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Abstract

To check if a polynomial p is psd has many applications in optimization,
real algebraic geometry, group theory and nonlinear analysis problems like
Lyapunov stability analysis. The verification if p > 0 could be time consum-
ing, since this problem is known to be a NP-hard problem. If p is a sum
of squares, i.e. it can be expressed as sum of squares of other polynomials,
then p is clearly psd. To check if p is a sum of squares is more feasible,
because to determine if a sum of squares decomposition exists for a given
polynomial is equivalent to a linear matrix inequality feasibility problem for
the decomposition p = 2”@z and this could be done in polynomial time.
The computation required to solve the feasibility problem depends on the
number of monomials in z. The Newton polytope is a method to prune un-
necessary monomials from the decomposition, but this method requires the
construction of a convex hull and this can be time consuming for polynomials
with many terms. This thesis discusses another method to prune z, called
the zero diagonal algorithm. The algorithm is highly efficient, needs less
computation and is more powerful than the Newton polytope method, since
he is based on a single property of psd matrices and returns never a larger
set of monomials for the vector z than the Newton polytope method. The
algorithm is then extended to a more general simplification method for sum
of squares programs and we show how problems could be formulated as sum
of squares programs and therefore how to apply the zero diagonal algorithm
to these problems.

|. Introduction

Note, this thesis largely follows [1]. In the interest to address a large reading public,
even those without a strong mathematical background, we have tried to make this paper
as self-contained as possible. This paper forgoes of the usual mathematical structure
like definition followed by a sentence and the belonging proof. Instead, we have tried to
inform the reader in an entertaining way by more telling a narration than to provide a
dry article, although we do not spare on the necessary notations, theorems and proofs.

It is a fundamental question in mathematics and especially applied mathematics, if a
function is nonnegative. In other words, if it holds for a function f : R™ — R,

f(xy,...,z,) >0, Vaq,...,z, € R

One interesting aspect behind this questioning is the fact, that numerous problems in
optimization, real algebraic geometry, group theory and other areas of mathematics
could be formally expressed using a finite number of multivariate polynomial equalities
and inequalities [1],[3],[7],[10],[12].

So in this paper, we will confine us to the case f € R[xy,...,z,] := R[z], where R[z| :=



D aenm Cattt - o oy € N, ¢, € R, finite ¢, # 0} denotes the set of all polynomials

in the variables x1,...,x, and coefficients ¢, in the field R. For abbreviation we write
for a monomial 27" --- 25" = 2% and for p € Rz, p = > . 4 cox® with A C N” and
ca # 0. Furthermore for a monomial z* is deg(z®) := > | a; := || the degree of the

monomial and for p € R[z] deg(p) := max,c4 {deg(z*)}.

Although the task to check if a polynomial p > 0 seems really easy to solve, reality has
proven us wrong. Even geniuses from the last couple centuries had a tough time with
this task and despite of the invention of the computer this problem is still NP-hard, even
in really elementary cases like 4 dimensions (z € R*) [7]. In the language of computers,
this means the time to tackle the problem exceeds by far the desirable time to solve the
task or sometimes the problem is actually intractable for the computer.

So therefore it would be really useful to have a tool’, which certificates the nonnegativity
of a polynomial (shortly p is positive semidefinite or psd [6]). Take for example the
polynomial

2 2
p1 = x] — 20172 + X5,

This polynomial is obviously nonnegative (psd), since p; = (x; — 22)°. But take for
instance the polynomials [1],[10]:

L. Pmotzkin = xi‘ftg + x%x% —3zja5 + 1
2. Psos = 31'41L - 2$%5E2 + 71’% — 4[E15E2 + 41‘% +1

1
3. Pregative = 435% - Elel + gl’? + T1To — 4$§ + 45(,’3

In these cases it is not 'so’ obvious if they are nonnegative. In the remainder of this
article we will refer to this polynomials and give an answer concerning the nonnegativity
and what distinguish them from the other ones.

Apparently every polynomial p := Y7, 7 f7 € >_[x], where ) [z] denotes the set of all
sum of squares polynomials (SOS), is nonnegative. In this case, there is no calculation
necessary. We do not need to consider any local minimum, which could be a NP-hard
problem. Instead, the problem has been fundamentally simplified. So if we could find a
representation of p as SOS, the answer could be easily verified. That implication poses
the fundamental question:

Is every nonnegative polynomial a sum of squares (S0S)?

If this question could be affirmed, the question of nonnegativity for a polynomial p would
be equivalent to the question "Is it possible to find a SOS decomposition of p?". Hence
an algorithm, what yields a possible SOS representation would be a powerful 'tool’. This



algorithm should have two properties:

1. efficiency

2.reliability

What does efficiency and reliability in this context mean? Efficiency describes the prop-
erty to get the result by relative few steps of calculation for the computer and reliability
to get always the SOS representation of p, if p is SOS. "Luckily’, there exists an algo-
rithm with these properties. This follows from the fact, that for each p € R[z] exists
a quadratic matrix @ over R and a vector z, [2] whose entries are monomials in the
variables 1, ..., x, (for example z3 = x1x2x,) so that

p=21Qz.

The nonnegativity of a polynomial p € ) [x] suggests that the matrix () could be positive
semidefinite (psd), i.e.

u'Qu > 0, Yu € ROMm™s(@) o = 0.

This idea proposes the approach of finding a matrix Q = 0 with p = 27Qz. Indeed, it
holds [1]

pEZ[x] @p:fo s p=2"Qz, Q= 0.

i€l

In the subsequent chapters we will examine further the exact representation of the ma-
trix Q = 0 and the vector z.

This problem is much better tractable. It requires only to solve a linear matrix in-
equality feasibility problem [1]. Practically this means we could solve the problem
in polynomial time and therefore if there exists a SOS representation. But this strategy
has a fundamental pitfall. Consider the situation:

T
2 I 1 -1 I
pr=a1—2mm+ 7= (11— 2)° & 1= <x2> <_1 1 ) <x2> =: 27Qz

This representation of p; as SOS is optimal. But take for instance the vector z =
2 = [1,21,2,...,2%", that choice would yield the same polynomial p;, though an
extremely large matrix Q* and plenty steps of calculation for computing the entries of
@*, although almost every entry is equal to zero. That is not really desirable. This
example shows the complexity depends strongly on the size of the vector z respectively
the number of his entries. In addition, this approach or algorithm does not really satisfy
the property efficiency.

So it would be really useful to know in advance which monomials are necessarily an
T .
entry of z*. In our example p; = z* Q*z*, there were only the entries x1, zo necessary,



that means we could prune z* to z = [25, 25" = [&1,25]". A quite helpful and common
used method to prune z* in advance is the Newton polytope [1], although this method
has one big drawback, it requires the construction of a convex hull and this construction

could be time comsuming for polynomials with many terms [1].

This paper refers to an alternative algorithm for pruning out unnecessary monomials
from z*, called the zero diagonal algorithm. This algorithm has two crucial benefits
compared to the Newton polytope. He yields to better results, meaning the number
of entries from 2zgiqgona 1 never larger than z,euon [1]. Besides of this advantage, the
algorithm forgoes of constructing a convex hull, instead he is really easy to implement
with very little computational cost [1].

These both advantages result from a simple property of a positive semidefinite matrix.
If the entry (i,i) from @Q > 0 is zero, than the entire i*® row and column must be zero

[1].

Further we will extend the essential idea of the zero diagonal algorithm to a general algo-
rithm for sum of squares programs, who include free decision variables uq, ..., u,.
These programs [1], [12] consist of a cost function

pe (ug, ... u,) = clu = {c,u)

who should be minimized respectively maximized and a set of constraining polynomials
P1,---,pn of the shape

Dk = akpo (x) + Z:Zl uag; (r) € ) [x], ar; € Rlx].

This simplification method removes next to the pruned monomials the free variables
uy, . .., u, who are implicitly constrained to be zero [1]. The reduction of the free decision
variables can improve numerical conditioning and computational time to solve the sum
of squares program [1].

Last but not least with the aid of a few samples we well show how to apply the idea of
the zero diagonal algorithm to problems in the range of optimization, stability analysis,
geometry and matrix copositivity [1], [4], [10], [12], i.e. we demonstrate how questions
in these fields could be formulated as a sum of squares program.



II. Nonnegative Polynomials and SOS

In the previous chapter we have asked the question if each nonnegative polynomial is a
sum of squares. This question is not only interesting for our application but rather from
fundamental importance in mathematics.

Exactly this question proposed the german mathematician David Hilbert [6], but shortly
afterwards his friend Hermann Minkowski convinced him 1885 by his doctoral disserta-
tion that such a statement would be to strong [6] and therefore he proposed a "weaker"
question:

Is every nonnegative polynomial a sum
of squares of rational functions?

What does this question mean? Instead of using polynomials as sum of squares, he
proposed to take functions of the form f = B, with p,q € Rlz|. Functions of this
q

form are called rational functions [6] and the set of all rational functions is denoted
by R(zy,...,z,) = R(z) = { ]—)\ p,q € Rlz] }. Therefore we have the questionable
q

implication:

pZO = p:Z@'echfE? f’LeR(x)?

Due to the still importance of the problem he proposed this question among 22 other

fundamental mathematical questions in 1900 at the International Congress of Math-

ematicians. This question is also known as Hilbert’s 17 problem and has demon-

strated to be a real twister, considering that it needed 27 years until Artin finally

gave an affirmative proof [2],[6]. Moreover Albrecht Pfister showed in 1967 [6] for a
9i

2
psd polynomial p that p(z1,...,2,) = 22'512" (h_> for g;, h; € R[x]. Hence follows [6]

m<2?

p>0 <& p= fo, fi € R(zy,...,z0),

=1

but does this also hold for f; € R[z]? Shortly after Hilbert changed his assumption
concerning nonnegativity and SOS, he proved in a seminal paper in 1888 by abstract
means - who were not constructive - the existence of some counterexamples, i.e. Hilbert
could not state exact presentations of some counterexamples but he could prove the
existence of some polynomials who are psd (nonnegative) but not SOS [6]. Therefore:

p=0 4 p=> 7 €l

Further he gave a clear distinction for the different classes in the set of all psd polyno-
mials.



Theorem 1: Let p € R[] be an univariate polynomial of any degree then [5]

m<2!

p>0 & pe) m] e p=Y [, [ieRn] & p=FF+/;
=1

Proof. Clearly each psd polynomial p has pairs of roots who are either complex in con-
jugation or real. This follows from the fact that the graph of a psd polynomial p is
above the x axis and if p = 0, then p touches the x axis but is not intersecting the axis.

Additionally 0 = p(w) = p(w) = Z?io cuwt = ?io c;iwi = p(w) = 0. Therefore the
roots have the form a; &+ ib; and we can write p as

pla1) = caa - [(@1 — [ar + b)) -+ (21 — [aa + iba])] - [(@1 — [ar — ib1]) - - (21 — [ag — ibd])
= Coa - [91(21) +ig2(21)] - [91(21) — iga(z1)]
= fi(z1) + fi(z1).

Theorem 2: Let p € R[z] be a multivariate polynomial of degree 2 then [2]

p=0e S f2 deg(f) =1

1€LZCN

Proof. Primarily we could assume that p is homogenous of degree 2. That means every
monomial of p has degree 2. That follows from the fact, if p is psd, then the homogenous
polynomial p;, of degree 2, which is obtained by multiplicating each monomial of p with
the new variable z as often that each monomial has degree 2, is also psd. Therefore
is pp (xo =1,21,...,2,) = p(21,...,2,). Furthermore holds for every homogeneous
quadratic polynomial

n
Prn = xTMl' = E M ;X
i.j=0

for a symmetric matrix M = (my;);; € ROV +D The nonnegativity of pj, implicates
that the matrix M is psd and therefore is each eigenvalue \; > 0 and the number of
eigenvalues \; > 0 is equal to rank(M). Thus is according to the spectral theorem for a
symmetric psd matrix M,

UTMU =D := diag()\lv SR /\rank(M)a Orank:(M)—l—l; sy On-{—l) <
M =UDUT =UD2D2UT = AAT, UTU =1.

Let be M = A*A*" with A € RO+DX(+) pruned to the matrix A* € R(H)xrank(d)
since the last columns are equal to zero and denote A*, := v;, then it follows



and consequently

rank(M) rank(M)
_ T T _ T,.\2
ph=2 E vy, | T = E (vpx)”.
k=1 k=1

Theorem 3: Let p € Rlxy, xs] be a bivariate polynomial of degree 4 then [6]

m<22-1 m<3

P06 S =37 fieRu,mz)
=1 =1

Remark: Hilbert’s proof is beautiful and short but difficult and incomprehensible for
the modern reader, thus we waive on this proof. We refer to [14] or [15] for modern
accounts of Hilbert’s proof.

In any other case Hilbert has shown in 1888 the existence of a psd polynomial p € R|x]
which is not a sum of squares in R[z] [6]. Hence we get the implications

1.p(z1) >0 A (n=1) < p(r1) = fi(z) + f3(21)
2.p() 20 A(d=2) & ple)= Y fi), deg(fi)=1

3.p(r1,2) >0 A (n=2,d=4) & plx1,29) = fi(1,22) + ...+ [} < 3(21,22)
where d denotes the degree of p and n the number of different variables of p.

At first glance you would think this is a big damper because our question "If psd is
equivalent to SOS" was denied and so therefore our entire considerations concerning of
finding a good ’tool’, which certificates the nonnegativity of a polynomial p, are futile.
This means our algorithm is useless in the case if p € R[z] is nonnegative but not a sum
of squares.

However, if 'many’ psd polynomials are as well SOS, our algorithm would be still a good
'tool” for many cases and is therefore more than adequate for most applications. This
assumption is bolstered by the following two implications [7]

p+e (ZZIEE?)] € Z[x],
p+e<1+ix?ﬂ>] €S

i=1

p>0onR" = Ve >0dk € N:

p>00nR"” = p>0on|[-1,1]" = Ve >03dk € N:

from Lasserre and Netzer. Consequently, the SOS cone is dense in the cone of nonneg-
ative polynomials.



Besides these two theoretical aspects, Parrilo and Sturmfels have shown in a practi-
cal way by computing up to degree 15, that the global minimum p* € R of a lower
bounded polynomial p € R[z| almost always coincides with the largest value A € R,
so that [p(z) — A] € > [z] [8]. Practically, this means, that (p(x) — p*) > 0 and
since [p(z) —A] € Y [z] is A < p* and for A = p* > 0 follows that p € > [z], since

p(z) = px) = p* + (V) = plz) = A+ (VA € Z[a].

That suggests, a nonnegative polynomial p is 'mostly’ a sum of squares [16] and therefore
is the distinction between nonnegativity and SOS in most applications negligible. This
supposition is also supported by the fact, that mathematicians needed over 80 years to
construct a polynomial p,,ot.kin, called the Motzkin polynomial, which is psd but not

SOS [2], [6].

Theorem 4: [Motzkin, 1967| The polynomial pmotorin = Tir3 + 3wy — 32223 + 1 is
nonnegative. [2]

Proof. We will present this fact by 2 different ways, since each way is a useful instrument
to prove the nonnegativity of a polynomial p.

1. For 0 < a,b,c € R is the arithmetic mean always bigger than the geometrical [2], [5],
hence

W=

(abc)? < =(a+b+c)

W

and for a = 1, b = z}z2, ¢ = 22z} follows

rird + 2iry + 1 > 3223

and consequently is Pporzkin = 0.

2. According to Artins proof, each psd polynomial is a sum of squares of rational
functions and therefore should exist a decomposition with no more than 2% squares [6].
And indeed it holds [5]

x? — 22 2 r2xo(2? + 23 — 2) 2
Pmotzkin = 2 P) P 2 +
T+ 5 T+ x5
z122(x? + 22 — 2)\° N 1222 + 22 — 2)\
2?2 + 23 2?2 + 23 '
Therefore [(22 + 23)% - Dimotzkin) € Y_|2] and thus puotapin > 0. O

Remark: Reznick proved for a homogeneous polynomial pj, [9]:

pp >0 on R"\ {0} = [(fo) -ph] € Z[m] for some r € N.



Astonishingly the result of the lemma from Reznick is also valid for the motzkin poly-
nomial with r = 2, although pperkin(1,1) = 0.

This example proposes the strategy to check if p is psd: If p is not SOS, then check if
[(>Cr, 2)" - p] € Yo[x] for some r € N.

Figure 1: graph Motzkin polynomial [2]

Remark: Although we do not know exactly "how many’ psd polynomials are as well
SOS, the lemmas of Lasserre, Netzer and the work of Parrilo, Sturmfels besides the long
construction process of the motzkin polynomial suggest most psd polynomials are like-
wise SOS [16] and therefore it is more than sufficient to use the constraint SOS instead
of nonnegativity. This assumption is important for the applications in the following
chapters.

10



I1l. Zero Diagonal Algorithm

In this chapter we show how to approach the problem if a polynomial p is a sum of
squares and therefore we introduce the Newton polytope [1] and as well the zero diag-
onal algorithm [1]. Furthermore we explain in detail the benefits of the zero diagonal
algorithm.

As mentioned before in the introduction, a good algorithm possesses the property effi-
ciency. Furthermore would it be helpful to decide beforehand, if the polynomial p is not
a sum of squares and thus we could spare us the algorithm and consequently the costs.

Two useful facts concerning this consideration:

1. If p is a sum of squares then is p nonnegative and particularly lower bounded and
must therefore have even degree.

2. If p is a sum of squares and has only one leading coefficient ¢, (p has only one
monomial m with coefficient ¢,, and deg(m) = deg(p)), then is ¢, positive.

Besides these two obvious facts, there exist a range of features for SOS polynomials,
which are not so apparent. Therefore we introduce the Gram matrix [2], who is a
helpful aid to better understand the other features of SOS polynomials.

With R[zy,...,2,]qs ;== R[z]; and Sym,(R) we denote the set of all polynomials p with
deg p < d respectively the set of all symmetric matrices G € R%9. The R vector
space R[z]4 has the dimension A, = (”;d) and possesses for instance the monomial base
Xg = (%) aenn jaj<a = (1,21, 22, ..., 2], 2129, ...) [2].

Now we consider the linear mapping
G: Sympy R — Rlzlog: M — X]MX,.

For M = (mag)|al,s<d is (o, B are vectors)

G(M) = Z Mapr®a’ = Z (Z ma5> x7.

], B]1<d [v]<2d \a+B=y

Obviously G is surjective and for p € R[z]y, is [2]

h

whereby {N;}, is a base of ker(G), @ is one possible solution for p = X7QX, and

h = (w — lw> for Ix, = ("zgd) respectively 1, = (";r;d). h follows from the

(Ixy+1)

. : : : : Ix : :
dimension formula, since M is symmetric and has therefore =4 linear independent

. . . . . Ix,(Ix,+1
entries, moreover is the dimension of Roy = [, and therefore is h = % — . For

11



this reason is G~'(p) a not empty affine subspace of Sym, R [2]. An element of G~ (p)
is called Gram matrix.

Now we have all the tools to prove the pivotal point of this paper, which is building the
cornerstone for the following considerations.

Theorem 6: For a polynomial p € R[z]aq holds [2]

r< (n;d)

p=| > f2|ed r] & p=X]MX, 0= M € Sym,,(R).

Proof. Let be 0 < M € Sym, ,(R) a Gram matrix of polynomial p. According to
Theorem 2 do we find a decomposition

r=rank(M)
M = Z vl v eRA.

T
i=1
Therefore is

rank(M) rank(M) rank(M)

p=XiMXg= Y Xjvo/Xs= > (7 X,)* Z f7e> al

i=1 i=1
Conversely let
b= Z fi27 fzeR[x]a
i€ZCN

then is p € R[x]yq with f; € R[z]4 and thus we can find a vector v € R for f; = vl X,.
Therefore is

p=> 2= (xy) = Xlvo! Xd_Xd<Z v, )Xd,
1€ZCN 1€ZCN 1€ZCN 1€ZCN
and p has the positive semidefinite Gram matrix

(Z vw?) = 0.

1€ZCN
]

The theorem shows that the question "Is p € > [z]|?" could be equivalently formulated
to the feasible problem [1]

"Find matrix M = 0such that p = X M X,". (1)

12



Since
p= Y mate’ = 3 (z W) "
e, BI<d lv|<2d \a+B8=v

and the matrix M is constrained do be positive semidefinite, we do have linear equality
constraints on the entries of M. Problem (1) is also called a linear matrix inequality
(LMI) feasibility problem [1].

As we have mentioned and seen in the introduction, the complexity to solve this problem
grows extremely with the dimension of the Gram matrix M of p [1]. Our general approach

for a polynomial p with deg p = 2d and n different variables z, ..., z, would lead to
Ix, = (":;d) entries of X, and therefore is the Gram matrix M € R*a**a. The number

of entries [x, from X also increases rapidly with the number of variables and the degree
of the polynomial p [1]. As already shown in the introduction, the decomposition of
p = 2()z is not necessarily unique, this means it would be desirable to get a vector z
with preferably less entries.

The Newton polytope is an algorithm, who reduces the dimension [y, of the vector Xy
by pruning out unnecessary monomials of X, [1]. For convenience we will give at first
some terminology concerning polytopes.

Let A C R™, then is convhull(A) the convex hull of A. Further let C' C R be a convex
set. A point o € C is called an extreme point of C| if for oy, a0 € Cand 0 < A < 1
holds [1]

a=X1+(1—=Nay = a; =ay = a.

Practically this means « is a corner point of the set C. A polytope is the convex hull
of a non empty, finite set {oy,...,a,} C R™ The extreme points of a polytope are
called vertices [1]. Let C' be a polytope and V the finite set of vertices of C', then is C'
= convhull(V) and V is a minimal vertex representation of C.

Besides the vertices representation of C' = convhull(V), there exists another represen-
tation of C' with the intersection of a finite collection of halfspaces, i.e. there exists a
matrix H € RV*" and a vector ¢ € RY such that C' = {a € R" | Ha < g} [1]. This
representation of C' is called a facet or half-space representation of C.

Since we have now introduced the conceptualities of a polytope and half-space, we can
face to the Newton polytope and extend this concept a little bit further.
The Newton polytope of a polynomial p =" 4 nn Cax® is defined as [1]
N(p) := convhull(A) C R™
and the reduced Newton polytope is defined by [1]
sN(p) = {30 [ a€N(p) }.

For example the Newton polytope of the motzkin polynomial per.rin = 223 + 2325 —
3z3z2 + 1 is the convex hull of the points {(0,0),(2,2),(4,2),(2,4)} and is therefore [2]:

13



Figure 2: Newton polytope Motzkin polynomial [2]

Soon we will prove that the vertices of the Newton polytope N(p = > 1" f2 € Y [x])
are vectors whose entries are even numbers and N(f;) C $N(p). This is a key result for
monomial reduction. But before we could demonstrate that fact, we need to do some
preparations.

Consider for v € R™ and r € R the half-space

H,, ={aeR"|a"v = {a,v) > 1}
Remark: A polytope P is the intersection of all half-spaces H D P [2].

Theorem 7: Forp="> cox® € Rlz],v € Q" and r € Q holds 2]

ac ACN?

N(p) C H,, & YaecR": li\r“% [t plagt™, ... apt™)| < oo.
t

Proof. Since (a,v) > r for all &« € N* with ¢, # 0, follows

11\1‘% [t7" - plagt™, ..., a,t"™)| = 1% | Z Co - a® -tV < | Z Co - %] < 00.
acA acA

Conversely let assume there exists an exponent o € N with ¢, # 0 and (a,v) = s <.

Let be s minimal and {a',...,a™} the set of all o who satisfy (a’,v) = s. Then exists

a € R" with v := >, ¢,ia® # 0 and consequently is

r v1 Un )| — 1; L 4S—T P CRE _
1{%# cplagt™, ... ant™)| ll\{‘%h "+ Z Co a1 | =00
acA\{al,...,a™}
since
limt*™" = oo and min {degt )l > 5 —
t\.0 acA\{al,...,a™

14



Theorem 8: Forp, fi,..., fm € R[x] holds [2]
(i) N(p*) =2N(p):={2a]a € N(p)}
(it) fi,f; >0 = N(f;) CN(fi+ f;)

(iit) p=(f2+...+f2) e [z] = N(f) S -N(p), ¥ie{1,....m}.

N | —

Proof. (i): For v € Q", a € R" and r € Q is according to Theorem 7

N(p*) C H,, < Ya € R": h\I"% " plant™, .. ant™)?| < 0o &
t

r 1
P{%H_E ~plagt™, ... a,t")| < 0o < N(p) C Hy,r = §Hv7r < 2N(p) C H,,

and two polytopes, who are included in the same set of (rational) half-spaces, are equal.

(i1): Let be N(f; + f;) € H,, and a € R™ , then is

1{% It_r . (fz-(alt’”l, . ,ant”") + fj(altvl, - ,ant”"))| <0 &= N(fz + fj) - Hvﬂn

and
|t_r . fi(altvl, . ,ant”")| S It_r . (fi(alt’“l, .. ,ant”") —+ fj(altvl, .. ,ant”"))|.
Furthermore holds

N(fi) € H,, & 1i\r%|t_7" filaat™ oo ant™)| < oo
and therefore N(f;) C N(fi + f;)-

(iii): N(p = f2+...+ f2) 2 N(f2) = 2N(fy) < N(f) € IN(p). =
Now we can prove the key result for monomial reduction.

Theorem 9: Ifp =", cox® =Y v, fZ € > [z] then the vertices {a,, ..., o} =V
of N(p) are vectors whose entries are even numbers and N(f;) € +N(p). Further are
the coefficients {cq, ;- - - Ca,, } PoSitive numbers. [1]

Proof. N(f;) C $N(p) follows from Theorem 8 and

N(p) = convhull(U N(f3) = convhull(U IN(f;) =2- convhull(U N(f)).

The vertices {v}, ... ,v]f} = Vy, of each N(f;) have apparently entries of positive inte-
gers and therefore has each vertex of convhull(|J;”; N(f;)) entries with positive integers.

15



Consequently has N(p) = 2 - convhull({J;", N(f;)) only vertices with even numbers.

Since N(p) = convhull(U;, N(f?)), follows for a vertex o, := >, ; 21}';], €V for appro-
priate k, j. Thus is

Cay, = E Cvl;j 'C”,'fj > 0.
k,j

]

Finally Theorem 9 enables us to show that the Motzkin polynomial is not a sum of
squares, that means 0 < Dyotakin € 2|7

Theorem 10: The motzkin polynomial Pmetorin = Tix3 + 3wy — 32322 + 1 is not a sum
of squares. [2]

Proof. Assume ppotokin = f2+...+ f2 € > [z], then N(f;) C %N(pmotzkin) according to

Theorem 9. This means f; includes only monomials of M. = {1, 2129, 2229, 7123} since

Figure 3: %N(pmotzkin) and N(prnotzkin) [2]

The monomial e, = 323 of a term f7, who includes x723, has a unique decomposi-
tion, i.e. for a,b € Mo follows @,y = 2323 = a-b < a = b = 129 and therefore has
the monomial ., a positive coefficient in sz. Though the motzkin polynomial has the
coefficient ¢y 5 = —3 for the monomial x,., = ziz3. Consequently is propzkin € Y 2], O

Remark: Protokin = 123 + 2325 — 30323 + v € > [z] for all vy € R, since our proof
is unconnected of the the monomial 2929 = 1-1 = 1 or in other words, there ex-
ist some positive polynomials with large minimums, who are not SOS. For example is

minﬁmotzkin =v—1 [2]

Another interesting point of the reduced Newton polytope is, that it empowers us to
state an upper bound for the squares of a decomposition, if their exists a partition.

1
Theorem 11: Let p € > [z| and r := |§N(p) N N"| the number of lattice points in
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1
§N(p), then is [2]

m<r

p=>Y_ f
=1

Proof. Let bep = f2+...+f2, then each f; includes only monomials with exponents from
1
QN (p) N N™ and therefore could be for each v; only the same r entries v*, ..., v;" # 0,

whereby f; = vl X;. Hence we get the decomposition p = XM X, with 0 < M =
Yo v;vl and rank(M)< r. Then Theorem 11 follows with Theorem 6. O

Remark: If a polynomial p € ) [x] possesses the Newton polytope N (p) = N(Pmotzkin),
then follows with Theorem 11, that p = 2?514 f?. Our general approach would lead to
the estimation m < (*}?) = 10. [2]

Theorem 9 implies that any monomial z* appearing in the vector X, respectively z of
a SOS decomposition p = XI M X, or p = 27 Qz must satisfy o € %N(p) N N",

That fact forms the basis for the Newton polytope method for pruning monomials. This
method could be implemented as follow [1]:
Construct the vector Xy in the variables zq,...,z,, who includes all monomials deg
rz® < d and has therefore (d*d'") entries. Then compute a half-space representation
{a € R" | Ha < g} for the reduced Newton polytope %N (p) and prune out any mono-
mials in Xy who are not elements of 1N (p).

To prune out any monomials equals checking each monomial in X, to see if the corre-
sponding degree vector satisfies the half-plane constraints Ha < g. This step is com-
putationally very fast, though the computation of the half-space representation of the
convex hull %A could be time consuming for polynomials p with many terms, i.e. A has
many elements. Hence we present soon an alternative implementation of the Newton
polytope method, that avoids the construction of a half-space representation of the re-
duced Newton polytope 3N (p).

But first a short example regarding the Newton polytope method [1].
Example: Consider the following polynomial from the introduction [1]
Psos = 39(:‘11 — Qxf:m + 79(:% —4dxix9 + 435% +1
with degree pspos = 2 - d = 4 in two variables 1, 5. Therefore we get the vector
Xgo=1[1 z 29 27 w1y 237

with length lx, = 6. An SOS decomposition p = XM X, of a 4 degree polynomial with
our general approach would include all 6 monomials of Xj.

We use the Newton polytope method to prune some unnecessary monomials of this list
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out . Furthermore is A := {[4,0],[2, 1], [2,0],[1, 1], [0, 2], [0,0]} the set of the monomial
degree vectors for the polynomial psps. These vectors are shown as circles in the left
figure "Newton Polytope’ [1]. The Newton polytope N(psos) is the large triangle with
vertices {[4,0],[0,0],[0,2]}. The right figure 'Reduced Newton Polytope’ [1] shows the
degree vectors for the six monomials in X (circles) and the reduced Newton polytope
(large triangle) [1].

The reduced Newton polytope 3 N (psos) is the triangle with the vertices {[2, 0], [0, 0], [0, 1]}
By Theorem 9, 125 and 23 can not appear in any SOS decomposition of psog because
[1,1],[0,2] € 3N (psos). These monomials could be pruned from X, and the search for
an SOS decomposition can be performed using only the four monomials in the reduced
Newton polytope:

Xd:[l T  To xf]T

The length of the reduced vector Xy is [ x, = 4. The SOS feasibility problem with this

~ ~ T ~
reduced vector X, is feasible since one possible solution for pspos = Xq M Xy is

1 0 0 0
0 7 -2 0
M=y 5 4
0 0 —1 3

with M > 0 because M € Sym,R has the eigenvalues A\ 234 ~ {1,2.08,3.87,8.04} > 0.
[1]

Newton Polytope Reduced Newton Polytope

2.5 2.5
2‘\\\ e SR et | RO TR .
1.6 \\\_ 1.5
™ : : : :
S e e A Q@
0.5 05, . T “'“ﬂ-_h
o ® 0 ) — — H'.'.'.‘.»'l
_05 =), L i A i A
1 (f 0—8.5 0 05 1 15 2 25

In our example the construction of the convex hull was straightforward, since we had
only two variables x1, x5 and therefore was it more a case of 'color by numbers’. But take
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for example a polynomial with 15 different variables and many terms, at first glance, this
seems insoluble or is at least really cumbersome, since there does not exist an ’efficient’
algorithm to construct the convex hull for such high dimensionens.

Hence we take another 'way’ to reduce the monomial vector X;. This way is called the
zero diagonal algorithm [1]. The algorithm is easy to implement, highly efficient and
more powerful than the Newton polytope method. [1]

The reason behind these desirable properties is the characteristic of a psd matrix 0 <
M € Sym(R). If M,; (in this case is i a scalar and not a vector) is constrained to be
zero, then the entire i row and column is 0 and the associated monomial (X4), could

be pruned from the vector X, [1].

Let W = {au,..., i, } C N" be the set of all degree vectors of X, (for example is
a1 ={0,...,0} and g, = {0,...,0,d}), then could we write p as [1]

Ix, Ixy
p= 3t XIMX =3T3 M o
ac ACN® i=1 j=1

and therefore do we have linear equality constraints on the entries of the Gram matrix M.
The structure of this equations plays an important role in the zero diagonal algorithm.
The entries of W are not independent [1], i.e. there exists a,b,¢,d € {1,...,lx,} so
that o, + ap = a. + aq and therefore is (Xy), - (Xaq), = (Xq), - (Xq), This fact shows,
that the representation of p from equation (2) is not really tractable. We get a better
representation of p by introducing the set [1]

W+W:={aeN"|Ja;,a; € Wwitha =a; + o}

of the unique degree vectors. With this new set we can write the polynomial p as [1]

p= Z caxa:XgMXd: Z Z M| z® (3)

ac ACNP acW4+W \ (i,5)€Sq

whereby S, := {(4,j) | a; + ; = a}. This representation has the advantage of the better
handiness because we can directly compaire the coefficients ¢, of p with the entries of
M, or in other words we get the following linear equality constraints [1]

Cas ae A
> M= (4)
(.)€ 0, o g A

Equations (3) and (4) propose the construction of a matrix A € R*/% (for instance
A =11,0,...,0]) and a vector b € R who includes the coefficients ¢, of p and zeroize
[1] (for example is by = ca, = ¢(o,...,0)) S0 that

Ag=1b (5)
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whereby g = vec(M) € R’ is the vector obtained by vertically stacking the columns of
M [1]. Furthermore is lx, = ("j;d) and [, = (”;;d) the dimension of R[x|, respectively
R[z]24 (or the number of elements of W + W) [1]. Hence we get the implication

p=Y car®=X;MX,€ ) [a] & Ig=vec(M): Ag=b A M=0. (6)

acA

As we have seen in the Newton polytope method, we could reduce the lenght of X, in
some cases and therefore the size of M and consequently the complexity to compute the
Gram matrix M > 0. This could be also done by the zero diagonal algorithm. The
reduction respectively the algorithm bases on the following theorem.

Theorem 12: If Sy,, = {(i,1)} then

M. — Co0; 20; € A,
o 2 ¢ A.

Furthermore if p = X7 MX, with M = 0 and M;; = 0 then is p = XgMX’d where
Xy € Rt s the wvector obtained by deleting the it" element of X4 and 0 < M €
RUxa=VxUxa=) s the matriz obtained by deleting the i** row and column from M [1].

Proof. Since Ss,, = {(i,)} is according to equation (4)
[o7) 2 i €A,
> Mig=Mii= {82 Z 2a :j
(/)€ S2a; ’ o & A
Furthermore is for 0 < M € Sym;, (R)
Mm‘ =0= M_ ,=M,_=0 (7)

Assume M;,; = 0 but M, = Mj,; # 0. Then we construct the new matrix

; M, Mgy, 0 My 22
Ai = = € R x

who is not psd, since det(flik) = —M?3 < 0 and the determinant is likewise the product
of the eigenvalues and therefore exists eigenvalue A < 0, but this is not possible for a
psd matrix. Thus exists & € R? with

2T Ayd < 0.

Furthermore we set the vector X :=[0,...,0,21,0,...,0,%,0,...,0] whereby X; =
and Xy = 5. Thereby follows

XTMX = 2T Az <0
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and consequently M is not psd, though this is in contrast to the constraint M > 0.

According to equation (3) and implication (7) is for My, =0

le le
N IFCCE DS S Jangee
i=1 j=1 i€{1,00lx, M\ {R} GE{Lylx P\ {k}

and therefore the monomial (X), is not included in any term of p and consequently
redundant [1]. O

In the following we will give a short overview how to implement the zero diagonal
algorithm and some explanations concerning the single steps [1].

1. Given: A polynomial p =" _,cqz®

2. Initialization: Set k = 0 and Gy := {a;}.X¢ C N*

3. Form Ag = b: Construct the equality constraint data, A € R, and
b € R obtained by equating coefficients of p = X7 QXj.

4. Iteration:

5. Set Z=0,k:=k+1, G, :=Gp_1

6. Search Aq = b: If there is an equation of the form @;; =0
then set Gy, := G \ {o;} and Z = Z UZ where Z are the
entries of ¢ corresponding to the i"® row and column of Q.
7. For each j € Z set j™ column of A equal to zero.

8. Terminate if Z = () otherwise return to step 5.
9. Return: G, A, b

The set G}, denotes the pruned list of monomial degree vectors at the k' iterate. Further
islx, = (";d) and [, = (”;;d). The main step in the iteration is the search for equations
that directly constrain a diagonal entry Q);; to be zero (Step 6). Based on Theorem 12
and implication (8), if Q;; = 0 then the monomial z; and the i’* row and column of
(@ can be removed. This is equivalent to zeroing out the corresponding columns of A
(Step 7)(For example if ()11 = 0, then we zeroing out the first [x, columns and the

(14 k- Ix,)™ column of A for k € {1,...,lx, — 1}).

This implementation has the advantage that A and b do not need to be recomputed for
each updated set Gy. Zeroing out columns of A in Step 7 also means that new equations
of the form ();; = 0 may be uncovered during the next iteration. The iteration continues
until no new zero diagonal entries of () are discovered.

Remark: The columns of the set Z can/should be deleted of A prior to passing the data
to a semi-definite programming solver (a solver, who is solving the equations Aq = b
with the constraint that 0 < @ for ¢ = vec(Q)), since this improves the efficiency and
stability [1].
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Theorem 13: The zero diagonal algorithm terminates in a finite number of steps ky,
and Gy, C (%N(p) ﬂN”) s the resulting set of monomials by the zero diagonal algo-
rithm, which are not necessarily redundant. Moreover if p = > f2 € Y. [x], then
(N(fi) NN") C Gy, . [1]

Proof. Gy (the initial set with all monomials of degree < d) has lx, elements. The
algorithm terminates unless at least one point is removed from Gj. Thus the algorithm
must terminate after £y < lx, + 1 steps.

To show Gy, C (%N (p) N N”) consider a vertex a; of convhull(Gy,). If there exists
u,v € convhull(Gy,) such that 2¢; = u + v then is a; = $(u + v) and therefore follows
u = v = q; for a vertex a;. Consequently is Sy,, = {(4,4)} (for the set Gy,) and by
Theorem 12

M., — C2a; 20, € A
’ 0 2061' g A

follows M, ; # 0 (not necessarily) since o; € G, . that means «; was not removed during
the final iteration of the zero diagonal algorithm and therefore is M, ; not constrained
to be zero. Consequently is 2c;; € A C N(p) and this implies o; € 2N (p). Therefore
$N(p) contains all vertices of convhull(Gy,) and we get the implication

(N” N ka) =Gy, C convhull(ka) C =N(p),

DO | —

which implicates Gy, € (3N (p) NN").

According to Theorem 9 is N(f;) € N (p) and 3N (p) C convhull(Gy) since each vertex
of N(p) is included in Go. This implies (N(f;) "N") C (convhull(Gp) "N") = G,. If

p =Y., f? then there exists a matrix 0 < M € Symy, (R) with p = XTMX,. If the
iteration removes no degree vectors then G, = G and the proof is complete.

Assume the iteration removes at least on degree vector and let «; be the first removed
degree vector. Then is M;;, = 0. By Theorem 9 the monomial (X), cannot appear in
any f;. Hence (N(f;) "N") C Go \ {a;}. Therefore is (N(f;) NN") C Gy, , because for
each y € {0,...,ks} is (N(f;) NN™) C G,,. [1] O

Remark: In our decomposition of p = 2XMz = XYM X, in Theorem 13 is z not
constrained to be z = X, this means we could z initialize with less monomials (if we
would know in advance, that some monomials are redundant), i.e. [, <lx = (”zd). The
proof of Theorem 13 for z # X, with (%N (p) N N“) C G, is exactly the same apart from
some adaptions.

Theorem 13 shows that the zero diagonal algorithm is more powerful than the Newton
polytope method, since Gy, C (%N(p) N N") [1]. We will show the scheme of the zero
diagonal algorithm and the fact of Theorem 13 by two short examples.
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Example:[1] Consider again the polynomial psos = 37} — 223wy + 723 — w1209 + 422 + 1
[1]. For the decomposition of psos = 27 Qz = X} M X, we initialize the vector z := X,
with all momonials of degree <2 and [, = lx, = (2;2) = 6. Equating the coefficients of
psos and 2T Qz yields the following linear equality constraints on the entries of Q:

Q21+ Q1,2 =0, Qi1+ Qia+Qaa=T7
Qa2 + Q2,4 =0, Q6,4+ Qap+Qs5 =0
Q31+ Q1,3=0, Qe1+ Qi+ Qssz=4

Q5,4+ Qa5 =0, Qs2+ Q25+ Qa3+ Q34 =-2

Res,3 + Q36 =0, Re2+ Q26+ @53+ Q35 =0

Q6,5 + Q5,6 =0, Q51+ Q15+ Q32+ Q23 =—4
Qi1=1 Q4,4 =3
Qes =0

As we have mentioned a matrix 4 € R'3*6” and vector b € R can be constructed
to represent these equations in the form Aq = b with ¢ = vec(M). Note that Qg = 0
and this implies that ;6 = Qs; = 0 with ¢ € {1,...,6} for any SOS decomposition of
psos- Thus the monomial zg = 22 can not appear in any SOS decomposition and it can
be removed from the list. After eliminating 23 and removing the 6 row and column of
@, the equality constraints reduce to

Q2,1+ Q1,2 =0, Qi1+ Qra+Q22=T7
Q4,2 + Q2,4 = 0, Q5,5 =0
QS,I + Q1,3 = 0, Q3,3 =4

Q5,4+ Qa5 =0, Q52+ Q25+ Qa3+ Q3,4 =—2
Q53+ Q35=0 Q51+ Q15+ Q32+ Q23 =—4
Qi1=1 Q4,4 =3

Removing the 6/ row and column of ) is equivalent to zeroing out the appropriate
columns of the matrix A. This uncovers the new constraint ()55 = 0 which implies
that the monomial z5 = x;25 can be pruned from the list. After eliminating xqxs, the
procedure can be repeated once again after removing the 5* row and column of ). No
new diagonal entries of () are constrained to be zero and hence no additional monomials
can be pruned from z. The final list G3 of monomials consists of four monomials.

z=[1 x, zp 2|7

The Newton polytope method returned the same list.

Example: [1] Consider the polynomial p = 2% + 22 + z{zj [1] in two variables and
degree 8. The Newton polytope is N(p) = convhull({[2, 0], [0, 2], [4,4]}) and the reduced
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Newton polytope is 1 N (p) = convhull({[1,0], [0, 1], [2,2]}). Further the monomial vector
corresponding to 3N (p) NN" is

zi=[r a9 Ty 23T
There are [, = lx, = (21'4) = 15 monomials in two variables with degree < 4. For
simplicity, assume the zero diagonal algorithm is initialized with Gy := %N (p) N N™.

Equating the coefficients of p and 2”@z yields the contraint Q33 = 0 in the first iteration
of the zero diagonal algorithm. The monomial z3 = 125 is pruned and no additional
monomials are removed at the next iteration.

The zero diagonal algorithm returns Go = {[1,0],[0,1],[2,2]}. G2 is a proper subset
of %N (p) "N N™. The same set of monomials is returned by the zero diagonal algorithm
after 13 steps if Gy is initialized with the [, = 15 degree vectors corresponding to all
possible monomials in two variables with degree < 4. This example demonstrates that
the zero diagonal algorithm can return a strictly smaller set of monomials than the
Newton polytope method.

As we have seen, the zero diagonal algorithm yields the same list, or sometimes a smaller
list, like the Newton polytope method [1]. But is this list always optimal? That means
it is not possible to prune some monomials of Gy, so that still p = 27Qz for Q = 0 and
a vector z, whose entries include less monomials than the list G,. Or in other words

Consider the polynomial p,,, = 1+ 2% + 2322 + 2} + 23 € >[z] who is obviously a

sum of squares. We initialize the vector z := Xy = [1, 21, 79, 2179, 22, 22]7 with the set
Go = {1, 21, T2, 2129, 23, 23} for the decomposition p,,, = 27Qz for 0 < Q € R°*®. Since

Prop = Z Caxa = XQTQXZ = Z Z Qi,j x

«€{(0,0),(2,0),(2,2),(4,0),(0,4) } z2e{(X4)1,..,(Xa)15} \(¢,))ESa

we get the constraints (we forgo to note all equations, because these 3 equations are
more then sufficient to show the result)

Q11 =copo =1, Q33+ Qs1 + Q16 =0, Q6,6 = coa = 1.

Thus is Q11 = Qee = 1 and Qs 1, Q16 are not constrained to be zero, since the zero
diagonal algorithm is not erasing the first and sixth column respectively row. Moreover
is (Y33 not necessarily zero and consequently terminates the zero diagonal algorithm
with the set Gy, = Go. One possible decomposition of pp,, is

1 0000 —1
0 1000 0

~wr 00200 0]

Prop = X, 0 0010 0] X
000071 0
10000 1
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and for Q33 = Q61 = Q16 = 0 we get the pruned decomposition

21T

2 2 2
pnop - [1,371,1’1[[’2,371,1'2] . : [1,1)1,I1{E2,$1,.’If2

oo oo
o O O = O
O O = OO
o= O OO
_ o O O O

Both matrices are psd, since their eigenvalues > 0. Moreover the monomial x5 could
pruned from the resulting list Gy, = G and as a consequence is the zero diagonal
algorithm not optimal. Besides of this fact, our example shows if the polynomial p has
a ’certain’ structure, then the zero diagonal algorithm is even futile, since no element
was removed from Go = {(Xa)1, ..., (Xa)iy, }-

Remark: The property of not beeing optimal is a direct corollary of equation (3), since
the monomials in X, are not linear independent [1] and therefore is z; = 0 ¢ @Q;; = 0.

Now, in the following chapter we will understand why we stressed so much the connection
of nonnegativity and SOS and show further the usefulness of the zero diagonal algorithm.

25



IV. Simplification Method For Sum Of Squares Programs

As we have mentioned in the introduction, to check if a polynomial p > 0 is really
interesting in optimization [12]. Consider the following situation:
We have a function p., who describes for example the cost of a product. It would be
desirable to produce a cheap product and therefore we are looking for the minimum of
pe. Furthermore we have some constraints on the cost function p.. These constraints can
be expressed as polynomial inequalities and hence as a set of nonnegative polynomials.
This situation looks as follow:

s ()

subject to: p1 —p1 > 0,...,py —pny =0

whereby pr — pr == D == ar(@,u) = apo (¥) + > ;_, wiar,; (r). Assume that p. := c’u
and therefore we get the optimization problem
min p.(u) = c'u

u€R”

subject to: Py := ag(x,u) = agpo () + Zuiam (x) >0, ke{l,...,N}.
i=1

To check if py, > 0 could be NP-hard [7] and hence the optimization problem is not really
tractable. This problem ’suggests’ another approach. If we substitue the constraint
pr > 0 by pr € > [x], the problem is feasible but there remains a question if this
substitution is not to strong, i.e. we do not get the same minimum or at least a useful
one.

According to the lemmas of Lasserre and Netzer the cone of the SOS polynomials is dense
in the cone of the nonnegative polynomials [7] and besides of these two lemmas Parillo
and Sturmfels have shown by some computation [9], that most nonnegative polynomials
are sum of squares. These two facts propose the idea, that we get in most cases a
useful minimum, i.e. our new solution uspg coincides with the solution wyennegative from
the origin problem or is not far 'away’. This idea motivates the following optimization
problem
T

111161]'11%} pe(u) =c'u

subject to: py = ax(z,u) = apo (x) + Zuiak,i (x) € Z[m], ke{l,...,N}
i=1

Problems of this structure are called sum of squares programs [1], [12]. The variables

u1, ..., u, € R were denoted as decision variables and the polynomials {a;})_, are given
problem data and are affine in u [1]. According to Theorem 6 we get another presentation
of sum of squares programs [1]
- _ T
min pe(u) =c'u

subject to: pr = ax(z,u) = 2{ Qr2s, 0=2Qr €Sym(R), ke{l,...,N}
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for an appropriate monomial vector z;. Clearly, () is a new matrix of decision variables
which is obtained by equating the coefficients of ay(z,u) and z} Q2. [1].

Furthermore exists a matrix A, € R“*™ and a vector b € R so that [1]
Auyu =b,

whereby y, := [uT,vec(Q1)T, ... ,vec(Qn)T]" [1] (this is similar to the case Aq = b,
though a little bit more complex because of decision variables and the N different con-
straints). The dimension m is equal to r + Zf\il mj; where Qy is my x my. After
introducing a Gram matrix for each constraint the SOS program can be expressed as [1]

: _.T
fféﬁ{lpc(u) =cu

subject to: A,y, = b, Qr>=0,ke{l,...,N}.

Specifically, the constraints in some SOS programs imply both u; > 0 and u; < 0, i.e.
this is an implicit constraint that w; = 0 for some 7 € {1,...,7} and consequently ay;
for k € {1,..., N} could be pruned out [1]. This reduction ’simplificates’ our problem
and therefore is this procedure called simplification method for SOS programs.

This method is a generalization of the zero diagonal algorithm, since it removes next to
the pruned monomials also the free decision variables, who are implicitly constrained to
be zero [1]. To better understand this method we will give a short example (although it
does not include simplification).

Example:[Parrilo] Consider the one dimensional polynomial f, 5 = (z* + 1) + a(z® —

x)+B(3x%+22?) = 2+ (a+38) 23 +262? —axr+1. We want to find a SOS decompositon
and get therefore the equation

fap(@) = 1—az+2B2* + (a +3p)z° +

T
1 q11 912 913 1
= 132 q12 922 923 -’E2
T Q13 923 @33 | | =

— q11 4 2q10 + (g22 + 2q13)2% + 2q032° + g332?

with the constraint 0 < @) € Sym,(R). Hence we get the feasible set

1 —%a 8=
(@,B8) | st | —fa  2A (a+36)| =0
B=X5(a+38) 1

Bl
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with a possible matrix A, g and vector b:

0 0 100000O0O0OD 1
10 010100000 0
Aap=[ALs A2s], Aly=10 —2{,A2,=100 101010 0[,b=]0
-1 -3 000001010 0
0 0 000000001 1

and as a graphical solution

You should recall in the univariat case holds for a polynomial p > 0 < p € > [z] [5].

The implementation could look as follow (to ease the notation we set N =1, for N > 1
is the implementation straightforward)|a; ; is the coeflicient from the monomial 2% of
the polynomial a;|[1]:

1. Given: Polynomials {a;}’_, in variables x. Define
a(x,u) = ap(z) + ar(x)ug + ... + ap(x)u,
2. Initialization: Set k£ = 0 and choose a finite set Gy := {a;}7"; € N such that
[Uuerr 3N (a(z,u))] NN" C G,
3. Form A,y, = b: Construct the equality constraint data, 4, € Rwxr+m*) and
b € Rl obtained by equating coefficients of a(x,u) = z7Qz, where

2= [z, ..., z*]" and y, = [u” UeC(Q)T]T

4. Sign Data: Initialize the r + m? vector s to be s; = +1 if (y,); corresponds to a
diagonal entry of (). Otherwise set s; = NalN.

5. Iteration:

6. SetZ:(Z),S:@,k:zk—f-l,GkZ:Gk_l

7. Process equality constraints of the form a; ;(y,); = b; where a;; # 0
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Ta. If by =0thenset s; =0and Z =2ZU}j

7b. Else if s; = NaN then set s; = sign(a; ;b;) and S =S Uj

7c. Else if s; = —1 and sign(a; jb;)=+1 then set s;, =0 and S =SU

7d. Else if s; = 41 and sign(a; jb;)=—1 then set s; =0 and S = SUj
8. If for any j € Z, (y,); corresponds to a diagonal entry ();; then set

Gr = Gy \{a;} and Z = Z UZ where Z are the entries of y,.
corresponding to the i** row and column of Q.

9. For each j € Z set the j** column of A, equal to zero.

10. Terminate if Z = () and S = () otherwise return to step 6.

11. Return: G, A,,b, s

The algorithm is initialized with a finite set of vectors Gy C N", whereby Gy must be
chosen so that it contains all possible reduced Newton polytopes, because the New-
ton polytope of a(z,u) depends on the choice of w [1]. One choice is to initialize
Gy corresponding to the degree vectors of all monomials in n variables and degree
< 2d := max,[deg ax(z,u)] [1].

Since A, and b need to be computed when formulating the semidefinite program con-
straints, this step does not require additional computation associated with the simplifi-
cation procedure. The last pre-processing step is the initialization of the sign vector s.
The entries of s; are +1, -1, or 0 if it can be determined from the constraints that (y,);
is > 0, <0 or =0, respectively [1]. s; = NalN if no sign information can be determined
for (y,):. If (y,); corresponds to a diagonal entry of @ then s; can be initialized to +1,
since the diagonal entries ¢;; > 0 of a psd matrix 0 < @ € Sym(R) [1].

The main iteration step is the search for equations that directly constrain any decision
variable to be zero (Step 7a). This is similar to the zero diagonal algorithm. The iter-
ation also attempts to determine sign information about the decision variables. Steps
7b-7d update the sign vector based on equality constraints involving a single decision
variable. For example, a decision variable must be zero if the decision variable has been

previously determined to be < 0 and the current equality constraint implies that it must
be > 0 (Step 7c).

These decision variables can be removed from the optimization. Steps 8 and 9 prune
monomials and zero out appropriate columns of A,. The iteration continues until no
additional information can be determined about the sign of the decision variables [1].

This SOS simplification procedure automatically uncovers some implicitly constrained u;
to be zero and removes these decision variables from the optimization. This is important
because implicit constraints can cause numerical issues for SDP solvers. A significant re-
duction in computation time and improvement in numerical accuracy has been observed
when implicitly constrained variables are removed prior to calling a solver[1].

In the next chapter we will give some examples of interesting applications of the zero
diagonal algorithm
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V. Applications

Global bounds for polynomial functions: Given a multivariate polynomial function
f € R[z| which is bounded below on R". We want to find the global minimum f* and
a point x* attaining it:

f=f(@) =min{f(z) : x € R"}.

This problem is NP-hard (at least for polynomials with degree > 4). As mentioned
Parrillo and Sturmfels haven taken another way[9]. They have searched for the largest
value 7 € R such that f(z) —~ is a sum of squares in R[z]. In their experiments was in
almost any case 7 = f*. Clearly, v is a lower bound for the optimal value f* [9]. The
condition

min vy
subject to: f(x) + v € Z[m]

is a sum of squares program, since we have the cost function p.(u) =y withc =1, u =~
and f(z) = ag(x), ai(zr) = 1. Hence we get for a(z,u) = ag(x) + vai(z) = f(z) +
(obviously the problem of finding the minimum for a polynomial must be a sum of
squares program, because we have taken the same approach to motivate sum of squares
programs).

Consider again the polynomial pnegative = 425 — 2t + 128 + 2125 — 423 + 423 of the
introduction [10]. We want to find the global minimum, but this task could become
highly difficult, since it has many local minimums (see figure below). Therefore we
apply the sum of squares program method and get for v &~ 1.03162845 [10]. This turns
out to be the exact global minimum, since that value is achieved for x; ~ 0.089842,
xy = —0.7126564 [10]. Since v = f* and 0 < v ~ 1.03162845, is ppegative DOt Psd.
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Although we have stressed, that v mostly coincides with f*, though we want to give
two counter examples [10]. Besides the bivariate motzkin polynomial, there exists a
3 dimensional motzkin polynomial M (z,y,z) = z%y?* + 2?y* + 2° — 32%y?2? [1]. This
polynomial is also nonnegative since it attains it minimum 0 = M (1,1,1) [10]. Solving
the corresponding SDPs, the best lower bound that can be obtained this way can be
shown to be — 12 ~ —0.177978, and follows from the decomposition [10]

4096 "
729 9 27 3 5
M1 2) = 2% 4+ 22 4 26 — 32,2 _ 2 3\2 2 9 2\2 2
(z,1,2) =2+ 2"+ 2 z°2" + 1006 ( 82+z) +(64+£C 22) + 557
This is a significant gap between f* = 0 and v = ;5. But it could come worse. Take

for instance the motzkin polynomial Pporrin = 2ix3 + 225 — 32222 + 1. There does
not exist any 7y, so that puotzkin + v € >_[z]. This follows from Theorem 10 (motzkin
polynomial is not a sum of squares) and the remark below Theorem 10 [2]. This example
shows, that the gap could be infinite, although these examples are sparsely distributed.

Geometry: [10] In this problem, we compute a lower bound on the distance between
a given point (zg,yo) and an algebraic curve C(z,y) = 0. Take (zg,y0) = (1, 1), and let
the algebraic curve be

C(z,y) = 2° — 8x — 2y = 0.
In this case, we can formulate the optimization problem

min (z — 1)+ (y — 1)?
C(W)ZO( )+ (y—1)

and define the sum of squares program as follow
min —~? (8)
subject to: (x — 1)* + (y — 1)? — 4% + (a + Bx)(2® — 8z — 2y) € Z[m,y] 9)

It should be clear that if condition (9) holds, then each point (z,y) in the curve are
at a distance at least equal to 7 from (xg,y9). To see this, note that if the point
(x,y) is in the curve C(z,y) = 0, then the last term in (9) vanishes, and therefore
(r—1)*+ (y — 1) > 4% > 7. The expression is affine in «, 8 and ? and so the problem
can be directly solved using SDP [10]. (We need the polynomial («+ Sz) to lower bound
(3 — 8x — 2y)).

Furthermore we have ag(z,y) = (z — 1)? + (y — 1)?, a1 = =1, ag = 2® — 8x — 2y, a3 =
z(x® —8x —2y) and uy =%, ug = @, ug = B next to ¢c; = —1, cg =0, c3 = 0.
The optimal solution of the SDPs is [10]:

a~ —0.28466411, B ~ 0.07305057, v ~ 1.47221165.
The obtained bound + is sharp, since it is achieved by the values [10]
r ~ —0.176299246, y ~ 0.702457168, (x,y) e C =0
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The curve C(z,y) = 0 and the minimum distance circle.

Matrix copositivity: [10] A symmetric matrix J € R™*" is said to be copositive if
the associated quadratic form takes only nonnegative values on the nonnegative orthant,

or in other words:

r;>0,i€{l,...,n} =" Jr >0.

As opposed to positive definiteness, which can be efficiently verified, checking if a given
matrix is not copositive is an NP-complete problem [10]. The main difficulty in obtaining
conditions for copositivity is dealing with the constraints in the variables, since each x;
has to be nonnegative. Therefore we set x; = z? and study the global nonnegativity of

the fourth order form given by [10]:
P(z):=2"Jz = ijszzz
ik

where z = [22,23,...,2%]T. Tt is easy to verify that J is copositive if and only if the
form P(z) is positive semidefinite [10]. Therefore, sufficient conditions for P(z) to be

nonnegative will translate into sufficient conditions for J being copositive. Consider the

matrix [10]

[ 1 -1 1 1 -1
—1 1 -1 1 1

1 1 -1 1 -1
-1 1 1 -1 1
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Unfortunately, P is not a sum of squares. But we can try to use the same strategy of
the Motzkin polynomial, i.e. we use the result of the lemma from Reznick and check if

(54) -

And indeed, for 7 = 7p,;,, = 1 holds condition (10). Hence J is copositive [10]. Obviously
for r > 7,4, (10) is also satisfied.

€ Z[z] for some r € N. (10)

Lyapunov function search:[4] The Lyapunov stability theorem has been a cornerstone
of nonlinear system analysis for several decades. In principle, the theorem states that
a system & = f(x), whereby x := z(t), with equilibrium at the origin is stable if there
exists a positive definite function V' (z) such that the derivative of V' along the system
trajectories is non-positive. We will now show how the search for a Lyapunov function
can be formulated as a sum of squares program [4]. For our example, consider the system

. 3 2

1 —ZTy — L1723

) 2

. 3x3 2

T —x3 — + 3zix3
3 $§+1 1

which has an equilibrium at the origin. Now assume that we are interested in a
quadratic Lyapunov function V' (z) for proving stability of the system. Then V' (x) must
satisfy [4]

V—e(:t:f—i—x%—i—xg) >0,
ov . ov . oV

— Ty — Lo — Trs > 0.
1 8@2 3=

8x1 8x3

The first inequality, with € being any constant greater than zero (in what follows we will
choose € = 1), is needed to guarantee positive definiteness of V'(x). We will formulate
a SOS program that computes a Lyapunov function for this system, by replacing the
above nonnegativity conditions with SOS conditions.

However, notice that @3 is a rational function, and therefore is the second condition not
a polynomial expression. But since x2 4+ 1 > 0 for any z3, we can just reformulate [4]

ov ov ov
2 _ . o . o . > )
(z3+1) ( 8x1x1 R T G x3) >0

Next, we parameterize the candidate quadratic Lyapunov function V' (z) by some un-
known real coefficients cq, ..., cs and get

2 2
V(z) = 1] + coxyg + ... + coa3,
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and the following SOS program (with no cost function) can be formulated as [4]:
Find a polynomial V' (z), (equivalently, find cy,. .., cg) such that

V(x) — (27 + 25 + 23) is SOS
ov ov ov
(x5 +1) ( 9 o2 ax?’xg) is SOS

The SDP solver gets the solution V(z) = 5.5489x2 +4.10682z3 + 1.7945x3 as a Lyapunov
function and that proves the stability of the system [4].

Conclusion

To check if a polynomial p > 0 could be NP-hard, whereas checking if p € Y [z] can be
done in polynomial time, since p € > [z] < p = 27Qz . Moreover each polynomial
p € >_[z] is a psd polynomial and therefore we can check if p > 0 by checking if p € > [z].

This idea even enables us in many cases to find the global minimum of p or even at least
a useful one and hence we can check if p is psd by finding a SOS decomposition or a
global minimum. This approach made the problem if pgos, Pnegative 1s Psd feasible, since
Psos is a sum of squares and pyegative has the global minimum —1.03162845.

Furthermore the problem could be even more simplified by the Newton polytop, i.e. we
can prune the vector z in the decomposition p = 27'Qz. The Newton polytope requires
the construction of a convex hull and this could be time consuming. The zero diagonal
algorithm forgoes on this construction and is based on a simple property of positive
semidefinite matrices - if Q;; = 0 then is the i row and column equal to zero of Q.

The algorithm is fast since it only requires searching a set of linear equality constraints
for those having certain properties and the set of monomials returned by the algorithm
is a subset of the set returned by the Newton polytope method.

Furthermore the zero diagonal algorithm was extended to a more general reduction
method for sum of squares programs and we have shown how to formulate problems in
optimization as sum of squares programs.
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