝑏 have analogous expressions, which shows that

also 𝑎𝑏 ∈ 𝜄(ℝ).

To prove 𝜄(𝑥 + 𝑦) = 𝜄(𝑥) + 𝜄(𝑦) for all real numbers 𝑥 and 𝑦, notice that

this can be verified directly when 𝑥 and 𝑦 are rationals. Now for an

arbitrary rational 𝑞, define the function 𝑓𝑞 : ℝ → No : 𝑥 ↦→ 𝜄(𝑥) + 𝜄(𝑞).
Since 𝜄(ℝ) is closed under addition, the image of 𝑓𝑞 is contained in 𝜄(ℝ).
Now the function 𝑔𝑞 : ℝ → No : 𝑥 ↦→ 𝜄(𝑥 + 𝑞) has image 𝜄(ℝ) and agrees

with 𝑓𝑞 on ℚ. Since 𝑓 and 𝑔 are monotone and ℚ is dense in ℝ, the image

𝑓𝑞(ℚ) = 𝑔𝑞(ℚ) is also dense in 𝜄(ℝ). Therefore we have 𝑓𝑞 = 𝑔𝑞 by lemma

3.3.1.

Now, for all 𝑥 ∈ ℝ, we can use the same argument on the functions

𝑓𝑥 : ℝ → No : 𝑦 ↦→ 𝜄(𝑥) + 𝜄(𝑦) and 𝑔𝑥 : ℝ → No : 𝑦 ↦→ 𝜄(𝑥 + 𝑦) to get

𝑓𝑥 = 𝑔𝑥 , since we have already shown that they are the same for rational

𝑦. This proves 𝜄(𝑥 + 𝑦) = 𝜄(𝑥) + 𝜄(𝑦). The same reasoning works for

multiplication, which concludes the proof.

We have therefore shown that No contains a subfield which is isomorphic

to ℝ. As is common, we will from now on no longer distinguish ℝ from

its isomorphic copy in No, and simply regard ℝ as a subfield of No.

3.4 Ordinal Numbers

Beside the reals, the surreal numbers also include another important

class of numbers: the ordinal numbers. These were first introduced by

Georg Cantor and are usually regarded as a part of set theory. Here we

will however introduce the ordinals as they are represented in No,
3

3: One important thing to note when

discussing ordinal numbers as elements

of No is, that the addition and multipli-

cation of games is not the same as the

usual (non-commutative) addition and

multiplication of ordinals in the context

of well-ordered sets. Here, + and · will

always be the addition/multiplication

of games as we defined it earlier (which

are sometimes referred to as the natural
sum/product of ordinals).

so

no prerequisites are needed.
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Definition 3.4.1 (Ordinal Number)
A game value 𝑥 ∈ Pg is called an ordinal number, if it can be written as

𝑥 = ⟨𝐿 | ⟩

for some set of games 𝐿. We denote the collection of all game values by

On.

In some sense, the ordinals are to No what the naturals are to ℝ. In

particular, the ordinals contain the naturals:

0 = ⟨ | ⟩, 1 = ⟨0 | ⟩, 2 = ⟨0, 1 | ⟩, 3 = ⟨0, 1, 2 | ⟩, . . .

But aside from these finite numbers, the ordinals contain many more

infinitely large numbers, the smallest of which being

𝜔 := ⟨0, 1, 2, 3, · · · | ⟩,

and then also

𝜔 + 1 = ⟨0, 1, 2, . . . , 𝜔 | ⟩, 𝜔 + 2 = ⟨0, 1, 2 . . . , 𝜔, 𝜔 + 1 | ⟩, . . .

as well as

2𝜔 = ⟨𝜔, 𝜔 + 1, 𝜔 + 2, . . . | ⟩ and 𝜔2 = ⟨𝜔, 2𝜔, 3𝜔, . . . | ⟩,

and many more.

𝜔
1

𝜔

Figure 3.6: Games with infinitely many

options allow for infinite as well as in-

finitesimal surreal numbers.

Theorem 3.4.2 (Properties of Ordinals)

(a) For 𝑥 ∈ Pg, the collection On<𝑥 := {𝛾 ∈ On | 𝛾 < 𝑥} is a set.

(b) 𝛼 = ⟨On<𝛼 | ⟩ for all ordinals 𝛼.
4

(c) All ordinals are surreal numbers.

(d) On is closed under addition and multiplication.

(e) The ordinals are well-ordered by < (i.e., every non-empty class

𝐶 ⊆ On has a smallest element).

(f) If 𝑆 ⊂ Pg is a nonempty set of game values, there is an ordinal

that is greater than all elements of 𝑆.

4: This provides the analogy to how or-

dinals are usually defined in set theory.

There an ordinal ends up being the set

of all smaller ordinals. For example:

0 = ∅
1 = {0}
2 = {0, 1}
3 = {0, 1, 2}
𝜔 = {0, 1, 2, 3, . . . } = ℕ

So informally speaking, one obtain the

set theoretic ordinal from corresponding

surreal number by writing {−} instead

of ⟨− | ⟩.

Proof. (a) Write 𝑥 = ⟨𝐿 | 𝑅⟩. Assume for induction that On<𝑥L is a set

for all 𝑥L ∈ 𝐿. The inequality 𝛾 < 𝑥 implies 𝛾 ≤ 𝑥L
for some 𝑥L ∈ 𝐿

by lemma 2.4.6. So we have

On<𝑥 ⊆ 𝐿 ∪
⋃
𝑥L∈𝐿

On<𝑥L .

The union of a set of sets is again a set, and so On<𝑥 is a set as a

subclass of a set.

(b) Since On<𝛼 is a set, 𝛽 := ⟨On<𝛼 | ⟩ is a game value. So we have

𝛽L ◁| 𝛼 for all 𝛽L
by 2.4.7. Since there is no 𝛽R

, we get 𝛽 ≤ 𝛼 by

2.4.6. If 𝛽 was less than 𝛼, we would get 𝛽 ∈ On<𝛼. But 𝛽L ◁| 𝛽 for

all 𝛽L ∈ On<𝛼, which leads to 𝛽 ◁| 𝛽 a contradiction. So we must

have 𝛽 = 𝛼.

(c) Assume for induction that all ordinals less than an ordinal 𝛼 are

numbers. Then (b) tells us that 𝛼 has the form ⟨On<𝛼 | ⟩. All the

left options of this form are numbers, and since the set of right



3 Surreal Numbers 23

options is empty, the inequality condition for a game value to be a

number is trivially fulfilled. Therefore 𝛼 is a number.

(d) It is clear from the definitions that, if there are no 𝛼R
and no 𝛽R

,

then the right sets of 𝛼 + 𝛽 and 𝛼 · 𝛽 are also empty.

(e) Let 𝐿 := ∩𝛾∈𝐶On<𝛾 . As an intersection of sets, 𝐿 itself is a set, which

means 𝛿 := ⟨𝐿 | ⟩ is a number. Since all 𝛿L < 𝛾 for all 𝛾 ∈ 𝐶,

and there are no 𝛿R
, we again have 𝛿 ≤ 𝛾 for all 𝛾 ∈ 𝐶 by 2.4.6.

If 𝛿 was less than every 𝛾 ∈ 𝐶, we would have the contradiction

𝛿 = ⟨𝐿 | ⟩ ∈ 𝐿. So 𝛿 must be the minimum of 𝐶, which shows

that said minimum exists.

(f) Assume for induction that there is an ordinal 𝛼 which is greater

than all 𝑠L
and 𝑠R

, for all 𝑠 ∈ 𝑆. Since there is no 𝛼R
, we once more

get 𝑠 ≤ 𝛼 by 2.4.6 for all 𝑠 ∈ 𝑆. Therefore 𝛼 + 1 is an ordinal with

the desired properties.

0

1

2

3

··
·

𝜔

𝜔 + 1

𝜔 + 2

··
·

2𝜔
2𝜔 + 1

··
·

3𝜔

··
·

4𝜔

··
·

𝜔2

𝜔2 + 1

𝜔2 + 2

𝜔2 + 3

··
·

𝜔2 + 𝜔

𝜔2 + 𝜔 + 1

𝜔2 + 𝜔 + 2

··
·

𝜔2 + 2𝜔
𝜔2 + 2𝜔 + 1

··
·

𝜔2 + 3𝜔

··
·

𝜔2 + 4𝜔

··
·

Figure 3.7: The first few ordinals.

Theorem 3.4.3 (Proper Classes)
The collections On, No and Pg are proper classes.

Proof. If On was a set, then ⟨On | ⟩ would be an ordinal that is greater

than all ordinals — contradiction. So On must be a proper class. Since

On ⊂ No ⊂ Pg, the latter two collections must be proper classes as

well.

Ordinals basically come in two kinds: those that can be reached from

smaller ordinals simply by counting up, and those that can be seen as

the “limits” of this counting.

Definition 3.4.4 (Successor and Limit Ordinal)
An ordinal 𝛼 is called a successor ordinal if there exists an ordinal 𝛽 such

that 𝛼 = 𝛽 + 1. An ordinal that is not a successor ordinal and not 0 is

called a limit ordinal.

As we have already seen, facts about ordinals can be proven by induction

on games. Since any ordinal can be written as 𝛼 = ⟨On<𝛼 | ⟩, this

specifically means the following: If all ordinals less than 𝛼 having a

certain property implies that 𝛼 also has this property, then the property

holds for all ordinals. However, it is often more useful to tackle the

successor stages and limit stages individually. This means we can prove a

statement holds for all ordinals by proving the following:

▶ The statement holds for 0.

▶ If the statement holds for 𝛼, it also holds for 𝛼 + 1 (successor stage).
▶ If the statement holds for all ordinals less than a limit ordinal 𝜆,

then it also holds for 𝜆.

This procedure is particularly useful for constructing transfinite sequences

of objects (𝑋𝛼)𝛼∈On, where most of the time, limit stages will be dealt

with by taking the union of all previously constructed objects. Such

constructions will appear in chapter 6.

Using ordinals, we can also formalize what we mean by the simplest game

with a certain property. It is the game that is “born first”.
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Definition 3.4.5 (Birthday)
Define sets

𝑀𝛼 =

{
{𝐿 | 𝑅} : 𝐿, 𝑅 ⊆

⋃
𝛽<𝛼

𝑀𝛽

}
for all 𝛼 ∈ On. Then the birthday of a game 𝐺 is defined as the smallest

𝛼 ∈ On such that 𝐺 ∈ 𝑀𝛼. The birthday of a game value 𝑥 ∈ Pg
is defined as the smallest 𝛼 ∈ On such that there is a game in the

equivalence class 𝑥 which has birthday 𝛼.

Such a smallest ordinal always exists by 3.4.2 (b). It is easy to see that

the birthday of an ordinal 𝛼 is just 𝛼 itself. The concept of birthday is

analogous to the concept of rank from set theory, where instead of the sets

𝑀𝛼 as above, one looks at the cumulative hierarchy of sets (see [4, p. 192] [4]: Forster (2003), Logic, Induction and
Sets

or [7, p. 257]).

[7]: Hrbacek et al. (1999), Introduction to
Set Theory
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The construction of the partisan games is basically as general as set theory,

upon which almost all of modern mathematics is built. A consequence

of this is that Pg and No have multiple universality properties: several

common mathematical structures can be found within the games or the

surreal numbers.

Fix a certain algebraic structure (for example “groups” or “ordered

fields”). Basically, what we care about is a class U that has this structure,

as well as the property that every set with this structure can be embedded
into U. An embedding here is an injection that preserves the structure.

In the example of groups, embeddings are injective group homomor-

phisms. In the example of ordered fields, they are strictly increasing field

homomorphisms.

However, it would be even nicer if we could embed two sets in a way

that the two embeddings are compatible with each other. We say that a

class U is universally embedding for an algebraic structure if the following

holds: If 𝑋 ⊆ 𝑌1

1: When writing𝑋 ⊆ 𝑌, we implicitly as-

sume 𝑋 and 𝑌 to have compatible struc-

ture. E.g., when 𝑋 and 𝑌 are ordered

fields, this means that 𝑋 is a subfield of

𝑌, and that the order relations on 𝑋 is

just the restriction of the order on 𝑌 to 𝑋

(i.e., that the positive elements of 𝑋 are

also positive in 𝑌).

are sets with this structure, and there is an embedding

𝜑 : 𝑋 → U, then 𝜑 can be extended to an embedding 𝜓 : 𝑌 → U with

𝜓 |𝑋 = 𝜑, i.e., 𝜑(𝑥) = 𝜓(𝑥) for all 𝑥 ∈ 𝑋.
2

2: These notions can be made more rig-

orous by using the language of model

theory. Since this is not very important

for understanding the universal embed-

ding theorems in this thesis, we omit

these precise definitions here and refer

interested readers to [8].

𝑌

U

𝑋

∃𝜓

𝜙

Figure 4.1: A commutative diagram illus-

trating universal embedding properties.

Assuming that the embeddings depicted

by blue arrows exist, U being universally

embedding means that there is an em-

bedding 𝜓, depicted by an orange arrow,

such that the diagram commutes.

The universal embedding property of a certain structure implies that

every such structure can be embedded into U, as long as there is a prime
object for the structure, i.e., an object that can be embedded into any other

object with this structure. In the example of groups, this would be the

trivial group, the group that only has one element. In the example of

ordered fields, the prime object would be the rational numbers. If U is

universally embedding and 𝑃 is a prime object, we can take 𝑋 = 𝑃 to see

that every object 𝑌 can be embedded into U. In the cases we consider,

there is always going to be such a prime object, so for us, universal

embedding properties will always be stronger than being able to embed

every set-sized object.

Speaking of “set-sized”: It is essential here that 𝑋 and𝑌 are sets, whereas

U will usually be a proper class. If we allowed 𝑋 and 𝑌 to be proper

classes as well, we could take 𝑋 = U and enlarge this to a bigger object 𝑌,

which cannot be embedded into U. If one wants to avoid proper classes,

some other dichotomy of “small” and “large” objects than sets vs. proper

classes can be used instead, e.g., countable vs. uncountable. We discuss

this more in section 6.1 (p. 45).

We will first cover universal embedding properties of No, since these are

much easier to prove than their analogues for Pg. The most important

such property is that No forms a universally embedding ordered Field.

However, to get a feel for how to prove such properties, we will first look

at the simpler case of totally ordered sets, ignoring the field structure for

now.
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4.1 Totally Ordered Sets

To prove a universal embedding theorem, we will (unless it follows

immediately from a previously proven theorem) argue in the following

way:

1. Using Zorn’s lemma, we will reduce the problem to showing that

we can extend the embedding 𝜑 : 𝑋 → U to one additional element

𝑠 ∈ 𝑌 \ 𝑋.

2. We then construct a game value/surreal number 𝑠′ which behaves

in the same way as 𝑠 (under the lens of the currently considered

structure). This allows us to extend 𝜑 by setting 𝜑(𝑠) = 𝑠′.

The Zorn’s lemma argument is always the same. We will describe it in

full detail in the proof of the following theorem, and then just refer to

this in future uses. The second part is where the real work happens, and

what differs between the different embedding properties. In the case of

totally ordered sets, it is relatively straight-forward.

Theorem 4.1.1 (No has a universally embedding total order.)
Let𝑋 ⊆ 𝑌 be totally ordered sets. If there is an embedding 𝜑 : 𝑋 → No,

then there exists an embedding 𝜓 : 𝑌 → No such that 𝜓 |𝑋 = 𝜑.

Proof. In this context, an embedding is a strictly increasing function. Let

Φ be the collection of all partial extensions of 𝜑:

Φ := {𝜓 : 𝑍 → No : 𝑋 ⊆ 𝑍 ⊆ 𝑌,𝜓 |𝑋 = 𝜑,𝜓 embedding} .

Note that Φ is non-empty, since 𝜑 ∈ Φ. There is a partial order on Φ,

given by 𝜓 ⪯ 𝜓′
iff 𝜓′

extends 𝜓, which means for 𝜓 : 𝑍 → No and

𝜓′
: 𝑍′ → No that

𝜓 ⪯ 𝜓′
:⇐⇒ 𝑍 ⊆ 𝑍′

and 𝜓′ |𝑍 = 𝜓.

𝑌

𝑍′

No

𝑍

𝑋

𝜓′

𝜓

𝜑

Figure 4.2: We have 𝜓 ⪯ 𝜓′
iff this dia-

gram commutes.

Now let 𝐶 ⊆ Φ be a chain, and write 𝐶 = {𝜓𝑖 : 𝑍𝑖 → No : 𝑖 ∈ 𝐼}. Set

𝑍 :=
⋃
𝑖∈𝐼 𝑍𝑖 . Since 𝐶 is a chain, for two functions 𝜓, 𝜓′ ∈ 𝐶 we have

either 𝜓 ⪯ 𝜓′
or 𝜓′ ⪯ 𝜓, meaning that in either case, the two functions

agree on all elements on which they are both defined. This means we

can define

𝜓 : 𝑍 → No
𝑧 ↦→ 𝜓𝑖(𝑧) for 𝑖 ∈ 𝐼 such that 𝑧 ∈ 𝑍𝑖 .

With this, we have 𝜓 ⪯ 𝜓 for all 𝜓 ∈ 𝐶. So we have shown that every

chain 𝐶 ⊆ Φ has an upper bound 𝜓 ∈ Φ, which means that by Zorn’s

lemma,
3

3: There is a slight problem here since

Φ is a proper class. In general, using

Zorn’s lemma on a proper class requires

the axiom of global choice. However, in

this case, there is a technical trick that

guarantees the existence of a maximal

element while only assuming the regular

axiom of choice. The reason this works

is that there is an upper bound for the

cardinality of a chain in Φ. We describe

this in section 6.3, p. 47.

Φ has a maximal element 𝜓 : 𝑍 → No.

Now, for the sake of contradiction, we assume that 𝑍 ≠ 𝑌. Choose a

𝑠 ∈ 𝑌 \ 𝑍, and set

𝐿 := {𝑧 ∈ 𝑍 : 𝑧 < 𝑠} 𝑅 := {𝑧 ∈ 𝑍 : 𝑧 > 𝑠},

as well as

𝑠′ := ⟨𝜓(𝐿) | 𝜓(𝑅)⟩.
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Since 𝜓 is strictly increasing, 𝑠′ is a surreal number, and so we have

𝜓(𝑧) < 𝑠′ for all 𝑧 < 𝑠, as well as 𝜓(𝑧) > 𝑠′ for all 𝑧 > 𝑠. Therefore we can

extend 𝜓 to 𝑍∪{𝑠} by setting 𝜓(𝑠) = 𝑠′ and still have a strictly increasing

function. This contradicts the maximality of 𝜓, which means that our

assumption was wrong and 𝑍 = 𝑌. Therefore 𝜓 : 𝑌 → No is the desired

extension of the embedding 𝜑.

This theorem can be seen as an extension of Cantor’s isomorphism

theorem, which implies that any countable linear order can be embedded

into the rational numbers. For a proof of this, see [7, p. 83–84]. [7]: Hrbacek et al. (1999), Introduction to
Set Theory

As a special case of theorem 4.1.1, we get that every well-ordering can

be embedded into No, though for that, the class of ordinals On would

have sufficed, see [7, p. 111]. However, On is not universally embedding

with respect to well-orderings. To see this, take 𝑌 = ℕ (including 0) and

𝑋 = ℕ \ {0}. Then 𝜑 : 𝑋 → On : 𝑛 ↦→ 𝑛 − 1 is an embedding of 𝑋 which

can not be extended to an embedding of 𝑌.

4.2 Fields and Rings of Characteristic Zero

The essential ingredient for the universal embedding theorems for fields

is that No forms a real closed field.

Definition 4.2.1 (Real Closed Field)
Let R be an ordered field. Then R is called real closed, if

▶ every positive element of R has a square root in R, and

▶ every polynomial of odd degree with coefficients in R has at least

one root in R.

Theorem 4.2.2 (No is real closed.)
The surreal numbers No form a real closed Field.

We omit the proof here, since it would require more theory about the

surreal numbers, like normal forms and surreal power series. The result

is due to Conway, who described it in [1], along with the necessary [1]: Conway (2001), On Numbers and
Games

prerequisites. Later, Gonshor gave a slightly different proof, which is

closer to the classic argument for showing real closure using Hensel’s

lemma [9]. Conway’s proof is elaborated upon by Siegel in [3], who used [9]: Gonshor (1986), An Introduction to the
Theory of Surreal Numbers

[3]: Siegel (2013), Combinatorial Game The-
ory

some of Gonshor’s lemmata.

A classic result of Galois theory is its generalization of the fundamental

theorem of algebra, stating that ifR is real closed, thenR[i] is algebraically

closed, where i
2 = −1. Thus the surcomplex numbers No[i] are algebraically

closed. We will first give an embedding theorem for No[i], since it is

easier to prove.

Theorem 4.2.3 (No[i] is a universally embedding Field of char. zero.)
Let 𝑋 ⊆ 𝑌 be fields of characteristic 0. If there is an embedding

𝜑 : 𝑋 → No[i], then there exists an embedding 𝜓 : 𝑌 → No[i] such

that 𝜓 |𝑋 = 𝜑.
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Proof. As in previous embedding theorems, by Zorn’s lemma, it suffices

to extend 𝜑 to a single element 𝑠 ∈ 𝑌 (cf. page 27). That means we want

to construct a field homomorphism

𝜓 : 𝑋(𝑠) → No[i].

In the case that 𝑠 is algebraic over 𝑋, the field 𝑋(𝑠) is contained in

the algebraic closure 𝑋 of 𝑋. Let 𝑋′
:= 𝜑(𝑋) be the isomorphic copy

of 𝑋 inside No[i], and let 𝑋′
be its algebraic closure. Because No[i] is

algebraically closed, 𝑋′ ⊆ No[i]. Since the algebraic closure is unique,

there is an isomorphism between 𝑋 and 𝑋′
. Restricting this isomorphism

to 𝑋(𝑠), we obtain an embedding from 𝑋(𝑠) into No[i].

Now we consider the case that 𝑠 is transcendental over 𝑋. Since we can,

as we just saw, extend the embedding 𝜑 to the algebraic closure of 𝑋,

we can WLOG assume that 𝑋 is algebraically closed. Then algebraically,

𝑋(𝑠) is just the field of rational functions in one variable with coefficients

in 𝑋. The same is true within No[i]: If 𝑠′ is transcendental over 𝑋′
, then

𝑋′(𝑠′) is the field of rational functions in one variable with coefficients

in 𝑋′
, which is isomorphic to 𝑋(𝑠), since 𝑋 and 𝑋′

are isomorphic.

Since 𝑋′
is algebraically closed, any 𝑠′ ∈ No[i] that is not in 𝑋′

will

be transcendental over 𝑋′
, and such an 𝑠′ definitely exists, since 𝑋′

is a set and No[i] is a proper class. Mapping 𝑠 to 𝑠′ induces a field

homomorphism 𝜓 : 𝑋(𝑠) → No[i] given by

𝑝(𝑠)
𝑞(𝑠) ↦→ 𝑝̃(𝑠′)

𝑞̃(𝑠′) for any polynomials 𝑝, 𝑞 ∈ 𝑋[𝑡],

where for a polynomial 𝑝 = 𝑎0 + · · · + 𝑎𝑛𝑡𝑛 with 𝑎0 , . . . , 𝑎𝑛 ∈ 𝑋 , we write

𝑝̃ = 𝜑(𝑎0) + · · · +𝜑(𝑎𝑛)𝑡𝑛 for the polynomial corresponding to 𝑝 in 𝑋′[𝑡].
It is simple to check that such a 𝜓 is indeed a field homomorphism, and

that 𝜓 |𝑋 = 𝜑.

This generalizes immediately to integral domains.

An integral domain is a commutative ring

𝑅 with the property that the product

of any nonzero elements of 𝑅 is again

nonzero.

Corollary 4.2.4 (Embedding Theorem for Integral Domains of Char. 0)
Let 𝑋 ⊆ 𝑌 be integral domains of characteristic 0. If there is an embed-

ding 𝜑 : 𝑋 → No[i], then there exists an embedding 𝜓 : 𝑌 → No[i]
such that 𝜓 |𝑋 = 𝜑.

Proof. This follows immediately from the previous theorem by embed-

ding the integral domain into its quotient field (the smallest field containing

the integral domain).

4.3 Ordered Fields and Rings

For the universal embedding theorem for ordered fields, we will also

need the following classic properties of real closed fields.
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Theorem 4.3.1 (Artin-Schreier)

(a) Every ordered field has a real closure: If 𝐾 is an ordered field,

then there is an algebraic extension 𝑅/𝐾 such that 𝑅 is real closed

and the order on 𝑅 extends the order of 𝐾. This 𝑅 is unique up

to (order-preserving) isomorphism and is called the real closure
of 𝐾.

(b) An ordered field 𝑅 is real closed iff all polynomial functions with

coefficients in 𝑅 satisfy the intermediate value property.

For a proof and additional details, see [10, p. 451–457]. [10]: Lang (2002), Algebra

With this, we can now prove that No is a universally embedding ordered

Field. This theorem is also due to Conway. In [1], Conway sketches his

proof, in which he uses the well ordering principle (which is equivalent

to Zorn’s lemma). We phrase it using Zorn’s lemma here.

Theorem 4.3.2 (No is a universally embedding ordered Field.)
Let 𝑋 ⊆ 𝑌 be ordered fields. If there is an embedding 𝜑 : 𝑋 → No,

then there exists an embedding 𝜓 : 𝑌 → No such that 𝜓 |𝑋 = 𝜑.

Proof. The proof for embedding the field structure of 𝑌 is essentially the

same as in the previous embedding theorem (4.2.3). However, additional

work will be required to preserve the ordering.

Again, by Zorn’s lemma, it suffices to extend 𝜑 to a single element 𝑠 ∈ 𝑌
(cf. page 27). That means we want to construct a strictly increasing field

homomorphism

𝜓 : 𝑋(𝑠) → No.

We first look at the case that 𝑠 is algebraic over𝑋 . LetR be the real closure

of 𝑋(𝑠). Since the field extensions 𝑋 ⊆ 𝑋(𝑠) and 𝑋(𝑠) ⊆ R are algebraic,

the extension 𝑋 ⊆ R is also algebraic, which means that R is also the

real closure of 𝑋. Let 𝑋′
:= 𝜑(𝑋) be the isomorphic copy of 𝑋 inside

No, and let R′
be its real closure. Then R′ ⊆ No, because No is also

real closed. Since the real closure is unique, there is an order-preserving

isomorphism between R and R′
. Restricting this isomorphism to 𝑋(𝑠),

we obtain an embedding from 𝑋(𝑠) into No.

Now we consider the case that 𝑠 is transcendental over 𝑋. Since we can,

as we just saw, extend the embedding 𝜑 to the real closure of 𝑋, we can

WLOG assume that 𝑋 is real closed. Then algebraically, 𝑋(𝑠) is just the

field of rational functions in one variable with coefficients in 𝑋 . The same

is true for 𝑋′(𝑠′) if 𝑠′ is transcendental over 𝑋′
. Since 𝑋′

is real closed and

No is ordered, any 𝑠′ ∈ No that is not in 𝑋′
will be transcendental over

𝑋′
, yielding that 𝑋(𝑠) is (as a field) isomorphic to 𝑋′(𝑠′), since 𝑋 and

𝑋′
are isomorphic. So, as far as the field structure is concerned, we can

choose any 𝑠′ which is transcendental over 𝑋′
for 𝜑(𝑠) and thus receive

a field homomorphism 𝜓 : 𝑋(𝑠) → No given by

𝑝(𝑠)
𝑞(𝑠) ↦→ 𝑝̃(𝑠′)

𝑞̃(𝑠′) for any polynomials 𝑝, 𝑞 ∈ 𝑋[𝑡],

where for a polynomial 𝑝 = 𝑎0 + · · · + 𝑎𝑛𝑡𝑛 with 𝑎0 , . . . , 𝑎𝑛 ∈ 𝑋 , we write

𝑝̃ = 𝜑(𝑎0) + · · · +𝜑(𝑎𝑛)𝑡𝑛 for the polynomial corresponding to 𝑝 in 𝑋′[𝑡].
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It is simple to check that such a 𝜓 is indeed a field homomorphism, and

that 𝜓 |𝑋 = 𝜑.

So what is left to do is to pick 𝑠′ such that𝜓 is strictly increasing. Elements

𝑥, 𝑦 ∈ 𝑋(𝑠) are of the form 𝑥 =
𝑝1(𝑠)
𝑞1(𝑠) and 𝑦 =

𝑝2(𝑠)
𝑞2(𝑠) for polynomials 𝑝1, 𝑞1,

𝑝2, 𝑞2 ∈ 𝑋[𝑡]. This means we have to find an 𝑠′ such that

𝑝1(𝑠)
𝑞1(𝑠)

>
𝑝2(𝑠)
𝑞2(𝑠)

=⇒ 𝑝̃1(𝑠′)
𝑞̃1(𝑠′)

>
𝑝̃2(𝑠′)
𝑞̃2(𝑠′)

for all 𝑝1, 𝑞1, 𝑝2, 𝑞2 ∈ 𝑋[𝑡]. Bringing everything to one side in both

inequalities (and using that 𝑝 ↦→ 𝑝̃ is a homomorphism between the two

polynomial rings), this is equivalent to

𝑝(𝑠)
𝑞(𝑠) > 0 =⇒ 𝑝̃(𝑠′)

𝑞̃(𝑠′) > 0

for all 𝑝, 𝑞 ∈ 𝑋[𝑡], which means that it suffices to find an 𝑠′ which satisfies

the same rational function inequalities as 𝑠. Actually, it is enough to have

𝑠′ satisfy the same polynomial inequalities as 𝑠, i.e., 𝑝(𝑠) > 0 ⇒ 𝑝̃(𝑠′) > 0

for all 𝑝 ∈ 𝑋[𝑡], since then we can clear the denominators and still keep

the direction of the two inequalities the same.

To produce such a surreal number, we again take

𝐿 := {𝑥 ∈ 𝑋 : 𝑥 < 𝑠} 𝑅 := {𝑥 ∈ 𝑋 : 𝑥 > 𝑠}
𝑠′ = ⟨𝜑(𝐿) | 𝜑(𝑅)⟩.

Each 𝑥′ ∈ 𝑋′
is in either 𝐿 or 𝑅, implying that 𝑠′ greater than or less than

𝑥′, respectively. So 𝑠′ is not in and therefore transcendental over 𝑋′
. To

show that 𝑠′ satisfies the same polynomial inequalities, let 𝑝 ∈ 𝑋[𝑡] with

𝑝(𝑠) > 0. Pick an 𝑙 ∈ 𝐿 that is greater than or equal to the largest root of

𝑝 in 𝐿, and pick an 𝑟 ∈ 𝑅 that is less than or equal to the smallest root of

𝑝 in 𝑅. Therefore 𝑝(𝑥) > 0 for all 𝑥 ∈ 𝑋 with 𝑙 < 𝑥 < 𝑟.

Now, since 𝑋 and 𝑋′
are isomorphic as ordered fields, it will also hold

that 𝑝̃(𝑥′) > 0 for all 𝑥′ ∈ 𝑋′
with 𝜑(𝑙) < 𝑥′ < 𝜑(𝑟). By construction, the

surreal number 𝑠′ also lies between 𝜑(𝑙) and 𝜑(𝑟). Assume 𝑝̃(𝑠′) ≤ 0.

Then 𝑝̃(𝑠′) < 0 since 𝑠′ is transcendental. That means 𝑝̃, as a function

from No to No, changes sign between 𝜑(𝑙) and 𝜑(𝑟). Therefore, since No
is real closed, 𝑝̃ has a root in that interval of No. However, since 𝑋′

is

real closed, this root must be in 𝑋′
, which contradicts the choice of 𝑙 and

𝑟. So we have 𝑝̃(𝑠′) > 0 for any 𝑝 ∈ 𝑋[𝑡] with 𝑝(𝑠) > 0, which implies

that 𝜓 is strictly increasing, as desired.

Again, this can easily be generalized to the respective kind of rings.

A totally ordered ring is a commutative

ring𝑅 together with a total order relation

≤ on 𝑅, such that for all 𝑎, 𝑏, 𝑐 ∈ 𝑅:

▶ If 𝑎 ≤ 𝑏, then 𝑎 + 𝑐 ≤ 𝑏 + 𝑐.
▶ If 0 ≤ 𝑎 and 0 ≤ 𝑏, then 0 ≤ 𝑎𝑏.

Corollary 4.3.3 (Universal Embedding Theorem for Ordered Rings)
Let 𝑋 ⊆ 𝑌 be totally ordered rings. If there is an embedding

𝜑 : 𝑋 → No, then there exists an embedding 𝜓 : 𝑌 → No such that

𝜓 |𝑋 = 𝜑.

Proof. This follows immediately from the previous theorem by embed-

ding the ordered ring into its quotient field (equipped with the correspond-

ing order).
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4.4 Vector Spaces and Free Modules

A totally ordered 𝐾-vector space over an or-

dered field 𝐾 is a vector space𝑉 together

with a total order relation ≤ on 𝑉 , such

that for all 𝑎, 𝑏, 𝑐 ∈ 𝑉 and all 𝜆 ∈ 𝐾:

▶ If 𝑎 ≤ 𝑏, then 𝑎 + 𝑐 ≤ 𝑏 + 𝑐.
▶ If 0 ≤ 𝑎 and 0 ≤ 𝜆, then 0 ≤ 𝜆𝑎.

Theorem 4.4.1 (Universal embedding theorems for vector spaces.)

(a) Let 𝐾 ⊆ No[i] be a field, and let 𝑋 ⊆ 𝑌 be 𝐾-vector spaces.

If there is an embedding 𝜑 : 𝑋 → No[i], then there exists an

embedding 𝜓 : 𝑌 → No[i] such that 𝜓 |𝑋 = 𝜑.

(b) Let 𝐾 ⊆ No be a field, and let 𝑋 ⊆ 𝑌 be totally ordered 𝐾-vector

spaces. If there is an embedding 𝜑 : 𝑋 → No, then there exists

an embedding 𝜓 : 𝑌 → No such that 𝜓 |𝑋 = 𝜑.

Proof. Let U be No or No[i]. Again, by Zorn’s lemma, it suffices to extend

𝜑 to a single element 𝑠 ∈ 𝑌 (cf. page 27). Let 𝑉 be the vector space

spanned by all vectors in 𝑋 as well as 𝑠. If 𝑠 ∈ 𝑋, the statement is trivial.

Otherwise 𝑠 is linearly independent of all vectors in 𝑋 , so for each 𝑠′ ∈ U
there is a unique linear map 𝜓 : 𝑉 → U extending 𝜑 with 𝜓(𝑠) = 𝑠′,
given by

𝜓(𝑥 + 𝑘𝑠) = 𝜑(𝑥) + 𝑘𝑠′ for 𝑥 ∈ 𝑋, 𝑘 ∈ 𝐾.

In order to make 𝜓 injective, we just need 𝑠′ ∉ 𝜑(𝑋). Since 𝑋 is a set and

U is a proper class, such a 𝑠′ definitely exists. This is enough to proof (a).

For (b), we need to pick 𝑠′ such that 𝜓 is strictly increasing. We take

𝐿 := {𝑥 ∈ 𝑋 : 𝑥 < 𝑠} 𝑅 := {𝑥 ∈ 𝑋 : 𝑥 > 𝑠}
𝑠′ = ⟨𝜑(𝐿) | 𝜑(𝑅)⟩.

To show that this choice makes 𝜓 strictly increasing, let 𝑢, 𝑣 ∈ 𝑉 with

𝑢 < 𝑣. Those are of the form 𝑢 = 𝑥1 + 𝑘1𝑠, 𝑣 = 𝑥2 + 𝑘2𝑠 with 𝑥1, 𝑥2 ∈ 𝑋
and 𝑘1, 𝑘2 ∈ 𝐾. In the case that 𝑘1 < 𝑘2, the condition 𝑢 < 𝑣 can be

rewritten as

𝑥1 − 𝑥2

𝑘2 − 𝑘1

< 𝑠,

which means that the left hand side is in 𝐿, and thus

𝜑

(
𝑥1 − 𝑥2

𝑘2 − 𝑘1

)
< 𝑠′,

which can be rearranged to 𝜓(𝑢) < 𝜓(𝑣). If instead 𝑘1 > 𝑘2, the same

holds with the directions of both inequalities changed, using instead that

the left hand side is in 𝑅. If 𝑘1 = 𝑘2, the terms involving 𝑠′ cancel and

𝜓(𝑢) < 𝜓(𝑣) reduces to 𝜑(𝑢) < 𝜑(𝑣), which is true by assumption. This

shows that 𝜓 is the desired embedding.

Together with the universal embedding theorems for fields, this shows

that every vector space over a field of characteristic 0 can be embedded

in No[i], and every totally ordered vector space over an ordered field can

be embedded in No.

There is again a generalization from fields to rings, but this time, it is a

bit more subtle.
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A totally ordered 𝑅-module over a totally

ordered ring 𝑅 is a module 𝑀 together

with a total order relation ≤ on 𝑀, such

that for all 𝑎, 𝑏, 𝑐 ∈ 𝑀 and all 𝜆 ∈ 𝑅:

▶ If 𝑎 ≤ 𝑏, then 𝑎 + 𝑐 ≤ 𝑏 + 𝑐.
▶ If 0 ≤ 𝑎 and 0 ≤ 𝜆, then 0 ≤ 𝜆𝑎.

An 𝑅-module is called free if it has a

basis.

Corollary 4.4.2 (Universal Embedding Theorems for Free Modules)

(a) Let 𝑅 ⊆ No[i] be a ring, and let𝑋 ⊆ 𝑌 be free 𝑅-modules. If there

is an embedding 𝜑 : 𝑋 → No[i], then there exists an embedding

𝜓 : 𝑌 → No[i] such that 𝜓 |𝑋 = 𝜑.

(b) Let 𝑅 ⊆ No be a ring, and let 𝑋 ⊆ 𝑌 be totally ordered free

𝑅-modules. If there is an embedding 𝜑 : 𝑋 → No, then there

exists an embedding 𝜓 : 𝑌 → No such that 𝜓 |𝑋 = 𝜑.

Proof. The key point is that 𝑋 and 𝑌 are free. For 𝑋 , this means that it has

a basis 𝐵 ⊆ 𝑋, i.e., every 𝑥 ∈ 𝑋 can be written as a linear combination∑
𝑏∈𝐵

𝑟𝑏 · 𝑏,

where 𝑟𝑏 ∈ 𝑅 for all 𝑏 ∈ 𝐵, and 𝑟𝑏 = 0 for all but finitely many 𝑏 ∈ 𝐵.

Let 𝐾 be the quotient field of 𝑅. Then we can embed 𝑋 into the 𝐾-vector

space spanned by 𝐵. The same is possible for 𝑌, which means that we

can deduce the universal embedding theorems for modules from the

universal embedding theorem for vector spaces.

If 𝑋 and 𝑌 are not taken to be free, the theorem is false: The ring ℤ

is contained in No[i], and thus 𝑋 := ℤ can be embedded into No[i].
However, ℤ can be embedded into 𝑌 := ℤ × (ℤ/2ℤ), which can not be

embedded into No[i].

4.5 Further Universality Properties

For further reading, we want to mention that No also satisfies universality

properties for several other algebraic structures.

▶ Many of the universal embedding theorems we covered in this

chapter can also be extended to respect the tree structure (also

called the “simplicity hierarchy”, cf. fig. 3.8) of No, which comes

from its inductive construction. [11] [11]: Ehrlich (2001), Number Systems with
Simplicity Hierarchies: A Generalization of
Conway’s Theory of Surreal Numbers

▶ Martin Kruskal and Harry Gonshor discorvered that there is also a

suitable definition of the exponential function on No, which has

all the properties one would expect [9, chapter 10]. This makes No [9]: Gonshor (1986), An Introduction to the
Theory of Surreal Numbers

an ordered exponential Field.

▶ Recently, the surreal numbers have been also been used in the study

of so-called transseries. Here No again satisfies several universality

properties, for example as a transserial Hahn Field. [12] [13] [12]: Mantova et al. (2017), Surreal Num-
bers With Derivation, Hardy Fields and
Transseries: A Survey

[13]: Ehrlich et al. (2021), Surreal Ordered
Exponential Fields
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After proving that the surreal numbers form a universal embedding

ordered Field, Conway conjectured that a similar theorem would be true

for the games as a partially ordered abelian Group. David Meows proved

in 2002 that Pg forms a universal embedding abelian Group, where the

embedding however does not generally preserve the partial order [14]

[14]: Moews (2002), The Abstract Structure
of the Group of Games

. In

the same year, Jacob Lurie proved the full conjecture for partially ordered

abelian groups (which we will more briefly call POA groups) [15]

[15]: Lurie (2002), On a Conjecture of Con-
way

.
1

1: Note that every abelian group can be

seen as a POA group if one takes equality

as the partial order relation. So while

ordered fields are special kinds of fields,

POA groups are actually more general

than abelian groups.

This

chapter will follow Lurie’s paper, with some minor elaboration.

We want to prove statements regarding the partial order inductively,

since lemma 2.4.6 is essentially the only tool at our disposal. However, to

make use of induction in a set 𝑆 ⊂ Pg, we must make sure that 𝑆 is itself

structured inductively. This motivates the following definition.

Definition 5.0.1 (Hereditary)
A set of games 𝑀̃ is called hereditary if, for every 𝐺 ∈ 𝑀̃, all of its

options 𝑔L
and 𝑔R

are also in 𝑀̃.

A set of game values 𝑀 ⊆ Pg is called hereditary, if it is the set of

equivalence classes of a hereditary set of games.

Note that any set of games can be enlarged to a hereditary set by adding

all the left and right options of the games in the set, then again adding

all of those games’ options, and so on. Therefore, we can also enlarge

every set of game values 𝑀 to a hereditary set, by taking a member 𝑔 of

each equivalence class 𝑥 ∈ 𝑀 and collecting all those games 𝑔 in a set

𝑀̃. If we then enlarge 𝑀̃ to a hereditary set of games, and take the set of

all equivalence classes of elements of 𝑀̃, this will be a hereditary set of

game values which contains 𝑀.

5.1 Partially Ordered Sets

First, we will prove the universal embedding theorem for partially ordered

sets (posets for short). On the one hand, this will already demonstrate how

embedding a partial order is more complex than embedding a total order.

On the other hand, this will later be used in the proof of the embedding

theorem for POA groups. We will phrase everything in this section in

terms of games rather than game values since the group structure of Pg
is not relevant when only considering the partial order. It is clear that the

same property will then also hold for Pg.

Our basic strategy for proving universal embedding theorems is still the

same as in the previous section (cf. p. 27): We pick an element 𝑠 of a poset

and extend the embedding by mapping 𝑠 to a game 𝑠′. To achieve this

extension, 𝑠′ will have to satisfy the same partial inequalities as 𝑠, which

here (as opposed to the total orders we tackled before) also means that

𝑠′ does not satisfy an inequality if 𝑠 does not. Because of this, instead of

strictly increasing maps, we will speak of order-preserving maps.
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Definition 5.1.1 (Order-Preserving Map)
Let𝐴 and 𝐵 be partially ordered sets. Then we call a function 𝑓 : 𝐴→ 𝐵

order-preserving, when for all 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≤ 𝑦 holds iff 𝑓 (𝑥) ≤ 𝑓 (𝑦)
holds.

To construct a game that satisfies a collection of specified inequalities,

we proof the following lemma.

Lemma 5.1.2 (Constructing a game satisfying the right inequalities.)
Let 𝑀 be a hereditary set of games and let 𝐿, 𝑅 ⊆ 𝑀 with the following

properties:

▶ 𝐿 is closed downwards: If 𝑦 ≤ 𝑥 for 𝑥 ∈ 𝐿 and 𝑦 ∈ 𝑀, then 𝑦 ∈ 𝐿.

▶ 𝑅 is closed upwards: If 𝑦 ≥ 𝑥 for 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝑀, then 𝑦 ∈ 𝑅.

▶ For all 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅, we have 𝑙 ≤ 𝑟.

Set 𝐺 := {𝑀 \ 𝑅 | 𝑀 \ 𝐿}. Then for all 𝑥 ∈ 𝑀, the inequality 𝑥 ≤ 𝐺

holds iff 𝑥 ∈ 𝐿, and the inequality 𝐺 ≤ 𝑥 holds iff 𝑥 ∈ 𝑅.

Proof. We use induction on 𝑥, which works because 𝑀 is hereditary. If

𝑥 ≤ 𝐺, then 𝑥 cannot be a right option of 𝐺. So 𝑥 must be in 𝐿. If however

𝑥 ̸≤ 𝐺, i.e., 𝑥 |▷ 𝐺, one of the following two cases must occur (lemma

2.4.6):

▶ We have 𝑥L ≥ 𝐺 for some 𝑥L
. Then by the inductive hypothesis,

𝑥L ∈ 𝑅 and thus 𝑥 ∉ 𝐿 since 𝑥L ◁| 𝑥 would contradict 𝑥 ≤ 𝑦 for

𝑥 ∈ 𝐿, 𝑦 ∈ 𝑅.

▶ We have 𝑥 ≥ 𝑔R
for some 𝑔R

. If 𝑥 was in 𝐿, then 𝑔R
would be too,

since 𝐿 is downwards closed. This cannot be, because 𝑔R ∈ 𝑀\𝐿.

So we must have 𝑥 ∉ 𝐿.

The claim 𝐺 ≤ 𝑥 ⇔ 𝑥 ∈ 𝑅 follows analogously.

Theorem 5.1.3 (Universal Embedding Theorem for Posets)
Let 𝑋 ⊆ 𝑌 be posets. If there is an embedding 𝜑 from 𝑋 to the games,

then there exists an embedding 𝜓 from 𝑌 to the games such that

𝜓 |𝑋 = 𝜑.

Proof. As in previous embedding theorems, by Zorn’s lemma, it suffices

to extend 𝜑 to a single element 𝑠 ∈ 𝑌 (cf. page 27). That means we want

to construct an order-preserving map from 𝑋 ∪ {𝑠} to the games.

Enlarge 𝜑(𝑋) to a hereditary set 𝑀, and set

𝐿 := {𝑙 ∈ 𝑀 : ∃𝑥 ∈ 𝑋 : (𝑙 ≤ 𝜑(𝑥) ∧ 𝑥 ≤ 𝑠)}
𝑅 := {𝑟 ∈ 𝑀 : ∃𝑦 ∈ 𝑋 : (𝑟 ≥ 𝜑(𝑦) ∧ 𝑦 ≥ 𝑠)}.

This 𝐿 is closed downwards, since for a smaller 𝑙, the same 𝑥 can be used

(since 𝜑 is order-preserving). The same reasoning shows 𝑅 is closed

upwards. Also for 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅, pick corresponding 𝑥, 𝑦 ∈ 𝑋, with

𝑙 ≤ 𝜑(𝑥) and 𝑥 ≤ 𝑠, as well as 𝑟 ≥ 𝜑(𝑦) and 𝑦 ≥ 𝑠. Then 𝑥 ≤ 𝑦 and

therefore 𝜑(𝑥) ≤ 𝜑(𝑦), implying 𝑙 ≤ 𝑟.

This means all conditions of lemma 5.1.2 are fulfilled, guaranteeing the

existence of a game 𝐺 with 𝑙 ≤ 𝐺 iff 𝑙 ∈ 𝐿, and 𝐺 ≤ 𝑟 iff 𝑟 ∈ 𝑅, for all 𝑙,
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𝑟 ∈ 𝑀. Looking only at the 𝑙 which are in 𝜑(𝑋) ⊆ 𝑀, we can write such

an 𝑙 as 𝜑(𝑡) for 𝑡 ∈ 𝑋. Then 𝑙 ∈ 𝐿 iff there is an 𝑥 ∈ 𝑋 with 𝜑(𝑡) ≤ 𝜑(𝑥)
and 𝑥 ≤ 𝑠. We show that this is the case iff 𝑡 ≤ 𝑠:

▶ On the one hand, if 𝜑(𝑡) ≤ 𝜑(𝑥), we get 𝑡 ≤ 𝑥 since 𝜑 is order-

preserving. Then 𝑥 ≤ 𝑠 implies 𝑡 ≤ 𝑠.

▶ On the other hand, if 𝑡 ∈ 𝑋 with 𝑡 ≤ 𝑠, we can just take 𝑥 = 𝑡 and

trivially obtain 𝜑(𝑡) ≤ 𝜑(𝑥) and 𝑥 ≤ 𝑠.

So in total, for all 𝑡 ∈ 𝑋 we get 𝜑(𝑡) ≤ 𝐺 iff 𝑡 ≤ 𝑠. Using the same

argument for 𝑅, we for all 𝑡 ∈ 𝑋 obtain 𝐺 ≤ 𝜑(𝑡) iff 𝑠 ≤ 𝑡. Therefore

we can extend 𝜑 to 𝑋 ∪ {𝑠} by setting 𝜑(𝑠) = 𝐺 and still have an

order-preserving map, which completes the proof.

5.2 Partially Ordered Abelian Groups

5.2.1 Construction of Auxiliary Games

Compared to the previously considered totally ordered fields, partially

ordered abelian groups are a lot more general and typically less well-

behaved. This section focuses on constructing games that mimic the

strange inequalities that can hold in a POA group. These constructions

will be used later in the proof.

Lemma 5.2.1 (Auxiliary games I)
Let 𝐴 ⊆ Pg be a set of game values such that 𝑎 |▷ 0 for all 𝑎 ∈ 𝐴. Then

for any ordinal 𝛼, there exists a game value 𝑥 ≥ 0 such that 𝑥 ◁| 𝑎 for

all 𝑎 ∈ 𝐴, and at the same time 𝑛𝑥 ≥ 𝛼 for any natural number 𝑛 ≥ 2.

Proof. First, note that if the statement holds for one 𝛼 ∈ On, it will also

hold for all smaller ordinals. Therefore it suffices to prove the statement

for 𝛼 > −𝑎 for all 𝑎 ∈ 𝐴, since such an 𝛼 exists by 3.4.2 (f). Now set

𝑥 := ⟨2𝛼 | 𝑎⟩,

where 𝑎 ranges over 𝐴. This satisfies the desired inequality 𝑥 ◁| 𝑎 by

2.4.7. It also satisfies 𝑥 ≥ 0 by lemma 2.4.6, since 0 has no left option, and

since each 𝑥L
is some 𝑎 ∈ 𝐴, which satisfies 𝑎 |▷ 0 by assumption.

Therefore 𝑛𝑥 ≥ 2𝑥 for all 𝑛 ≥ 2. So it suffices to prove 2𝑥 ≥ 𝛼. Suppose

otherwise. Then by 2.4.6, one of the following two cases must occur:

▶ We have 2𝑥 ≤ 𝛼L
for some 𝛼L

. By 3.4.2 (b), we may take 𝛼L
to be

some ordinal 𝛽 < 𝛼. Then clearly 𝛽 < 2𝛼, from which we get

2𝑥 ≤ 𝛽 < 2𝛼 ≤ 2𝛼 + 𝑥

since 𝑥 ≥ 0, which implies 𝑥 < 2𝛼, contradicting that 𝑥 |▷ 2𝛼 by

construction.

▶ We have (2𝑥)R ≤ 𝛼, where (2𝑥)R = (𝑥 + 𝑥)R = 𝑎 + 𝑥 for some 𝑎 ∈ 𝐴.

Now 𝑎 + 𝑥 ≤ 𝛼 implies that 𝛼 ◁| (𝑎 + 𝑥)L, where such a left option

could be 𝑎 + 𝑥L = 𝑎 + 2𝛼. So 𝛼 ◁| 𝑎 + 2𝛼 and therefore 𝛼 ◁| −𝑎,
contrary to our initial assumption.
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We now use this to construct more general auxiliary games.

Lemma 5.2.2 (Auxiliary games II)
Let 𝐴, (𝐵𝑛)𝑛≥1 and (𝐶𝑛)𝑛≥1 be sets of game values, such that 𝑎 |▷ 𝑏1

for all 𝑎 ∈ 𝐴, 𝑏1 ∈ 𝐵1. Then there exists a game value 𝑥 satisfying the

following properties:

(a) 𝑎 |▷ 𝑥 for all 𝑎 ∈ 𝐴.

(b) 𝑛𝑥 ≥ 𝑏𝑛 for all 𝑏𝑛 ∈ 𝐵𝑛 and all naturals 𝑛 ≥ 1.

(c) 𝑛𝑥 |▷ 𝑐𝑛 for all 𝑐𝑛 ∈ 𝐶𝑛 and all naturals 𝑛 ≥ 1.

Proof. For starters, we want to find a game value 𝑥 that satisfies the

conditions for 𝑛 = 1, so we want

𝑎 |▷ 𝑥, 𝑥 ≥ 𝑏1 , 𝑥 |▷ 𝑐1

for all 𝑎 ∈ 𝐴, 𝑏1 ∈ 𝐵1, 𝑐1 ∈ 𝐶1. If additionally an inequality of the form

𝑎 ≤ 𝑏1 were to hold, then with 𝑏1 ≤ 𝑥 this would yield 𝑎 ≤ 𝑥, which

contradicts 𝑎 |▷ 𝑥. This is why we need the assumption 𝑎 |▷ 𝑏1. With that

assumption in place however, the desired inequalities are all consistent

with each other, meaning they induce a partial order on the set

𝐴 ∪ 𝐵1 ∪ 𝐶1 ∪ {𝑥̃},

where 𝑥̃ is just an arbitrary symbol not in 𝐴 ∪ 𝐵1 ∪ 𝐶1. By theorem 5.1.3,

we can embed this poset into Pg, mapping 𝑥̃ to a game value 𝑥 with the

desired properties.

Now to construct an 𝑥 satisfying the conditions for all 𝑛 ≥ 1, let 𝑥1 be

the previously constructed game value which satisfies the conditions for

𝑛 = 1. We now perform the following substitution:

Replace 𝑥 by 𝑥 − 𝑥1

Replace 𝐴 by {𝑎 − 𝑥1 : 𝑎 ∈ 𝐴}
Replace 𝐵𝑛 by {𝑏 − 𝑛𝑥1 : 𝑏 ∈ 𝐵𝑛} for each 𝑛 ≥ 1

Replace 𝐶𝑛 by {𝑐 − 𝑛𝑥1 : 𝑐 ∈ 𝐶𝑛} for each 𝑛 ≥ 1.

It is clear that finding an 𝑥 satisfying all conditions in this new setting

will in turn yield an 𝑥 satisfying all conditions in the original setting. By

construction of 𝑥1, after the substitution we know that

𝑎 |▷ 0 for all 𝑎 ∈ 𝐴
𝑏1 ≤ 0 for all 𝑏1 ∈ 𝐵1

𝑐1 ◁| 0 for all 𝑐1 ∈ 𝐶1.

Theorem 3.4.2 (f) implies that there exists an ordinal 𝛼 greater than all

𝑏𝑛 and 𝑐𝑛 for 𝑛 ≥ 1, 𝑏𝑛 ∈ 𝐵𝑛 , 𝑐𝑛 ∈ 𝐶𝑛 . Then, by lemma 5.2.1, we can find

𝑥 ∈ Pg with

𝑥 ≥ 0, 𝑛𝑥 ≥ 𝛼, 𝑥 ◁| 𝑎

for all 𝑎 ∈ 𝐴. The latter means the condition (a) is satisfied. Indeed, 𝑥

also satisfies (b) and (c):
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▶ Since 𝑥 ≥ 0 and 𝑏1 ≤ 0, we get 𝑥 ≥ 𝑏1 for all 𝑏1 ∈ 𝐵1. Also, 𝑥 ≤ 𝑐1

would give 0 ≤ 𝑐1, contradicting 𝑐1 ◁| 0. So we have 𝑥 ◁| 𝑐1 for all

𝑐1 ∈ 𝐶1.

▶ From 𝛼 > 𝑏𝑛 , 𝛼 > 𝑐𝑛 and 𝑛𝑥′ ≥ 𝛼, we get 𝑛𝑥′ > 𝑏𝑛 and 𝑛𝑥′ > 𝑐𝑛
for all 𝑛 ≥ 2, 𝑏𝑛 ∈ 𝐵𝑛 , 𝑐𝑛 ∈ 𝐶𝑛 .

5.2.2 Framings and Justification

Where with posets we only needed to consider how one element 𝑠 ∈ 𝑌\𝑋
compares to the elements of 𝑋, in the case of POA groups, we also need

to consider how the multiples of 𝑠 compare to the elements of 𝑋. This is

the topic of the present section.

Definition 5.2.3 (Framing)
Let 𝑋 be a subgroup of Pg. A framing of 𝑋 is a family (𝑋𝑖)𝑖∈ℤ of subsets

of 𝑋 with the following properties:

(a) 𝑋𝑖 + 𝑋𝑗 ⊆ 𝑋𝑖+𝑗 for all 𝑖, 𝑗 ∈ ℤ.

(b) 𝑥 ∈ 𝑋0 iff 𝑥 ∈ 𝑋 and 𝑥 ≥ 0.

If 𝑋 ⊆ 𝑌 are subgroups of Pg, we say a framing of 𝑌 extends a framing

of 𝑋 if 𝑋𝑖 = 𝑌𝑖 ∩ 𝑋 for all 𝑖 ∈ ℤ. In this case we also say the two

framings are compatible.

The intention behind this definition is, that 𝑋𝑖 is going to be set of all

𝑥 ∈ 𝑋 with 𝑥 ≥ 𝑖𝑠, where 𝑠 is the game we need to construct. This

intention suggests the following property.

Lemma 5.2.4 (Frames are closed upwards.)
Let 𝑋 be a framed subgroup of Pg. Then for every 𝑖 ∈ ℤ, the set 𝑋𝑖 is

closed upwards: If 𝑦 ≥ 𝑥 for 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑋, then 𝑦 ∈ 𝑋𝑖 .

Proof. We have 𝑦 − 𝑥 ∈ 𝑋0, and so since 𝑋𝑖 + 𝑋0 ⊆ 𝑋𝑖 , we get that

𝑦 = 𝑥 + (𝑦 − 𝑥) ∈ 𝑋𝑖 .

Lemma 5.2.5 (Every framing can be extended.)
Let 𝑋 ⊆ 𝑌 be subgroups of Pg. Then for any framing (𝑋𝑖)𝑖∈ℤ of 𝑋,

there is a framing of 𝑌 that extends (𝑋𝑖)𝑖∈ℤ.

Proof. To construct such a framing of𝑌, simply take the “upwards closure”

of 𝑋𝑖 in 𝑌:

𝑌𝑖 := {𝑦 ∈ 𝑌 : ∃𝑥 ∈ 𝑋𝑖 : 𝑦 ≥ 𝑥} for every 𝑖 ∈ ℤ.

To verify the condition (a) in definition 5.2.3, let 𝑖, 𝑗 ∈ ℤ. Write 𝑦 ∈ 𝑌𝑖 +𝑌𝑗
as 𝑦 = 𝑦1 + 𝑦2 for 𝑦1 ∈ 𝑌𝑖 , 𝑦2 ∈ 𝑌𝑗 . Then by definition, there are 𝑥1 ∈ 𝑋𝑖 ,
𝑥2 ∈ 𝑋𝑗 such that 𝑦1 ≥ 𝑥1, 𝑦2 ≥ 𝑥2. Then 𝑦1 + 𝑦2 ≥ 𝑥1 + 𝑥2 ∈ 𝑋𝑖+𝑗 , so

𝑦1 + 𝑦2 ∈ 𝑌𝑖+𝑗 .

For condition (b), take 𝑦 ∈ 𝑌 with 𝑦 ≥ 0. Since 𝑋 is a group, we have

0 ∈ 𝑋, and therefore 0 ∈ 𝑋0, which gives us 𝑦 ∈ 𝑌0. On the other hand,

if 𝑦 ∈ 𝑌0, then there is an 𝑥 ∈ 𝑋0 with 𝑦 ≥ 𝑥. This 𝑥 must satisfy 𝑥 ≥ 0,

yielding 𝑦 ≥ 0.
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Our main goal from now on is to show that if (𝑋𝑖)𝑖∈ℤ is a framing of 𝑋,

then there is an 𝑠 ∈ Pg such that

𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 ≥ 𝑖𝑠}

for all 𝑖 ∈ ℤ. Now an inequality like 𝑔 ≥ 𝑖𝑠 will hold unless there is a
reason to the contrary, in the sense of lemma 2.4.6. We define (𝑔, 𝑖) to be

justified if there is such a reason, i.e., if “it is justified that 𝑔 is not in 𝑋𝑖”.

Definition 5.2.6 (Justification)
Let 𝑋 be a framed subgroup of Pg and 𝑛 ≥ 2 be a natural number.

▶ If 𝑔 ∈ 𝑋 \𝑋𝑛 , we say (𝑔, 𝑛) is justified if there is an 𝑥 ∈ 𝑋−1 with

𝑔 + 𝑥 ∉ 𝑋𝑛−1.

▶ If 𝑔 ∈ 𝑋 \ 𝑋−𝑛 , we say (𝑔,−𝑛) is justified if there is an 𝑥 ∈ 𝑋1

with 𝑔 + 𝑥 ∉ 𝑋−𝑛+1.

If 𝑋 is a framed subgroup of Pg such that for all 𝑖 ∈ ℤ \ {−1, 0, 1} and

𝑔 ∈ 𝑋 \ 𝑋𝑖 , the pair (𝑔, 𝑖) is justified in 𝑋, we say that 𝑋 is justified.

Lemma 5.2.7 (Justified hereditary framings have the desired form.)
Let 𝑋 be a justified and hereditary framed subgroup of Pg. Then there

exists an 𝑠 ∈ Pg such that

𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 ≥ 𝑖𝑠}

for all 𝑖 ∈ ℤ.

Proof. Define

𝑠 := ⟨𝑋 \ 𝑋1 | 𝑋 \ (−𝑋−1)⟩.

Now we prove 𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 ≥ 𝑖𝑠} by induction on |𝑖 |. For 𝑖 = 0, this

is clear from the definition of a framing. From 𝑋1 + 𝑋−1 ⊆ 𝑋0 and 𝑥 ≥ 0

for all 𝑥 ∈ 𝑋0, we get that 𝑙 ≤ 𝑟 holds for all 𝑟 ∈ 𝑋1, 𝑙 ∈ −𝑋−1. Also 𝑋1 is

closed upwards, while −𝑋−1 is closed downwards. So we can use lemma

5.1.2 on −𝑠 to get that the assertion holds for |𝑖 | = 1.

Now let 𝑛 ≥ 2 and assume the assertion holds for all 𝑖 ∈ ℤ with |𝑖 | < 𝑛.

We demonstrate the proof for 𝑛 + 1, the argument for −𝑛 − 1 works

analogously.

First we look at 𝑔 ∉ 𝑋𝑛 . Then (𝑔, 𝑛) is justified, which implies the existence

of an 𝑥 ∈ 𝑋−1 such that 𝑔+𝑥 ∉ 𝑋𝑛−1. By the inductive hypothesis, 𝑥 ∈ 𝑋−1

means 𝑥 ≥ −𝑠, whereas 𝑔 + 𝑥 ∉ 𝑋𝑛−1 means 𝑔 + 𝑥 ◁| (𝑛 − 1)𝑠. Now the

inequality 𝑔 ≥ 𝑛𝑠 is false, cause otherwise it would imply

𝑔 + 𝑥 ≥ 𝑛𝑠 + 𝑥 ≥ (𝑛 − 1)𝑠

contradicting the earlier inequality. So by contrapositive, we get that

𝑔 ≥ 𝑛𝑠 implies 𝑔 ∈ 𝑋𝑛 (and analogously for −𝑛).

Now we take care of the other direction. Let 𝑥 ∈ 𝑋𝑛 . By lemma 2.4.6,

there are two cases in which 𝑛𝑠 ≤ 𝑥 does not hold:
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▶ 𝑥 ≤ (𝑛𝑠)L, where the left option of 𝑛𝑠 is of the form (𝑛−1)𝑠+𝑠L
. This

can be rearranged to 𝑠L − 𝑥 ≥ (1− 𝑛)𝑠, which means 𝑠L − 𝑥 ∈ 𝑋1−𝑛
by the inductive hypothesis. Now since 𝑥 ∈ 𝑋𝑛 and𝑋𝑛+𝑋1−𝑛 ⊆ 𝑋1,

we get 𝑠L = 𝑥 + (𝑠L − 𝑥) ∈ 𝑋1, contradicting the construction of 𝑠.

▶ 𝑥R ≤ 𝑛𝑠, or in other words −𝑥R ≥ −𝑛𝑠. By what we have already

shown, this implies −𝑥R ∈ 𝑋−𝑛 . Then 𝑥 ∈ 𝑋𝑛 and 𝑋𝑛 + 𝑋−𝑛 ⊆ 𝑋0

gives 𝑥 − 𝑥R ∈ 𝑋0, so 𝑥 − 𝑥R ≥ 0 and therefore 𝑥 ≥ 𝑥R
, which

contradicts 2.4.7.

So neither of those cases can occur, meaning that 𝑛𝑠 ≤ 𝑥. This concludes

the induction. Note that we used that 𝑋 is hereditary in order to work

with 𝑥L
, 𝑥R ∈ 𝑋.

It may seem like we are not really any closer to our goal, as not all framed

subgroups 𝑋 ⊂ Pg are justified or hereditary. But there is a way around

that: if we show that𝑌𝑖 = {𝑦 ∈ 𝑌 : 𝑦 ≥ 𝑖𝑠} for some extension𝑌 of𝑋 , then

the same will easily follow for the framing of𝑋 . So in the next section, our

goal will be to construct a justified extension 𝑌 for any framed subgroup

𝑋 ⊂ Pg.

5.2.3 Everything Can Be Justified

First, let us make use that we do not lose justified pairs by an extension.

Lemma 5.2.8 (Justification carries over to extension.)
Let 𝑋 ⊆ 𝑌 be subgroups of Pg with compatible framings (𝑋𝑖)𝑖∈ℤ and

(𝑌𝑖)𝑖∈ℤ. If (𝑔, 𝑖) is justified in 𝑋, then (𝑔, 𝑖) is also justified in 𝑌.

Proof. We give the proof for 𝑖 = 𝑛 ≥ 2, the proof for 𝑖 = −𝑛 is analogous.

Since (𝑔, 𝑛) is justified, 𝑔 ∉ 𝑋𝑛 , and there is an 𝑥 ∈ 𝑋−1 with 𝑔+𝑥 ∉ 𝑋𝑛−1.

Since the framings of 𝑋 and𝑌 are compatible, we also have 𝑥 ∈ 𝑌−1. Also

𝑔, 𝑔 + 𝑥 ∈ 𝑋 together with 𝑋𝑛−1 = 𝑌𝑛−1 ∩ 𝑋 and 𝑋𝑛 = 𝑌𝑛 ∩ 𝑋 implies

that also 𝑔 + 𝑥 ∉ 𝑌𝑛−1 and 𝑥 ∉ 𝑌𝑛 . This means (𝑔, 𝑛) is justified in 𝑌.

Now we can start to construct our desired extension. Most of the work

will go into constructing an extension that justifies one particular pair.

Lemma 5.2.9 (There is an extension that justifies (𝑔, 𝑖).)
Let 𝑋 be a framed subgroup of Pg, and 𝑔 ∈ 𝑋 \ 𝑋𝑖 . Then there exists a

framed subgroup 𝑌 ⊂ Pg extending 𝑋 , such that (𝑔, 𝑖) is justified in 𝑌.

Proof. Again we only give the proof for 𝑖 = 𝑛 ≥ 2, the proof for 𝑖 = −𝑛 is

analogous. We need an 𝑥 as in definition 5.2.6 that makes (𝑔, 𝑛) justified.

So we take 𝑌 to be the group generated by 𝑋 and some 𝑥 ∈ Pg, which

we frame by

𝑌𝑘 := {𝑦 ∈ 𝑌 : ∃𝑗 ≥ 0 : ∃𝑧 ∈ 𝑋𝑘+𝑗 : 𝑧 + 𝑗𝑥 ≤ 𝑦}

for every 𝑘 ∈ ℤ. We will now make a “wishlist” of properties we want

𝑥 to have so that this all works out. Some conditions will already be

satisfied, no matter the choice of 𝑥. Others will require us to choose 𝑥 in

the right way.
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First, let us see what properties 𝑥 must have to ensure that this is indeed

a framing:

▶ Let 𝑦 ∈ 𝑌𝑘 + 𝑌𝑙 , so 𝑦 = 𝑦1 + 𝑦2 for 𝑦1 ∈ 𝑌𝑘 , 𝑦2 ∈ 𝑌𝑙 . That means

there are 𝑗1, 𝑗2 ≥ 0 and 𝑧1 ∈ 𝑋𝑘+𝑗1 , 𝑧2 ∈ 𝑋𝑙+𝑗2 such that 𝑧1 + 𝑗1𝑥 ≤
𝑦1 and 𝑧2 + 𝑗2𝑥 ≤ 𝑦2. Adding those two inequalities, we get

(𝑧1+𝑧2)+(𝑗1+𝑗2)𝑥 ≤ 𝑦1+𝑦2 = 𝑦, and since𝑋𝑘+𝑗1+𝑋𝑙+𝑗2 ⊆ 𝑋𝑘+𝑙+𝑗1+𝑗2 ,
we have 𝑧1 + 𝑧2 ∈ 𝑋𝑘+𝑙+𝑗1+𝑗2 . This means that 𝑦 ∈ 𝑌𝑘+𝑙 . So this is

true independent of 𝑥.

▶ Let 𝑦 ∈ 𝑌 with 𝑦 ≥ 0. Then since 0 ∈ 𝑋0, we can take 𝑗 = 0 and

𝑧 = 0 to see 𝑦 ∈ 𝑌0. For the other direction, let 𝑦 ∈ 𝑌0. Then there

are 𝑗 ≥ 0 and 𝑧 ∈ 𝑋𝑗 such that 𝑧 + 𝑗𝑥 ≤ 𝑦. So to show 𝑦 ≥ 0, we

would want 𝑥 to be a game value such that 𝑗𝑥 ≥ −𝑧 for all 𝑗 ≥ 0,

𝑧 ∈ 𝑋𝑗 .

We also need the framing (𝑌𝑘)𝑘∈ℤ to be compatible with (𝑋𝑘)𝑘∈ℤ.

▶ If 𝑦 ∈ 𝑋𝑘 , then using 𝑗 = 0 and 𝑧 = 𝑦 we get 𝑧 + 𝑗𝑥 ≤ 𝑦, so 𝑦 ∈ 𝑌𝑘 .
This means the inclusion 𝑋𝑘 ⊆ 𝑌𝑘 ∩ 𝑋 holds independently of 𝑥.

▶ For the inclusion 𝑌𝑘 ∩ 𝑋 ⊆ 𝑋𝑘 , we need to show that for 𝑦 ∈ 𝑋,

the existence of 𝑗 ≥ 0 and 𝑧 ∈ 𝑋𝑘+𝑗 with 𝑦 ≥ 𝑧 + 𝑗𝑥 implies 𝑦 ∈ 𝑋𝑘 .
For 𝑗 = 0, this means 𝑧 ∈ 𝑋𝑘 and 𝑦 ≥ 𝑧 implies 𝑦 ∈ 𝑋𝑘 , i.e., that 𝑋𝑘
is closed upwards, which we know is true. For 𝑗 ≥ 1, we rewrite

the condition as 𝑗𝑥 |▷ 𝑦 − 𝑧 for all 𝑧 ∈ 𝑋𝑘+𝑗 and 𝑦 ∈ 𝑋 \ 𝑋𝑘 and

add it to our wishlist.

Finally, we need that 𝑥 justifies (𝑔, 𝑛), so 𝑥 ∈ 𝑌−1 and 𝑔 + 𝑥 ∉ 𝑌𝑛−1.

▶ We can take 𝑗 = 1 and 𝑧 = 0 ∈ 𝑋𝑗+𝑘 = 𝑋1−1 = 𝑋0 to get that 𝑥 ∈ 𝑌−1.

So this part holds independently of 𝑥.

▶ For 𝑔 + 𝑥 ∉ 𝑌𝑛−1, we need that there are no 𝑗 ≥ 0, 𝑧 ∈ 𝑋𝑛−1+𝑗 such

that 𝑧 + 𝑗𝑥 ≤ 𝑔 + 𝑥. In other words, we need

𝑧 + 𝑗𝑥 |▷ 𝑔 + 𝑥

for all 𝑗 ≥ 0, 𝑧 ∈ 𝑋𝑛−1+𝑗 . For 𝑗 = 1, this is already true: If 𝑧 ≤ 𝑔 for

some 𝑧 ∈ 𝑋𝑛 was the case, then since 𝑋𝑛 is closed upwards, also

𝑔 ∈ 𝑋𝑛 , contrary to our assumption. So 𝑧 |▷ 𝑔 for all 𝑧 ∈ 𝑋𝑛 . For

all other 𝑗, we rewrite this a bit and add it to our wishlist.

So our final wishlist for 𝑥 is:

▶ 𝑗𝑥 ≥ −𝑧 for all 𝑗 ≥ 0, 𝑧 ∈ 𝑋𝑗 .
▶ 𝑗𝑥 |▷ 𝑦 − 𝑧 for all 𝑗 ≥ 1, 𝑧 ∈ 𝑋𝑘+𝑗 , 𝑦 ∈ 𝑋 \ 𝑋𝑘 .
▶ 𝑧 − 𝑔 |▷ 𝑥 for all 𝑧 ∈ 𝑋𝑛−1.

▶ (𝑗 − 1)𝑥 |▷ 𝑔 − 𝑧 for all 𝑗 ≥ 2, 𝑧 ∈ 𝑆𝑛+𝑗−1.

To construct such an 𝑥 ∈ Pg, we use lemma 5.2.2. We take

𝐴 = {𝑧 − 𝑔 : 𝑧 ∈ 𝑋𝑛−1},
𝐵 𝑗 = {−𝑧 : 𝑧 ∈ 𝑋𝑗},
𝐶 𝑗 = {𝑔 − 𝑧 : 𝑧 ∈ 𝑋𝑛+𝑗} ∪ {𝑦 − 𝑧 : 𝑘 ∈ ℤ, 𝑧 ∈ 𝑋𝑘+𝑗 , 𝑦 ∈ 𝑋 \ 𝑋𝑘},

for all 𝑗 ≥ 1. The only thing we need to make sure of is that there is

no contradiction caused by 𝑎 ≤ 𝑏1 for any 𝑎 ∈ 𝐴, 𝑏1 ∈ 𝐵1. This would

mean 𝑧𝑎 − 𝑔 ≤ 𝑧𝑏 for 𝑧𝑎 ∈ 𝑋𝑛−1, 𝑧𝑏 ∈ 𝑋1, so 𝑧𝑎 + 𝑧𝑏 ≤ 𝑔. But since

𝑧𝑎 + 𝑧𝑏 ∈ 𝑋𝑛−1 + 𝑋1 ⊆ 𝑋𝑛 , that 𝑋𝑛 is closed upwards implies 𝑔 ∈ 𝑋𝑛 ,

which is contrary to our initial assumption.
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Now that we know that any one (𝑔, 𝑖) can be justified, it is straight-

forward to show that we can also find an extension in which all (𝑔, 𝑖) are

justified.

Lemma 5.2.10 (There is an extension such that any (𝑔, 𝑖) is justified.)
Let𝑋 be a framed subgroup of Pg. Then there exists a framed subgroup

𝑌 ⊂ Pg extending 𝑋 , such that for all 𝑖 ∈ ℤ \ {−1, 0, 1} and 𝑔 ∈ 𝑋 \𝑋𝑖 ,
the pair (𝑔, 𝑖) is justified in 𝑌.

Proof. Much like we did with universal embedding theorems, we reduce

this to creating an extension where one additional (𝑔, 𝑖) is justified, using

Zorn’s lemma (see p. 27). Let Φ be the collection of all extensions of the

framed group 𝑋. For 𝑍 ∈ Φ, define

𝐽(𝑍) :=
{
(𝑔, 𝑖) : 𝑖 ∈ ℤ \ {−1, 0, 1}, 𝑔 ∈ 𝑋 \ 𝑋𝑖 , (𝑔, 𝑖) justified in 𝑍

}
.

We can partially order Φ by defining

𝑍 ≺ 𝑍′
:⇐⇒ 𝑍′

extends 𝑍 and 𝐽(𝑍) ⊂ 𝐽(𝑍′),

and 𝑍 ⪯ 𝑍′
iff 𝑍 = 𝑍′

or 𝑍 ≺ 𝑍′
. Here, demanding 𝐽(𝑍) to be a proper

subset of 𝐽(𝑍′) is necessary because otherwise we could keep going

bigger after already having justified all pairs.

Now let 𝐶 ⊆ Φ be a chain. Then 𝑍 :=
⋃
𝑍∈𝐶 𝑍 with the framing

𝑍 𝑖 :=
⋃
𝑍∈𝐶 𝑍𝑖 extends all framed subgroups in the chain. Also by lemma

5.2.8, every (𝑔, 𝑖) that is justified in a 𝑍 ∈ 𝐶 will be justified in 𝑍, i.e.,

𝐽(𝑍) ⊆ 𝐽(𝑍) for all 𝑍 ∈ 𝐶.

What we have just shown is that any chain 𝐶 ⊆ Φ has an upper bound

𝑍 ∈ Φ. Thus, by Zorn’s lemma,
2

2: As with universal embedding theo-

rems, the fact that Φ is a proper class

causes a technicality, which can again

be avoided since every chain in Φ is

bounded in size by the cardinality of

the set

{(𝑔, 𝑖) : 𝑖 ∈ ℤ \ {−1, 0, 1}, 𝑔 ∈ 𝑋 \ 𝑋𝑖}.

We discuss this further in section 6.3,

p. 47.

Φ has a maximal element 𝑌. For the

sake of contradiction, assume that there is a pair (𝑔, 𝑖) that is not justified

in 𝑌. Then we can use lemma 5.2.9 to extend 𝑌 to a framed subgroup

𝑌′
of Pg where (𝑔, 𝑖) is justified, contradicting the maximality of 𝑌. This

means every pair (𝑔, 𝑖) is justified in 𝑌, as desired.

We now know that there is an extension𝑌 of 𝑋 where all pairs (𝑔, 𝑖) with

𝑔 ∈ 𝑋 are justified. But we do not yet know whether we can do this in

such a way that (𝑔, 𝑖) is also justified for all 𝑔 that are in 𝑌, i.e., that 𝑌 is

justified itself. This is what we tackle in the following lemma. We will, at

the same time, make sure that 𝑌 is hereditary.

Lemma 5.2.11 (There is a justified and hereditary extension.)
Let𝑋 be a framed subgroup of Pg. Then there exists a framed subgroup

𝑌 ⊂ Pg extending 𝑋 that is justified and hereditary.

Proof. We define a sequence (𝑋𝑛)𝑛∈ℕ of framed subgroups of Pg induc-

tively as follows. First set 𝑋0
:= 𝑋. Now assume that 𝑋𝑛

has already

been defined. Enlarge 𝑋𝑛
to an hereditary set, and let 𝑋𝑛

be the group

generated by this set. Then 𝑋𝑛
is also hereditary, since the definitions

of addition (2.3.1) and negation (2.3.3) are genetic. By lemma 5.2.5, we

can extend the framing of 𝑋𝑛
to a framing of 𝑋𝑛

. Now let 𝑋𝑛+1
be the

extension of 𝑋𝑛
such that for every 𝑖 ∈ ℤ \ {−1, 0, 1} and 𝑔 ∈ 𝑋𝑛 \ 𝑋𝑛

𝑖
,
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the pair (𝑔, 𝑖) is justified in𝑋𝑛+1
(such an extension exists by the previous

lemma 5.2.10).

Finally, take 𝑌 :=
⋃
𝑛∈ℕ 𝑋

𝑛
, framed by 𝑌𝑖 :=

⋃
𝑛∈ℕ 𝑋

𝑛
𝑖

for all 𝑖 ∈ ℤ. This

𝑌 has the desired properties.

▶ Since 𝑋0 = 𝑋, obviously 𝑌 extends 𝑋.

▶ The union of hereditary sets is again hereditary.

▶ Let 𝑖 ∈ ℤ \ {−1, 0, 1} and 𝑔 ∈ 𝑌 \ 𝑌𝑖 . Then there is an 𝑛 ∈ ℕ such

that 𝑔 ∈ 𝑋𝑛
, and since 𝑔 ∉ 𝑌𝑖 we have 𝑔 ∉ 𝑋𝑛

𝑖
. Therefore (𝑔, 𝑖) is

justified in 𝑋𝑛+1
, and so also justified in 𝑌 by lemma 5.2.8.

5.2.4 Finalizing the Proof

Using this, we can finally show that every framing has its intended

meaning, even if the framed subgroup is not justified or hereditary.

Corollary 5.2.12 (Classification of Framings)
Let 𝑋 be subgroup of Pg. Then (𝑋𝑖)𝑖∈ℤ is a framing of 𝑋 iff there exists

an 𝑠 ∈ Pg such that

𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 ≥ 𝑖𝑠}

for all 𝑖 ∈ ℤ.

Proof. It is simple to check that 𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 ≥ 𝑖𝑠} defines a framing

of 𝑋 . Now let 𝑋 be a framed subgroup of Pg. By 5.2.11, there is a justified

and hereditary framed subgroup 𝑌 of Pg which extends 𝑋 . Lemma 5.2.7

now guarantees that

𝑌𝑖 = {𝑦 ∈ 𝑌 : 𝑦 ≥ 𝑖𝑠}

for some 𝑠 ∈ Pg. Since the framing of 𝑌 extends the framing of 𝑋, we

have 𝑋𝑖 = 𝑌𝑖 ∩ 𝑋, i.e.,

𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 ≥ 𝑖𝑠}

for all 𝑖 ∈ ℤ.

From this, we get the game value necessary to proof the universal

embedding theorem for POA groups.

Theorem 5.2.13 (Pg is a universally embedding POA Group.)
Let𝑋 ⊆ 𝑌 be partially ordered abelian groups. If there is an embedding

𝜑 : 𝑋 → Pg, then there exists an embedding 𝜓 : 𝑌 → Pg such that

𝜓 |𝑋 = 𝜑.

Proof. As with previous embedding theorems, by Zorn’s lemma, it suffices

to extend 𝜑 to a single element 𝑠 ∈ 𝑌 (cf. page 27). Let 𝑍 be the group

generated by 𝑋 and 𝑠. We want to construct an order-preserving group

homomorphism

𝜓 : 𝑍 → Pg
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with 𝜓 |𝑋 = 𝜑. Let 𝑋′
:= 𝜑(𝑋) be the isomorphic copy of 𝑋 inside Pg.

Define

𝑋′
𝑖 := {𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑖𝑠 ≤ 𝑥}

for all 𝑖 ∈ ℤ. Since 𝜑 is an order-preserving group homomorphism, it is

easy to check that (𝑋′
𝑖
)𝑖∈ℤ is a framing of 𝑋′

. Therefore by lemma 5.2.12,

there exists an 𝑠′ ∈ Pg such that

𝑋′
𝑖 = {𝑥′ : 𝑥′ ∈ 𝑋′, 𝑖𝑠′ ≤ 𝑥′} (∗)

for all 𝑖 ∈ ℤ. Now, since every element of 𝑍 is of the form 𝑥+ 𝑘𝑠 for 𝑘 ∈ ℤ,

𝑥 ∈ 𝑋 , there is a unique group homomorphism 𝜓 : 𝑍 → Pg extending 𝜑
with 𝜓(𝑠) = 𝑠′ given by

𝜓(𝑥 + 𝑘𝑠) = 𝜑(𝑥) + 𝑘𝑠′ for 𝑥 ∈ 𝑋, 𝑘 ∈ ℤ.

In order to verify that 𝜓 is order-preserving, let 𝑧1, 𝑧2 ∈ 𝑍 with 𝑧1 ≤ 𝑧2.

Those are of the form 𝑧1 = 𝑥1 + 𝑘1𝑠, 𝑧2 + 𝑘2𝑠 for 𝑥1, 𝑥2 ∈ 𝑋, 𝑘1, 𝑘2 ∈ ℤ.

Now 𝑧1 ≤ 𝑧2 can be rewritten as

(𝑘1 − 𝑘2)𝑠 ≤ 𝑥2 − 𝑥1 ,

which means that 𝜑(𝑥2 − 𝑥1) ∈ 𝑋′
𝑘1−𝑘2

. Using (∗), we get

(𝑘1 − 𝑘2)𝑠′ ≤ 𝜑(𝑥2 − 𝑥1)

which, using that 𝜑 is a group homomorphism, rearranges to

𝜓(𝑧1) = 𝜑(𝑥1) + 𝑘1𝑠
′ ≤ 𝜑(𝑥2) + 𝑘2𝑠

′ = 𝜓(𝑧2).

The same argument can also be done in reverse, showing that𝜓(𝑧1) ≤ 𝜓(𝑧2)
implies 𝑧1 ≤ 𝑧2 for all 𝑧1, 𝑧2 ∈ 𝑍. This shows that𝜓 is an order-preserving

group homomorphism, as desired.

Table 5.1: Overview of the universal embedding properties proved in this thesis. Here 𝐾 and 𝑅 are a field/ring of the kind mentioned in

the previous rows of the respective column.

Pg No No[i]
partial order total order —

partially ordered abelian group ordered field field of char. zero

— totally ordered rings integral domain of char. zero

— totally ordered 𝐾-vector space 𝐾-vector space

— totally ordered free 𝑅-module free 𝑅-module
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We have used the notion of a proper class several times over the course

of this thesis. This can be formalized, so there is no logical problem. If,

however, one wants to avoid proper classes anyway, dichotomies between

“large” and “small” collections other than proper classes and sets may be

used.

For example, one could change the definition of games (def. 2.2.1),

adding the condition that the left and right sets have to be countable. The

collection of all games will then actually be a set (although uncountable),

and the same goes for the corresponding collections of game values

and surreal numbers. These will have the same universal embedding

properties for algebraic structures with countably many elements, since

in all our proofs, we never construct a game or a number in such a way

that the sets of options would become uncountable.

However, not all notions of large versus small work. Crucially, many

of our universal embedding theorems do not hold if we change the

definition of a game to only allow for finitely many options. These games

are called short games.

Definition 6.1.1 (Short Game)
A game {𝐿 | 𝑅} is called short if 𝐿 and 𝑅 are finite sets, and all members

of 𝐿 and 𝑅 are short games.

We denote the collection of all values of short games by 𝔾.

Most of combinatorial game theory only concerns 𝔾, since most actual

games only give their players a finite number of moves to choose from.

The collection 𝔾 is a countable set that forms a partially ordered abelian

group (with the same proofs as we gave in chapter 2). The short games

are universally embedding for finite posets — the same proof given in

section 5.1 works, since at no point a finite amount of options is increased

to an infinite amount of options.

However,𝔾 is not a universally embedding abelian group, even if one only

considers finite abelian groups. One reason for this is that all elements of

𝔾 have an order that is either infinite or a power of 2. The place where

the proof for Pg fails for 𝔾 is in the lemmata 5.2.7 and 5.2.11: the justified

and hereditary extension 𝑌 of a finite framed subgroup 𝑋 ⊂ 𝔾 is not

necessarily finite anymore, so the game value 𝑠 defined in the proof

of 5.2.7 is not necessarily in 𝔾. The algebraic structure of 𝔾 was fully

analyzed by David Moews [14] and is also described in [3]. For the group [14]: Moews (2002), The Abstract Structure
of the Group of Games

[3]: Siegel (2013), Combinatorial Game The-
ory

structure of 𝔾, Moews has shown that

𝔾 � 𝔻ℕ × (𝔻/ℤ)ℕ ,

where 𝔻 denotes the set of dyadic rationals.
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The surreal numbers one gets in 𝔾 are also just the dyadic rationals

𝔻, which do not even form a field. However, the universal embedding

theorem for total orders still works for 𝔻 when restricting to countable

total orders. As we noted before, this is Cantor’s isomorphism theorem,

a proof of which can be found in [7, p. 83–84]. [7]: Hrbacek et al. (1999), Introduction to
Set Theory

6.2 Uniqueness

For the end of this thesis, we want to mention that the universal embed-

ding properties in this thesis uniquely characterize Pg, No and No[i] up

to isomorphism. The proof of this uses the so-called back-and-forth method,

a standard technique from model theory. We present the case of Pg as a

universally embedding POA group, as featured in [15]. The argument [15]: Lurie (2002), On a Conjecture of Con-
way

works in the exact same way for all the other universal embedding

properties we discussed.

Suppose that both U and U′
are universally embedding POA groups. For

each ordinal 𝛼, take subgroups𝑈𝛼 ⊂ U and𝑈′
𝛼 ⊂ U′

such that𝑈𝛼 and

𝑈′
𝛼 are sets, and ⋃

𝛼∈On
𝑈𝛼 = U,

⋃
𝛼∈On

𝑈′
𝛼 = U′.1

1: For example, one could take𝑈𝛼 to be

the group generated by all elements of U
of rank at most 𝛼 (cf. p. 24), and similarly

for𝑈′
𝛼 .

These make sure that the following process actually collects all elements

of U and U′
. The goal is now to define subgroups 𝑉𝛼 ⊆ U and 𝑉′

𝛼 ⊆ U′

for each 𝛼 ∈ On with the following properties:

U U′

𝑉𝜔+1 𝑉′
𝜔+1

𝑉𝜔 𝑉′
𝜔

𝑉2 𝑉′
2

𝑉1 𝑉′
1

𝑉0 𝑉′
0

𝜑

··· ···

𝜑𝜔+1

𝜑𝜔

··· ···
𝜑2

𝜑1

𝜑0

Figure 6.1: We inductively build an iso-

morphism of U and U′
by climbing the

ladder of ordinals all the way up to the

proper classes U and U′

▶ There is an isomorphism 𝜑𝛼 : 𝑉𝛼 → 𝑉′
𝛼.

▶ The collection 𝑉𝛼 (and therefore also 𝑉′
𝛼) is a set.

▶ If 𝛽 < 𝛼, then𝑈𝛽 ⊆ 𝑉𝛼 and𝑈′
𝛽 ⊆ 𝑉′

𝛽.

▶ If 𝛽 < 𝛼, then 𝑉𝛽 ⊆ 𝑉𝛼 and 𝜑𝛼 |𝑉𝛽 = 𝜑𝛽 (and therefore also

𝑉′
𝛽 ⊆ 𝑉′

𝛼).

We define these by induction on On. First set 𝑉0 := 𝑉′
0

:= {0}. Now let 𝛼
be an ordinal, and assume that 𝑉𝛽 and 𝑉′

𝛽 have already been constructed

for all 𝛽 < 𝛼 and have the properties mentioned above. If 𝛼 is a limit

ordinal, we take

𝑉𝛼 :=
⋃
𝛽<𝛼

𝑉𝛽 , 𝑉′
𝛼 :=

⋃
𝛽<𝛼

𝑉′
𝛽

and define

𝜑𝛼 : 𝑉𝛼 → 𝑉′
𝛼

𝑥 ↦→ 𝜑𝛽(𝑥) for 𝛽 < 𝛼 such that 𝑥 ∈ 𝑉𝛽 .

It is simple to check that this is an isomorphism.

In the case that 𝛼 is a successor ordinal, we write 𝛼 = 𝛽+1 for 𝛽 ∈ On. Let

𝑊 be the subgroup of U′
generated by 𝑉′

𝛽 and𝑈′
𝛽 . Because the latter two

are sets,𝑊 is also a set. Now we use the universal embedding property

of U′
to extend the isomorphism 𝜑−1

𝛽 : 𝑉′
𝛽 → 𝑉𝛽 ⊂ U to an embedding

𝜓 : 𝑊 → U.

U

𝑊

𝑉′
𝛽 𝑈′

𝛽

∃𝜓

𝜑−1

𝛽

Figure 6.2: First, we use the universal

embedding property of U to go from a

subgroup𝑊 of U′ back to a subgroup of

U′
.
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Let 𝑉𝛼 be the subgroup of U generated by 𝑈𝛽 and 𝜓(𝑊). Again, 𝑉𝛼+1

is a set, so by the universal embedding property of U′
, we can extend

the isomorphism 𝜓−1
: 𝜓(𝑊) →𝑊 ⊂ U′

to an embedding 𝜑𝛼 : 𝑉𝛼 → U′
.

Setting𝑉′
𝛼 := 𝜑𝛼(𝑉𝛼) completes the induction. All our desired properties

are clearly satisfied.

U′

𝑉𝛼

𝜓(𝑊)

𝑈𝛽 𝑉𝛽

∃𝜑𝛼

𝜓−1

Figure 6.3: Then, we use the universal

embedding property of U′
to go from a

subgroup 𝑉𝛼 of U forth to a subgroup of

U′
.

Since𝑈𝛽 ⊆ 𝑉𝛼 ⊂ U and𝑈′
𝛽 ⊆ 𝑉′

𝛼 ⊂ U′
for all ordinals 𝛽 < 𝛼, we have⋃

𝛼∈On
𝑉𝛼 = U,

⋃
𝛼∈On

𝑉′
𝛼 = U′.

Therefore we can define

𝜑 : U → U′

𝑥 ↦→ 𝜑𝛼(𝑥) for 𝛼 ∈ On such that 𝑥 ∈ 𝑉𝛼 .

It is again to check that this is an isomorphism, which means we have

shown that any two universally embedding POA groups are isomor-

phic.

U U′

𝑉𝛼 𝑉′
𝛼

𝜓(𝑊) 𝑊

𝑈𝛽 𝑉𝛽 𝑉′
𝛽 𝑈′

𝛽

𝜑𝛼

𝜓

𝜑𝛽

Figure 6.4: The full back-and-forth argu-

ment.

Note that in this proof, we needed to choose an extension 𝜑𝛽+1 of the

embedding 𝜑𝛽 for each 𝛽 ∈ On. Those extensions are not unique, and

there is no canonical way of choosing them. So in order to make any

one of those choices, the axiom of choice is needed. However, since we

need to do this for every 𝛽 ∈ On, we need to make a proper class of

choices. The regular axiom of choice is not strong enough to do this,

it only guarantees the existence of a choice function on sets. What we

have implicitly used here is a stronger principle, called the axiom of global
choice. One of the consequences of this axiom is that every proper class

has the “same cardinality”. In other words, if global choice were to fail,

there might not even be a bĳection between U and U′
. This is one reason

why Von Neumann–Bernays–Gödel set theory, which has global choice

and direct way of dealing with proper classes, can be better suited for

dealing with No and Pg.

6.3 Avoiding Global Choice

While global choice is needed for Pg to be the unique universally embed-

ding POA Group, it suffices to assume the regular axiom of choice to

show that Pg is a universally embedding POA Group (and likewise for

all our other embedding theorems).

Let U be Pg, No or No[i]. Our first step when proving a universal

embedding theorem for U was always to use Zorn’s lemma to reduce

the problem to extending an embedding to one new element (see p. 27).

Recall that for a given embedding 𝜑 : 𝑋 → U, we defined the collection

of all partial extensions

Φ := {𝜓 : 𝑍 → U : 𝑋 ⊆ 𝑍 ⊆ 𝑌,𝜓 |𝑋 = 𝜑,𝜓 embedding} ,

which we partially ordered by 𝜓 ⪯ 𝜓′
iff 𝜓′

extends 𝜓.
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The issue now is that since U is a proper class, Φ is too. If one accepts the

axiom of global choice, there is no problem, since then Zorn’s lemma can

also be used on proper classes. However, one can also get by with only the

regular axiom of choice, which makes sure that all universal embedding

theorems also hold in the most commonly used Zermelo–Fraenkel set

theory with choice. We describe how this is done in this section.
2

Note 2: We thank Asaf Karagila for explain-

ing this procedure on Mathematics Stack

Exchange. [16]

that this requires more set theoretic preliminaries than the rest of this

thesis. All concepts used can, for example, be found in [7].

[7]: Hrbacek et al. (1999), Introduction to
Set TheoryLet 𝐶 ⊆ Φ be a chain. Now for every 𝜓 ∈ 𝐶, the image of 𝜓 is a subset

of 𝑌. Also if 𝜓, 𝜓′ ∈ 𝐶 have the same image, then 𝜓 ⪯ 𝜓′
implies that

𝜓 = 𝜓′
, and so does 𝜓′ ⪯ 𝜓. Since 𝐶 is a chain, one of these inequalities

must hold, meaning that any two elements of 𝐶 with the same image

are equal. This means that the image of each member of 𝐶 is a different
subset of 𝑌. The set of all subsets of 𝑌 is again a set, the power set of 𝑌.

So if 𝜅 be the cardinality of the power set of 𝑌, our argument shows that

every chain in Φ has at most cardinality 𝜅.

Let 𝜇 be the successor cardinal to 𝜅. Then (since we are assuming choice)

𝜇 is a regular cardinal. We now filter the elements of Φ by inductively

defined subclasses:

▶ Φ0 := {𝜑}.
▶ At successor stages, define Φ𝛼+1 by adding to Φ𝛼 all the elements

of Φ that are strictly greater than all elements of Φ𝛼, and have

minimal rank in the von Neumann hierarchy.

▶ For limit ordinals 𝛼, take the union𝑈 :=
⋃

𝛽<𝛼 Φ𝛽 . Now define Φ𝛼

by adding to𝑈 all upper bounds of minimal rank for chains in𝑈

which did not yet have an upper bound in𝑈 .

Now consider Φ𝜇, and let 𝐶 ⊆ Φ𝜇 be a chain. Then 𝐶 is also a chain in Φ,

which means 𝐶 has cardinality less than 𝜇. Now the collection

𝑆 := {𝛼 ∈ On : ∃𝜓 ∈ 𝐶 : 𝜓 ∈ Φ𝛼}

is a set of ordinals less than 𝜇, and the cardinality of 𝑆 is less than the

cardinality of 𝐶, so in particular less than 𝜇. By the regularity of 𝜇, we

get that 𝑆 must be bounded by an ordinal 𝜆 < 𝜇. So 𝐶 ⊆ Φ𝜆, which

means an upper bound of 𝐶 was added by Φ𝜆+𝜔 , since 𝜆 + 𝜔 is the next

limit ordinal after 𝜆. Therefore every chain in Φ𝜇 has an upper bound in

Φ𝜇, so by Zorn’s lemma, there is a maximal element 𝜓 ∈ Φ𝜇. Here the

regular axiom of choice suffices because Φ𝜇 is a set.

Now 𝜓 ∈ Φ𝜇 means that either 𝜓 ∈ ⋃
𝛼<𝜇 Φ𝛼 , or 𝜓 is an upper bound to

a chain in

⋃
𝛼<𝜇 Φ𝛼. But, as we have just seen, every chain in Φ𝜇 already

has an upper bound in Φ𝜆+𝜔 for some 𝜆 < 𝜇. So we definitely have

𝜓 ∈ Φ𝛼 for some 𝛼 < 𝜇. If 𝜓 was not maximal in Φ, then some extension

of it exists, which means some extension of minimal rank has been added

to Φ𝛼+1, contradicting the maximality of 𝜓 in Φ𝜇. So 𝜓 is the desired

maximal element of Φ.
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