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1 Introduction

Quantum theory gives rise to many interesting mathematical objects. It is thus
not surprising that concepts which fascinated even medieval mathematicians
have been brought to the quantum domain to attract today's researchers. Two
such instances are quantum Latin squares and quantum magic squares which
are in the focus of this thesis.

Magic squares, squares �lled with nonnegative numbers such that the entries
in each row and column (and sometimes also the diagonal) sum the same magic
constant, fascinate mathematicians and non-mathematicians for more than 2000
years. If the magic constant is one (and there is no condition on the diagonal),
they are sometimes also called doubly stochastic matrices. We will use the no-
tions magic square and doubly stochastic matrix interchangeably in this work.
Birkho�-von Neumann's Theorem states that every magic square is in the con-
vex hull of the set of permutation matrices, see Chapter 2.1. We generalize
this setting, following the work of Tim Netzer, Gemma De las Cuevas and Tom
Drescher [8], by consider a quantum generalization of magic squares and per-
mutation matrices where the entries are no longer numbers, but elements from
arbitrary C∗- algebras (Chapter 2.2). In this setting each row and each column
of the quantum magic square will form a positive operator valued measure, the
most general measure for quantum states. We use a generalization of the convex
hull, the matrix convex hull (Chapter 2.3.1), as used in free semialgebraic ge-
ometry, and we show that a generalization of Birkho�-von Neumann's Theorem
does not hold: the matrix convex hull of the quantum permutation matrices
does not give the full set of quantum magic squares (Theorem 2.41).

Arveson extreme points are a generalization of extreme points to the setting
of free spectrahedrons (Chapter 5). The set of quantum magic squares is such a
free spectrahedron and the quantum permutation matrices are Arveson extreme
points of it, but there must be more Arveson extreme points.
A quantum magic square is called semiclassical if it is in the matrix convex hull
of the classical magic squares. We show that the set of semiclassical quantum
magic squares is the matrix convex hull of the quantum permutation matrices
where all entries commute (Theorem 2.37).

On the other hand, about 300 years ago, Latin squares where introduced,
mostly to help with the construction of magic squares. A Latin square is a
square of size n �lled with the numbers from one to n such that each number
appears exactly once in each row and column. A special case of Latin squares of
size 9 are known as Sudokus. But Latin squares also have several applications in
mathematics, for example in the design of experiments [1] and as multiplication
tables of quasigroups [27]. Of course every Latin square is a non-normalized
magic square.
Independently of quantum magic squares, a quantum version of Latin squares
was introduced by Benjamin Musto and Jamie Vicary in [19]. Instead of num-
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bers as entries in the Latin squares, they take quantum states, or from a math-
ematical perspective, normalized vectors from some Cn. The vectors in each
row and column have to form an orthonormal basis. Following [19], we then
show that we can use the so called quantum shift-and-multiply method to con-
struct new unitary error bases using quantum Latin squares. Unitary error
bases are special bases of Matn(C) that are widely used in quantum informa-
tion theory [17], the most famous example being the Pauli matrices (Chapter 3).

The main part of this thesis is then to combine the notions of quantum
Latin squares and quantum magic squares and investigate the new structures
that arise from there (Chapter 4).
We embed quantum Latin squares into the setting of quantum magic squares
and give several methods to construct quantum magic squares using classical
Latin squares. All the quantum magic squares we construct using Latin squares
will be semiclassical. This justi�es the notion "semiclassical" even further since
this set really captures every quantum magic square that arises from some clas-
sical object (Corollary 4.14).
The set of embedded quantum Latin squares is exactly the set of all quantum
magic squares where each entry has rank one. One still open question is whether
the matrix convex hull of all embedded quantum Latin squares is equal to the
convex hull of all quantum permutation matrices. If this would hold it might
also have some meaning in the setting of quantum permutation groups.

In Chapter 6, we give a summary of other �elds where quantum magic
squares appear in one form or another, namely orthogonal quantum Latin
squares, SudoQ - a quantum version of Sudokus, quantum permutation groups,
and doubly normalized tensors of positive semi-de�nite operators. We give a
short idea of how the concepts could be connected and gain insight from each
other.
Lastly, we summarize all the open questions that arose during the work on this
thesis in Chapter 7.
In the Appendix, we list basic notations along with further de�nitions and proofs
about convex cones, operator systems and free spectrahedrons.
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2 Quantum Magic Squares

2.1 Classical Magic Squares

The oldest know magic square was found in China and dates back to 190
BCE [29]. It is a 3 × 3 square �lled with positive integers satisfying the fol-
lowing rule:
The sum of the numbers in each row, each column and in both main diagonals
are the same.
Magic squares, also of di�erent sizes, were afterwards widely studied by mathe-
maticians all around the world. The seemingly 'magic' way in which the numbers
added up fascinated even non-mathematicians and magic squares were found in
many religious contexts [30]. Historic examples can be seen in Figure 1.

Figure 1: On the left: Chinese Lo Shu Magic Square, the number of dots indicate
the number in this 3× 3 magic square.
On the right: Abrecht Dürer's Magic Square from his work Melencolia I.

In this work, when we talk about magic squares, we will refer to a somewhat
simpli�ed version, sometimes called doubly stochastic matrices:

De�nition 2.1. Amagic square of order n ∈ N is a n×nmatrix A ∈ Matn(R)
such that:

� ∀i, j ∈ {1, . . . , n} : Ai,j ∈ [0, 1]

� ∀j ∈ {1, . . . , n} :

n∑
i=1

Ai,j = 1

� ∀i ∈ {1, . . . , n} :

n∑
j=1

Ai,j = 1

Remark 2.2. � In words, we drop the assumption on the diagonals and
normalize by the 'magic constant', i.e. the sum of the numbers in each
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row and column. This is what we will call a magic square from now on.

� Albrecht Dürer's Magic Square from Figure 2.1 would, in our setting, then
become

16
34

3
34

2
34

13
34

5
34

10
34

11
34

8
34

9
34

6
34

7
34

12
34

4
34

15
34

14
34

1
34

.

� Doubly stochastic matrices, or for us magic squares, appear in di�erent
areas of mathematics, for example as transition matrices in special Markov
chains [5], [6].

The most famous result about magic squares is the Birkho�-von Neumann
Theorem, which says that the set of magic squares is equal to the convex hull
of the permutation matrices.

De�nition 2.3. A n×n permutation matrix is a matrix P ∈ Matn(C) that
is obtained by permuting the columns of the identity matrix In.
Hence, in reach row and column, there will be exactly one entry equal to 1 and
the rest 0.
Given some permutation π ∈ Sn, we will denote the corresponding permutation
matrix with Pπ ∈ Matn(C). We then have

(Pπ)i,j =

{
1 if π(i) = j

0 else

Theorem 2.4 (Birkho�-von Neumann). Given a magic square A ∈ Matn(R)

there exist k ∈ N, λ1, . . . , λk ∈ [0, 1] with
∑k
i=1 λi = 1 and permutation matrices

P1, . . . , Pk ∈ Matn(R) such that

A =

k∑
i=1

λiPi

Proof. Given a magic square A, if we can always �nd a permutation matrix P
such that whenever Pi,j 6= 0 then Ai,j 6= 0, we can do the following iteration:
Given A �nd a corresponding permutation matrix P . Set

λ = min{Ai,j |Pi,j 6= 0, i, j ∈ {1, . . . , n}}

Then A− λP is almost a magic square, since
∑
i(A− λP )i,j = 1− λ for each j

and similar also for the column sums. Note that if λ = 1 then A−λP = 0 is the
zero matrix and hence A = λP , we are done. If λ 6= 1 then 1

1−λ (A − λP ) is a
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magic square. But now at least one more entry is equal to zero. So after �nitely
many iterations, we have found a representation of A as convex combination of
permutation matrices.
But how do we �nd such a permutation matrix?
For that, we will use some basic graph theory. All graphs will be simple graphs
without loops.
We will follow the argument from [15]

De�nition 2.5. (1) Given a magic square A ∈ Matn(R) we de�ne its associ-
ated graph in the following way: The vertex set is V = {r1, . . . , rn, c1, . . . , cn}
where ri represents row i of A and cj represents column j.
The edge set E is de�ned by

(ri, cj) ∈ E ⇐⇒ Ai,j 6= 0

i.e. we connect one row vertex with a column vertex if the entry of A in
this row and column is non-zero.
This graph is clearly bipartite.

(2) A matching of a graph G = (V,E) is a set M ⊆ E of independent edges,
i.e. no two edges in M have the same start or end points.

A matching M is called perfect if |M | = |V |
2 (it is as large as possible).

Note that a perfect matching is only possible if the graph has an even
number of vertices.

(3) A matching M covers a set X ⊆ V if every x ∈ X appears in one edge
in M .

(4) Given a set X ⊆ V , the set of neighbours of X is de�ned as

N(X) := {v ∈ V \X | ∃x ∈ X : (x, v) ∈ E}

Theorem 2.6 (Hall's Marriage Theorem). Given a bipartite graph G = (V,E)
with bipartite sets A,B, there exists a matching M which covers A if and only
if

∀X ⊆ A : |N(X)| ≥ |X|

The proof of this theorem can be found in Hall's original paper [13], but also
in many lecture notes, for example [25].

Lemma 2.7. The associated graph of any magic square has a perfect matching.

Proof. Let A ∈ Matn(R) be a magic square with associated graph G = (V,E).
The graph is bipartite with bipartite sets R,C corresponding to the row and
column indices. Assume, for the sake of contradiction, that G has no matching
covering R. Then by Hall's Marriage Theorem there exists a set X ⊆ R such
that |N(X)| < |X|. Note that N(X) ⊆ C represents columns. Thus we can
consider the sum ∑

i∈X,j∈N(X)

Ai,j
(∗)
=
∑
i∈X

n∑
j=1

Ai,j =
∑
i∈X

1 = |X|.
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In (∗) we use that Ai,j = 0 if i and j are not connected in G.
On the other hand, since all entries of A are non-negative, we get

∑
i∈X,j∈N(X)

Ai,j ≤
∑

j∈N(X)

n∑
i=1

Ai,j = |N(X)| < |X| =
∑

i∈X,j∈N(X)

Ai,j

which gives the desired contradiction.

Now back to the proof of Birkho�-von Neumann's Theorem.
Will still need to show the following:
Given a magic square A, we can always �nd a permutation matrix P such that
whenever Pi,j 6= 0 then Ai,j 6= 0.
By the previous Lemma, the graph G = (V,E) associated to A has a perfect
matching M that covers all row indices and hence also all column indices. Now
let P ∈ Matn(R) be the matrix where

Pi,j =

{
1 if (i, j) ∈M
0 else

Then P is a permutation matrix, since exactly one entry in each row and column
will be equal to 1 and the rest 0.
Furthermore, we get that if Pi,j 6= 0 then (i, j) ∈ E which is equivalent to
Ai,j 6= 0.
Thus the matrix P is exactly what we were looking for.

Following [4], we will examine the extreme points of the set of magic squares.

De�nition 2.8. Given a vector space V and a subset A ⊆ V , a point u ∈ A
is called extreme point if whenever there are v, w ∈ A such that u = v+w

2 then
u = v = w.

Note that for a convex set A this de�nition is equivalent to saying that u ∈ A
is an extreme point if whenever u = λv+ (1− λ)w for some λ ∈ (0, 12 ], v, w ∈ A
then u = v = w, because

u = λv + (1− λ)w =
1

2
(2λv + (1− 2λ)w) +

1

2
w

and 2λv + (1− 2λ)w ∈ A.

Proposition 2.9. The n × n permutation matrices are the extreme points of
the so called Birkho� polytop: the set of n× n magic squares.

Proof. Assume we have a n × n permutation matrix P that can be written as
P = 1

2 (V +W ) where V,W are magic squares.
Whenever Pi,j = 0 then also Vi,j = Wi,j = 0 since all entries of V and W are
non-negative. But then P = V = W has to hold.
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On the other hand, if a magic square X is an extreme point, by Birkho�-
von Neumann's Theorem (2.4) it can be written as a convex combination of
permutation matrices:

X =

t∑
i=1

λiPi

Without loss of generality, we can assume that λ1 = min{λi | i = 1, . . . , t}
Hence, λi

1−λ1
≤ 1 for all i ≥ 2 and since the set of magic squares is convex and

1−λ1 =
∑t
i=2 λi we get that Q :=

∑t
i=2

λi

1−λ1
Pi is again a magic square. Then,

since X is an extreme point,

X = λ1P1 + (1− λ1)Q

implies that X = P1 is a permutation matrix.

2.2 Quantum Version

In this section, we want to generalize the notion of magic squares. Instead of
numbers, we will use matrices as the entries of the magic square. What rules
should the matrices follow?
In an n × n magic square, each row and each column forms a probability dis-
tribution on the numbers {1, . . . , n}. In the language of quantum physics, the
analogues notion is a positive operator valued measure, or short POVM.

De�nition 2.10. A positive operator valued measure is a set of n matrices
P1, . . . , Pn ∈ Hers(C) such that each Pi is positive semi-de�nite (Pi ≥ 0) and

n∑
i=1

Pi = Is

Following this generalization of a measure on numbers to a measure on quan-
tum states, we get to our de�nition of quantum magic squares:

De�nition 2.11. A quantum magic square (QMS) of interior size s and exterior
size n is a matrix A ∈ Matn(Hers(C)) such that each row and each column of
A forms a POVM. Or more detailed, A has to satisfy:

� ∀ i, j ∈ {1, . . . , n} : Ai,j ≥ 0

� ∀ i ∈ {1, . . . , n} :
∑n
j=1Ai,j = Is

� ∀ j ∈ {1, . . . , n} :
∑n
i=1Ai,j = Is

Example 2.12. Below is an example of a quantum magic square of exterior
size 3 and interior size 2.
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(
1/2 0
0 1/2

) (
0 0
0 1/2

) (
1/2 0
0 0

)
(

1/4 1/8
1/8 1/4

) (
3/4 −1/8
−1/8 1/4

) (
0 0
0 1/2

)
(

1/4 −1/8
−1/8 1/4

) (
1/4 1/8
1/8 1/4

) (
1/2 0
0 1/2

)
Remark 2.13. (1) We can generalize this notion even further by allowing

the entries of A to be positive elements in any C∗-algebra such that each
row and column sum to the identity element of the algebra. But we will
not consider this case any further in this work, since at least every �nite
dimensional C∗-algebra is covered by the matrix case.

(2) Every quantum magic square with interior size 1 is a magic square.

(3) For exterior size n = 1 the only possible QMS is

A = (Is)

(4) For n = 2 all QMS have the form(
a Is−a

Is−a a

)
=

(
1 0
0 1

)
⊗ a+

(
0 1
1 0

)
⊗ (Is−a)

where a, Is−a ∈ Hers(C) are positive semi-de�nite.

2.2.1 Di�erent Types

From now on, we will �x the exterior size n ∈ N of the quantum magic square.

In this section, we will de�ne a generalization of permutation matrices and
two other types of quantum magic squares: semiclassical quantum magic squares
and commuting quantum permutation matrices. Here, we follow [8].

De�nition 2.14. Let A = (Ai,j)
n
i,j=1 ∈ Matn(Hers(C)) be a quantum magic

square. Then A is called

� quantum permutation matrix if all Ai,j ∈ Hers(C) are projectors, i.e.
A2
i,j = Ai,j

� quantum commuting permutation matrix if A is a quantum per-
mutation matrix and all Ai,j commute, i.e. Ai,jA`,k = A`,kAi,j for all
i, j, `, k ∈ {1, . . . , n}.
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� semiclassical if there exist permutation matrices Pπ ∈ Matn(C) and posi-

tive semi-de�nite matrices qπ ∈ Hers(C) for each π ∈ Sn with
∑
π∈Sn

qπ = Is

such that
A =

∑
π∈Sn

Pπ ⊗ qπ.

Sn denotes the set of permutations of n elements.

Remark 2.15. (1) A quantum permutation matrix with interior size 1 is per-
mutation matrix in the classical sense, since the only projectors in C are
0 and 1 and the magic square condition makes sure that there is exactly
one 1 entry in each row and column.

(2) Every magic square is a semiclassical quantum magic square with interior
size 1, by Birkho�-von Neumanns Theorem (2.4).

(3) Every quantum magic square of exterior size n = 1, 2 is semiclassical.
This follows from the argument in Remark 2.13 (4), since we know how
all possible such QMS look like.

Proposition 2.16. Every quantum permutation matrix A ∈ Matn(Hers(C)) is
a unitary in the sense that A∗A = AA∗ = In·s

Proof. From the magic square condition, we get that for all i, j ∈ {1, . . . , n}:

n∑
`=1

Ai,` =

n∑
`=1

A`,j = Is

On the other hand, the entries of A are projectors, hence Ai,jAi,k = 0 for j 6= k
because

Ai,k =

∑
j

Ai,j

Ai,k = Ai,k +
∑
j 6=k

Ai,jAi,k

⇒
∑
j 6=k

Ai,jAi,k = 0

Ai,jAi,k≥0⇒ ∀j 6= k : Ai,jAi,k = 0

An analogous argument also shows Aj,iAk,i = 0 for j 6= k.
Hence

(AA∗)i,j =
∑
k

Ai,kA
∗
j,k

Aj,k∈Hers(C)
= δi,j

∑
k

Ai,kAi,k
A2

i,k=Ai,k

= δi,j
∑
k

Ai,k = δi,j Is

And similar for A∗A
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De�nition 2.17. We use the following notation for n, s ∈ N:

M(n)
s := {A ∈ Matn (Hers(C)) | A quantum magic square}
P(n)
s := {A ∈ Matn (Hers(C)) | A quantum permutation matrix}

CP(n)
s :=

{
A ∈ P(n)

s | all entries of A commute
}

SC(n)s :=
{
A ∈M(n)

s | A semiclassical
}

and

M(n) :=
⋃
s∈N
M(n)

s P(n) :=
⋃
s∈N
P(n)
s CP(n) :=

⋃
s∈N
CP(n)

s SC(n) =
⋃
s∈N
SC(n)s .

Remark 2.18. It directly follows that we have the following inclusions:

CP(n) ⊆ P(n) ⊆M(n)

For exterior size n = 1, 2, 3 we have

CP(n) = P(n)

For n = 1, 2 we know the form of each quantum magic square (see Remark
2.13) and there we can see that the entries of each quantum permutation matrix
automatically commute.
A proof for the case n = 3 can be found in [18].

For n ≥ 4 we have CP(n) ( P(n) which can be seen by taking block diagonal
sums of quantum permutation matrices. For more details see the example in
the proof of Proposition 2.21.

2.3 Background from Semialgebraic Geometry and Oper-
ator Algebra

Non-commutative or free semialgebraic geometry is a generalization of semial-
gebraic geometry, the study of sets of real solutions of polynomial equalities or
inequalities. For example, given a polynomial p ∈ R[x] then {t ∈ R | p(t) ≥ 0}
would be a set that is studied in semialgebraic geometry, while {M ∈ Hers(C) |
s ∈ N, p(M) ≥ 0 i.e. p(M) is psd} would be the analogues free semialgebraic
set. This can then be generalized to (non-commutative) polynomials in several
variables.
Some de�nitions and results from this �eld will be interesting for us.

2.3.1 Matrix Convex Hull

We start with the de�nition of a free set following [14] and we will see that the
sets in De�nition 2.17 will �t this concept. Then, we will generalize the notion
of convexity to �t the properties of free sets.
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De�nition 2.19. Let Fs ⊆ Matn(Hers(C)) for all s ∈ N and F =
⋃
s∈N Fs.

Then F is called a free set if

(1) it is closed with respect to direct sums, i.e. given A = (Ai,j)
n
i,j=1 ∈

Fs, B = (Bi,j)
n
i,j=1 ∈ Fk then

A⊕B :=

((
Ai,j 0

0 Bi,j

))n
i,j=1

∈ Fs+k.

(2) it is closed with respect to simultaneous unitary conjugation, i.e. for each
s ∈ N, each A ∈ Fs and each unitary U ∈ Mats(C) we have

U∗AU := (U∗Ai,jU)
n
i,j=1 ∈ Fs

Note: the set Fs is called the s-th level of F .

Remark 2.20. The above de�nition varies from the standard de�nition. Usu-
ally, one would consider n-tuples of hermitian matrices, i.e. Fs ⊆ (Hers(C))n,
since this is more natural when you want to plug the matrices into a multivari-
ate polynomial. But since tuples and matrices are the same up to rearranging,
as long as one does not multiply, we did not really change the de�nition. The
same also holds for the upcoming de�nition of matrix convexity 2.23.

Proposition 2.21. The setsM(n),P(n), CP(n) and SC(n) are free sets.

Proof. Let A,B ∈ M(n) then A ⊕ B ∈ M(n) since the sum over the entries of
each row and column is still the identity.

Let A ∈M(n)
s , U ∈ Mats(C) unitary, then all entries of U∗AU will be psd since

conjugation does not change this property. And we have for the i-th row

∑
j

U∗Ai,jU = U∗

∑
j

Ai,j

U = U∗U = Is

and similar for the columns, hence U∗AU ∈M(n).
For A,B ∈ P(n) we have A⊕B ∈ P(n), since

(A⊕B)2i,j =

(
A2
i,j 0
0 B2

i,j

)
=

(
Ai,j 0

0 Bi,j

)
= (A⊕B)i,j .

IfA ∈ P(n) thenAi,j is a projector and so is U
∗Ai,jU since (U∗Ai,jU)(U∗Ai,jU) =

U∗A2
i,jU = U∗Ai,jU . Hence U

∗AU ∈ P(n).

CP(n) is also closed under unitary conjugation, since we use the same matrix to
conjugate every entry, hence these entries still commute.
Given A,B ∈ CP(n). Then for arbitrary i, j, k, ` ∈ {1, . . . , n} we have

(A⊕B)i,j(A⊕B)k,` =

(
Ai,j 0

0 Bi,j

)(
Ak,` 0

0 Bk,`

)
=

(
Ai,jAk,` 0

0 Bi,jBk,`

)
A,B∈CP(n)

=

(
Ak,`Ai,j 0

0 Bk,`Bi,j

)
= (A⊕B)k,`(A⊕B)i,j .
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Hence A⊕B ∈ CP(n).

Given A =
∑
π Pπ ⊗ qπ ∈ SC

(n) then U∗AU =
∑
π Pπ ⊗ U∗qπU ∈ SC

(n).

Let A =
∑
π Pπ ⊗ aπ, B =

∑
π Pπ ⊗ bπ ∈ SC

(n). Then

(A⊕B)i,j =
∑

π∈Sn: π(i)=j

(
aπ 0
0 bπ

)
=

(∑
π∈Sn

Pπ ⊗
(
aπ 0
0 bπ

))
i,j

and therefore A⊕B ∈ SC(n).

Next, let us recall the de�nition of a convex set in order to generalize to our
free setting later.

De�nition 2.22. Let V be a R or C vector space. Then a set A ⊆ V is called
convex it for all n ∈ N, a1, . . . , an ∈ A and all scalars λ1, . . . , λn ≥ 0 with∑
i λi = 1 we have

n∑
i=1

λiai ∈ A

Every level M(n)
s is convex. This is not true for P(n) and CP(n) since the

convex combination of projectors is not necessarily a projector. But each level
of SC(n) is convex which will follow from Proposition 2.25.
But the concept of level-wise convexity is not enough in our setting, since we
have the possibility to connect di�erent layers. This should be re�ected in the
notion of convexity that we use. Hence the following de�nition:

De�nition 2.23. Let for every s ∈ N some Rs ⊆ Matn(Hers(C)) be given.
Then R =

⋃
s∈NRs is called matrix convex if for all r, si, t ≥ 1, A(i) ∈ Rsi for

i = 1, . . . , r and Vi ∈ Matsi,t(C) with
∑
i V
∗
i Vi = It we have(

r∑
i=1

V ∗i A
(i)
`,kVi

)n
`,k=1

∈ Rt

mconv(R) denotes the smallest matrix convex superset of R.

Remark 2.24. (1) The intersection of matrix convex sets is matrix convex,
therefore the matrix convex hull always exists. For example given some
set R =

⋃
s∈NRs like above, which is closed under direct sums, we have

mconv(R) =
⋃
s∈N
{A ∈ Matn(Hers(C)) | ∃V ∈ Matm,s(C) isometry , Z ∈ Rm : A = V ∗ZV }

see [14] Chapter 2.4 for more details.
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(2) If a set is matrix convex, then each level is convex in the standard sense.
Given λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1 set V1 =

√
λ1 Is, V2 =

√
λ2 Is and

let A(1), A(2) ∈ Rs. Then the matrix convexity of R implies that

V ∗1 A
(1)V1 + V ∗2 A

(2)V2 = λ1A
(1) + λ2A

(2) ∈ Rs.

But the converse implication is not true.

(3) The set of quantum magic squares M(n) is matrix convex. To see this,

let, for i = 1, . . . , r : A(i) ∈ M(n)
si , Vi ∈ Matsi,t(C) with

∑
i V
∗
i Vi = It.

We want to show: (
r∑
i=1

V ∗i A
(i)
`,kVi

)n
`,k=1

∈M(n)
t

Fix a row `. Then the sum over the elements in this row is

n∑
k=1

r∑
i=1

V ∗i A
(i)
`,kVi =

r∑
i=1

V ∗i

(
n∑
k=1

A
(i)
`,k

)
Vi =

r∑
i=1

V ∗i Isi Vi = It .

Hence, each row sums to the identity and a similar calculation shows the
same for the columns. Furthermore, the sum and conjugate of positive
semi-de�nite matrices is again positive semi-de�nite, hence B is indeed a
quantum magic square.

(4) For n ≥ 2 the sets CP(n) and P(n) are not matrix convex. This follows
from the fact that convex combinations of projectors are not necessarily
projectors again.
We get the following inclusions:

mconv
(
CP(n)

)
⊆ mconv

(
P(n)

)
⊆M(n)

From Remark 2.13 we can see that for n ≤ 2 all inclusions are equalities.
For n = 3 the left inclusion is an equality by Remark 2.18. We will later
in Theorem 2.41 see that the inclusion on the right is not an equality for
n ≥ 3.

Proposition 2.25. The set of semiclassical quantum magic squares is the ma-
trix convex hull of the classical magic squares, and hence, by Birkho�-von Neu-
manns Theorem (2.4), the matrix convex hull of the classical permutation ma-
trices.
Or expressed in formulas:

SC(n) = mconv(M(n)
1 ) = mconv(P(n)

1 )

Proof. Let A =
∑
π∈Sn

Pπ ⊗ qπ ∈ SC(n)t be a semiclassical QMS. Then, by
de�nition, each qπ ≥ 0. Therefore it can be written as a square of a matrix

14



Vπ ∈ Matt(C) : qπ = V ∗π Vπ. Hence,

A`,k =

(∑
π

Pπ ⊗ V ∗π Vπ

)
`,k

=
∑
π

(Pπ)`,kV
∗
π Vπ =

∑
π

V ∗π (Pπ)`,kVπ.

And we have
∑
π V
∗
π Vπ =

∑
π qπ = It . Therefore, A ∈ mconv(P(n)

1 ).
The other direction follows in the same manner, just do the above calculations
backwards.

This proposition shows why the name 'semiclassical' is well chosen, since
these are all quantum magic squares that directly arise from classical magic
squares using the tool of the matrix convex hull.

2.3.2 Operator Systems

Abstract Operator systems are a structure that come from the study of C∗-
algebras. Their structure is similar to the one of free sets with di�erent levels
of interior sizes of matrices.
The original de�nition is quite abstract, we will only need a simpli�ed and
adapted version, but we will state it for the sake of completeness. The de�nitions
in this chapter are taken from [10], where more results about abstract operator
systems can be found.

De�nition 2.26 (Abstract Operator System, original version). Let V be a C-
vector space with involution ∗, Vher := {v ∈ V | v∗ = v} the R-subspace of
hermitian elements. Then, for any s ∈ N, we have a canonical involution on
Mats(V) = V ⊗Mats(C) given by (vi,j)

∗
i,j = (v∗j,i)i,j .

An abstract operator system C on V consists of salient convex cones Cs ⊆
Mats(V)her for each s ∈ N, such that

(1) ∀s, t ∈ N, A ∈ Cs, V ∈ Mats,t(C) : V ∗AV ∈ Ct

(2) ∃u ∈ C1 ⊆ Vher such that

(a) ∀s ∈ N ∀x ∈ Mats(V)her ∃r > 0 : r(u⊗ Is) + x ∈ Cs
(b) ∀s ∈ N : if ∀r > 0 : r(u⊗ Is) + x ∈ Cs then x ∈ Cs

Remark 2.27. (1) Condition (2a) means there has to exist a matrix order
unit. This is equivalent to saying that u ⊗ Is is an interior point of Cs
when taking the �nest locally convex topology on V.

(2) Condition (2b) says that u has to be an archimedian matrix order unit.
This also has an equivalent topological meaning, namely that all Cs are
closed.

(3) There is also the notion of concrete operator system, which is a ∗-subspace
of a C∗-algebra containing the one element. The Choi-E�ros Theorem
states that every abstract operator system is isomorphic (with a certain
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construction) to a concrete operator system. But we will not go into
details here.
For easier notation, we will drop the 'abstract' from now on since all
operator systems that we consider will be of this type.

To use the notion of operator system in the context of quantum magic
squares, we need to de�ne a �tting C-vector space V and look at convex cones in
there. The set of quantum magic squares itself can not be an operator system,
since the normalization condition bounds the convex sets on each level, they do
not form cones. Hence we have to drop the normalization for now, which leads
to the following de�nition that was �rst formulated in [8].

De�nition 2.28. Let V(n) = {A ∈ Matn(C) | ∃c ∈ C : ∀i, j ∈ {1, . . . , n} :∑
k Ai,k =

∑
k Ak,j = c} ⊆ Matn(C) be the space of matrices with constant row

and column sums. Equip this space with entrywise conjugation as involution.
The magic cone is the set

C(n) = {A ∈ V(n) | ∀i, j : Ai,j ∈ R≥0} ⊆ V(n)
her.

The magic cone is precisely the cone of magic squares in the non-normalized
sense.

Let us consider some (classical) geometric properties of these sets, following
[8].

Lemma 2.29. (1) V(n) = spanC(P(n)
1 )

(2) V(n)
her = spanR(P(n)

1 )

(3) dimC(V(n)) = dimR(V(n)
her) = (n− 1)2 + 1

(4) C(n) is a salient polyhedral cone and the all one matrix is an interior
point/order unit.

(5) The extreme rays of C(n) are precisely the ones spanned by the permutation
matrices, hence there are n! many.
For n ≥ 3 C(n) has n2 facets, namely Fi,j = {A ∈ C(n) | Ai,j = 0} for
i, j ∈ {1, . . . , n}.
In the case n ≥ 3, C(n) is not a simplex cone, i.e. the number of extreme
rays exceeds its dimension.

Proof. To show the '⊆' part for (1) and (2) we will consider three cases:

Case 1: A ∈ V(n)
her and Ai,j ≥ 0 for all i, j (in other words A ∈ C(n)).

Set c =
∑n
i=1Ai,j for some j ∈ {1, . . . , n} the value of the row and column

sums, the so called magic constant. Note that if c = 0 then A = 0 the all zero

matrix which is clearly in spanR(P(n)
1 ). If c 6= 0 then 1

cA is a magic square and

by Birkho�-von Neumann's Theorem (2.4) we know 1
cA ∈ spanR(P(n)

1 ), hence

A ∈ spanR(P(n)
1 ).
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Case 2: A ∈ V(n)
her and there exist some i, j such that Ai,j < 0.

Let J denote the all one n × n matrix. Note that J ∈ V(n)
her with only non-

negative entries, hence J ∈ spanR(P(n)
1 ) by the argument in the �rst case.

Set m = max{|Ai,j | | Ai,j < 0, i, j ∈ {1, . . . , n}} the absolute value of the

smallest entry of A. Then A+mJ ∈ V(n)
her has per construction only non-negative

entries and is, again by case one, in the span of the permutation matrices. But
then so is A.
Case 3: A ∈ V(n) \ V(n)

her.
Then A = Re(A) + i Im(A) where Re(A), Im(A) are just the entrywise real an
imaginary part. Let c = c1 + ic2 be the magic constant. For any j ∈ {1, . . . , n}
we get ∑

k

Ak,j =
∑
k

Re(Ak,j) + i
∑
k

Im(Ak,j) = c1 + ic2

Hence, ∑
k

Re(Ak,j) = c1,
∑
k

Im(Ak,j) = c2

for any j and similarly also for the row sums. Therefore, Re(A), Im(A) ∈ V(n)
her

and by case 2, we get A ∈ spanC(P(n)
1 )

For the '⊇' inclusion, observe that V(n) (V(n)
her) is indeed a C (R)-vector space:

The sum of matrices with constant row and columns sums has again constant
row and column sums and the same holds for scalar multiples. Furthermore, we

know that every n×n permutation matrix is in V(n)
her ⊂ V(n) and therefore their

C (R)-span has to be contained as well.

Proof of (3):

To get a matrix in V(n) (V(n)
her), we can choose the upper left n−1×n−1 matrix

freely over C (R), this gives (n− 1)2 degrees of freedom.
Next, we can choose the magic constant c ∈ C (c ∈ R), another degree of
freedom.
The entries in the n-th row and column have to be chosen in such a way that
the rows and columns indeed sum to c. For example A1,n = c−

∑n−1
j=1 A1,j and

An,n = c−
n−1∑
j=1

Aj,n = c− (n− 1)c+

n−1∑
k,j=1

Aj,k = c−
n−1∑
k=1

An,k.

Hence dimC(V(n)) = dimR(V
(n)
her ) = (n− 1)2 + 1.

Proof of (4):

� Cone:
Let λ1, λ2 ∈ R≥0, A,B ∈ C(n). Then (λ1A+λ2B)i,j ≥ 0 and λ1A+λ2B ∈
V(n)
her since it is a vector space.
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� Salient:
−C(n) = {A ∈ V(n)

her | Ai,j ≤ 0 ∀i, j} and therefore C(n) ∩ −C(n) = {0}

� Polyhedral:
From part (1) case 1 we can see that

C(n) = co(P(n)
1 ) :=

{∑
k

λkPk | λk ≥ 0, Pk ∈ P(n)
1

}
.

This means that C(n) is the conic hull of �nitely many elements which is
one of the possible (equivalent) ways to de�ne a polyhedral cone.

� J is interior point/order unit:

Given some A ∈ V(n)
her, we have already seen in part (1) case 1 that we

can �nd an m > 0 such that mJ + A ∈ C(n), which is precisely what we
needed to show.

Proof of part (5):
First, we show that the rays generated by permutation matrices are indeed ex-
treme rays.

Pick a permutation matrix P ∈ P(n)
1 and assume there are A,B ∈ C(n), A,B 6= 0

such that A+B
2 ∈ co(P ), i.e. there exists a λ ∈ R≥0 such that A+B

2 = λP .

If Pi,j = 0 then (A + B)i,j = 0 and, since A,B ∈ C(n), Ai,j = Bi,j = 0. Hence
all but one entry in each row and column of A and B are zero. But A,B are
non-zero and have constant row and column sums. Therefore they have to be a
multiple of P .
On the other hand, any extreme ray of C(n) has to be generated by a permuta-

tion matrix, since C(n) = co(P(n)
1 ).

Lastly, we need to show that for n ≥ 3 the Fi,j = {A ∈ C(n) | Ai,j = 0} for
i, j ∈ {1, . . . , n} are the facets of C(n).
Fix some i, j ∈ {1, . . . , n}. Clearly, Fi,j is convex. Assume there are A,B ∈ C(n)
and λ ∈ (0, 1) such that λA+ (1−λ)B ∈ Fi,j . Then λAi,j + (1−λ)Bi,j = 0 and
Ai,j , Bi,j ≥ 0, hence Ai,j = Bi,j = 0 and therefore A,B ∈ Fi,j . Thus, Fi,j is
face and it has one dimension less then C(n) since we have one extra restriction.
On the other hand, assume that there is a facet F of C(n) which is not of the form
of any of the Fi,j . Then for every i, j there exists some A ∈ F with Ai,j > 0.
Taking a convex combination of all these gives some B ∈ F such that all entries
of B are strictly greater than zero. Now, since dim(F ) < dim(C(n)) there exists
a nonzero C ∈ C(n) \ F . Since Bi,j > 0 for any i, j we can �nd a small enough
ε > 0 such that B + εC ∈ C(n) and B − εC ∈ C(n). Both can, due to the
limited dimension of F , not be in F . But 1

2 (B + εC) + 1
2 (B − εC) = B ∈ F , a

contradiction to F being a facet.

Now we can consider the for us relevant operator systems over the C-vector
space of matrices with constant row and column sums V(n) ⊆ Matn(C). Keep
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in mind that we use entrywise conjugation in V(n), hence V(n)
her ⊆ Matn(R). We

will use that Matn(C) ⊗ Mats(C) ∼= Matn((Mats(C)), hence we can consider
V(n)⊗Mats(C) ⊆ Matn((Mats(C)) and (V(n)⊗Mats(C))her ⊆ Matn(Hers(C)).
In this way we get the structure that we are used to from the quantum magic
squares.

De�nition 2.30 (Operator System over V(n)). An operator system over V(n)

is a set of non-empty closed salient convex cones C =
⋃
s∈N Cs with

(1) ∀s ∈ N : Cs ⊆ (V(n) ⊗Mats(C))her

(2) ∀r, s ∈ N ∀V ∈ Matr,s(C) ∀(Ai,j)i,j ∈ Cr : (V ∗Ai,jV )i,j ∈ Cs

Next, we will de�ne the minimal and maximal magic operator system. This
will be the minimal and maximal operator systems as it is used in free algebraic
geometry (for example [10]) over the magic cone.

De�nition 2.31 (Minimal Magic Operator System). Let C(n) ⊂ Vher be the

magic cone. We de�ne the minimal magic operator system S(n) =
⋃
s∈N
S(n)s with

S(n)s :=

{∑
π∈Sn

Pπ ⊗ qπ | Pπ ∈ Matn(C) is permutation matrix, qπ ∈ PSDs

}

Remark 2.32. Note that, since the permutation matrices are the extreme rays
of C(n) (Lemma 2.29), we have

S(n)s :=

{∑
π∈Sn

Pπ ⊗ qπ | Pπ ∈ Matn(C) is permutation matrix, qπ ∈ PSDs

}

=

{
k∑
i=1

ci ⊗ qi | k ∈ N, ci ∈ C(n), qi ∈ PSDs

}

So it is indeed the minimal operator system containing C(n) as described in for
example [10].

Lemma 2.33. The minimal magic operator system is minimal in the sense that

for all operator systems
⋃
s∈N

Ds with D1 = C(n) it follows that ∀s ∈ N : S(n)s ⊆

Ds.

The proof of this lemma can be found in the appendix, Lemma 9.10. To
prove it, we will use V(n) ∼= Cm for some m and we consider the minimal
operator system for any closed salient convex cone C ⊆ Rm
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De�nition 2.34 (Maximal Magic Operator System). Let C(n) ⊂ Vher be the
magic cone. Then the maximal magic operator system is given by:

L(n)
s :=

{
A ∈ (V(n) ⊗Mats(C))her | ∀v ∈ Cs : (In⊗ v)∗A(In⊗ v) ∈ C(n)

}
.

We write
L(n) =

⋃
s∈N
L(n)
s

Lemma 2.35. L(n) is maximal in the sense that for any operator system⋃
s∈NDs with D1 ⊆ C(n) it holds that Ds ⊆ L(n)

s .

Again, the proof can be found in the appendix, Lemma 9.12.

Remark 2.36. (1) These operator systems are connected to the quantum
magic squares in the following way:

M(n)
s = {A ∈ L(n)

s | ∀i, j :
∑
k

Ai,k =
∑
k

Ak,j = Is}

and
SC(n)s = {A ∈ S(n)s | ∀i, j :

∑
k

Ai,k =
∑
k

Ak,j = Is}.

(2) For n ≤ 2 we have S(n) = L(n).
For all n ≥ 3 and s ≥ 2 we have

S(n)s ( L(n)
s

since from Lemma 5 we know that C(n) is not a simplex cone for n ≥ 3.
In [10], Theorem 4.7, it is shown that the minimal and maximal operator
system over a convex cone C coincide if and only if the cone is a simplex.

2.4 Characterization of Semiclassical QuantumMagic Squares

In this section, we will take a closer look at semiclassical quantum magic squares.
We will see that SC(n) = mconv(CP(n)) and give some further characterizations,
using the notion of positive unital ∗-linear maps. The name describes the notion
quite well, a de�nition can be found in the Appendix 9.2.
We will also show that for n ≥ 3, s ≥ 2 there exist quantum magic squares that
are not semiclassical.
The whole section will follow the results of [8], Section 3.1.

Theorem 2.37. For any n ∈ N we have:

(1) SC(n) = mconv(CP(n))
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(2) Let A = (Ai,j)i,j ∈ M(n)
s be a quantum magic square. Consider the C∗-

algebra CSn := {f : Sn → C} and let fi,j ∈ CSn be de�ned as

fi,j : Sn → C

π 7→

{
1 : π(i) = j

0 : else

Then A is semiclassical if and only if there exists a positive unital ∗-linear
map ϕ : CSn → Mats(C) such that ϕ(fi,j) = Ai,j

(3) If A = (Ai,j)i,j ∈M(n)
s and for all π ∈ Sn we have

n∑
k=1

Ak,π(k) ≥
n− 2

n− 1
· Is

then A ∈ SC(n)s .

Proof. (1): In Proposition 2.25 we have seen that SC(n) = mconv(P(n)
1 ) so it

su�ces to show P(n)
1 ⊆ CP(n) ⊆ SC(n).

The �rst inclusion trivially holds, since the multiplication in R is commutative.

To see the other inclusion CP(n) ⊆ SC(n), let U = (ui,j)i,j ∈ CP(n)
t .

For any permutation π ∈ Sn set

qπ :=

n∏
k=1

uk,π(k).

Note that the ui,j 's commute, thus the order of the product is not relevant.
Let Pπ denote, as usual, the permutation matrix corresponding to π. And we
will use fi,j as in Theorem 2.37 (2).(∑

π∈Sn

Pπ ⊗ qπ

)
i,j

=
∑
π∈Sn

(Pπ ⊗ qπ)i,j =
∑
π∈Sn

fi,j(π)

(
n∏
k=1

uk,π(k)

)

= ui,j

∑
π∈Sn

fi,j(π)
∏
k 6=i

uk,π(k)


︸ ︷︷ ︸

=:(∗)

If we can show that (∗) = It, then we have shown that

U =
∑
π∈Sn

Pπ ⊗ qπ ⇒ U ∈ SC(n)

For easier notation, we will only look at the case where i = j = n, but the other
cases can be solved similarly.
Since CP(n) ⊆ P(n), Proposition 2.16 states that

ui,kuj,k = 0
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for all i, j, k ∈ {1, . . . , n}, i 6= j.
Hence given a function g : {1, . . . , n} → {1, . . . , n} we have

n∏
k=1

uk,g(k) 6= 0 ⇐⇒ g surjective ⇐⇒ g ∈ Sn.

Therefore we get

(∗) =
∑
π∈Sn

fn,n(π)

n−1∏
k=1

uk,π(k) =
∑

g:{1,...,n}→{1,...,n}
g(n)=n

n−1∏
k=1

uk,g(k)

=
∑

g:{1,...,n−1}→{1,...,n}

n−1∏
k=1

uk,g(k) =
n−1∑
`=1

n∑
τ`=1

n−1∏
k=1

uk,τk
(I)
=

n−1∏
k=1

n∑
τ=1

uk,τ
(II)
= It .

Seeing that equality (I) holds is probably easiest when looking at it from right
to left, then it is just expansion of the product.
(II) follows from the fact that (ui,j)i,j is a quantum magic square.

The proof of part (2) and (3) are a bit o� the topic of this work, so they will
be skipped here but can be found in [8].

Remark 2.38. The quantum magic square �lled with normalized identity ma-

trices
(
1
n Is
)n
i,j=1

∈ M(n)
s ful�ls condition (3) of Theorem 2.37. This constant

quantum magic square is a relative interior point ofM(n)
s , hence condition (3)

can be seen as a lower bound on the diameter of SC(n) insideM(n).

Before we can prove the �nal statement in this section, we need a preparatory
lemma.

Lemma 2.39. Let t > s ∈ N, U ∈ Mats(C) be a projector and letW ∈ Matt(C)
such thatW ≥ 0, It−W ≥ 0 (i.e. W is a positive semi-de�nite contraction) and
there exists an isometry V ∈ Matt,s(C) such that

U = V ∗WV.

Then there exists some contraction P ∈ Matt−s(C), P ≥ 0, It−s−P ≥ 0, such
that, up to changing basis,

W =

(
U 0
0 P

)
i.e. W is the direct sum of U and P with respect to the decomposition Ct =
V Cs ⊕ (V Cs)⊥.

Proof. Write W with respect to the above decomposition:

W =

(
U R
R∗ P

)
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for some matrices R ∈ Mats,t−s(C), P ∈ Matt−s(C).
Since W is a contraction, we get(
U R
R∗ P

)
= W ≥W 2 =

(
U2 +RR∗ UR+RP
R∗U + PR∗ R∗R+ P 2

)
=

(
U +RR∗ UR+RP
R∗U + PR∗ R∗R+ P 2

)
Note that for matrices A,B we denote A ≥ B ⇐⇒ A−B ≥ 0.
Hence the above calculation yields(

−RR∗ R− UR−RP
R∗ −R∗U − PR∗ P −R∗R− P 2

)
≥ 0.

A block matrix can only be positive semi-de�nite if each block on the diago-
nal is positive semi-de�nite. Hence we need −RR∗ ≥ 0 but RR∗ ≥ 0 since it
is a conjugate square. Therefore, RR∗ = 0 which implies that R = 0 (since
(RR∗)i,i =

∑
k Ri,kRi,k =

∑
k |Ri,k|2 is a sum of non-negative elements for ev-

ery i).
But then also P ≥ P 2 has to hold and we get the desired direct sum decompo-
sition.

Finally, we can now show that there are quantum magic squares and for ex-
terior size n ≥ 4 even quantum permutation matrices that are not semiclassical.

Corollary 2.40. (1) For every n ≥ 3, s ≥ 2 we have

SC(n)s (M(n)
s

and in particular
mconv(CP(n)) (M(n).

(2) For n ≤ 3 we have SC(n) ⊇ P(n)

For every n ≥ 4 and s ≥ 2 there exists a quantum permutation matrix

which is not semiclassical, i.e. SC(n)s ) P(n)
s .

Proof. (1) Let n ≥ 3, s ≥ 2. From Remark 2.36 (2) we know that

S(n)s ( L(n)
s

i.e. the maximal magic operator system at level s is strictly larger than the
minimal magic operator system.

Therefore, we can �nd an A ∈ L(n)
s \ S(n)s . The condition for being in L(n)

s

implies that for all i, j ∈ {1, . . . , n} and for all v ∈ Cs : v∗Ai,jv ≥ 0, in other
words each entry of A is positive semi-de�nite. Therefore, the row and column
sum matrix a =

∑
k Ai,k =

∑
k Ak,j is positive semi-de�nite as well. But we

need that a is positive de�nite, i.e. 0 is not an eigenvalue.

We know that S(n)s ,L(n)
s are closed convex cones with non-empty interior. Hence

also L(n)
s \ S(n)s has non-empty interior and we can therefore alter A a little bit,

such that the row/column sum is positive de�nite but we are still in L(n)
s \S(n)s .
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Hence, we can assume that the row/column sum a is positive de�nite.
Then we can �nd an invertible matrix W ∈ Mats(C) such that W ∗aW = Is.
Therefore, we get a quantum magic square W ∗AW = (W ∗Ai,jW )i,j that is not

semiclassical, hence not in S(n)s . If it would be semiclassical, we could �nd a rep-

resentationW ∗AW =
∑
π Pπ⊗qπ and then A =

∑
π Pπ⊗(W−1)∗qπW

−1 ∈ S(n)s ,
a contradiction.

(2) For n ≤ 3 we have CP(n) = P(n) which directly implies the �rst state-
ment.
For n ≥ 4, s ≥ 2 there exists U ∈ P(n)

s \ CP(n)
s (see Remark 2.18). If U was

semiclassical, then by Theorem 2.37 we have U ∈ mconv(CP(n)), i.e. there ex-

ists W ∈ CP(n) and an isometry V such that Ui,j = V ∗Wi,jV . By Lemma 2.39
we can assume that there is a contraction Pi,j such that

Wi,j =

(
Ui,j 0

0 Pi,j

)
But this gives a contradiction, since we assumed that the Ui,j do not all com-
mute.

2.5 Matrix Convex Hull of Permutation Matrices/ Gen-
eralization of Birkho�-von Neumman's Theorem

In this section, we will formulate a generalization of Birkho�-von Neumann's
Theorem to the setting of quantum magic squares. Instead of taking the convex
hull, we will take the matrix convex hull and not just of the permutation matrices
but the quantum permutation matrices. In contrast to the classical case, we
will see that this matrix convex hull does not give the full set of quantum magic
squares.
Again, we will follow [8] closely.

Theorem 2.41. For every n ≥ 3 we have

mconv(P(n)) (M(n).

The di�erence already appears at level s = 2.

From Remark 2.18 we know that for n = 3 we have CP(3) = P(3). There-
fore, Corollary 2.40 already gives the desired result, namely mconv(P(3)) =

mconv(CP(3)) (M(3).
For n ≥ 4 we will need some more work and proceed as follows: First, we
will establish a necessary condition for being in the matrix convex hull of P(n)

(Proposition 2.43), then we will show that there is a quantum magic square in

M(3)
2 which does not ful�l this condition. In the last step, we will embed it into

quantum magic squares of larger size n and show that the necessary condition
still fails.
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Construction 2.42. Let A = (Ai,j)i,j ∈ M(n)
s . Then col(A) denotes the

matrix we get by writing the entries of A in one column vector, the pairs of
indices are ordered lexicographically, i.e. we get

col(A) =



A1,1

A1,2

...
A2,1

...
An,n


.

Let {ei}ni=1 denote the standard basis of Cn. Then we can see col(A) as an
element of a threefold tensor product as follows:

col(A) =

n∑
i,j=1

ei ⊗ ej ⊗Ai,j ∈ Cn ⊗ Cn ⊗Hers(C)

diag(A) is de�ned similarly, we write the entries of A in the diagonal:

diag(A) :=

n∑
i,j=1

Ei,i ⊗ Ej,j ⊗Ai,j ∈ Matn(C)⊗Matn(C)⊗Hers(C)

where {Ei,j}ni,j=1 is the canonical basis of Matn(C).
Furthermore, we will set

ϕ(A) := diag(A)− col(A) col(A)∗ ∈ (Matn(C)⊗Matn(C)⊗Mats(C))her.

For n = 2 this matrix looks as follows:

ϕ(A) =


A11 −A2

11 −A11A12 −A11A21 −A11A22

−A12A11 A12 −A2
12 −A12A21 −A12A22

−A21A11 −A21A12 A21 −A2
21 −A21A22

−A22A11 −A22A12 −A22A21 A22 −A2
22


Additionally, we de�ne for n ≥ 3

ψ(A) :=

n∑
i,j,k,l=1
i6=j,k 6=l

Ei,j ⊗ Ek,l ⊗ (−αn Is +βnAi,k + βnAj,l + γnAi,l + γnAj,k)

where

αn :=
1

(n− 1)(n− 2)
, βn :=

n− 1

n(n− 2)
, γn :=

1

n(n− 2)
.

Lastly, let Z(n) := {M ∈ Matn(C) | ∀i ∈ {1, . . . , n} : Mi,i = 0} denote the
vector space of matrices with zero on the diagonal and for e := (1, . . . , 1)T ∈ Cn
we de�ne

Z(n)
e := {Z ∈ Z(n) | Ze = Z∗e = 0}.
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With this construction we can now formulate the desired necessary condition
for being in mconv(P(n)).

Proposition 2.43. If A ∈ mconv(P(n))s then the following two formulas hold:

(1) ∃X ∈
(
Z(n) ⊗Z(n) ⊗Mats(C)

)
her

: ϕ(A) +X ≥ 0

(2) ∃X ∈
(
Z(n)
e ⊗Z(n)

e ⊗Mats(C)
)
her

: ϕ(A) + ψ(A) +X ≥ 0

Furthermore, for any A ∈M(n)
s the formulas (1) and (2) are equivalent.

We will not prove this very technical proposition here. The proof can be
found in [8].

Proof of Theorem 2.41. We will show the following statement by induction on
n:
For all n ≥ 3 there exists an element in M(n)

2 that does not satisfy (1) from
Proposition 2.43.

For n = 3, we have already seen that mconv(P(3))2 (M(3)
2 . Hence there are

elements in M(n)
2 \ mconv(P(n))2 which makes it plausible that one of them

does not satisfy (1). But we only know that (1) is a necessary condition, so
we still need to prove the statement for n = 3. [8] provides us with an explicit
example: Let

A11 :=
1

3
I2 +

9

62

(
− 34

93
4
5 + 2i

13
4
5 −

2i
13

7
16

)
A12 :=

1

3
I2 +

9

62

(
5
6

1
3 −

20i
81

1
3 + 20i

81 − 41
55

)
A21 :=

1

3
I2 +

9

62

(
− 2

3 − 25
92 −

3i
7

− 25
92 + 3i

7
1
34

)
A22 :=

1

3
I2 +

9

62

(
29
30

6
35 − i

6
35 + i − 5

8

)
and choose A1,3, A2,3, A3,1, A3,2, A3,3 such that A = (Ai,j)

3
i,j=1 ∈M

(3)
2 .

Then A does not satisfy (2) from Proposition 2.43, hence it also does not satisfy
(1) and is not in mconv(P(3)). This has been shown in [8] with the help of a
computer algebra system. We will not go into further details here but instead
move on to the induction step.

Let n > 3. By the induction hypothesis there exists an element A ∈ M(n−1)
2

which does not satisfy (1).
Now consider

Ã =

(
A 0
0 I2

)
∈M(n)

2 .

We claim that Ã does not satisfy (1) either.
Let X̃ ∈ (Z(n) ⊗Z(n) ⊗Mat2(C))her be arbitrary and let

v =

(
In−1

0

)
∈ Matn,n−1(C).
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Then

X := (v ⊗ v ⊗ I2)∗X̃(v ⊗ v ⊗ I2) ∈ (Z(n−1) ⊗Z(n−1) ⊗Mat2(C))her

and

(v ⊗ v ⊗ I2)∗ϕ(Ã)(v ⊗ v ⊗ I2)

= (v∗ ⊗ v∗ ⊗ I2)

 n∑
i,j=1

Ei,i ⊗ Ej,j ⊗ Ãi,j −
n∑

i,j,k,`=1

eie
∗
k ⊗ eje∗` ⊗ Ãi,jÃk,`

 (v ⊗ v ⊗ I2)

=

n∑
i,j=1

v∗Ei,iv ⊗ v∗Ej,jv ⊗ Ãi,j −
n∑

i,j,k,`=1

v∗Ei,kv ⊗ v∗Ej,`v ⊗ Ãi,jÃk,`

=

n−1∑
i,j=1

E
(n−1)
i,i ⊗ E(n−1)

j,j ⊗ Ãi,j −
n−1∑

i,j,k,`=1

E
(n−1)
i,k ⊗ E(n−1)

j,` ⊗ Ãi,jÃk,` = ϕ(A).

Where Ei,j and E
(n−1)
i,j are the canonical basis of Matn(C) and Matn−1(C),

respectively. We used that for 1 ≤ i, j ≤ n− 1 we have Ãi,j = Ai,j .
Therefore our induction hypothesis gives

(v ⊗ v ⊗ I2)∗(ϕ(Ã) + X̃)(v ⊗ v ⊗ I2) = ϕ(A) +X 6> 0

Thus it directly follows that

ϕ(Ã) + X̃ 6> 0

Since X̃ was chosen arbitrarily, the claim follows.

3 Quantum Latin Squares

In this section, we will have a look at another classical structure - Latin squares
- and their quantum generalization as it was introduced by Benjamin Musto
and Jamie Vicary in [19].

De�nition 3.1. L ∈ Matn({1, . . . , n}) is called a Latin square of size n if each
number from {1, . . . , n} appears exactly once in each row and each column of
L.

Latin squares are know by mathematicians for more than 300 years now.
The Korean mathematician Choi Seok-Jeong used Latin squares in 1700 AD
to construct magic squares [7]. Leonhard Euler (1707-1783) worked with Latin
squares as well. He used Latin characters as symbols in his squares which is
why they are now called "Latin squares".
A very popular application of a special case of Latin squares are the Sudoku
puzzles. Here the player has to �ll in the missing numbers of a 9 × 9 Latin
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square with some extra condition on smaller 3× 3 subsquares.
But Latin squares also have several applications in mathematics, for example in
the design of experiments [1] and as multiplication tables of quasigroups [27].

The idea of Musto and Vicary was now to use quantum states as entries
of an n × n square instead of numbers. From a mathematicians perspective, a
quantum state basically is a normalized vector in some Cn.
They translate the condition of "each number appearing exactly once" into "each
direction of Cn appearing exactly once". This led to the following de�nition.

De�nition 3.2. L ∈ Matn(Cn) is called a quantum Latin square of size n if
each row and each column of L forms an orthonormal basis of Cn.

Example 3.3. (1) The easiest way to construct a quantum Latin square is
to take a Latin square and an orthonormal basis of the correct size and
arrange the basis according to the Latin square.
For example given the 4× 4 Latin square

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

and some orthonormal basis v1, . . . , v4 ∈ C4 we get the following quantum
Latin square:

v1 v2 v3 v4
v2 v4 v1 v3
v3 v1 v4 v2
v4 v3 v2 v1

(2) But there are more quantum Latin squares than the ones we get with the
above construction as this example of a quantum Latin square from [19]
shows.

v1 v2 v3 v4
1√
2
(v2 − v3) 1√

5
(iv1 + 2v4) 1√

5
(2v1 + iv4) 1√

2
(v2 + v3)

1√
2
(v2 + v3) 1√

5
(2v1 + iv4) 1√

5
(iv1 + 2v4) 1√

2
(v2 − v3)

v4 v3 v2 v1

Here v1, . . . , v4 ∈ Cn is again some arbitrary �xed orthonormal basis. But
in this square a total of four di�erent orthonormal bases can be found in
the rows and columns.

3.1 Hadamard Matrices and Unitary Error Bases

Next, we will de�ne unitary error bases, also known as unitary operator bases.
These structures are used in quantum information theory, for example in quan-
tum teleportation, dense coding and error correction [19]. Unitary error bases
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are hard to �nd [17]. We will take a look at the quantum shift-and-multiply
method introduced in [19] that uses a family of Hadamard matrices and a quan-
tum Latin square to construct a unitary error basis.
We start with the de�nitions, following [19].

De�nition 3.4. A Hadamard matrix of size n is an n × n complex matrix H
satisfying the following conditions for all i, j ∈ {1, . . . , n}:

(1) |Hi,j | = 1

(2) HH∗ = n In

(3) H∗H = n In

Example 3.5. An example of a Hadamard matrix of size 4 is

H =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

De�nition 3.6. A set E of n2 unitary n × n matrices is called unitary error
basis if the elements in E are orthogonal with respect to the following inner
product:

A,B ∈ Matn(C) : 〈A,B〉 :=
1

n
tr(A∗B)

In particular, E forms an orthonormal basis of Matn(C) with respect to this
inner product and the induced norm.

Example 3.7. The most well-known example of a unitary error basis that is
widely used in quantum information theory are the Pauli matrices

P =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 −i
i 0

)}
which form a unitary error basis of Mat2(C).

De�nition 3.8 (Quantum Shift-and-Multiply Method). Given a quantum Latin
square of size n Q and a family of n×n Hadamard matrices {Hj}nj=1. Then the
associated quantum shift-and-multiply basis consists of the following elements,
for i, j ∈ {1, . . . , n}:

Si,j = Qj diag(Hj , i)

where
Qj := (Qj,`)

n
`=1 ∈ Matn(C)

is the matrix whose columns are the entries of the j−th row of Q and diag(Hj , i)
is the diagonal matrix whose diagonal entries are given by the i−th row of Hj ,
i.e. diag(Hj , i)`,k = δ`,k · (Hj)i,`.
In words: The (i, j)−th element of the quantum shift-and-multiply basis is the
matrix given as the product of the j−th row of the quantum Latin square with
diagonal matrix given by the i−th row of the j−th Hadamard matrix.

29



Remark 3.9. An explicit example of such a quantum shift-and-multiply basis
constructed with the quantum Latin square from Example 3.3 (2) and Hadamard
matrices H1 = . . . = H4 = H from Example 3.5 can be found in [19].

Next, we want to prove that our above construction gives indeed a unitary
error basis.

Theorem 3.10. Quantum shift-and-multiply bases are unitary error bases.

To prove this theorem, we need two preparatory lemmas.

Lemma 3.11. An element Q ∈ Matn(Cn) is a quantum Latin square if and
only if it satis�es the following properties:

(1) For all i ∈ {1, . . . , n}: Qi is unitary, or equivalently (Qi,k)∗(Qi,`) = δk,`
for all k, ` ∈ {1, . . . , n}.

(2) For all i, k, ` ∈ {1, . . . , n}: (Qk,i)
∗Q`,i = δk,`.

Note that Qi,j ∈ Cn.

Proof. Qi is unitary per de�nition if Q∗iQi = In. Hence

δk,` = (Q∗iQi)k,` =
∑
j

(Q∗i )k,j(Qi)j,` = (Qi,k)∗Qi,`.

Property (1) is equivalent to requiring that every row of Q forms an orthonormal
basis, while property (2) is equivalent to saying that every column of Q forms
an orthonormal basis, since we use the standard scalar product on Cn: for
v, w ∈ Cn : 〈v, w〉 = v∗w.

Lemma 3.12. Let D ∈ Matn(C) be a diagonal matrix and A ∈ Matn(C) be
zero on the main diagonal. Then (DA)i,i = 0 for all i ∈ {1, . . . , n}.

Proof. Let i ∈ {1, . . . , n} arbitrary. We look at the i-th entry of the product on
the diagonal:

(DA)i,i =
∑
j

Di,jAj,i =
∑
j

δi,jDi,iAj,i = Di,iAi,i = 0.

Now we can tackle the proof of Theorem 3.10, following the argument in [19].
Proof of Theorem 3.10.
So let Q be a quantum Latin square of size n and H1, . . . ,Hn ∈ Matn(C) be a
family of Hadamard matrices.
Before we start with the arguments for the proof, we quickly revise the notation:

� Qi ∈ Matn(C) the i-th row of Q put together into one matrix.

� Qi,j ∈ Cn the column vector at position i, j in Q.
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� Qi,j,k = (Qi,j)k the k-th entry of the column at position i, j.

Note that (Qi)k,` = Qi,`,k since we look at the i-th row of Q, the `-th column
and then the k-th entry in this vector.

Set Si,j = Qj diag(Hj , i).
First, observe that Qj is unitary by Lemma 3.11 and diag(Hj , i) is unitary since
it is a diagonal matrix with unit complex numbers on the diagonal. Hence, Si,j
is unitary as the product of two unitary matrices.
Next, we need to show the orthogonality, namely that

1

n
tr(S∗i,jSk,`) = δi,kδj,`

holds.
If i = k, j = `, the unitarity of Si,j implies

1

n
tr(S∗i,jSi,j) =

1

n
tr(In) = 1.

If j = ` but i 6= k we get

tr(S∗i,jSk,j) = tr(diag(Hj , i)
∗Q∗jQjdiag(Hj , k))

= tr(diag(Hj , i)
∗diag(Hj , k)) =

∑
`

(Hj)i,l(Hj)k,l = (HjH
∗
j )k,i = 0.

In the last step, we used that distinct rows of a Hadamard matrix are orthogonal
to each other, which is given by condition (2) in De�nition 3.4.
Lastly, we consider the case j 6= `.
We use the cyclic property of the trace to obtain

tr(S∗i,jSk,`) = tr(diag(Hj , i)
∗Q∗jQ`diag(H`, k))

= tr(diag(H`, k)diag(Hj , i)
∗Q∗jQ`).

The product diag(H`, k)diag(Hj , i)
∗ is again a diagonal matrix. On the other

hand, for p ∈ {1, . . . , n} arbitrary, we have

(Q∗jQ`)p,p =

n∑
q=1

(Q∗j )p,q(Q`)q,p
(1)
=
∑
q

Qj,p,qQ`,p,q = (Qj,p)
∗Q`,p

(2)
= 0

where we used the observation at the beginning of the proof for (1). In (2) we
use the second part of Lemma 3.11.
Lemma 3.12 gives that

tr(diag(H`, k)diag(Hj , i)
∗Q∗jQ`) = 0

as required.
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4 The Connection of Quantum Latin Squares and

Quantum Magic Squares

In this section, we investigate how we can connect quantum Latin squares and
quantum magic squares. This will give rise to several classes of quantum magic
squares. We take a closer look at how these classes are related, also when taking
the matrix convex hull. One result will be that the notion of semiclassical �ts
well to the setting of quantum Latin squares.

Proposition 4.1. Given a quantum Latin square V = (vi,j)
n
i,j=1 ∈ Matn(Cn)

then (
vi,jv

∗
i,j

)n
i,j=1

∈ Matn(Hern(C))

is a quantum magic square.
Given a quantummagic squareA = (Ai,j)

n
i,j=1 ∈ Matn(Hern(C)) with rank(Ai,j) =

1 for all i, j then there exist ai,j ∈ Cn such that Ai,j = ai,ja
∗
i,j and

(ai,j)
n
i,j=1 ∈ Matn(Cn)

is a quantum Latin square.

Proof. To show the �rst statement, let V = (vi,j)i,j be a quantum Latin square.
Note that the rank one square vv∗ is positive semi-de�nite for any v ∈ Cn.
Fix some row i ∈ {1, . . . , n}. Then vi,1, . . . , vi,n ∈ Cn is an orthonormal basis,
hence for any k ∈ {1, . . . , n} we get n∑

j=1

vi,jv
∗
i,j

 vi,k =
∑
j

vi,j (v∗i,jvi,k)︸ ︷︷ ︸
=δj,k

= vi,k.

In words, the sum
∑n
j=1 vi,jv

∗
i,j acts like the identity on a basis of Cn, hence∑n

j=1 vi,jv
∗
i,j = In.

The same argument also works for any column of V , therefore
(
vi,jv

∗
i,j

)n
i,j=1

∈

M(n)
n .

For the second statement, let A = (Ai,j)i,j ∈ M(n)
n such that for all i, j we

have rank(Ai,j) = 1. Since A is a quantum magic square, we have Ai,j ≥ 0.
Hence each entry of A can be written as a conjugate square of a matrix of size
n× rank(Ai,j), i.e. there exist some ai,j ∈ Cn such that Ai,j = ai,ja

∗
i,j .

We now have to show that, for all i, j, ai,1, . . . , ai,n and a1,j , . . . , an,j form or-
thonormal bases of Cn.
Fix some row i ∈ {1, . . . , n}.
Assume for the sake of contradiction that ai,1, . . . , ai,n are not linearly indepen-
dent, i.e. there exist λj ∈ C such that

ai,1 =

n∑
j=2

λjai,j .
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Thus

ai,1a
∗
i,1 =

 n∑
j=2

λjai,j

( n∑
k=2

λkai,k

)∗
=

n∑
k=2

λk


n∑
j=2

λjai,j︸ ︷︷ ︸
=:vi

 a∗i,k.

Then, since A is a quantum magic square, we get

In =

n∑
j=1

ai,ja
∗
i,j =

n∑
k=2

λkvia
∗
i,k +

n∑
j=2

ai,ja
∗
i,j =

n∑
j=2

λkvi + ai,j︸ ︷︷ ︸
=:wi,j

 a∗i,j .

But on the other hand

n = rank(In) = rank

 n∑
j=2

wi,ja
∗
i,j

 ≤ n∑
j=2

rank(wi,ja
∗
i,j) = n− 1

which gives the desired contradiction.
Hence ai,1, . . . , ai,n are linear independent and therefore a basis of Cn.
To show the orthonormality we use the uniqueness of the representation of a
vector with respect to a given basis.

ai,k = In ai,k =

n∑
j=1

ai,j a
∗
i,jai,k︸ ︷︷ ︸
∈C

⇒ a∗i,jai,k = δj,k

In total, we have shown that any row of (ai,j)i,j ∈ Matn(Cn) gives rise to an
orthonormal basis. An analogous argument shows the same for the columns of
(ai,j)i,j , hence it is a quantum Latin square.

This proposition shows that quantum Latin squares can be understood as a
special case of quantum magic squares. We will formalize this, and another way
to construct quantum magic squares, in the next de�nition.

De�nition 4.2. We will denote the set of quantum magic squares of exterior
size n and interior size s, where each entry matrix has rank 1, with

RO(n)
s := {A ∈M(n)

s | ∀i, j ∈ {1, . . . , n} : rank(Ai,j) = 1}

and set RO(n) =
⋃
s∈NRO

(n)
s .

The set of embedded quantum Latin squares, that arise from a classical Latin
square and one orthonormal basis as described in Example 3.3 (1), is denoted
by

Ln :=

{(
vLi,j

v∗Li,j

)n
i,j=1

| L is classical Latin square of size n,

v1, . . . , vn ∈ Cn orthonormal basis} .
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Remark 4.3. (1) The set RO(n)
n is in one to one correspondence with the

set of quantum Latin squares of size n as shown in Proposition 4.1.
For s > n the set RO(n)

s is empty since less than s rank 1 matrices can
not sum up to the identity matrix, since rank(Is) = s.

(2) Every element from RO(n)
n is a quantum permutation matrix, since each

entry can be written as a conjugate square of a normalized vector as seen
in Proposition 4.1. For a norm one vector v ∈ Cn we have (vv∗)2 =
v(v∗v)v∗ = vv∗.

For RO(n)
s with s < n this is not the case, as the following example shows.

1
2e1e

∗
1

1
2e1e

∗
1 e2e

∗
2

e2e
∗
2

1
2e1e

∗
1

1
2e1e

∗
1

1
2e1e

∗
1 e2e

∗
2

1
2e1e

∗
1

∈ RO(3)
2

Here e1, e2 ∈ C2 is the standard basis. But clearly this is not a quantum
permutation matrix since ( 1

2e1e
∗
1)2 = 1

4e1e
∗
1.

(3) We have Ln ⊆ RO(n)
n ⊆ M(n)

n , but we can also consider Ln ⊆ M(n). In
that case all levels s 6= n are empty.

(4) Furthermore, it holds that Ln ⊆ CP(n)
n . Given some

(
vLi,jv

∗
Li,j

)n
i,j=1

∈
Ln, each entry is per de�nition a rank one projector. These projectors
commute, since

vLi,jv
∗
Li,j

vLk,`
v∗Lk,`

= vLi,jδLi,j ,Lk,`
v∗Lk,`

= δLi,j ,Lk,`
vLi,jv

∗
Li,j

= vLk,`
v∗Lk,`

vLi,j
v∗Li,j

.

The next proposition shows that we can consider Ln as the set of semiclas-
sical quantum Latin squares. This makes sense, since the elements in Ln arise
from classical Latin squares.

Proposition 4.4. For any n ∈ N we have

SC(n) ∩RO(n)
n = Ln.

Proof. Let A =
∑
π∈Sn

Pπ⊗ qπ be a semiclassical quantum magic square of size
n such that each entry has rank 1. (Pπ ∈ Matn(C) are permutation matrices,
qπ ∈ PSDn,

∑
π qπ = In.)

For two positive semi-de�nite matrices (of the same size) A,B, we have

max{rank(A), rank(B)} ≤ rank(A+B) ≤ rank(A) + rank(B).

Hence all the qπ have rank one and can therefore be written as a conjugate
square of a vector.
For two rank one squares aa∗, bb∗ (a, b ∈ Cn) it holds that

rank(aa∗ + bb∗) = 1 ⇐⇒ ∃c ∈ C : a = cb ∨ b = 0.
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Let Πi,j := {π ∈ Sn|(Pπ)i,j = 1}.
For π, π̃ ∈ Πi,j the above thoughts imply that:

∃c ∈ C : qπ = cqπ̃ ∨ qπ̃ = 0.

In other words, dimC(spanC{qπ | π ∈ Πi,j}) = 1 for all i, j ∈ {1, . . . , n} (∗).
Note that for all i, j : Ai,j 6= 0 because if one entry would be zero, w.l.o.g.
assume A1,1 = 0, then

n = rank(In) = rank

 n∑
j=1

A1,j

 = rank

 n∑
j=2

A1,j

 ≤ n− 1

a contradiction.
Fix for every i ∈ {1, ..., n} a πi ∈ Πi,1 such that qπi

6= 0.
By a similar rank argument as above, we see that A1,j /∈ spanC(A1,`) for j 6= `.
Hence qπj /∈ spanC(qπ`

) for j 6= `.
But on the other hand, (∗) holds, therefore if πl ∈ Πi,j then for all k ∈
{1, . . . , n} \ {l} : πk /∈ Πi,j .
All in all, we have n permutations π1, . . . , πn that are completely disjoint in the
sense that no two permutations map one input to the the same output. But
then each possible mapping instruction i 7→ j has to be ful�lled by one of the
πk. Hence for all i, j ∈ {1, . . . , n} there exists a unique ` ∈ {1, . . . , n} such that
π` ∈ Πi,j .

Now let π ∈ Sn \ {π1, ..., πn}. We claim that qπ = 0.

We know that there exists some ` ∈ {1, . . . , n} such that π ∈ Π`,1. Since
π 6= π` there exists some j ∈ {1, . . . , n} \ {`} such that π(j) 6= π`(j). Set
k = π(j), then π ∈ Πj,k and let i be such that πi ∈ Πj,k. Hence it has to hold
that qπ ∈ spanC(qπl

) ∩ spanC(qπi
) = {0} which proves the claim.

All together, we have A =
∑n
i=1 Pπi

⊗ qπi
. The qπi

are rank 1 squares, i.e.
∃Qπi ∈ Cn : qπi = QπiQ

∗
πi
. From Proposition 4.1 we can see that Qπ1 , . . . , Qπn

form an orthonormal basis.
Earlier, we have seen that for each i, j there is one π` such that π`(i) = j. Hence∑n
i=1 Pπi

gives the all one matrix and

n∑
i=1

Pπi
⊗ i

is a Latin square, since each number appears exactly once in each row and each
column.

To see that any element from Ln is semiclassical, note that we have shown
Ln ⊆ CP(n)

n in Remark 4.3 (4). Together with Theorem 2.37, we get Ln ⊆
SC(n)n .
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De�nition 4.5. A special case of a positive operator valued measure (POVM,
see De�nition 2.10) is the so called projection valued measure (PVM) which are
n positive semi-de�nite matrices P1, . . . , Pn ∈ Hers(C) such that each Pi is a
projector (P 2

i = Pi) and
∑n
i=1 Pi = In.

Remark 4.6. Given a POVM or PVM and a Latin square, if we arrange the
matrices according to the Latin square, similar to Example 3.3 (1), we get
a quantum magic square. Because in this construction each matrix from the
POVM/PVM appears exactly once in each row and each column, the matrices
in each row and column will sum to the identity.

This remark motivates the following de�nition.

De�nition 4.7. We de�ne

POVMLS(n)s :=
{(
PLi,j

)n
i,j=1

| P1, . . . , Pn ∈ Hers(C) is POVM, L is Latin square of size n
}

PVMLS(n)s :=
{(
PLi,j

)n
i,j=1

| P1, . . . , Pn ∈ Hers(C) is PVM, L is Latin square of size n
}

POVMLS(n) :=
⋃
s∈N
POVMLS(n)s , PVMLS(n) :=

⋃
s∈N
PVMLS(n)s .

Remark 4.8. Since each PVM is per de�nition also a POVM, we have

PVMLS(n) ⊆ POVMLS(n).

In the next part, we will investigate some properties of the newly de�ned
sets.

Lemma 4.9. Every element of POVMLS(n) is semiclassical.

Proof. Let A ∈ POVMLS(n)s then there exists a POVM A1, ..., An ∈ Hers(C)
and a Latin square of size n L that generate A. Analogues to the proof of 4.4,
we de�ne permutation matrices by setting for all i, `, k ∈ {1, . . . n}:

(Pi)`,k =

{
1 if L`,k = i

0 else

Then we can rewrite A as

A =

n∑
i=1

Pi ⊗Ai

Since the Ai form a POVM, they are positive semi-de�nite matrices summing
to the identity. Hence A is semiclassical.

Lemma 4.10. The sets RO(n),Ln,POVMLS(n),PVMLS(n) are all closed
with respect to simultaneous unitary conjugation, but not closed with respect
to taking direct sums (for n ≥ 2). Hence they are not free sets and in particular
not matrix convex.
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Proof. The matrix properties of having rank 1, being positive semi-de�nite or
a projector are all preserved by unitary conjugation. Hence the �rst statement
holds.
The direct sum of two rank one matrices cannot have rank one again. If A,B
are rank one matrices, then they both have at least on nonzero row a, b respec-
tively. In A ⊕ B there will be the rows (a, 0, . . . , 0) and (0, . . . , 0, b) which will
clearly be linearly independent since there is no index where both are nonzero.
But this directly implies rank(A⊕B) ≥ 2.

Therefore RO(n) and Ln cannot be closed under direct sums.
Taking direct sums of POVMs/PVMs will again give a POVM/PVM. But the
problem is that the resulting quantummagic square might have di�erent POVM-
s/PVMs in its rows or columns and thus it would not be generated by a Latin
square any more.
Lastly, note that any matrix convex set has to be closed under direct sums.

Since these sets are not matrix convex, we will now investigate what we gain
by taking the matrix convex hull.

Proposition 4.11. We have

mconv(PVMLS(n)) = mconv(POVMLS(n))

for any n ∈ N.

Proof. From Remark 4.8 we know that PVMLS(n) ⊆ POVMLS(n) and hence
mconv(PVMLS(n)) ⊆ mconv(POVMLS(n)).
For the other direction, let P ∈ POVMLS(n)s . Then there exists a POVM
B1, ..., Bn ∈ Hers(C) and a Latin square L of size n, which give rise to P .
By Naimarks Dilation Theorem (see for example [23]) each POVM dilates to
a PVM, i.e. there exist m ∈ N, V ∈ Matm,s(C) with V ∗V = Is and a PVM
A1, ..., An ∈ Herm(C) such that Bi = V ∗AiV for all i ∈ {1, . . . , n}.
Now let C =

(
ALi,j

)n
i,j=1

∈ PVMLS(n)m be the quantum magic square that we

get by arranging A1, ..., An according to L. Then

∀i, j ∈ {1, . . . , n} : Pi,j = V ∗Ci,jV .

Hence P ∈ mconv(PVMLS(n)).

Theorem 4.12. For any n ∈ N we have that

mconv(PVMLS(n)) = mconv(Ln).

Proof. First, note that give an orthonormal basis v1, . . . , vn ∈ Cn the rank one
squares v1v

∗
1 , . . . , vnv

∗
n form a PVM since they are projectors and sum up to the

identity as seen in Proposition 4.1 and Remark 4.3 (4). Hence Ln ⊆ PVMLS(n)

and therefore mconv(Ln) ⊆ mconv(PVMLS(n)).
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For the other direction, let P1, ..., Pn ∈ Hers(C) be a PVM and L a Latin
square of size n.
Since the Pi are orthogonal projections, each has a representation as a sum of
rank one squares:

Pi =

ri∑
`=1

p
(i)
` p

(i)
`

∗

where ri is the rank of Pi and the p
(i)
` ∈ Cs are orthonormal.

Let r = max{r1, ..., rn} and set p
(i)
` = 0 for all ri < ` ≤ r. Furthermore, we set

V ∗i :=
(
p
(1)
i | . . . |p

(n)
i

)
∈ Mats,n(C)

and ai := ei the standard basis of Cn for all i ∈ {1, . . . , n}.
Then

V ∗i aja
∗
jVi = p

(j)
i p

(j)
i

∗

and thus
r∑
i=1

V ∗i aja
∗
jVi =

rj∑
i=1

p
(j)
i p

(j)
i

∗
= Pj .

Let A =
(
aLi,j

a∗Li,j

)
i,j
∈ Ln be the quantum magic square we get from the

orthonormal basis a1, ..., an and the Latin square L.
If we can show that

∑
i V
∗
i Vi = Is, then

(
PLi,j

)
i,j

= (
∑r
i=1 V

∗
i Ai,jVi)i,j is indeed

a matrix convex combination of elements in Ln.
For any i ∈ {1, . . . , n} we have

V ∗i Vi =
(
p
(1)
i | . . . |p

(n)
i

)
·


p
(1)
i

∗

...

p
(n)
i

∗

 =

n∑
`=1

p
(`)
i p

(`)
i

∗

thus, and because the Pi form a PVM, we get:

r∑
i=1

V ∗i Vi =

r∑
i=1

n∑
l=1

p
(l)
i p

(l)
i

∗
=

n∑
l=1

Pl = Is

Theorem 4.13. For any n ∈ N we have that

mconv(CP(n)) = mconv(Ln).

Proof. In Remark 4.3 (4) we showed that Ln ⊆ CP(n) hence also mconv(Ln) ⊆
mconv(CP(n)).

For the other direction, we start by taking P ∈ CP(n)
s such that all Pi,j are
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diagonal matrices and show that P ∈ mconv(Ln).
Fix arbitrary i, j ∈ {1, . . . , n}. Since Pi,j is positive semi-de�nite and a diagonal
matrix, all its entries have to be grater or equal to zero. Furthermore, Pi,j =
P 2
i,j = diag

(
(Pi,j)

2
1,1, . . . , (Pi,j)

2
s,s

)
, so each entry on the diagonal has to be

either zero or one.
Since for each i ∈ {1, . . . , n} :

∑n
j=1 Pi,j = Is it holds that for all ` ∈ {1, . . . , s}

there exists a unique j ∈ {1, . . . , n} such that(Pi,j)`,` = 1.
For i ∈ {1, . . . , s}, `, k ∈ {1, . . . , n} we set

A
(i)
`,k :=

{
e1 if (Pl,k)i,i = 1

ej else
.

where e1, . . . , en ∈ Cn is the standard basis and j 6= 1 is chosen in a way, such
that A(i) is a quantum Latin square for each i. By the above reasoning, we
are always able to do so. Since we only use one orthonormal basis, we even get(
A

(i)
`,kA

(i)∗

`,k

)
`,k
∈ Ln.

Next, for i ∈ {1, . . . , s}, we de�ne V ∗i = (e
(s)
i |0 . . . 0) ∈ Mats,n(C) as the matrix

with 1 in the (i, 1)-th component and 0 everywhere else.
Then

V ∗i A
(i)
`,k =

{
V ∗i e1 if (P`,k)i,i = 1

V ∗i ej else
=

{
ei if (P`,k)i,i = 1

0 else
.

Therefore we have

s∑
i=1

V ∗i A
(i)
l,kA

(i)
l,k

∗
Vi =

s∑
i=1

δ(P`,k)i,i,1eie
∗
i = Pl,k.

It also holds that
∑s
i=1 V

∗
i Vi =

∑s
i=1 eie

∗
i = Is. Therefore P ∈ mconv(Ln).

Now let B ∈ CP(n)
s be arbitrary. Then we know that all Bi,j are hermitian and

projectors, hence normal. By the de�nition of CP(n) we get that all the Bi,j
commute. Therefore we can diagonalize all these matrices simultaneously by
one unitary U ∈ Mats,s(C):

∀i, j ∈ {1, . . . , s} : UBi,jU
∗ = diag(λ

(1)
i,j , . . . , λ

(s)
i,j )

where λ
(1)
i,j , . . . , λ

(s)
i,j are the eigenvalues of Bi,j .

Since Bi,j are positive semi-de�nite matrices, all the eigenvalues are greater or

equal to 0. Because UBi,jU
∗ is still a projector, we get λ

(k)
i,j ∈ {0, 1} for all

applicable i, j, k.
Now (UBi,jU

∗)si,j=1 is still a quantum magic square, since U is unitary. There-
fore, we can apply the previous result and get matrices Vi and quantum Latin
squares A(i) like above.
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Next, we set Ṽi = ViU . Then

s∑
i=1

Ṽ ∗i A
(i)
`,kA

(i)
`,k

∗
Ṽi =

∑
i

U∗V ∗i A
(i)
`,kA

(i)
`,k

∗
ViU

= U∗

(∑
i

V ∗i A
(i)
`,kA

(i)
`,k

∗
Vi

)
U = U∗UB`,kU

∗U = B`,k

Also note that
∑s
i=1 Ṽ

∗
i Ṽi = U∗ (

∑
i V
∗
i Vi)U = Is. Hence we have shown

B ∈ mconv(Ln). Since B was chosen arbitrarily this gives the desired result.

Finally, we can put all the previous results together to see that any quan-
tum magic square that uses a classical Latin square in its construction will be
semiclassical.

Corollary 4.14. For all n ∈ N it holds that

SC(n) = mconv(CP(n)) = mconv(Ln) = mconv(PVMLS(n)) = mconv(POVMLS(n)).

Proof. The �rst equality was shown in Theorem 2.37, the second equality follows
from Theorem 4.13 and the third equality was proven in Theorem 4.12. The
last equality was shown in Proposition 4.11.

Remark 4.15. We know that Ln ⊆ RO(n)
n hence SC(n) = mconv(Ln) ⊆

mconv(RO(n)
n ) directly follows. This inclusion is, for n = 4, a proper inclusion.

To see this, consider the quantum Latin square from Example 3.3 (2) :

L =

v1 v2 v3 v4
1√
2
(v2 − v3) 1√

5
(iv1 + 2v4) 1√

5
(2v1 + iv4) 1√

2
(v2 + v3)

1√
2
(v2 + v3) 1√

5
(2v1 + iv4) 1√

5
(iv1 + 2v4) 1√

2
(v2 − v3)

v4 v3 v2 v1

After embedding this quantum Latin square into our setting of quantum magic

squares as described in Proposition 4.1 it will not be in CP(4)
4 since for example

the (1, 1) and (2, 2) entries do not commute:

L1,1L
∗
1,1L2,2L

∗
2,2 = v1v

∗
1

1√
5

(iv1 + 2v4)

(
1√
5

(iv1 + 2v4)

)∗
=

1

5
(v1v

∗
1 + 2iv1v

∗
4)

L2,2L
∗
2,2L1,1L

∗
1,1 =

1√
5

(iv1 + 2v4)

(
1√
5

(iv1 + 2v4)

)∗
v1v
∗
1 =

1

5
(v1v

∗
1 − 2iv4v

∗
1)

If we for example choose the vi to be the standard basis of C4 then 2iv1v
∗
4 6=

−2iv4v
∗
1 and hence the with L associated quantum magic square L̃ is in RO(4)

4 \
CP(4)

4 ⊆ P(4)
4 \ CP(4)

4 . By the argument given in the proof of Corollary 2.40

L̃ /∈ SC(4)4 = mconv(L4).
For even n = 2k ≥ 4 we can use the following argument. Let L be a classical
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Latin square of size n
2 and let a1, . . . , an/2 ∈ Cn/2, b1, . . . , bn/2 ∈ Cn/2 be two

orthonormal bases such that a1a
∗
1b1b

∗
1 6= b1b

∗
1a1a

∗
1. Let A,B ∈ Ln/2 be the

quantum magic squares generated by L and a1, . . . , an/2 ∈ Cn/2, b1, . . . , bn/2 ∈
Cn/2 respectively. The following block matrix like combination of the two is a
quantum permutation matrix of size n.

A⊕̃B :=

(
A 0
0 B

)
∈ P(n)

For example, for n = 4 this would be the matrix
a1a
∗
1 a2a

∗
2 0 0

a2a
∗
2 a1a

∗
1 0 0

0 0 b1b
∗
1 b2b

∗
2

0 0 b2b
∗
2 b1b

∗
1


By our choice of the bases, we have that A⊕̃B /∈ CP(n). Hence the argument in
the proof of Corollary 2.40 (2) shows that A⊕̃B /∈ SC(n).
But A⊕̃B ∈ mconv(RO(n)

n ) which we can see as follows. Let

ι : Cn/2 → Cn : v 7→



v1
...

vn/2
0
...
0


and e1, . . . , en ∈ Cn the standard basis, i.e. ek has entry 1 at the k-th po-
sition and zeros everywhere else. Let Ei,j = eLi,j+n/2 e∗Li,j+n/2

and hence

E = (Ei,j)
n/2
i,j=1 is basically the quantum magic square generated by L and

en/2+1, . . . , en, but not quite since those vectors do not directly form an or-

thonormal basis of Cn/2. Let ι(A) = (ι(aLi,j )ι(aLi,j )∗)i,j denote the component-
wise application of ι, then

C =

(
ι(A) E
E ι(B)

)
∈ RO(n)

n

since all entries have rank one and each row and each column sums over the rank
one squares of an orthonormal basis of Cn and these sums equal the identity.
For n = 4 this looks like

ι(a1)ι(a1)∗ ι(a2)ι(a2)∗ e3e
∗
3 e4e

∗
4

ι(a2)ι(a2)∗ ι(a1)ι(a1)∗ e4e
∗
4 e3e

∗
3

e3e
∗
3 e4e

∗
4 ι(b1)ι(b1)∗ ι(b2)ι(b2)∗

e4e
∗
4 e3e

∗
3 ι(b2)ι(b2)∗ ι(b1)ι(b1)∗
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Set V =

(
In/2

0

)
∈ Matn,n/2(C). Then V ∗V = In/2 and

V ∗ι(ak)ι(ak)∗V = aka
∗
k

V ∗eke
∗
kV = 0 for k > n/2

Thus we get V ∗CV = A⊕̃B ∈ mconv(RO(n)
n ) \ SC(n).

Since SC(n) is matrix convex, this also implies that SC(n)n ( RO(n)
n .

For odd n, we cannot use this construction, since the zero blocks in A⊕̃B are
not square, hence we cannot �ll them with some slightly altered embedded Latin
square. It seems very likely that we need to use a di�erent approach for odd n,
but it is not clear what this approach could be.

5 Arveson Extreme Points

For convex sets we introduced the notion of extreme points (De�nition 2.8). A
point in the convex set is an extreme point if it cannot be written as convex
combination of two di�erent points from the set. In this section we will gener-
alize the notion of extreme points to matrix convex sets.
We will follow the de�nition in [9] but again adjust it to our setting of Matn(Mats(C))
instead of the original setting in (Mats(C))n.

De�nition 5.1. Let R =
⋃
s∈NRs be a matrix convex set as de�ned in 2.23.

A = (Ai,j)
n
i,j=1 ∈ Rs is called Arveson extreme point of R if R does not

contain a nontrivial dilation of A. That means if there exist B = (Bi,j)i,j ∈
Matn(Mats,t(C)), C = (Ci,j)i,j ∈ Matn(Hert(C)) such that

D =

((
Ai,j Bi,j

(B∗)i,j Ci,j

))n
i,j=1

∈ Rs+t

then B = 0 has to hold.
Note that D is called a dilation of A.

If a matrix convex set is a so called compact free spectrahedron, which means
that it is generated by matrix inequalities, then the matrix convex hull of its
Arveson extreme points already gives the whole set. This was shown in [9].

De�nition 5.2. Given some hermitian matricesAi,j ∈ Herd(C), i, j ∈ {1, . . . , n}.
The s-level of the free spectrahedron generated by the Ai,j is

FS((Ai,j)
n
i,j=1)s =

X ∈ Matn(Hers(C)) | Id⊗ Is +

n∑
i,j=1

Ai,j ⊗Xi,j ≥ 0


As usual, the free spectrahedron is the union over all its levels.

A matrix convex set R =
⋃
s∈NRs is compact if
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� it is bounded, i.e. there exists a constant c ∈ R, c > 0 such that for all
s ∈ N and all X ∈ Rs we have

c Is−
∑
i,j

X2
i,j ≥ 0.

� it is closed, meaning that each level is closed.

The notion of free spectrahedron is again a generalization from classical
geometry to the free/non-commutative setting.
Every free spectrahedron is clearly a matrix convex set.

Theorem 5.3. Every compact free spectrahedron is the matrix convex hull of
its Arveson extreme points.

The proof of this theorem can be found in [9], Theorem 1.1.

Next, we will see a nice result that classi�es the Arveson extreme points of
the set of quantum magic squares. This is again taken from [8].

Corollary 5.4. Every quantum permutation matrix is an Arveson extreme
point of the matrix convex setM(n) of all quantum magic squares.
For n ≥ 3 not every Arveson extreme point is a quantum permutation matrix.

Proof. Let U = (Ui,j)i,j ∈ P(n)
s and assume there is a quantum magic square

A ∈M(n)
t and an isometry V ∈ Matt,s(C) such that U = (V ∗Ai,jV )i,j .

Then 0 ≤ Ai,j ≤ It, since A is a quantum magic square. Lemma 2.39 gives that,
up to basis change,

Ai,j =

(
Ui,j 0

0 Pi,j

)
for some Pi,j ∈ Hert−s(C). But this just means that the dilation was trivial,
hence U is an Arveson extreme point.

On the other hand, we know that for n ≥ 3 we have mvonc(P(n)) 6=M(n).
M(n) is a compact free spectrahedron, which we can see as follows:
First, we need to shift the set of quantum magic squares to contain the all zero
matrix, since it is contained in any free spectrahedron in the way we de�ned it.
Hence, we look at

M̃(n) =

{(
Ai,j −

1

n
I

)
i,j

| A = (Ai,j)i,j ∈M(n)

}

Then M̃(n) is de�ned by the following matrix inequalities:
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B = (Ai,j − 1
n I)i,j ∈ M̃(n) if and only if

∀i, j ∈ {1, . . . , n} : I +nBi,j ≥ 0

∀j ∈ {1, . . . , n} :

n∑
i=1

Bi,j ≥ 0

∀j ∈ {1, . . . , n} :

n∑
i=1

−Bi,j ≥ 0

∀i ∈ {1, . . . , n} :

n∑
j=1

Bi,j ≥ 0

∀i ∈ {1, . . . , n} :

n∑
j=1

−Bi,j ≥ 0.

This holds, because:

I +nBi,j ≥ 0 ⇐⇒ nAi,j ≥ 0 ⇐⇒ Ai,j ≥ 0

n∑
i=1

Bi,j ≥ 0 ⇐⇒

(
n∑
i=1

Ai,j

)
− I ≥ 0

n∑
i=1

−Bi,j ≥ 0 ⇐⇒ I−

(
n∑
i=1

Ai,j

)
≥ 0

n∑
j=1

Bi,j ≥ 0 ⇐⇒

 n∑
j=1

Ai,j

− I ≥ 0

n∑
j=1

−Bi,j ≥ 0 ⇐⇒ I−

 n∑
j=1

Ai,j

 ≥ 0.

These inequalities can be encoded into one large block matrix to get one matrix
inequality in the form of the free spectrahedron.
The set of quantum magic squares is closed, since it is de�ned by closed con-
ditions only. It is bounded, since all rows and columns sum to the identity,
therefore the sum over all entries of a quantum magic square will be n times
the identity.

Thus, Theorem 5.3 and Theorem 2.41 give that there must be more Arveson
extreme points then just the permutation matrices.

Lemma 5.5. For X ∈ POVMLS(n) the following are equivalent

(1) X is an Arveson extreme point inM(n)

(2) X is an Arveson extreme point in SC(n)
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Proof. (1) ⇒ (2): If X has no nontrivial dilation in M(n) it cannot have a

nontrivial dilation in SC(n) ⊆M(n).

(2) ⇒ (1): Let

(
X β
β∗ γ

)
be a nontrivial dilation of X in M(n), i.e. for some

` ∈ N we have 0 6= βi,j ∈ Matn,`(C), γi,j ∈ PSD` such that((
Xi,j βi,j
β∗i,j γi,j

))n
i,j=1

∈M(n)
s+`.

Per de�nition, X is generated by a Latin square L of size n and a POVM
P1, . . . , Pn. For k = 1, . . . , n set

(Lk)i,j =

{
1 if Li,j = k

0 else

Then, analogously to the proof of Lemma 4.9, we get the representation

X =
∑
k

Lk ⊗ Pk.

For every k ∈ {1, . . . , n} we can �nd a jk ∈ {1, . . . , n} such that L1,jk = k, i.e.
jk is the unique position of k in the �rst row of the Latin square L. Note that
each number from {1, . . . , n} will appear exactly once as one of the jk's.
Setting

qk =

(
Pk β1,jk
β∗1,jk γ1,jk

)
we get that

0 ≤
(
X1,jk β1,jk
β∗1,jk γ1,jk

)
=

(
Pk β1,jk
β∗1,jk γ1,jk

)
= qk

and
n∑
k=1

qk =

( ∑n
k=1 Pk

∑n
k=1 β1,jk∑n

k=1 β
∗
1,jk

∑n
k=1 γ1,jk

)
=

(∑n
k=1 Pk

∑n
j=1 β1,j∑n

j=1 β
∗
1,j

∑n
k=1 γ1,j

)

=

n∑
j=1

(
X1,j β1,j
β∗1,j γ1,j

)
= Is+` .

Hence Q =
∑
k Lk ⊗ qk ∈ SC

(n)
s+` is a nontrivial dilation of X in SC(n).

Corollary 5.6. From paper [8] we know that every element from P(n) is an

Arveson extreme point inM(n). This implies that every element from SC(n) ∩
P(n) is an Arveson extreme point of SC(n).

Remark 5.7. The cone of non-normalized magic squares C(n) (De�nition 2.28)
is not a simplex cone (Lemma 2.29). Hence S(n), the smallest operator system
over C(n) is not a free spectrahedral cone by Theorem 4.7 in [10].

On the other hand we have that SC(n) = S(n) ∩M(n). Can we conclude from
this that SC(n) is not a free spectrahedron?
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6 Appearances of QuantumMagic Squares in other

Contexts

In this section, we will examine di�erent topics in which quantum magic squares
appear. We summarize these topics and give a short idea of how one can look
at these di�erent topics from our view of quantum magic squares. This section
will only scrape the surface of what might be possible.

6.1 Orthogonal Quantum Latin Squares

The notion of orthogonal quantum Latin squares became known when Leonhard
Euler stated the thirty-six o�cers problem:
Can one arrange 36 o�cers from six regiments with six di�erent ranks in a 6×6
square such that in each row and column there is exactly one o�cer from each
regiment and each rank?
This translates to the setting of Latin squares in the following way:
Do there exist two Latin squares of size 6 A,B such that no two pairs (Ai,j , Bi,j)
are the same for 1 ≤ i, j ≤ 6?
Euler already suspected that the answer to his question was "no", but it was
only proven by G. Terry in the year 1900 [28].
Of course the question arises how one can generalize this problem to the quan-
tum setting. There are several de�nitions of orthogonal quantum Latin squares,
the probably most intuitive one by Musto and Vicary was given in [20]. They
showed that it is equivalent to another de�nition given in [11].

De�nition 6.1. Two quantum Latin squares A = (Ai,j)i,j , B = (Bi,j)i,j ∈
Matn(Cn) are called orthogonal if {Ai,j ⊗ Bi,j | i, j ∈ {1, . . . , n}} forms an

orthonormal basis of Cn ⊗ Cn ∼= Cn2

In [26] they use a slightly di�erent de�nition that allows the two quantum
Latin squares to be entangled.

De�nition 6.2. Consider ψi,j ∈ Cd ⊗ Cd of norm one for all i, j ∈ {1, . . . , d}.
Then ψi,j =

∑d
k,`=1 C

i,j
k,`ek ⊗ e` for some Ci,jk,` ∈ C. (ψi,j)

d
i,j=1 is an orthogonal

quantum Latin square if

(1) ψ∗i,jψk,` = δi,kδj,`

(2) C := (Ci,j)di,j=1 ∈ Matd(Matd(C)) satis�es

(a)
∑d
i=1 C

i,j
(
Ci,`

)∗
= δj,` Id

(b)
∑d
j=1 C

i,j
(
Ck,j

)∗
= δi,k Id

Proposition 6.3. If two quantum Latin squares A,B are orthogonal in the
sense of De�nition 6.1 then (Ai,j ⊗ Bi,j)i,j is an orthogonal quantum Latin
square in the sense of De�nition 6.2.
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Proof. Let A,B be two quantum Latin squares of size n that are orthogonal.
Set ψi,j = Ai,j ⊗Bi,j .
Then it directly follows that (ψi,j)i,j satis�es condition (1) of De�nition 6.2.
Two check condition (2), let e1, . . . , en ∈ Cn denote the standard basis of Cn.
We have the following representations with respect to this basis:

Ai,j =

n∑
k=1

λi,jk ek, Bi,j =

n∑
k=1

γi,jk ek for all i, j ∈ {1, . . . , n}.

Hence for any i, j ∈ {1, . . . , n} we have

ψi,j =

(
n∑
k=1

λi,jk ek

)
⊗

(
n∑
`=1

γi,j` e`

)
=
∑
k,`

λi,jk γ
i,j
` (ek ⊗ e`).

Thus Ci,jk,` = λi,jk γ
i,j
` and Ci,j =

∑
k,` C

i,j
k,`eke

∗
` . Therefore, for i, j, d ∈ {1, . . . , n},

we have

Ci,`(Ci,d)∗ =
∑
k,`,p,q

Ci,jk,`eke
∗
`C

i,d
p,qeqe

∗
p =

∑
k,`,p,q

Ci,jk,`C
i,d
p,qek e

∗
`eq︸︷︷︸

=δ`,q

e∗p

=
∑
k,p

(∑
`

Ci,jk,`C
i,d
p,q

)
eke
∗
p

(∗)
= δj,d

(∑
k

λi,jk ek

)(∑
p

λi,dp e∗p

)
= δj,dAi,jA

∗
i,d.

In (∗) we use that∑
`

Ci,jk,`C
i,d
p,q =

∑
`

λi,jk γ
i,j
` λi,dp γi,d` = λi,jk λ

i,d
p

∑
`

γi,j` γi,d` = λi,jk λ
i,d
p Bi,q

∗
Bi,j = λi,jk λ

i,d
p δj,d.

And hence
n∑
i=1

Ci,j(Ci,`)∗ = δj,`

n∑
i=1

Ai,jA
∗
i,j = δj,` In

where we used Proposition 4.1 for the last equality.
This shows that the ψi,j satisfy condition (2a) of De�nition 6.2. Condition (2b)
follows from an analogues argument for the columns.

Remark 6.4. (1) A quantum state ψ ∈ Cn ⊗Cn is called separable if it can
be written as ψ = a⊗ b for some a, b ∈ Cn. If it is not separable, we call
it entangled.
In this framework we can understand the di�erence of the De�nitions 6.1
and 6.2 in the way that in De�nition 6.1 all entries of the orthogonal
quantum Latin square are separable, while De�nition 6.2 allows for entan-
glement between the two quantum Latin squares.

(2) If we have an orthogonal quantum Latin square in the sense of De�nition
6.2 and set Bi,j = Ci,j(Ci,j)∗ then B = (Bi,j)i,j is a quantum magic
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square. This directly follows from condition (2) in the de�nition.
Condition (1) implies that tr(Bi,j) = 1 for all i, j since

ψ∗i,jψk,` =
∑
p,q

Ci,jp,qC
k,`
p,q = tr(Ck,`(Ci,j)∗).

Hence B will be some very special quantum magic square.
It might be interesting to further investigate the class of quantum magic
squares that arise in this way and maybe �nd a way to construct orthog-
onal quantum Latin squares from quantum magic squares.

Orthogonal quantum Latin squares are closely related to absolutely max-
imally entangled states and 2-unitary matrices which play important roles in
quantum computation. More details can be found in [26].
In this paper the authors solve an open problem of quantum information theory
as stated in [16]: They show that there exist "36 entangled o�cers", i.e. there
is an orthogonal quantum Latin square of size 6.
Once again the quantum version can achieve more than its classical counterpart.

6.2 SudoQ

The classical Sudoku puzzle is a 9× 9 square with some blank entries that has
to be �lled with the numbers from 1 to 9 in such a way that it forms a Latin
square with the extra condition that nine 3× 3 sub-squares are also �lled with
the numbers from 1 to 9 each appearing exactly once.
The Sudoku became its quantum version "SudoQ" in [21] by Ion Nechita and
Jordi Pillet where they de�ned:

De�nition 6.5. A SudoQ square of size n2 is a n2×n2 matrix of vectors from
Cn2

such that the vectors in each row, column and n × n sub-square form an
orthonormal basis of Cn2

.

Any SudoQ square is clearly a quantum Latin square and we can use Propo-
sition 4.1 to treat them as quantum magic squares.
In [21] the authors investigate under what circumstances a SudoQ square, where
some entries are left blank, has a solution.
In [22] SudoQs are further investigated. They introduce a notion of apparently
classical quantum Latin squares which directly corresponds to our set Ln.
They show that every quantum Latin square of size 3 is apparently classical. In

our setting this means L3 = RO(3)
3 . This also follows from our results:

Remark 2.18 says that CP(3) = P(3), Remark 4.3 gives Ln ⊆ CP(n), RO(n) ⊆
P(n) and Proposition 4.4 tell us SC(n) ∩ RO(n)

n = Ln. Together we get that

P(3) ⊆ SC(3) and hence

L3 = SC(3) ∩RO(3)
3 = RO(3)

3 .
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6.3 Quantum (Permutation) Groups

In this part we will take a look at quantum groups and especially quantum
permutation groups to see how these objects are related to quantum magic
squares.
We will need some theoretical background. Here we will just give a quick revision
of the relevant notions following [2], Chapter 1.

Theorem 6.6. Given a compact topological space X (i.e. a set equipped with
some topology such that every open cover of X has a �nite subcover), C(X) is
the C-algebra of continuous functions f : X → C with pointwise addition and
multiplication. Then C(X) is a C∗-algebra with norm and involution given by

‖f‖ = sup
x∈X
|f(x)|

f∗(x) = f(x).

This algebra is commutative and any commutative C∗-algebra is of this form.

The proof of this theorem can be found in [2], Theorem 1.4.
In this case X is called a compact quantum space. Even when given an arbitrary
(non-commutative) C∗- algebra A, we will write A = C(X) and call X compact
quantum space.
To construct the quantum permutation group S+

N , let us �rst consider SN , the
group of permutations of N elements. De�ne the mappings ui,j : SN → C by

ui,j(π) =

{
1 if π(i) = j

0 else
.

ui,j(π) can also be seen as the projection onto the i, j-th entry of the permutation
matrix corresponding to π.
Then ui,j ∈ C(SN ) is a projector and u = (ui,j)

N
i,j=1 is a quantum permutation

matrix over the C∗-algebra C(SN ), since the entries in each row and each column
will sum to the constant one map, the identity in C(SN ).
On the other hand, the relations that u satis�es are enough to generate C(SN ) as
a universal commutative C∗-algebra. That is, it is given by a set of generators,
here {ui,j}Ni,j=1 and a set of relations, namely that u = (ui,j)i,j forms a quantum
permutation matrix (although more in an abstract sense, not over one speci�c
C∗ algebra).

C(SN ) = C∗comm
(
{ui,j}Ni,j=1 | u is abstract quantum permutation matrix

)
By generating a C∗-algebra that is not commutative anymore, we get to the
quantum permutation group.

Theorem 6.7. The universal C∗-algebra

C(S+
N ) := C∗

(
{ui,j}Ni,j=1 | u is abstract quantum permutation matrix

)
is a Woronowicz algebra with
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� comultiplication ∆ : C(S+
N )→ C(S+

N )⊗ C(S+
N ) given by

∆(ui,j) =
∑
k

ui,j ⊗ uk,j

� counit ε : C(S+
N )→ C given by ε(ui,j) = δi,j

� antipode S : C(S+
N )→ C(S+

N ) given by S(ui,j) = uj,i.

The underlying compact quantum space S+
N is a compact quantum group called

quantum permutation group.

The proof of this theorem can be found in [2].

De�nition 6.8. A Woronowicz algebra is a C∗-algebra A together with a uni-
tary matrix u ∈ MatN (A) whose entries generate A and the formulas

∆(ui,j) =
∑
k

ui,j ⊗ uk,j

ε(ui,j) = δi,j

S(ui,j) = u∗j,i

de�ne C∗-homomorphisms

∆ :A→ A⊗A
ε :A→ C
S :A→ Aopposite

Remark 6.9. (1) That the construction in Theorem 6.7 is a Woronowicz
algebra basically only requires that ∆, ε and S are C∗-homomorphisms.
Given a compact Lie group G, C(G) is a Woronowicz algebra. In this
spirit, given any Woronowicz algebra A we write A = C(G) and call G a
compact quantum Lie group.

(2) The notion of Woronowicz algebras is closely related to the notion of Hopf
algebras and corepresentations, see for example [24] for more informations
on Hopf algebras in this context.

(3) A quantum permutation matrix P of (exterior) size N over some C∗-
algebra A gives rise to a representation π : C(S+

N ) → A by de�ning
π(ui,j) = Pi,j .

(4) In [3], Theodor Banica and Ion Necchita have a closer look at these repre-
sentations given by quantum permutation matrices and also look at what
happens when taking di�erent subsets of the quantum permutation ma-
trices, for example PVMLS(n).
It would be very interesting to further see how our results might be useful
in this context, especially how the matrix convex hull could be translated
to this setting. Maybe some constructions in [3] could give rise to inter-
esting structures in our setting of quantum magic squares.
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6.4 Doubly Normalised Tensor of Positive Semi-De�nite
Operators

In [12] Leonardo Guerini and Alexandre Baraviera de�ne quantummagic squares
under the name Doubly Normalised Tensor of Positive semi-de�nite Operators
(DNT). Their de�nition goes as follows:

De�nition 6.10. Given a Hilbert space H, let L(H) denote the set of linear
operators on H.
A Doubly Normalised Tensor of Positive semi-de�nite Operators is a tensor
A ∈ L(H)

n×n
such that each element is positive semi-de�nite and each column

and each row sums up to the identity.
Although not explicitly mentioned in [12], it is most likely that the authors are
also taking about bounded linear operators on H. In the �nite dimensional
case this distinction is not important since then any linear operator will be
continuous and hence bounded, but if H is in�nite dimensional, working with
possibly unbounded operators would complicate matters signi�cantly.

Next they de�ne the notion of a decomposition into permutation tensors.

De�nition 6.11. Given a set of operators Q = (Qj) ∈ L(H)
n!

such that each
operator is positive semi-de�nite and

∑
j Qj = I. Let P1, . . . , Pn! ∈ Matn(C)

denote all n× n permutation matrices. Then

n!∑
j=1

Pj ⊗Qj

is called a decomposition into permutation tensors.

A quantum magic square (or DNT) clearly has a decomposition into permu-
tation tensors if and only if it is semiclassical.
To understand the main theorem of this paper, we need one more de�nition.

De�nition 6.12. A set of POVMs A(j) = {A(j)
1 , . . . , A

(j)
n } ⊆ L(H), j =

1, . . . ,m is jointly measurable if there exists a POVM M = {M1, . . . ,Mn} ⊆
L(H) and a probability distribution µ that gives the probability for A

(i)
j given

A(i) and Mk, hence it satis�es µ(j | A(i), k) ≥ 0 and
∑
j µ(j | A(i), k) = 1 for all

i, k, such that

A
(i)
j =

∑
k

µ(j | A(i), k)Mk.

For �xed i and j, this means thatA
(i)
j is a convex combination ofM1, . . . ,Mn.

The main theorem of [12] states:

Theorem 6.13. Let A = (Ai,j)
n
i,j=1 be a DNT and R = {R(i) = (Ai,j)

n
j=1}

the set of all rows of A and C = {C(j) = (Ai,j)
n
i=1} the set of all columns of A.

Then the following is equivalent for A:
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(1) A admits a decomposition into permutation tensors

(2) (a) R∪ C is jointly measurable

(b) µ is symmetric in the sense that for all i, j, k we have

µ(j | R(i), k) = µ(i | C(j), k).

Remark 6.14. This Theorem translates to our setting in the following way.
Assume the second condition holds and let M denote the so called mother
measure from the joint measurability. Because of the symmetry, we have

Ai,j = R(i)
j =

∑
k

µ(j | R(i), k)Mk =
∑
k

µ(i | C(j), k)Mk = C
(j)
i = Ai,j .

Hence the symmetry is important for the joint measurability to be meaningful
when considering A.
Set B

(k)
i,j = µ(j | R(i), k) = µ(i | C(j), k). Then B(k) =

(
B

(k)
i,j

)n
i,j=1

is a magic

square since µ was a probability measure.
Since each Mk is positive semi-de�nite, there exists Vk ∈ L(H) such that Mk =
V ∗k Vk for all k. We then have

Ai,j =
∑
k

B
(k)
i,j Mk =

∑
k

V ∗k B
(k)
i,j Vk.

We have almost shown that (2) is equivalent to being inmconv(M(n)
1 ). The only

di�erence is that in the de�nition of the matrix convex hull we require that the
Vk (in this setting) are Mat1,t(C) if the dimension of H is t, but so far they are
square matrices (if H is �nite dimensional). To overcome this problem, observe

that B
(k)
i,j It =

∑
` e`B

(k)
i,j e

∗
` and hence D(k) :=

(
B

(k)
i,j It

)
i,j
∈ mconv(M(n)

1 ).

Thus Ai,j =
∑
k V
∗
k B

(k)
i,j It Vk =

∑
k V
∗
k D

(k)
i,j Vk and therefore A ∈ mconv(M(n)

1 ).
Hence for a �nite dimensional Hilbert space H this theorem is equivalent to
Proposition 2.25.

7 Open Questions

In this section we will discuss questions that are still open, go through the di�-
culties in answering them that have occurred and line out why answers to these
questions would be interesting.

7.1 Matrix Convex Hull of the Embedded Quantum Latin
Squares

So far, we know that
Ln ⊆ RO(n)

n ⊆ P(n)
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and thus

SC(n) = mconv(Ln) ⊆ mconv(RO(n)
n ) ⊆ mconv(P(n)).

Several questions arise: Are all these inclusions strict, or do we have equality at
some point? Is there a di�erence between mconv(RO(n)

n ) and mconv(RO(n))?

For all easy examples we could think of, the inclusion P(n) ⊆ mconv(RO(n)
n )

holds. For example if a1, a2 ∈ C2 and b1, b2 ∈ C2 are two (di�erent) orthonormal
bases, then 

a1a
∗
1 a2a

∗
2 0 0

a2a
∗
2 a1a

∗
1 0 0

0 0 b1b
∗
1 b2b

∗
2

0 0 b2b
∗
2 b1b

∗
1

 ∈ P(4)
2 \ CP(4)

2

is in mconv(RO(4)
4 ) by taking ι : C2 → C4 : (a1, a2)T 7→ (a1, a2, 0, 0)T . Then

ι(a1)ι(a∗1) ι(a2)ι(a∗2) e3e
∗
3 e4e

∗
4

ι(a2)ι(a∗2) ι(a1)ι(a∗1) e4e
∗
4 e3e

∗
3

e3e
∗
3 e4e

∗
4 ι(b1)ι(b∗1) ι(b2)ι(b∗2)

e4e
∗
4 e3e

∗
3 ι(b2)ι(b∗2) ι(b1)ι(b∗1)

 ∈ RO(4)
4

is a dilation of the original quantum magic square in RO(4)
4 . Hence the original

one is in mconv(RO(4)
4 ).

But the problem here might lie in coming up with more complicated quantum
magic squares in P(n) \ CP(n).

This problem is also closely related with the open question of whether SC(n) =
mconv(RO(n)

n ) for odd n in Remark 4.15.

On the other hand, if mconv(RO(n)
n ) = mconv(P(n)), then mconv(P(n))

would only be generated by the level of quantum magic squares where interior
and exterior sizes are equal. This would limit the structure of quantum permu-
tation matrices signi�cantly and might have impact on the theory of quantum
permutation groups. Therefore, it seems unlikely that equality holds.

7.2 Arveson Extreme Points

First of all, it would be interesting to �nd the remaining Arveson extreme points
of M(n). This would tell us a great deal about the structure of the set of
quantum magic squares. The problem here is mainly where to start. Which
type of quantum magic squares might have the potential to also be an Arveson
extreme point? This is not clear.
As mentioned in Remark 5.7, it would be interesting to see whether SC(n) is
a free spectrahedron or not. At the moment it seems very likely that it is not
since, as described in Remark 5.7, S(n) the smallest operator system over C(n)
is not a free spectrahedral cone and SC(n) = S(n) ∩M(n).
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7.3 From QuantumMagic Squares to Quantum Latin Squares

It would be very useful to have a way to construct quantum Latin squares and/or
orthogonal quantum Latin squares from quantum magic squares. Then we could
use quantum magic squares to construct unitary error bases, but maybe there
is also a more direct way to use quantum magic squares for such constructions.
If we can see which properties the quantum magic squares corresponding to
orthogonal quantum Latin squares have, we might get more insight into the
structure of quantum magic squares. But also, we could probably go from
quantum magic squares back to orthogonal quantum Latin squares which might
lead to the construction of new absolutely maximally entangled states.

7.4 Connection to Quantum Permutation Groups

Are there ways to use our results in the setting of quantum permutation groups
similar to the work in [3]? Is there a way in which the matrix convex hull has
a meaning in the setting of quantum permutation matrices?
If we had answers to these questions, a positive answer to whether P(n) ⊆
mconv(RO(n)

n ) might have some impact, since this could lead to simpler/di�er-
ent representations of quantum permutation groups.
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8 Conclusion

Generalizing classical structures by using non-commutative objects related to
quantum theory gives rise to new, fascinating structures with interesting proper-
ties. Quantum magic squares are not given as the matrix convex hull of quantum
permutation matrices, as a generalization of Birkho�-von Neumann's Theorem
would suggest.
The set of semiclassical quantum magic squares can be classi�ed nicely: it is
the matrix convex hull of the quantum permutation matrices with permuting
entries. But also every other quantum magic square that arises from any of our
constructions that involve classical Latin squares is semiclassical.
Quantum Latin squares also truly give more structure than classical Latin
squares and give a new method to construct unitary error bases, the so called
quantum shift-and-multiply method.
We constructed a natural way to embed quantum Latin squares into the setting
of quantum magic squares by taking the rank one square of each entry. On
the other hand, any quantum magic square where each entry has rank 1 comes
from a quantum Latin square. And this embedding is nicely compatible with
the notion of semiclassical quantum magic squares.
But a lot of questions are still open. We were only able to show that the matrix
convex hull of the rank 1 quantum magic squares of even size is strictly larger
then the set of semiclassical quantum magic squares. It is not clear whether this
also holds for odd sizes. On the other hand, we were not able to show that the
matrix convex hull of the quantum permutation matrices is strictly larger than
the matrix convex hull of the rank 1 quantum magic squares. This question
would be very interesting to solve as it might also have impact on the theory of
quantum permutation groups.
We saw that the quantum permutation matrices are Arveson extreme points of
the free spectrahedron of quantum magic squares, but there must be more. It
would of course be very interesting to �nd the remaining extreme points to gain
more insight into the structure of quantum magic squares.
Another interesting direction to look into is how we can use quantum magic
squares to construct quantum information theoretic structures such as unitary
error bases or orthogonal quantum Latin squares and thereby absolutely maxi-
mally entangled states.
All in all, we have gained insight into the structures of quantum Latin squares
and quantum magic squares but on the way a lot of new questions arose.
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9 Appendix

De�nition 9.1 (C∗-Algebra). A C∗-algebra is a unital complex algebra A with
an involution ∗ and a complete norm ‖·‖ satisfying the C∗-identity:

∀T ∈ A : ‖T ∗T‖ = ‖T‖2

The set of hermitian elements and positive elements in A are give by

Aher = {a ∈ A | a∗ = a}; A+ = {a ∈ Aher | ∃b ∈ A : a = b∗b}

Given a Hilbert space H, the set of bounded operators on this space B(H)
forms a C∗-algebra.
If H is �nite dimensional with dimension n, we have B(H) ∼= Matn(C). In
particular, Matn(C) with the operator norm and the conjugate transpose as
involution, i.e. (Ai,j)

∗
i,j = (Ai,j))j,i, is a C

∗-algebra.

De�nition 9.2. Let A,B be two C∗-algebras. A map ϕ : A → B is called
positive unital ∗-linear map if

(1) ϕ is linear in the sense of a map between two C-vector spaces.

(2) ϕ preserves the involution, i.e. for any a ∈ A : ϕ(a∗) = ϕ(a)∗

(3) ϕ maps the one element (in the algebra structure) of A to the one element
of B.

(4) ϕ preserves positivity, i.e. ϕ(A+) ⊆ B+

A matrix U ∈ Matn(C) is called unitary, if UU∗ = UU∗ = I

9.1 Convex Cones and their Properties

De�nition 9.3 (Convex cone). A subset C of a vector space V over R or C is
called a convex cone, if ∀a, b ∈ C and ∀α, β ∈ R≥0 it holds that

αa+ βb ∈ C.

De�nition 9.4 (Salient Convex Cone). A convex cone C is said to be salient,
if and only if C ∩ −C = {0}.

A non-salient convex cone always contains no less than one linear subset of
dimension at least one. A salient cone is always peaked at 0.
For example the half plain C1 = {(x, y) ∈ R2|x ≥ 0} is non-salient because
it contains the linear subset {(0, y)|y ∈ R} which is also contained in −C1 =
{(x, y) ∈ R2|x ≤ 0}. Conversely, the positive orthant

C2 = {a(1, 0) + b(0, 1)| a, b ∈ R≥0}

is salient as no vector with a negative component is in the cone. Both cones
are depicted in Figure 2.
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Figure 2: The half plain, non-salient, and the positive orthant, salient

De�nition 9.5 (Polyhedral Cone). A cone is called polyhedral if it is of the
form

{a ∈ Rn | v∗1a ≥ 0, . . . , v∗da ≥ 0}

for some v1, . . . , vd ∈ Rn.

Note: Every polyhedral cone is a spectrahedral cone.

De�nition 9.6 (Simplex cone). A cone C ⊆ Rd is said to be a simplex cone if
it is generated by d linear independent elements, i.e.
there exist c1, ..., cd ∈ C linear independent, such that

C =

{
d∑
i=1

λici| λi ∈ R≥0

}

De�nition 9.7 (Extreme Rays). [4] Given a polyhedral cone C ⊆ Rn and
v ∈ C. Then co(v) = {λv | λ ≥ 0} is called the ray spanned by v.
A ray R ⊆ C is called an extreme ray if for any v ∈ R we have for any u,w ∈ C
that v = u+w

2 ⇒ u,w ∈ R.

De�nition 9.8 (Faces and Facets). Let K ⊆ Rn be a closed convex set. F ⊂ K
is called a face of K if it is convex and whenever, for v, w ∈ K,λ ∈ (0, 1), we
have λv + (1− λ)w ∈ F then v, w ∈ F .
A 0 dimensional face is called extreme point. A n− 1 dimensional face is called
facet.
Note: The dimension of a convex set is the dimension of the smallest a�ne
subspace that contains it.

9.2 Minimal and Maximal Operator System: Proofs

De�nition 9.9 (Minimal operator system). Let C ⊂ Rm be a closed salient
convex cone. We de�ne the minimal operator system containing C as Cmin =
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(Cmin
s )s≥1 with

Cmin

s :=

{∑
i

ci ⊗ Pi| ci ∈ C, Pi ∈ PSDs

}
Lemma 9.10. The minimal operator system is minimal in the sense that for
all operator systems (Ds)s≥1 with D1 = C it follows that ∀s ∈ N : Cmin

s ⊆ Ds.

Proof. Let (Ds)s≥1 be an operator system with D1 = C. Part (2) in the de�ni-
tion of operator systems (2.30) yields that for each matrix V ∈ Mat1,s(C) and
for every (c1, ..., cm) ∈ C = D1, it holds that (V ∗c1V, ..., V

∗cmV ) ∈ Ds for an
arbitrary s ∈ N. Because ci ∈ R we get V ∗ciV = ci(V

∗V ) = ci ⊗ (V ∗V ). Now
∀x ∈ Cs : x∗V ∗V x = (V x)∗(V x) = 〈V x, V x〉 ≥ 0. Therefore V ∗V ∈ PSDs.
On the other hand each positive semi-de�nite matrix A can be factorized, such
that A =

∑
i viv

∗
i for some column vectors vi ∈ Cs. Then we can write

A =
∑
i V
∗
i Vi with Vi = v∗i .

Therefore an element
∑
i ci ⊗ Pi ∈ Cmin

s can be written as∑
i

ci ⊗ Pi =
∑
i

ci ⊗
∑
j

V ∗i,jVi,j

=
∑
i

∑
j

V ∗i,jciVi,j ∈ Ds (1)

That (1) holds follows from the fact that Vi,j ∈ Mat1,s and from using part 2)
in the de�nition of operator systems.

De�nition 9.11 (Maximal operator system). Let C ⊂ Rm be a closed salient
convex cone. Then the maximal operator system containing C is given by:

Cmax

s = {(B1, ..., Bm) ∈ Hers(C)m| ∀v ∈ Cs (v∗B1v, ..., v
∗Bm) ∈ C} .

We write Cmax as short form for the family (Cmax
s )s≥1

Lemma 9.12. Cmax is the maximal operator system, where maximal in this
context means that for any operator system (Dr)r≥1 with D1 ⊆ C it holds that
Ds ⊆ Cmax

s .

Proof. Let (Dr)r≥1 be an operator system with D1 ⊆ C. If (B1, ..., Bm) ∈ Ds

then De�nition 2.30 2) shows us that ∀v ∈ Cs : (v∗B1v, ..., v
∗Bmv) ∈ D1 ⊆ C.

Therefore (B1, ..., Bm) ∈ Cmax
s .

9.3 Free Spectrahedron

De�nition 9.13 (Spectrahedron). The spectrahedron generated by the matri-
ces
A1, ..., Am ∈ Hers(C) is given by

S(A1, .., Am) :=

{
(b1, ..., bm) ∈ Rm |

m∑
i=1

biAi ≥ 0

}
.
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Generalizing the spectrahedron for the non-commutative case leads to the
de�nition of the free spectrahedron.

De�nition 9.14 (Free spectrahedron). The r-level of the free spectrahedron
de�ned by A1, ..., Am ∈ Hers(C) with r ∈ N is given by

FSr(A1, ..., Am) :=

{
(B1, ..., Bm) ∈ Herr(C)m|

m∑
i=1

Ai ⊗Bi ≥ 0

}

The free spectrahedron de�ned by A1, ..., Am is the collection of the above:

FS(A1, ..., Am) := (FSr(A1, ..., Am))r∈N

Note that the 1-level of the free spectrahedron equals the spectrahedron.

Lemma 9.15. For r ∈ N and linear independent A1, ..., Am ∈ Hers(C), the
r-level of the free spectrahedron de�ned by A1, ..., Am is a closed salient convex
cone.

Proof. Short calculation shows that FSr(A1, ..., Am) is a convex cone.
Let (B1, ..., Bm) ∈ FSr(A1, ..., Am)\{0}, then

∑m
i=1Ai ⊗ Bi ≥ 0. Due to the

linearity of the tensor product it follows that
∑m
i=1Ai⊗(−Bi) = −

∑m
i=1Ai⊗Bi

is negative semide�nite. If
∑m
i=1Ai ⊗ Bi = 0 the linear independence of the

Ai induces that B1 = ... = Bm = 0 which contradicts our choice of the Bi.
Therefore −(B1, ..., Bm) 6∈ FSr(A1, ..., Am).
It is known that the r-level of the free spectrahedron is closed, as the property
of being positive semide�nite is a closed condition. For each vector v, v∗Av ≥ 0
is already a closed condition.

9.4 Notation

In this section, we give a quick overview over the standard notation used in this
work.

Matn(C) denotes the C∗-algebra of complex n×nmatrices with the usual matrix
addition, multiplication and the involution given by

(
(Ai,j)

n
i,j=1

)∗
:= (Aj,i)

n
i,j=1.

Hern(C) denotes the hermitian elements in Matn(C), i.e. those matrices A ∈
Matn(C) for which A∗ = A.

PSDn is the set of positive semi-de�nite matrices of size n, i.e. the positive
elements in the C∗-algebra Matn(C).

59



δi,j =

{
1 if i = j

0 else

denotes the Kronecker delta.

In = (δi,j)
n
i,j=1 is the n× n identity matrix, the one-element in Matn(C).

N = {1, 2, 3, . . .} denotes the natural numbers without zero.
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