
Universität Innsbruck

Department of Mathematics

seminar with bachelor thesis

Simplification Methods for Sum of
Squares Programs

Author
Mirco Berner

Supervisor
Univ.-Prof. Dr. Tim Netzer

June 22, 2018

Abstract

To check if a polynomial p is psd has many applications in optimization,
real algebraic geometry, group theory and nonlinear analysis problems like
Lyapunov stability analysis. The verification if p ≥ 0 could be time consum-
ing, since this problem is known to be a NP-hard problem. If p is a sum
of squares, i.e. it can be expressed as sum of squares of other polynomials,
then p is clearly psd. To check if p is a sum of squares is more feasible,
because to determine if a sum of squares decomposition exists for a given
polynomial is equivalent to a linear matrix inequality feasibility problem for
the decomposition p = zTQz and this could be done in polynomial time.
The computation required to solve the feasibility problem depends on the
number of monomials in z. The Newton polytope is a method to prune un-
necessary monomials from the decomposition, but this method requires the
construction of a convex hull and this can be time consuming for polynomials
with many terms. This thesis discusses another method to prune z, called
the zero diagonal algorithm. The algorithm is highly efficient, needs less
computation and is more powerful than the Newton polytope method, since
he is based on a single property of psd matrices and returns never a larger
set of monomials for the vector z than the Newton polytope method. The
algorithm is then extended to a more general simplification method for sum
of squares programs and we show how problems could be formulated as sum
of squares programs and therefore how to apply the zero diagonal algorithm
to these problems.

I. Introduction

Note, this thesis largely follows [1]. In the interest to address a large reading public,
even those without a strong mathematical background, we have tried to make this paper
as self-contained as possible. This paper forgoes of the usual mathematical structure
like definition followed by a sentence and the belonging proof. Instead, we have tried to
inform the reader in an entertaining way by more telling a narration than to provide a
dry article, although we do not spare on the necessary notations, theorems and proofs.

It is a fundamental question in mathematics and especially applied mathematics, if a
function is nonnegative. In other words, if it holds for a function f : Rn → R,

f (x1, . . . , xn) ≥ 0, ∀x1, . . . , xn ∈ R.

One interesting aspect behind this questioning is the fact, that numerous problems in
optimization, real algebraic geometry, group theory and other areas of mathematics
could be formally expressed using a finite number of multivariate polynomial equalities
and inequalities [1],[3],[7],[10],[12].

So in this paper, we will confine us to the case f ∈ R[x1, . . . , xn] := R[x], where R[x] :=

2

{
∑

α∈Nn cαx
α1
1 · · · xαnn | αi ∈ N, cα ∈ R, finite cα 6= 0} denotes the set of all polynomials

in the variables x1, . . . , xn and coefficients cα in the field R. For abbreviation we write
for a monomial xα1

1 · · ·xαnn = xα and for p ∈ R[x], p =
∑

α∈A cαx
α with A ⊂ Nn and

cα 6= 0. Furthermore for a monomial xα is deg(xα) :=
∑n

i=1 αi := |α| the degree of the
monomial and for p ∈ R[x] deg(p) := maxα∈A {deg(xα)}.

Although the task to check if a polynomial p ≥ 0 seems really easy to solve, reality has
proven us wrong. Even geniuses from the last couple centuries had a tough time with
this task and despite of the invention of the computer this problem is still NP-hard, even
in really elementary cases like 4 dimensions (x ∈ R4) [7]. In the language of computers,
this means the time to tackle the problem exceeds by far the desirable time to solve the
task or sometimes the problem is actually intractable for the computer.

So therefore it would be really useful to have a ’tool’, which certificates the nonnegativity
of a polynomial (shortly p is positive semidefinite or psd [6]). Take for example the
polynomial

p1 = x2
1 − 2x1x2 + x2

2.

This polynomial is obviously nonnegative (psd), since p1 = (x1 − x2)2. But take for
instance the polynomials [1],[10]:

1. pmotzkin = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1

2. pSOS = 3x4
1 − 2x2

1x2 + 7x2
1 − 4x1x2 + 4x2

2 + 1

3. pnegative = 4x2
1 −

21

10
x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2

In these cases it is not ’so’ obvious if they are nonnegative. In the remainder of this
article we will refer to this polynomials and give an answer concerning the nonnegativity
and what distinguish them from the other ones.

Apparently every polynomial p :=
∑

i∈I⊆N f
2
i ∈

∑
[x], where

∑
[x] denotes the set of all

sum of squares polynomials (SOS), is nonnegative. In this case, there is no calculation
necessary. We do not need to consider any local minimum, which could be a NP-hard
problem. Instead, the problem has been fundamentally simplified. So if we could find a
representation of p as SOS, the answer could be easily verified. That implication poses
the fundamental question:

Is every nonnegative polynomial a sum of squares (SOS)?

If this question could be affirmed, the question of nonnegativity for a polynomial p would
be equivalent to the question "Is it possible to find a SOS decomposition of p?". Hence
an algorithm, what yields a possible SOS representation would be a powerful ’tool’. This

3

algorithm should have two properties:

1. efficiency

2. reliability

What does efficiency and reliability in this context mean? Efficiency describes the prop-
erty to get the result by relative few steps of calculation for the computer and reliability
to get always the SOS representation of p, if p is SOS. ’Luckily’, there exists an algo-
rithm with these properties. This follows from the fact, that for each p ∈ R[x] exists
a quadratic matrix Q over R and a vector z, [2] whose entries are monomials in the
variables x1, . . . , xn (for example z3 = x1x2xn) so that

p = zTQz.

The nonnegativity of a polynomial p ∈
∑

[x] suggests that the matrix Q could be positive
semidefinite (psd), i.e.

uTQu ≥ 0, ∀u ∈ Rcolumns(Q) ⇔: Q � 0.

This idea proposes the approach of finding a matrix Q � 0 with p = zTQz. Indeed, it
holds [1]

p ∈
∑

[x] ⇔ p =
∑
i∈I

f 2
i ⇔ p = zTQz, Q � 0.

In the subsequent chapters we will examine further the exact representation of the ma-
trix Q � 0 and the vector z.

This problem is much better tractable. It requires only to solve a linear matrix in-
equality feasibility problem [1]. Practically this means we could solve the problem
in polynomial time and therefore if there exists a SOS representation. But this strategy
has a fundamental pitfall. Consider the situation:

p1 = x2
1 − 2x1x2 + x2

2 = (x1 − x2)2 ⇔ p1 =

(
x1

x2

)T (
1 −1
−1 1

)(
x1

x2

)
=: zTQz

This representation of p1 as SOS is optimal. But take for instance the vector z =
z∗ = [1, x1, x2, . . . , x

100
n]

T , that choice would yield the same polynomial p1, though an
extremely large matrix Q∗ and plenty steps of calculation for computing the entries of
Q∗, although almost every entry is equal to zero. That is not really desirable. This
example shows the complexity depends strongly on the size of the vector z respectively
the number of his entries. In addition, this approach or algorithm does not really satisfy
the property efficiency.

So it would be really useful to know in advance which monomials are necessarily an
entry of z∗. In our example p1 = z∗

T
Q∗z∗, there were only the entries x1, x2 necessary,

4

that means we could prune z∗ to z = [z∗2 , z
∗
3]T = [x1, x2]T . A quite helpful and common

used method to prune z∗ in advance is the Newton polytope [1], although this method
has one big drawback, it requires the construction of a convex hull and this construction
could be time comsuming for polynomials with many terms [1].

This paper refers to an alternative algorithm for pruning out unnecessary monomials
from z∗, called the zero diagonal algorithm. This algorithm has two crucial benefits
compared to the Newton polytope. He yields to better results, meaning the number
of entries from zdiagonal is never larger than znewton [1]. Besides of this advantage, the
algorithm forgoes of constructing a convex hull, instead he is really easy to implement
with very little computational cost [1].

These both advantages result from a simple property of a positive semidefinite matrix.
If the entry (i, i) from Q � 0 is zero, than the entire ith row and column must be zero
[1].

Further we will extend the essential idea of the zero diagonal algorithm to a general algo-
rithm for sum of squares programs, who include free decision variables u1, . . . , ur.
These programs [1], [12] consist of a cost function

pc (u1, . . . , ur) = cTu := 〈c, u〉

who should be minimized respectively maximized and a set of constraining polynomials
p̂1, . . . , p̂N of the shape

p̂k = ak,0 (x) +
∑r

i=1 uiak,i (x) ∈
∑

[x], ak,i ∈ R[x].

This simplification method removes next to the pruned monomials the free variables
u1, . . . , ur who are implicitly constrained to be zero [1]. The reduction of the free decision
variables can improve numerical conditioning and computational time to solve the sum
of squares program [1].

Last but not least with the aid of a few samples we well show how to apply the idea of
the zero diagonal algorithm to problems in the range of optimization, stability analysis,
geometry and matrix copositivity [1], [4], [10], [12], i.e. we demonstrate how questions
in these fields could be formulated as a sum of squares program.

5

II. Nonnegative Polynomials and SOS

In the previous chapter we have asked the question if each nonnegative polynomial is a
sum of squares. This question is not only interesting for our application but rather from
fundamental importance in mathematics.
Exactly this question proposed the german mathematician David Hilbert [6], but shortly
afterwards his friend Hermann Minkowski convinced him 1885 by his doctoral disserta-
tion that such a statement would be to strong [6] and therefore he proposed a "weaker"
question:

Is every nonnegative polynomial a sum
of squares of rational functions?

What does this question mean? Instead of using polynomials as sum of squares, he
proposed to take functions of the form f =

p

q
, with p, q ∈ R[x]. Functions of this

form are called rational functions [6] and the set of all rational functions is denoted
by R(x1, . . . , xn) := R(x) = { p

q
| p, q ∈ R[x] }. Therefore we have the questionable

implication:

p ≥ 0 ⇒ p =
∑

i∈I⊂N f
2
i , fi ∈ R(x)?

Due to the still importance of the problem he proposed this question among 22 other
fundamental mathematical questions in 1900 at the International Congress of Math-
ematicians. This question is also known as Hilbert’s 17th problem and has demon-
strated to be a real twister, considering that it needed 27 years until Artin finally
gave an affirmative proof [2],[6]. Moreover Albrecht Pfister showed in 1967 [6] for a

psd polynomial p that p(x1, . . . , xn) =
∑m≤2n

i=1

(
gi
hi

)2

for gi, hi ∈ R[x]. Hence follows [6]

p ≥ 0 ⇔ p =

m≤2n∑
i=1

f 2
i , fi ∈ R(x1, . . . , xn),

but does this also hold for fi ∈ R[x]? Shortly after Hilbert changed his assumption
concerning nonnegativity and SOS, he proved in a seminal paper in 1888 by abstract
means - who were not constructive - the existence of some counterexamples, i.e. Hilbert
could not state exact presentations of some counterexamples but he could prove the
existence of some polynomials who are psd (nonnegative) but not SOS [6]. Therefore:

p ≥ 0 < p =
∑

i∈I f
2
i ∈

∑
[x].

Further he gave a clear distinction for the different classes in the set of all psd polyno-
mials.

6

Theorem 1: Let p ∈ R[x1] be an univariate polynomial of any degree then [5]

p ≥ 0 ⇔ p ∈
∑

[x1] ⇔ p =

m≤21∑
i=1

f 2
i , fi ∈ R[x1] ⇔ p = f 2

1 + f 2
2

Proof. Clearly each psd polynomial p has pairs of roots who are either complex in con-
jugation or real. This follows from the fact that the graph of a psd polynomial p is
above the x axis and if p = 0, then p touches the x axis but is not intersecting the axis.
Additionally 0 = p(w) = p(w) =

∑2d
i=0 ciw

i =
∑2d

i=0 ciw
i = p(w) = 0. Therefore the

roots have the form aj ± ibj and we can write p as

p(x1) = c2d · [(x1 − [a1 + ib1]) · · · (x1 − [ad + ibd])] · [(x1 − [a1 − ib1]) · · · (x1 − [ad − ibd])]
= c2d · [g1(x1) + ig2(x1)] · [g1(x1)− ig2(x1)]

= f 2
1 (x1) + f 2

2 (x1).

Theorem 2: Let p ∈ R[x] be a multivariate polynomial of degree 2 then [2]

p ≥ 0 ⇔
∑
i∈I⊂N

f 2
i , deg(fi) = 1

Proof. Primarily we could assume that p is homogenous of degree 2. That means every
monomial of p has degree 2. That follows from the fact, if p is psd, then the homogenous
polynomial ph of degree 2, which is obtained by multiplicating each monomial of p with
the new variable x0 as often that each monomial has degree 2, is also psd. Therefore
is ph (x0 = 1, x1, . . . , xn) = p (x1, . . . , xn). Furthermore holds for every homogeneous
quadratic polynomial

ph = xTMx =
n∑

i,j=0

mijxixj

for a symmetric matrix M = (mij)i,j ∈ R(n+1)×(n+1). The nonnegativity of ph implicates
that the matrix M is psd and therefore is each eigenvalue λi ≥ 0 and the number of
eigenvalues λj > 0 is equal to rank(M). Thus is according to the spectral theorem for a
symmetric psd matrix M ,

UTMU = D := diag(λ1, . . . , λrank(M), 0rank(M)+1, . . . , 0n+1) ⇔
M = UDUT = UD

1
2D

1
2UT = AAT , UTU = I.

Let be M = A?A?
T with A ∈ R(n+1)×(n+1) pruned to the matrix A? ∈ R(n+1)×rank(M),

since the last columns are equal to zero and denote A?−i := vi, then it follows

M =

rank(M)∑
j=1

vjv
T
j

7

and consequently

ph = xT

rank(M)∑
k=1

vkv
T
k

x =

rank(M)∑
k=1

(
vTk x

)2
.

Theorem 3: Let p ∈ R[x1, x2] be a bivariate polynomial of degree 4 then [6]

p ≥ 0 ⇔
m≤22−1∑
i=1

f 2
i =

m≤3∑
i=1

f 2
i , fi ∈ R[x1, x2]

Remark: Hilbert’s proof is beautiful and short but difficult and incomprehensible for
the modern reader, thus we waive on this proof. We refer to [14] or [15] for modern
accounts of Hilbert’s proof.

In any other case Hilbert has shown in 1888 the existence of a psd polynomial p ∈ R[x]
which is not a sum of squares in R[x] [6]. Hence we get the implications

1. p(x1) ≥ 0 ∧ (n = 1) ⇔ p(x1) = f 2
1 (x1) + f 2

2 (x1)

2. p(x) ≥ 0 ∧ (d = 2) ⇔ p(x) =
∑
i∈I∈N

f 2
i (x), deg(fi) = 1

3. p(x1, x2) ≥ 0 ∧ (n = 2, d = 4) ⇔ p(x1, x2) = f 2
1 (x1, x2) + . . .+ f 2

m ≤ 3(x1, x2)

where d denotes the degree of p and n the number of different variables of p.

At first glance you would think this is a big damper because our question "If psd is
equivalent to SOS" was denied and so therefore our entire considerations concerning of
finding a good ’tool’, which certificates the nonnegativity of a polynomial p, are futile.
This means our algorithm is useless in the case if p ∈ R[x] is nonnegative but not a sum
of squares.
However, if ’many’ psd polynomials are as well SOS, our algorithm would be still a good
’tool’ for many cases and is therefore more than adequate for most applications. This
assumption is bolstered by the following two implications [7]

p ≥ 0 on Rn ⇒ ∀ε > 0∃κ ∈ N :

[
p+ ε

(
κ∑
h=0

n∑
i=1

x2h
i

h!

)]
∈
∑

[x],

p ≥ 0 on Rn ⇒ p ≥ 0 on [−1, 1]n ⇒ ∀ε > 0∃κ ∈ N :

[
p+ ε

(
1 +

n∑
i=1

x2κ
i

)]
∈
∑

[x]

from Lasserre and Netzer. Consequently, the SOS cone is dense in the cone of nonneg-
ative polynomials.

8

Besides these two theoretical aspects, Parrilo and Sturmfels have shown in a practi-
cal way by computing up to degree 15, that the global minimum p∗ ∈ R of a lower
bounded polynomial p ∈ R[x] almost always coincides with the largest value λ ∈ R,
so that [p(x)− λ] ∈

∑
[x] [8]. Practically, this means, that (p(x) − p∗) ≥ 0 and

since [p(x)− λ] ∈
∑

[x] is λ ≤ p∗ and for λ = p∗ ≥ 0 follows that p ∈
∑

[x], since
p(x) = p(x)− p∗ + (2

√
p∗)2 = p(x)− λ+ (2

√
λ)2 ∈

∑
[x].

That suggests, a nonnegative polynomial p is ’mostly’ a sum of squares [16] and therefore
is the distinction between nonnegativity and SOS in most applications negligible. This
supposition is also supported by the fact, that mathematicians needed over 80 years to
construct a polynomial pmotzkin, called the Motzkin polynomial, which is psd but not
SOS [2], [6].

Theorem 4: [Motzkin, 1967] The polynomial pmotzkin = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1 is

nonnegative. [2]

Proof. We will present this fact by 2 different ways, since each way is a useful instrument
to prove the nonnegativity of a polynomial p.

1. For 0 ≤ a, b, c ∈ R is the arithmetic mean always bigger than the geometrical [2], [5],
hence

(abc)
1
3 ≤ 1

3
(a+ b+ c)

and for a = 1, b = x4
1x

2
2, c = x2

1x
4
2 follows

x4
1x

2
2 + x2

1x
4
2 + 1 ≥ 3x2

1x
2
2

and consequently is pmotzkin ≥ 0.

2. According to Artins proof, each psd polynomial is a sum of squares of rational
functions and therefore should exist a decomposition with no more than 22 squares [6].
And indeed it holds [5]

pmotzkin =

(
x2

1 − x2
2

x2
1 + x2

2

)2

+

(
x2

1x2(x2
1 + x2

2 − 2)

x2
1 + x2

2

)2

+(
x1x

2
2(x2

1 + x2
2 − 2)

x2
1 + x2

2

)2

+

(
x1x2(x2

1 + x2
2 − 2)

x2
1 + x2

2

)2

.

Therefore [(x2
1 + x2

2)2 · pmotzkin] ∈
∑

[x] and thus pmotzkin ≥ 0.

Remark: Reznick proved for a homogeneous polynomial ph [9]:

ph > 0 on Rn \ {0} ⇒

[(
n∑
i=1

x2
i

)r

· ph

]
∈
∑

[x] for some r ∈ N.

9

Astonishingly the result of the lemma from Reznick is also valid for the motzkin poly-
nomial with r = 2, although pmotzkin(1, 1) = 0.

This example proposes the strategy to check if p is psd: If p is not SOS, then check if[
(
∑n

i=1 x
2
i)
r · p

]
∈
∑

[x] for some r ∈ N.

Figure 1: graph Motzkin polynomial [2]

Remark: Although we do not know exactly ’how many’ psd polynomials are as well
SOS, the lemmas of Lasserre, Netzer and the work of Parrilo, Sturmfels besides the long
construction process of the motzkin polynomial suggest most psd polynomials are like-
wise SOS [16] and therefore it is more than sufficient to use the constraint SOS instead
of nonnegativity. This assumption is important for the applications in the following
chapters.

10

III. Zero Diagonal Algorithm

In this chapter we show how to approach the problem if a polynomial p is a sum of
squares and therefore we introduce the Newton polytope [1] and as well the zero diag-
onal algorithm [1]. Furthermore we explain in detail the benefits of the zero diagonal
algorithm.

As mentioned before in the introduction, a good algorithm possesses the property effi-
ciency. Furthermore would it be helpful to decide beforehand, if the polynomial p is not
a sum of squares and thus we could spare us the algorithm and consequently the costs.

Two useful facts concerning this consideration:

1. If p is a sum of squares then is p nonnegative and particularly lower bounded and
must therefore have even degree.

2. If p is a sum of squares and has only one leading coefficient cm (p has only one
monomial m with coefficient cm and deg(m) = deg(p)), then is cm positive.

Besides these two obvious facts, there exist a range of features for SOS polynomials,
which are not so apparent. Therefore we introduce the Gram matrix [2], who is a
helpful aid to better understand the other features of SOS polynomials.

With R[x1, . . . , xn]d := R[x]d and Symd(R) we denote the set of all polynomials p with
deg p ≤ d respectively the set of all symmetric matrices G ∈ Rd×d. The R vector
space R[x]d has the dimension ∆d =

(
n+d
d

)
and possesses for instance the monomial base

Xd := (xα)α∈Nn,|α|≤d = (1, x1, x2, . . . , x
2
1, x1x2, . . .) [2].

Now we consider the linear mapping

G : Sym∆d
R → R[x]2d : M 7→ XT

dMXd.

For M = (mαβ)|α|,|β|≤d is (α, β are vectors)

G(M) =
∑
|α|,|β|≤d

mαβx
αxβ =

∑
|γ|≤2d

(∑
α+β=γ

mαβ

)
xγ.

Obviously G is surjective and for p ∈ R[x]2d is [2]

G−1(p) = {Q+
h∑
i=1

λiNi | λi ∈ R}

whereby {Ni}hi=1 is a base of ker(G), Q is one possible solution for p = XT
d QXd and

h =
(
lXd (lXd+1)

2
− lw

)
for lXd =

(
n+d
d

)
respectively lw =

(
n+2d

2d

)
. h follows from the

dimension formula, sinceM is symmetric and has therefore lXd (lXd+1)

2
linear independent

entries, moreover is the dimension of R2d = lw and therefore is h =
lXd (lXd+1)

2
− lw. For

11

this reason is G−1(p) a not empty affine subspace of Sym∆d
R [2]. An element of G−1(p)

is called Gram matrix.

Now we have all the tools to prove the pivotal point of this paper, which is building the
cornerstone for the following considerations.

Theorem 6: For a polynomial p ∈ R[x]2d holds [2]

p =

r≤(n+dd)∑
i=1

f 2
i

 ∈∑[x] ⇔ p = XT
dMXd, 0 �M ∈ Sym∆d

(R).

Proof. Let be 0 � M ∈ Sym∆d
(R) a Gram matrix of polynomial p. According to

Theorem 2 do we find a decomposition

M =

r=rank(M)∑
i=1

viv
T
i , v ∈ R∆d .

Therefore is

p = XT
dMXd =

rank(M)∑
i=1

XT
d viv

T
i Xd =

rank(M)∑
i=1

(
vTi Xd

)2
=

rank(M)∑
i=1

f 2
i ∈

∑
[x].

Conversely let

p =
∑
i∈I⊂N

f 2
i , fi ∈ R[x],

then is p ∈ R[x]2d with fi ∈ R[x]d and thus we can find a vector v ∈ R∆d for fi = vTi Xd.
Therefore is

p =
∑
i∈I⊂N

f 2
i =

∑
i∈I⊂N

(
vTi Xd

)2
=
∑
i∈I⊂N

XT
d viv

T
i Xd = XT

d

(∑
i∈I⊂N

viv
T
i

)
Xd,

and p has the positive semidefinite Gram matrix(∑
i∈I⊂N

viv
T
i

)
� 0.

The theorem shows that the question "Is p ∈
∑

[x]?" could be equivalently formulated
to the feasible problem [1]

"Find matrixM � 0 such that p = XT
dMXd". (1)

12

Since

p =
∑
|α|,|β|≤d

mαβx
αxβ =

∑
|γ|≤2d

(∑
α+β=γ

mαβ

)
xγ

and the matrix M is constrained do be positive semidefinite, we do have linear equality
constraints on the entries of M . Problem (1) is also called a linear matrix inequality
(LMI) feasibility problem [1].

As we have mentioned and seen in the introduction, the complexity to solve this problem
grows extremely with the dimension of the GrammatrixM of p [1]. Our general approach
for a polynomial p with deg p = 2d and n different variables x1, . . . , xn would lead to
lXd :=

(
n+d
d

)
entries of Xd and therefore is the Gram matrix M ∈ RlXd×lXd . The number

of entries lXd from Xd also increases rapidly with the number of variables and the degree
of the polynomial p [1]. As already shown in the introduction, the decomposition of
p = zQz is not necessarily unique, this means it would be desirable to get a vector z
with preferably less entries.

The Newton polytope is an algorithm, who reduces the dimension lXd of the vector Xd

by pruning out unnecessary monomials of Xd [1]. For convenience we will give at first
some terminology concerning polytopes.

Let A ⊂ Rn, then is convhull(A) the convex hull of A. Further let C ⊂ Rn be a convex
set. A point α ∈ C is called an extreme point of C, if for α1, α2 ∈ C and 0 < λ < 1
holds [1]

α = λα1 + (1− λ)α2 ⇒ α1 = α2 = α.

Practically this means α is a corner point of the set C. A polytope is the convex hull
of a non empty, finite set {α1, . . . , αp} ⊂ Rn. The extreme points of a polytope are
called vertices [1]. Let C be a polytope and V the finite set of vertices of C, then is C
= convhull(V) and V is a minimal vertex representation of C.
Besides the vertices representation of C = convhull(V), there exists another represen-
tation of C with the intersection of a finite collection of halfspaces, i.e. there exists a
matrix H ∈ RN×n and a vector g ∈ RN such that C = {α ∈ Rn | Hα ≤ g} [1]. This
representation of C is called a facet or half-space representation of C.

Since we have now introduced the conceptualities of a polytope and half-space, we can
face to the Newton polytope and extend this concept a little bit further.

The Newton polytope of a polynomial p =
∑

α∈A⊂Nn cαx
α is defined as [1]

N(p) := convhull(A) ⊂ Rn

and the reduced Newton polytope is defined by [1]

1
2
N(p) := {1

2
α | α ∈ N(p) }.

For example the Newton polytope of the motzkin polynomial pmotzkin = x4
1x

2
2 + x2

1x
4
2 −

3x2
1x

2
2 + 1 is the convex hull of the points {(0,0),(2,2),(4,2),(2,4)} and is therefore [2]:

13

Figure 2: Newton polytope Motzkin polynomial [2]

Soon we will prove that the vertices of the Newton polytope N(p =
∑m

1 f
2
i ∈

∑
[x])

are vectors whose entries are even numbers and N(fi) ⊂ 1
2
N(p). This is a key result for

monomial reduction. But before we could demonstrate that fact, we need to do some
preparations.
Consider for v ∈ Rn and r ∈ R the half-space

Hv,r := {α ∈ Rn | αTv := 〈α, v〉 ≥ r}.

Remark: A polytope P is the intersection of all half-spaces H ⊃ P [2].

Theorem 7: For p =
∑

α∈A⊂Nn cαx
α ∈ R[x], v ∈ Qn and r ∈ Q holds [2]

N(p) ⊆ Hv,r ⇔ ∀a ∈ Rn : lim
t↘0
|t−r · p(a1t

v1 , . . . , ant
vn)| <∞.

Proof. Since 〈α, v〉 ≥ r for all α ∈ Nn with cα 6= 0, follows

lim
t↘0
|t−r · p(a1t

v1 , . . . , ant
vn)| = lim

t↘0
|
∑
α∈A

cα · aα · t〈α,v〉−r| ≤ |
∑
α∈A

cα · aα| <∞.

Conversely let assume there exists an exponent α ∈ Nn with cα 6= 0 and 〈α, v〉 = s < r.
Let be s minimal and {α1, . . . , αm} the set of all αi who satisfy 〈αi, v〉 = s. Then exists
a ∈ Rn with γ :=

∑m
i=1 cαia

αi 6= 0 and consequently is

lim
t↘0
|t−r · p(a1t

v1 , . . . , ant
vn)| = lim

t↘0
|γ · ts−r +

 ∑
α∈A\{α1,...,αm}

cα · aα · t〈α,v〉−r
 | =∞

since

lim
t↘0

ts−r =∞ and min
α∈A\{α1,...,αm}

{deg t〈α,v〉−r} > s− r.

14

Theorem 8: For p, f1, . . . , fm ∈ R[x] holds [2]

(i) N(p2) = 2N(p) := {2a | a ∈ N(p)}

(ii) fi, fj ≥ 0 ⇒ N(fi) ⊆ N(fi + fj)

(iii) p =
(
f 2

1 + . . .+ f 2
m

)
∈
∑

[x] ⇒ N(fi) ⊆
1

2
N(p), ∀i ∈ {1, . . . ,m}.

Proof. (i): For v ∈ Qn, a ∈ Rn and r ∈ Q is according to Theorem 7

N(p2) ⊆ Hv,r ⇔ ∀a ∈ Rn : lim
t↘0
|t−r · p(a1t

v1 , . . . , ant
vn)2| <∞⇔

lim
t↘0
|t−

r
2 · p(a1t

v1 , . . . , ant
vn)| <∞ ⇔ N(p) ⊆ Hv, r

2
=

1

2
Hv,r ⇔ 2N(p) ⊆ Hv,r

and two polytopes, who are included in the same set of (rational) half-spaces, are equal.

(ii): Let be N(fi + fj) ⊆ Hv,r and a ∈ Rn , then is

lim
t↘0
|t−r · (fi(a1t

v1 , . . . , ant
vn) + fj(a1t

v1 , . . . , ant
vn))| <∞ ⇔ N(fi + fj) ⊆ Hv,r

and

|t−r · fi(a1t
v1 , . . . , ant

vn)| ≤ |t−r · (fi(a1t
v1 , . . . , ant

vn) + fj(a1t
v1 , . . . , ant

vn))|.

Furthermore holds

N(fi) ⊆ Hv,r ⇔ lim
t↘0
|t−r · fi(a1t

v1 , . . . , ant
vn)| <∞

and therefore N(fi) ⊆ N(fi + fj).

(iii): N(p = f 2
1 + . . .+ f 2

m) ⊇ N(f 2
i) = 2N(fi) ⇔ N(fi) ⊆ 1

2
N(p).

Now we can prove the key result for monomial reduction.

Theorem 9: If p =
∑

α∈A cαx
α =

∑m
i=1 f

2
i ∈

∑
[x] then the vertices {αv1 , . . . , αvα} = V

of N(p) are vectors whose entries are even numbers and N(fi) ⊆ 1
2
N(p). Further are

the coefficients {cαv1 , . . . , cαvα} positive numbers. [1]

Proof. N(fi) ⊆ 1
2
N(p) follows from Theorem 8 and

N(p) = convhull(
m⋃
i=1

N(f 2
i)) = convhull(

m⋃
i=1

2N(fi)) = 2 · convhull(
m⋃
i=1

N(fi)).

The vertices {v1
fi
, . . . , vf̃ifi} = Vfi of each N(fi) have apparently entries of positive inte-

gers and therefore has each vertex of convhull(
⋃m
i=1N(fi)) entries with positive integers.

15

Consequently has N(p) = 2 · convhull(
⋃m
i=1N(fi)) only vertices with even numbers.

Since N(p) = convhull(
⋃m
i=1N(f 2

i)), follows for a vertex αvi :=
∑

k,j 2vkfj ∈ V for appro-
priate k, j. Thus is

cαvi =
∑
k,j

cvkfj
· cvkfj > 0.

Finally Theorem 9 enables us to show that the Motzkin polynomial is not a sum of
squares, that means 0 ≤ pmotzkin 6∈

∑
[x].

Theorem 10: The motzkin polynomial pmotzkin = x4
1x

2
2 + x2

1x
4
2− 3x2

1x
2
2 + 1 is not a sum

of squares. [2]

Proof. Assume pmotzkin = f 2
1 + . . .+ f 2

m ∈
∑

[x], then N(fi) ⊆ 1
2
N(pmotzkin) according to

Theorem 9. This means fi includes only monomials ofMmot = {1, x1x2, x
2
1x2, x1x

2
2} since

Figure 3: 1
2
N(pmotzkin) and N(pmotzkin) [2]

The monomial xneg = x2
1x

2
2 of a term f 2

j , who includes x2
1x

2
2, has a unique decomposi-

tion, i.e. for a, b ∈ Mmot follows xneg = x2
1x

2
2 = a · b ⇔ a = b = x1x2 and therefore has

the monomial xneg a positive coefficient in f 2
j . Though the motzkin polynomial has the

coefficient c2,2 = −3 for the monomial xneg = x2
1x

2
2. Consequently is pmotzkin 6∈

∑
[x].

Remark: p̂motzkin = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + γ 6∈

∑
[x] for all γ ∈ R, since our proof

is unconnected of the the monomial x0
1x

0
2 = 1 · 1 = 1 or in other words, there ex-

ist some positive polynomials with large minimums, who are not SOS. For example is
minp̂motzkin = γ − 1. [2]

Another interesting point of the reduced Newton polytope is, that it empowers us to
state an upper bound for the squares of a decomposition, if their exists a partition.

Theorem 11: Let p ∈
∑

[x] and r := |1
2
N(p) ∩ Nn| the number of lattice points in

16

1

2
N(p), then is [2]

p =

m≤r∑
i=1

f 2
i .

Proof. Let be p = f 2
1 +. . .+f 2

m, then each fi includes only monomials with exponents from
1

2
N(p) ∩ Nn and therefore could be for each vi only the same r entries vr1i , . . . , v

rr
i 6= 0,

whereby fi = vTi Xd. Hence we get the decomposition p = XT
dMXd with 0 � M =∑m

i=1 viv
T
i and rank(M)≤ r. Then Theorem 11 follows with Theorem 6.

Remark: If a polynomial p ∈
∑

[x] possesses the Newton polytopeN(p) = N(pmotzkin),
then follows with Theorem 11, that p =

∑m≤4
i=1 f 2

i . Our general approach would lead to
the estimation m ≤

(
2+3

3

)
= 10. [2]

Theorem 9 implies that any monomial xα appearing in the vector Xd respectively z of
a SOS decomposition p = XT

dMXd or p = zTQz must satisfy α ∈ 1
2
N(p) ∩ Nn.

That fact forms the basis for the Newton polytope method for pruning monomials. This
method could be implemented as follow [1]:
Construct the vector Xd in the variables x1, . . . , xn, who includes all monomials deg
xα ≤ d and has therefore

(
d+n
d

)
entries. Then compute a half-space representation

{α ∈ Rn |Hα ≤ g} for the reduced Newton polytope 1
2
N(p) and prune out any mono-

mials in Xd who are not elements of 1
2
N(p).

To prune out any monomials equals checking each monomial in Xd to see if the corre-
sponding degree vector satisfies the half-plane constraints Hα ≤ g. This step is com-
putationally very fast, though the computation of the half-space representation of the
convex hull 1

2
A could be time consuming for polynomials p with many terms, i.e. A has

many elements. Hence we present soon an alternative implementation of the Newton
polytope method, that avoids the construction of a half-space representation of the re-
duced Newton polytope 1

2
N(p).

But first a short example regarding the Newton polytope method [1].

Example: Consider the following polynomial from the introduction [1]

pSOS = 3x4
1 − 2x2

1x2 + 7x2
1 − 4x1x2 + 4x2

2 + 1

with degree pSOS = 2 · d = 4 in two variables x1, x2. Therefore we get the vector

Xd=2 = [1 x1 x2 x2
1 x1x2 x2

2]T

with length lXd = 6. An SOS decomposition p = XT
dMXd of a 4 degree polynomial with

our general approach would include all 6 monomials of Xd.

We use the Newton polytope method to prune some unnecessary monomials of this list

17

out . Furthermore is A := {[4, 0], [2, 1], [2, 0], [1, 1], [0, 2], [0, 0]} the set of the monomial
degree vectors for the polynomial pSOS. These vectors are shown as circles in the left
figure ’Newton Polytope’ [1]. The Newton polytope N(pSOS) is the large triangle with
vertices {[4, 0], [0, 0], [0, 2]}. The right figure ’Reduced Newton Polytope’ [1] shows the
degree vectors for the six monomials in Xd (circles) and the reduced Newton polytope
(large triangle) [1].

The reduced Newton polytope 1
2
N(pSOS) is the triangle with the vertices {[2, 0], [0, 0], [0, 1]}.

By Theorem 9, x1x2 and x2
2 can not appear in any SOS decomposition of pSOS because

[1, 1], [0, 2] 6∈ 1
2
N(pSOS). These monomials could be pruned from Xd and the search for

an SOS decomposition can be performed using only the four monomials in the reduced
Newton polytope:

X̂d = [1 x1 x2 x2
1]T

The length of the reduced vector X̂d is lX̂d = 4. The SOS feasibility problem with this

reduced vector X̂d is feasible since one possible solution for pSOS = X̂d
T
MX̂d is

M :=


1 0 0 0
0 7 −2 0
0 −2 4 −1
0 0 −1 3


with M � 0 because M ∈ Sym4R has the eigenvalues λ1,2,3,4 ≈ {1, 2.08, 3.87, 8.04} ≥ 0.
[1]

In our example the construction of the convex hull was straightforward, since we had
only two variables x1, x2 and therefore was it more a case of ’color by numbers’. But take

18

for example a polynomial with 15 different variables and many terms, at first glance, this
seems insoluble or is at least really cumbersome, since there does not exist an ’efficient’
algorithm to construct the convex hull for such high dimensionens.

Hence we take another ’way’ to reduce the monomial vector Xd. This way is called the
zero diagonal algorithm [1]. The algorithm is easy to implement, highly efficient and
more powerful than the Newton polytope method. [1]

The reason behind these desirable properties is the characteristic of a psd matrix 0 �
M ∈ Sym(R). If Mi,i (in this case is i a scalar and not a vector) is constrained to be
zero, then the entire ith row and column is 0 and the associated monomial (Xd)i could
be pruned from the vector Xd [1].

Let W := {α1, . . . , αlXd} ⊆ Nn be the set of all degree vectors of Xd (for example is
α1 = {0, . . . , 0} and αlXd = {0, . . . , 0, d}), then could we write p as [1]

p =
∑

α∈A⊆Nn
cαx

α = XT
dMXd =

lXd∑
i=1

lXd∑
j=1

Mi,jx
αi+αj (2)

and therefore do we have linear equality constraints on the entries of the Gram matrixM .
The structure of this equations plays an important role in the zero diagonal algorithm.
The entries of W are not independent [1], i.e. there exists a, b, c, d ∈ {1, . . . , lXd} so
that αa + αb = αc + αd and therefore is (Xd)a · (Xd)b = (Xd)c · (Xd)d. This fact shows,
that the representation of p from equation (2) is not really tractable. We get a better
representation of p by introducing the set [1]

W +W := {α ∈ Nn | ∃ αi, αj ∈ W with α = αi + αj}

of the unique degree vectors. With this new set we can write the polynomial p as [1]

p =
∑

α∈A⊆Nn
cαx

α = XT
dMXd =

∑
α∈W+W

 ∑
(i,j)∈Sα

Mi,j

xα (3)

whereby Sα := {(i, j) |αi+αj = α}. This representation has the advantage of the better
handiness because we can directly compaire the coefficients cα of p with the entries of
M , or in other words we get the following linear equality constraints [1]

∑
(i,j)∈Sα

Mi,j =

{
cα, α ∈ A
0, α 6∈ A.

(4)

Equations (3) and (4) propose the construction of a matrix A ∈ Rlw×l2X (for instance
A1− = [1, 0, . . . , 0]) and a vector b ∈ Rlw who includes the coefficients cα of p and zeroize
[1] (for example is b1 = cα1 = c(0,...,0)) so that

Aq = b (5)

19

whereby q = vec(M) ∈ Rl2X is the vector obtained by vertically stacking the columns of
M [1]. Furthermore is lXd =

(
n+d
d

)
and lw =

(
n+2d

2d

)
the dimension of R[x]d respectively

R[x]2d (or the number of elements of W +W) [1]. Hence we get the implication

p =
∑
α∈A

cαx
α = XT

dMXd ∈
∑

[x] ⇔ ∃ q = vec(M) : Aq = b ∧ M � 0. (6)

As we have seen in the Newton polytope method, we could reduce the lenght of Xd in
some cases and therefore the size of M and consequently the complexity to compute the
Gram matrix M � 0. This could be also done by the zero diagonal algorithm. The
reduction respectively the algorithm bases on the following theorem.

Theorem 12: If S2αi = {(i, i)} then

Mi,i =

{
c2αi 2αi ∈ A,
0 2αi 6∈ A.

Furthermore if p = XT
dMXd with M � 0 and Mi,i = 0 then is p = X̂T

d M̂X̂d where
X̂d ∈ RlXd−1 is the vector obtained by deleting the ith element of Xd and 0 � M̂ ∈
R(lXd−1)×(lXd−1) is the matrix obtained by deleting the ith row and column from M [1].

Proof. Since S2αi = {(i, i)} is according to equation (4)

∑
(i,j)∈S2αi

Mi,j = Mi,i =

{
c2αi , 2αi ∈ A,
0, 2αi 6∈ A.

Furthermore is for 0 �M ∈ SymlXd
(R)

Mi,i = 0 ⇒ M−i = Mi− = 0 (7)

Assume Mi,i = 0 but Mi,k = Mk,i 6= 0. Then we construct the new matrix

Âik :=

(
Mii Mik

Mki Mkk

)
=

(
0 Mik

Mik Mkk

)
∈ R2×2

who is not psd, since det(Âik) = −M2
ik < 0 and the determinant is likewise the product

of the eigenvalues and therefore exists eigenvalue λ < 0, but this is not possible for a
psd matrix. Thus exists x̂ ∈ R2 with

x̂T Âikx̂ < 0.

Furthermore we set the vector X := [0, . . . , 0, x̂1, 0, . . . , 0, x̂2, 0, . . . , 0] whereby Xi = x̂1

and Xk = x̂2. Thereby follows

XTMX = x̂T Âikx̂ < 0

20

and consequently M is not psd, though this is in contrast to the constraint M � 0.

According to equation (3) and implication (7) is for Mk,k = 0

p =

lXd∑
i=1

lXd∑
j=1

Mi,jx
αi+αj =

 ∑
i∈{1,...,lXd}\{k}

 ∑
j∈{1,...,lXd}\{k}

Mi,jx
αi+αj

and therefore the monomial (Xd)k is not included in any term of p and consequently
redundant [1].

In the following we will give a short overview how to implement the zero diagonal
algorithm and some explanations concerning the single steps [1].

1. Given: A polynomial p =
∑

α∈A cαx
α

2. Initialization: Set k = 0 and G0 := {αi}
lXd
i=1 ⊆ Nn

3. Form Aq = b: Construct the equality constraint data, A ∈ Rlw×l2Xd and
b ∈ Rlw , obtained by equating coefficients of p = XT

d QXd.
4. Iteration:
5. Set Z = ∅, k := k + 1, Gk := Gk−1

6. Search Aq = b: If there is an equation of the form Qi,i = 0
then set Gk := Gk \ {αi} and Z = Z ∪ I where I are the
entries of q corresponding to the ith row and column of Q.

7. For each j ∈ Z set jth column of A equal to zero.
8. Terminate if Z = ∅ otherwise return to step 5.
9. Return: Gk, A, b

The set Gk denotes the pruned list of monomial degree vectors at the kth iterate. Further
is lXd =

(
n+d
d

)
and lw =

(
n+2d

2d

)
. The main step in the iteration is the search for equations

that directly constrain a diagonal entry Qi,i to be zero (Step 6). Based on Theorem 12
and implication (8), if Qi,i = 0 then the monomial zi and the ith row and column of
Q can be removed. This is equivalent to zeroing out the corresponding columns of A
(Step 7)(For example if Q1,1 = 0, then we zeroing out the first lXd columns and the
(1 + k · lXd)th column of A for k ∈ {1, . . . , lXd − 1}).

This implementation has the advantage that A and b do not need to be recomputed for
each updated set Gk. Zeroing out columns of A in Step 7 also means that new equations
of the form Qi,i = 0 may be uncovered during the next iteration. The iteration continues
until no new zero diagonal entries of Q are discovered.

Remark: The columns of the set Z can/should be deleted of A prior to passing the data
to a semi-definite programming solver (a solver, who is solving the equations Aq = b
with the constraint that 0 � Q for q = vec(Q)), since this improves the efficiency and
stability [1].

21

Theorem 13: The zero diagonal algorithm terminates in a finite number of steps kf ,
and Gkf ⊆

(
1
2
N(p) ∩ Nn

)
is the resulting set of monomials by the zero diagonal algo-

rithm, which are not necessarily redundant. Moreover if p =
∑m

i=1 f
2
i ∈

∑
[x], then

(N(fi) ∩ Nn) ⊆ Gkf . [1]

Proof. G0 (the initial set with all monomials of degree ≤ d) has lXd elements. The
algorithm terminates unless at least one point is removed from Gk. Thus the algorithm
must terminate after kf ≤ lXd + 1 steps.

To show Gkf ⊆
(

1
2
N(p) ∩ Nn

)
consider a vertex αi of convhull(Gkf). If there exists

u, v ∈ convhull(Gkf) such that 2αi = u + v then is αi = 1
2
(u + v) and therefore follows

u = v = αi for a vertex αi. Consequently is S2αi = {(i, i)} (for the set Gkf) and by
Theorem 12

Mi,i =

{
c2αi 2αi ∈ A
0 2αi 6∈ A

follows Mi,i 6= 0 (not necessarily) since αi ∈ Gkf , that means αi was not removed during
the final iteration of the zero diagonal algorithm and therefore is Mi,i not constrained
to be zero. Consequently is 2αi ∈ A ⊆ N(p) and this implies αi ∈ 1

2
N(p). Therefore

1
2
N(p) contains all vertices of convhull(Gkf) and we get the implication(

Nn ∩Gkf

)
= Gkf ⊆ convhull(Gkf) ⊆

1

2
N(p),

which implicates Gkf ⊆
(

1
2
N(p) ∩ Nn

)
.

According to Theorem 9 is N(fi) ⊆ 1
2
N(p) and 1

2
N(p) ⊆ convhull(G0) since each vertex

of 1
2
N(p) is included in G0. This implies (N(fi) ∩ Nn) ⊆ (convhull(G0) ∩ Nn) = G0. If

p =
∑m

i=1 f
2
i then there exists a matrix 0 � M ∈ SymlXd

(R) with p = XT
dMXd. If the

iteration removes no degree vectors then Gkf = G0 and the proof is complete.

Assume the iteration removes at least on degree vector and let αi be the first removed
degree vector. Then is Mi,i = 0. By Theorem 9 the monomial (Xd)i cannot appear in
any fj. Hence (N(fj) ∩ Nn) ⊆ G0 \ {αi}. Therefore is (N(fj) ∩ Nn) ⊆ Gkf , because for
each y ∈ {0, . . . , kf} is (N(fj) ∩ Nn) ⊆ Gy. [1]

Remark: In our decomposition of p = zTMz = XT
dMXd in Theorem 13 is z not

constrained to be z = Xd, this means we could z initialize with less monomials (if we
would know in advance, that some monomials are redundant), i.e. lz < lX =

(
n+d
d

)
. The

proof of Theorem 13 for z 6= Xd with
(

1
2
N(p) ∩ Nn

)
⊆ G0 is exactly the same apart from

some adaptions.

Theorem 13 shows that the zero diagonal algorithm is more powerful than the Newton
polytope method, since Gkf ⊆

(
1
2
N(p) ∩ Nn

)
[1]. We will show the scheme of the zero

diagonal algorithm and the fact of Theorem 13 by two short examples.

22

Example:[1] Consider again the polynomial pSOS = 3x4
1−2x2

1x2 + 7x2
1−4x1x2 + 4x2

2 + 1
[1]. For the decomposition of pSOS = zTQz = XT

dMXd we initialize the vector z := X2

with all momonials of degree ≤ 2 and lz = lX2 =
(

2+2
2

)
= 6. Equating the coefficients of

pSOS and zTQz yields the following linear equality constraints on the entries of Q:

As we have mentioned a matrix A ∈ R15×62 and vector b ∈ R15 can be constructed
to represent these equations in the form Aq = b with q = vec(M). Note that Q6,6 = 0
and this implies that Qi,6 = Q6,i = 0 with i ∈ {1, . . . , 6} for any SOS decomposition of
pSOS. Thus the monomial z6 = x2

2 can not appear in any SOS decomposition and it can
be removed from the list. After eliminating x2

2 and removing the 6th row and column of
Q, the equality constraints reduce to

Removing the 6th row and column of Q is equivalent to zeroing out the appropriate
columns of the matrix A. This uncovers the new constraint Q5,5 = 0 which implies
that the monomial z5 = x1x2 can be pruned from the list. After eliminating x1x2, the
procedure can be repeated once again after removing the 5th row and column of Q. No
new diagonal entries of Q are constrained to be zero and hence no additional monomials
can be pruned from z. The final list G3 of monomials consists of four monomials.

z = [1 x1 x2 x2
1]T

The Newton polytope method returned the same list.

Example: [1] Consider the polynomial p = x2
1 + x2

2 + x4
1x

4
2 [1] in two variables and

degree 8. The Newton polytope is N(p) = convhull({[2, 0], [0, 2], [4, 4]}) and the reduced

23

Newton polytope is 1
2
N(p) = convhull({[1, 0], [0, 1], [2, 2]}). Further the monomial vector

corresponding to 1
2
N(p) ∩ Nn is

z := [x1 x2 x1x2 x2
1x

2
2]T .

There are lz = lX4 =
(

2+4
4

)
= 15 monomials in two variables with degree ≤ 4. For

simplicity, assume the zero diagonal algorithm is initialized with G0 := 1
2
N(p) ∩ Nn.

Equating the coefficients of p and zTQz yields the contraint Q3,3 = 0 in the first iteration
of the zero diagonal algorithm. The monomial z3 = x1x2 is pruned and no additional
monomials are removed at the next iteration.

The zero diagonal algorithm returns G2 = {[1, 0], [0, 1], [2, 2]}. G2 is a proper subset
of 1

2
N(p) ∩ Nn. The same set of monomials is returned by the zero diagonal algorithm

after 13 steps if G0 is initialized with the lz = 15 degree vectors corresponding to all
possible monomials in two variables with degree ≤ 4. This example demonstrates that
the zero diagonal algorithm can return a strictly smaller set of monomials than the
Newton polytope method.

As we have seen, the zero diagonal algorithm yields the same list, or sometimes a smaller
list, like the Newton polytope method [1]. But is this list always optimal? That means
it is not possible to prune some monomials of Gkf so that still p = zTQz for Q � 0 and
a vector z, whose entries include less monomials than the list Gkf . Or in other words

zi = 0⇔ Qi,i = 0.

Consider the polynomial pnop = 1 + x2
1 + x2

1x
2
2 + x4

1 + x4
2 ∈

∑
[x] who is obviously a

sum of squares. We initialize the vector z := X2 = [1, x1, x2, x1x2, x
2
1, x

2
2]T with the set

G0 = {1, x1, x2, x1x2, x
2
1, x

2
2} for the decomposition pnop = zTQz for 0 � Q ∈ R6×6. Since

pnop =
∑

α∈{(0,0),(2,0),(2,2),(4,0),(0,4)}

cαx
α = XT

2 QX2 =
∑

xα∈{(X4)1,...,(X4)15}

 ∑
(i,j)∈Sα

Qi,j

xα

we get the constraints (we forgo to note all equations, because these 3 equations are
more then sufficient to show the result)

Q1,1 = c0,0 = 1, Q3,3 +Q6,1 +Q1,6 = 0, Q6,6 = c0,4 = 1.

Thus is Q1,1 = Q6,6 = 1 and Q6,1, Q1,6 are not constrained to be zero, since the zero
diagonal algorithm is not erasing the first and sixth column respectively row. Moreover
is Q3,3 not necessarily zero and consequently terminates the zero diagonal algorithm
with the set Gkf = G0. One possible decomposition of pnop is

pnop = XT
2 ·


1 0 0 0 0 −1
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
−1 0 0 0 0 1

 ·X2

24

and for Q3,3 = Q6,1 = Q1,6 = 0 we get the pruned decomposition

pnop = [1, x1, x1x2, x
2
1, x

2
2] ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 · [1, x1, x1x2, x
2
1, x

2
2]T

Both matrices are psd, since their eigenvalues ≥ 0. Moreover the monomial x2 could
pruned from the resulting list Gkf = G0 and as a consequence is the zero diagonal
algorithm not optimal. Besides of this fact, our example shows if the polynomial p has
a ’certain’ structure, then the zero diagonal algorithm is even futile, since no element
was removed from G0 = {(Xd)1, . . . , (Xd)lXd}.

Remark: The property of not beeing optimal is a direct corollary of equation (3), since
the monomials in Xd are not linear independent [1] and therefore is zi = 0 < Qi,i = 0.

Now, in the following chapter we will understand why we stressed so much the connection
of nonnegativity and SOS and show further the usefulness of the zero diagonal algorithm.

25

IV. Simplification Method For Sum Of Squares Programs

As we have mentioned in the introduction, to check if a polynomial p ≥ 0 is really
interesting in optimization [12]. Consider the following situation:
We have a function pc, who describes for example the cost of a product. It would be
desirable to produce a cheap product and therefore we are looking for the minimum of
pc. Furthermore we have some constraints on the cost function pc. These constraints can
be expressed as polynomial inequalities and hence as a set of nonnegative polynomials.
This situation looks as follow:

min
u∈Rr

pc(u)

subject to: p̃1 − p1 ≥ 0, . . . , p̃N − pN ≥ 0

whereby p̃k − pk := p̂k := ak(x, u) = ak,0 (x) +
∑r

i=1 uiak,i (x). Assume that pc := cTu
and therefore we get the optimization problem

min
u∈Rr

pc(u) = cTu

subject to: p̂k := ak(x, u) = ak,0 (x) +
r∑
i=1

uiak,i (x) ≥ 0, k ∈ {1, . . . , N}.

To check if p̂k ≥ 0 could be NP-hard [7] and hence the optimization problem is not really
tractable. This problem ’suggests’ another approach. If we substitue the constraint
p̂k ≥ 0 by p̂k ∈

∑
[x], the problem is feasible but there remains a question if this

substitution is not to strong, i.e. we do not get the same minimum or at least a useful
one.

According to the lemmas of Lasserre and Netzer the cone of the SOS polynomials is dense
in the cone of the nonnegative polynomials [7] and besides of these two lemmas Parillo
and Sturmfels have shown by some computation [9], that most nonnegative polynomials
are sum of squares. These two facts propose the idea, that we get in most cases a
useful minimum, i.e. our new solution uSOS coincides with the solution unonnegative from
the origin problem or is not far ’away’. This idea motivates the following optimization
problem

min
u∈Rr

pc(u) = cTu

subject to: p̂k = ak(x, u) = ak,0 (x) +
r∑
i=1

uiak,i (x) ∈
∑

[x], k ∈ {1, . . . , N}

Problems of this structure are called sum of squares programs [1], [12]. The variables
u1, . . . , ur ∈ R were denoted as decision variables and the polynomials {ak}Nk=1 are given
problem data and are affine in u [1]. According to Theorem 6 we get another presentation
of sum of squares programs [1]

min
u∈Rr

pc(u) = cTu

subject to: p̂k = ak(x, u) = zTkQkzk, 0 � Qk ∈ Sym(R), k ∈ {1, . . . , N}

26

for an appropriate monomial vector zk. Clearly, Qk is a new matrix of decision variables
which is obtained by equating the coefficients of ak(x, u) and zTkQkzk [1].

Furthermore exists a matrix Au ∈ Rlw×m and a vector b ∈ Rlw so that [1]

Auyu = b,

whereby yu := [uT , vec(Q1)T , . . . , vec(QN)T]T [1] (this is similar to the case Aq = b,
though a little bit more complex because of decision variables and the N different con-
straints). The dimension m is equal to r +

∑N
i=1m

2
k where Qk is mk × mk. After

introducing a Gram matrix for each constraint the SOS program can be expressed as [1]

min
u∈Rr

pc(u) = cTu

subject to: Auyu = b, Qk � 0, k ∈ {1, . . . , N}.

Specifically, the constraints in some SOS programs imply both ui ≥ 0 and ui ≤ 0, i.e.
this is an implicit constraint that ui = 0 for some i ∈ {1, . . . , r} and consequently ak,i
for k ∈ {1, . . . , N} could be pruned out [1]. This reduction ’simplificates’ our problem
and therefore is this procedure called simplification method for SOS programs.

This method is a generalization of the zero diagonal algorithm, since it removes next to
the pruned monomials also the free decision variables, who are implicitly constrained to
be zero [1]. To better understand this method we will give a short example (although it
does not include simplification).

Example:[Parrilo] Consider the one dimensional polynomial fα,β = (x4 + 1) + α(x3 −
x)+β(3x3+2x2) = x4+(α+3β)x3+2βx2−αx+1. We want to find a SOS decompositon
and get therefore the equation

with the constraint 0 � Q ∈ Sym3(R). Hence we get the feasible set

27

with a possible matrix Aα,β and vector b:

Aα,β =
[
A1
α,β A2

α,β

]
, A1

α,β =


0 0
1 0
0 −2
−1 −3
0 0

 , A2
α,β =


1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1

 , b =


1
0
0
0
1


and as a graphical solution

You should recall in the univariat case holds for a polynomial p ≥ 0⇔ p ∈
∑

[x] [5].

The implementation could look as follow (to ease the notation we set N = 1, for N > 1
is the implementation straightforward)[ai,j is the coefficient from the monomial xαi of
the polynomial aj][1]:

1. Given: Polynomials {aj}rj=1 in variables x. Define
a(x, u) := a0(x) + a1(x)u1 + . . .+ ar(x)ur

2. Initialization: Set k = 0 and choose a finite set G0 := {αi}mi=1 ⊆ Nn such that[
∪u∈Rr 1

2
N(a(x, u))

]
∩ Nn ⊆ G0.

3. Form Auyu = b: Construct the equality constraint data, Au ∈ Rlw×(r+m2) and
b ∈ Rlw , obtained by equating coefficients of a(x, u) = zTQz, where
z := [xα1 , . . . , xαm]T and yu =

[
uT , vec(Q)T

]T .
4. Sign Data: Initialize the r +m2 vector s to be si = +1 if (yu)i corresponds to a

diagonal entry of Q. Otherwise set si = NaN.
5. Iteration:
6. Set Z = ∅, S = ∅, k := k + 1, Gk := Gk−1

7. Process equality constraints of the form ai,j(yu)j = bi where ai,j 6= 0

28

7a. If bi = 0 then set sj = 0 and Z = Z ∪ j
7b. Else if sj = NaN then set sj = sign(ai,jbi) and S = S ∪ j
7c. Else if sj = −1 and sign(ai,jbi)=+1 then set sj = 0 and S = S ∪ j
7d. Else if sj = +1 and sign(ai,jbi)=−1 then set sj = 0 and S = S ∪ j

8. If for any j ∈ Z, (yu)j corresponds to a diagonal entry Qi,i then set
Gk := Gk \ {αi} and Z = Z ∪ I where I are the entries of yu.
corresponding to the ith row and column of Q.

9. For each j ∈ Z set the jth column of Au equal to zero.
10. Terminate if Z = ∅ and S = ∅ otherwise return to step 6.
11. Return: Gk, Au, b, s

The algorithm is initialized with a finite set of vectors G0 ⊆ Nn, whereby G0 must be
chosen so that it contains all possible reduced Newton polytopes, because the New-
ton polytope of a(x, u) depends on the choice of u [1]. One choice is to initialize
G0 corresponding to the degree vectors of all monomials in n variables and degree
≤ 2d := maxu[deg ak(x, u)] [1].

Since Au and b need to be computed when formulating the semidefinite program con-
straints, this step does not require additional computation associated with the simplifi-
cation procedure. The last pre-processing step is the initialization of the sign vector s.
The entries of si are +1, -1, or 0 if it can be determined from the constraints that (yu)i
is ≥ 0, ≤ 0 or = 0, respectively [1]. si = NaN if no sign information can be determined
for (yu)i. If (yu)i corresponds to a diagonal entry of Q then si can be initialized to +1,
since the diagonal entries qi,i ≥ 0 of a psd matrix 0 � Q ∈ Sym(R) [1].

The main iteration step is the search for equations that directly constrain any decision
variable to be zero (Step 7a). This is similar to the zero diagonal algorithm. The iter-
ation also attempts to determine sign information about the decision variables. Steps
7b-7d update the sign vector based on equality constraints involving a single decision
variable. For example, a decision variable must be zero if the decision variable has been
previously determined to be ≤ 0 and the current equality constraint implies that it must
be ≥ 0 (Step 7c).

These decision variables can be removed from the optimization. Steps 8 and 9 prune
monomials and zero out appropriate columns of Au. The iteration continues until no
additional information can be determined about the sign of the decision variables [1].

This SOS simplification procedure automatically uncovers some implicitly constrained ui
to be zero and removes these decision variables from the optimization. This is important
because implicit constraints can cause numerical issues for SDP solvers. A significant re-
duction in computation time and improvement in numerical accuracy has been observed
when implicitly constrained variables are removed prior to calling a solver[1].

In the next chapter we will give some examples of interesting applications of the zero
diagonal algorithm

29

V. Applications

Global bounds for polynomial functions: Given a multivariate polynomial function
f ∈ R[x] which is bounded below on Rn. We want to find the global minimum f ∗ and
a point x∗ attaining it:

f ∗ = f(x∗) = min{f(x) : x ∈ Rn}.

This problem is NP-hard (at least for polynomials with degree ≥ 4). As mentioned
Parrillo and Sturmfels haven taken another way[9]. They have searched for the largest
value γ ∈ R such that f(x)− γ is a sum of squares in R[x]. In their experiments was in
almost any case γ = f ∗. Clearly, γ is a lower bound for the optimal value f ∗ [9]. The
condition

min γ

subject to: f(x) + γ ∈
∑

[x]

is a sum of squares program, since we have the cost function pc(u) = γ with c = 1, u = γ
and f(x) = a0(x), a1(x) = 1. Hence we get for a(x, u) = a0(x) + ua1(x) = f(x) + γ
(obviously the problem of finding the minimum for a polynomial must be a sum of
squares program, because we have taken the same approach to motivate sum of squares
programs).

Consider again the polynomial pnegative = 4x2
1 − 21

10
x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 of the
introduction [10]. We want to find the global minimum, but this task could become
highly difficult, since it has many local minimums (see figure below). Therefore we
apply the sum of squares program method and get for γ ≈ 1.03162845 [10]. This turns
out to be the exact global minimum, since that value is achieved for x1 ≈ 0.089842,
x2 ≈ −0.7126564 [10]. Since γ = f ∗ and 0 < γ ≈ 1.03162845, is pnegative not psd.

30

Although we have stressed, that γ mostly coincides with f ∗, though we want to give
two counter examples [10]. Besides the bivariate motzkin polynomial, there exists a
3 dimensional motzkin polynomial M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 [1]. This
polynomial is also nonnegative since it attains it minimum 0 = M(1, 1, 1) [10]. Solving
the corresponding SDPs, the best lower bound that can be obtained this way can be
shown to be − 729

4096
≈ −0.177978, and follows from the decomposition [10]

M(x, 1, z) = x4 + x2 + z6 − 3x2z2 +
729

4096
= (−9

8
z + z3)2 + (

27

64
+ x2 − 3

2
z2)2 +

5

32
x2.

This is a significant gap between f ∗ = 0 and γ = 729
4096

. But it could come worse. Take
for instance the motzkin polynomial pmotzkin = x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1. There does

not exist any γ, so that pmotzkin + γ ∈
∑

[x]. This follows from Theorem 10 (motzkin
polynomial is not a sum of squares) and the remark below Theorem 10 [2]. This example
shows, that the gap could be infinite, although these examples are sparsely distributed.

Geometry: [10] In this problem, we compute a lower bound on the distance between
a given point (x0, y0) and an algebraic curve C(x, y) = 0. Take (x0, y0) = (1, 1), and let
the algebraic curve be

C(x, y) := x3 − 8x− 2y = 0.

In this case, we can formulate the optimization problem

min
C(x,y)=0

(x− 1)2 + (y − 1)2

and define the sum of squares program as follow

min−γ2 (8)

subject to: (x− 1)2 + (y − 1)2 − γ2 + (α + βx)(x3 − 8x− 2y) ∈
∑

[x, y]. (9)

It should be clear that if condition (9) holds, then each point (x, y) in the curve are
at a distance at least equal to γ from (x0, y0). To see this, note that if the point
(x, y) is in the curve C(x, y) = 0, then the last term in (9) vanishes, and therefore
(x− 1)2 + (y− 1)2 ≥ γ2 ≥ γ. The expression is affine in α, β and γ2 and so the problem
can be directly solved using SDP [10]. (We need the polynomial (α+βx) to lower bound
(x3 − 8x− 2y)).

Furthermore we have a0(x, y) = (x− 1)2 + (y − 1)2, a1 = −1, a2 = x3 − 8x− 2y, a3 =
x(x3 − 8x− 2y) and u1 = γ2, u2 = α, u3 = β next to c1 = −1, c2 = 0, c3 = 0.
The optimal solution of the SDPs is [10]:

α ≈ −0.28466411, β ≈ 0.07305057, γ ≈ 1.47221165.

The obtained bound γ is sharp, since it is achieved by the values [10]

x ≈ −0.176299246, y ≈ 0.702457168, (x, y) ∈ C = 0

31

Matrix copositivity: [10] A symmetric matrix J ∈ Rn×n is said to be copositive if
the associated quadratic form takes only nonnegative values on the nonnegative orthant,
or in other words:

xi ≥ 0, i ∈ {1, . . . , n} ⇒ xTJx ≥ 0.

As opposed to positive definiteness, which can be efficiently verified, checking if a given
matrix is not copositive is an NP-complete problem [10]. The main difficulty in obtaining
conditions for copositivity is dealing with the constraints in the variables, since each xi
has to be nonnegative. Therefore we set xi = z2

i and study the global nonnegativity of
the fourth order form given by [10]:

P (z) := zTJz =
∑
i,k

ji,kz
2
i z

2
k

where z = [z2
1 , z

2
2 , . . . , z

2
n]T . It is easy to verify that J is copositive if and only if the

form P (z) is positive semidefinite [10]. Therefore, sufficient conditions for P (z) to be
nonnegative will translate into sufficient conditions for J being copositive. Consider the
matrix [10]

32

Unfortunately, P is not a sum of squares. But we can try to use the same strategy of
the Motzkin polynomial, i.e. we use the result of the lemma from Reznick and check if[(

n∑
i=1

z2
i

)r

· P

]
∈
∑

[z] for some r ∈ N. (10)

And indeed, for r = rmin = 1 holds condition (10). Hence J is copositive [10]. Obviously
for r > rmin (10) is also satisfied.

Lyapunov function search:[4] The Lyapunov stability theorem has been a cornerstone
of nonlinear system analysis for several decades. In principle, the theorem states that
a system ẋ = f(x), whereby x := x(t), with equilibrium at the origin is stable if there
exists a positive definite function V (x) such that the derivative of V along the system
trajectories is non-positive. We will now show how the search for a Lyapunov function
can be formulated as a sum of squares program [4]. For our example, consider the system

which has an equilibrium at the origin. Now assume that we are interested in a
quadratic Lyapunov function V (x) for proving stability of the system. Then V (x) must
satisfy [4]

V − ε(x2
1 + x2

2 + x2
3) ≥ 0,

− ∂V
∂x1

ẋ1 −
∂V

∂x2

ẋ2 −
∂V

∂x3

ẋ3 ≥ 0.

The first inequality, with ε being any constant greater than zero (in what follows we will
choose ε = 1), is needed to guarantee positive definiteness of V (x). We will formulate
a SOS program that computes a Lyapunov function for this system, by replacing the
above nonnegativity conditions with SOS conditions.

However, notice that ẋ3 is a rational function, and therefore is the second condition not
a polynomial expression. But since x2

3 + 1 > 0 for any x3, we can just reformulate [4]

(x2
3 + 1)

(
− ∂V
∂x1

ẋ1 −
∂V

∂x2

ẋ2 −
∂V

∂x3

ẋ3

)
≥ 0.

Next, we parameterize the candidate quadratic Lyapunov function V (x) by some un-
known real coefficients c1, . . . , c6 and get

V (x) = c1x
2
1 + c2x1x2 + . . .+ c6x

2
3,

33

and the following SOS program (with no cost function) can be formulated as [4]:
Find a polynomial V (x), (equivalently, find c1, . . . , c6) such that

V (x)− (x2
1 + x2

2 + x2
3) is SOS

(x2
3 + 1)

(
− ∂V
∂x1

ẋ1 −
∂V

∂x2

ẋ2 −
∂V

∂x3

ẋ3

)
is SOS.

The SDP solver gets the solution V (x) = 5.5489x2
1 + 4.1068x2

2 + 1.7945x2
3 as a Lyapunov

function and that proves the stability of the system [4].

Conclusion

To check if a polynomial p ≥ 0 could be NP-hard, whereas checking if p ∈
∑

[x] can be
done in polynomial time, since p ∈

∑
[x] ⇔ p = zTQz . Moreover each polynomial

p ∈
∑

[x] is a psd polynomial and therefore we can check if p ≥ 0 by checking if p ∈
∑

[x].

This idea even enables us in many cases to find the global minimum of p or even at least
a useful one and hence we can check if p is psd by finding a SOS decomposition or a
global minimum. This approach made the problem if pSOS, pnegative is psd feasible, since
pSOS is a sum of squares and pnegative has the global minimum −1.03162845.

Furthermore the problem could be even more simplified by the Newton polytop, i.e. we
can prune the vector z in the decomposition p = zTQz. The Newton polytope requires
the construction of a convex hull and this could be time consuming. The zero diagonal
algorithm forgoes on this construction and is based on a simple property of positive
semidefinite matrices - if Qi,i = 0 then is the ith row and column equal to zero of Q.

The algorithm is fast since it only requires searching a set of linear equality constraints
for those having certain properties and the set of monomials returned by the algorithm
is a subset of the set returned by the Newton polytope method.

Furthermore the zero diagonal algorithm was extended to a more general reduction
method for sum of squares programs and we have shown how to formulate problems in
optimization as sum of squares programs.

34

References

[1] P. Seiler, Q. Zheng and G. J. Balas. Simplification Methods for Sum-of-Squares
Programs

[2] T. Netzer. reelle Algebra, p. 36 - 45
[3] G. Blekherman. nonnegative polynomials and sums of squares
[4] A. Papachristodoulou. SOSTOOLS: control applications and new developments
[5] O. Davidek. example of applications of sum of squares problem in geometry
[6] O. Benoist. Writing Positive Polynomials as Sums of (Few) Squares
[7] J.B. Lasserre, T. Netzer. sos approximations of nonnegative polynomials via

simple high degree perturbations
[8] P.A. Parrilo, B. Sturmfels. Minimizing Polynomial Functions
[9] B. Reznick. Uniform denominators in Hilbert’s 17th problem, Math. Z. 220 (1995),

no. 1, 75–97.
[10] P.A. Parrilo. Semidefinite programming relaxations for semialgebraic problems
[11] A.A. Ahmadi, P.A. Parrilo. Sum of Squares and Polynomial Convexity
[12] P. Seiler. SOSOPT: A Toolbox for Polynomial Optimization
[13] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P.A.

Parrilo. Sum of Squares Optimization Toolbox for MATLAB
[14] W. Rudin. Sums of squares of polynomials. Amer. Math. Monthly,

107(9):813–821, 2000.
[15] R. G. Swan. Hilbert’s theorem on positive ternary quartics. In Quadratic forms

and their applications (Dublin, 1999), Volume 272 of Contemp. Math., pages
287–292. Amer. Math. Soc., Providence, RI, 2000.

[16] V. Powers Positive Polynomials and Sums of Squares: Theory and Practice

35

https://arxiv.org/pdf/1303.0714v2.pdf
https://arxiv.org/pdf/1303.0714v2.pdf
https://algebra-mathematics.uibk.ac.at/images/documents/teaching/tim_netzer/Algebra.pdf
https://arxiv.org/pdf/1010.3465.pdf
https://www.researchgate.net/publication/4124383_SOSTOOLS_control_applications_and_new_developments
http://home.pf.jcu.cz/~sbml/wp-content/uploads/davidek.pdf
http://www.math.ens.fr/~benoist/articles/CarresEMS.pdf
https://arxiv.org/pdf/math/0510456.pdf
https://arxiv.org/pdf/math/0510456.pdf
https://arxiv.org/pdf/math/0103170.pdf
http://www.mit.edu/~parrilo/pubs/files/SDPrelaxations.pdf
https://pdfs.semanticscholar.org/f162/90a03b139aa63d6c31879a7b46d830bde74d.pdf
https://arxiv.org/pdf/1308.1889.pdf
http://www.cds.caltech.edu/sostools/
http://www.mathcs.emory.edu/~vicki/preprint/PsdSosSurvey.pdf

