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Abstract

This thesis is based on an article by Igor Klep and Marcus Tressl proving that under
certain conditions the matrix algebra Mn(F ) admits quantifier elimination if the under-
lying field F does so too. Namely, they found that if one extends the language in which
F admits quantifier elimination by a tuple of constants interpreted as matrix units, then
Mn(F ) admits quantifier elimination. If we restrict the class of fields considered, it is
instead sufficient to add two unary function symbols for the trace and the transposition
to get quantifier elimination.

In the first chapter, these findings will be replicated. Proofs that are omitted or kept
short in the original paper will be spelled out in full detail whenever reasonably feasible.
In a subsequent chapter, we will use the results to find a quantifier-free characterisation
of positive (semi-)definite real or complex matrices as well as a quantifier-free criterion
for invertibility of real or complex matrices. These considerations make use of the so-
called Newton Identities, which will be applied to the characteristic polynomial of a
matrix. Two further applications of these results give a description of contractive maps
and criteria for the solubility of certain matrix equations, among them the well-known
Sylvester Equation.

These examples will also allow us to come to the conclusion that while quantifier elim-
ination exists in both Mk(F ) and Mn(F ) for 1 ≤ k < n, we cannot generally say that
these results are dimensionally compatible, that is: Assuming that for a given formula
φ we have found quantifier-free formulae φn and φk satsifying

Mn(F ) ⊨ φ[h] ⇐⇒ Mn(F ) ⊨ φ
n[h]

Mk(F ) ⊨ φ[h] ⇐⇒ Mk(F ) ⊨ φ
k[h]

then there will be evaluations h in Mk(F ) such that

Mk(F ) ⊨ φ
k[h] ⇐⇒ Mk(F ) ⊨ φ

n[h]

does not hold.

Clemens Brüser
January 2022
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1 Introduction

The concept of quantifier elimination is a powerful property that a mathematical theory
(in the sense of model theory) can exhibit. Given any formula containing any finite
number of quantifiers ∀,∃, it will guarantee that there is a different, yet equivalent,
formula that does not make use of these quantifiers. A well-known example for such
corresponding formulae over the real numbers is given by

(∃x : x2 + px+ q = 0)←→ (p2 − 4q ≥ 0)

where the right hand side obviously is free of quantifiers. If we were to consider the same
formula over the complex numbers, we would even have the equivalence

(∃x : x2 + px+ q = 0)←→ 0 = 0

by the fundamental theorem of algebra. Again, the right hand side does not use any
quantifiers.

It is a standard result of real algebra and geometry that the real numbers - or more
general: The theory of real closed fields in the language of rings extended by the ordering
on the field - admits quantifier elimination. This is also known as the transfer principle
of Tarski-Seidenberg. Similarly, the theory of algebraically closed fields - and hence the
complex numbers - admits quantifier elimination.

Naturally, one may ask how these results can be generalised or applied to new settings.
This marks the entrance of matrix algebras. We are interested in whether a matrix
algebra Mn(F ) over a field F admits quantifier elimination provided that F does. The
answer is not trivial and we will follow [KT20] in answering it. First, we will prove
that we get quantifier elimination in Mn(F ) if we equip the language of rings with a
tuple of new constant symbols - so-called matrix units. These are best thought of as the
standard matrix units (Eij)ni,j=1. We will then proceed to give a similar result, replacing
the matrix units by two unary functions that will take the place of the trace and the
transposition (or involution respectively). This additionally requires us to place further
restrictions on the field F that we consider.

In a later chapter, we will prove that these results about quantifier elimination in Mn(F )
cannot generally be applied to Mk(F ) for k < n. Neither is it possible to embed Mk(F )
into Mn(F ) to save the results derived for the n-dimensional case.
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The main part of this thesis comprises a collection of formulae that exemplify the power
of quantifier elimination in matrix algebras. We will derive quantifier-free formulae for
the following questions commonly found in settings of algebra.

• Is a given matrix A ∈Mn(F ) positive (semi-)definite?

• Is a given matrix A ∈Mn(F ) invertible?

• Is the linear mapping defined by a given matrix A ∈Mn(F ) a contraction?

• Given A,B ∈Mn(F ), does the linear matrix equation AX+B = 0 have a solution?

• Given A,B ∈ Mn(F ), under which circumstances is there a unique solution to
Sylvester’s Equation AX −XB = C for all C ∈Mn(F )?

In every case, F may either denote the real numbers R or the complex numbers C. We
end with an outlook on what further directions of study may follow from the considera-
tions in this thesis.
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2 Preliminaries

This chapter will feature definitions and results that will be used frequently within the
thesis. Due to the minor role that it plays in terms of developing and presenting new
ideas, not all of the statements presented will be proven rigorously. Whenever that is
the case, we will refer to relevant literature. Unless indicated otherwise, all statements
are given in the author’s own formulations.

As a last remark on this chapter, it should be pointed out that the results below are
loosely connected by their appearance later in the thesis alone. Other than that, they
are to be regarded as mostly independent and thus they will not allow for coherent
reading.

2.1 Algebraic Preliminaries

We begin with a standard result of non-commutative algebra that states that the center
of a matrix ring is isomorphic to its underlying ring. This result will be frequently used
and we will not reference it at every occurrence.

Lemma 2.1. Let R be a ring. Then the center C of Mn(R) is isomorphic to R.

Proof. We show that C equals R · In and use the standard identification R ↔ R · In.
First, we assume that A ∈ R · In. It is immediately clear that A lies in C. Now we
conversely assume that A ∈ C, yet A ̸∈ R · In. Then we distinguish two cases.

• Case 1: Not all diagonal elements of A are equal.

We choose i ̸= j such that Aii ̸= Ajj and observe that A = T 2
ijA

A∈C
= TijATij ̸= A,

where Tij shall denote the elementary matrix that switches the i-th and the j-th
row (or column respectively). This is a contradiction.

• Case 2: There are indices i, j ∈ {1, ..., n} with i ̸= j and 0 ̸= Aij.

3



We note that 0 = EiiEjjA
A∈C
= EiiAEjj = AijEij ̸= 0. This, too, is an immediate

contradiction.

Another well-known set of theorems that is central to the study of matrices and their
induced linear maps are the spectral theorems. The version given below will be used
frequently and is a rephrased version of [Bos14], Theorem 6, p. 280.

Theorem 2.2 (Spectral theorem for hermitian matrices). Let A ∈Mn(C) be a hermitian
matrix, that is A∗ = A. Then all eigenvalues of A are real and there exists a unitary
matrix P ∈Mn(C) such that P ∗AP = D where D is a real diagonal matrix, the diagonal
entries of which are the eigenvalues of A.

If A is a real matrix, then P may be chosen real as well, such that P is an orthogonal
matrix.

Proof. See [Bos14], Theorem 6, p. 280.

The spectral theorem is one example how a base change might yield a particularly fruitful
matrix form. Two other crucial results in this area are the well-known Schur form and
the Jordan canonical form. While these matrix representations are usually deduced for
complex matrices, there are real versions as well. We cite all statements in shortened
versions of the results in [HJ13].

Theorem 2.3 (Schur form, complex version, [HJ13], Theorem 2.3.1.). Let A ∈ Mn(C)
have eigenvalues λ1, . . . , λn in any prescribed order and let x ∈ Cn be a unit vector such
that Ax = λ1x.

There is a unitary U = (x, u2, . . . , un) ∈ Mn(C) such that U∗AU = T = (tij)
n
i,j=1 is

upper triangular with diagonal entries tii = λi, i = 1, . . . , n.

Proof. See [HJ13], Theorem 2.3.1.

Theorem 2.4 (Schur form, real version, [HJ13], Theorem 2.3.4.). Let A ∈ Mn(R) be
given. There is a real orthogonal Q ∈ Mn(R) such that QTAQ is a real upper quasitri-
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angular matrix 
A1 ∗

A2

. . .
0 Am


such that each Ai is 1-by-1 or 2-by-2 with the following properties:

1. Its 1-by-1 diagonal blocks display the real eigenvaules of A.

2. Each of its 2-by-2 diagonal blocks has a conjugate pair of non-real eigenvalues.

3. The ordering of its diagonal blocks may be prescribed in the following sense: If
the real eigenvalues and conjugate pairs of non-real eigenvalues of A are listed
in a prescribed order, then the real eigenvalues and conjugate pairs of non-real
eigenvalues of the respective diagonal blocks A1, . . . , Am of QTAQ are in the same
order.

Proof. See [HJ13], Theorem 2.3.4.

Theorem 2.5 (Jordan canonical form, complex version, [HJ13], Theorem 3.1.11.). Let
A ∈ Mn(C) be given. There is a nonsingular S ∈ Mn(C), positive integers q and
n1, . . . , nq with n1 + n2 + . . .+ nq = n, and scalars λ1, . . . , λq ∈ C such that

A = S

Jn1(λ1)
. . .

Jnq(λq)

S−1

where Jnk
(λk) denotes the Jordan block of size nk corresponding to the eigenvalue λk of

A, that is:

Jnk
(λk) =


λk 1 . . . 0

0 λk
. . . ...

... . . . . . . 1
0 . . . 0 λk

 ∈Mnk
(C)

Proof. See [HJ13], Theorem 3.1.11.
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Theorem 2.6 (Jordan canonical form, real version, [HJ13], Theorem 3.4.15.). Each
A ∈Mn(R) is similar via a real similarity to a real block diagonal matrix of the form

Cn1(a1, b1)oplus . . .⊕ Cnp(ap, bp)⊕ Jm1(µ1)oplus . . .⊕ Jmr(µr)

in which λk = ak + ibk, k = 1, 2, . . . , p are non-real eigenvalues of A, each ak and bk
is real and bk > 0, and µ1, . . . , µr are real eigenvalues of A. Each real block triangluar
matrix Cnk

(ak, bk) ∈M2nk
is of the form

Ck(a, b) =


C(a, b) I2

C(a, b) I2
. . . . . .

. . . I2
C(a, b)


with

C(a, b) =

(
a b
−b a

)
and corresponds to a pair of conjugate Jordan blocks Jnk

(λk), Jnk
(λk) ∈ Mnk

with non-
real λk in the Jordan canonical form of A. The real Jordan blocks Jmr(µr) are the Jordan
blocks in the Jordan canonical form that have real eigenvalues.

Proof. See [HJ13], Theorem 3.4.15.

The following theorem will occur only once. The tools required to prove it go well beyond
what is reasonable within the context of this thesis, which is why we omit the proof.

Definition 2.7. Let A be an F -algebra and let C be its center. A is called a central
simple algebra, if C = F and there are no non-trivial ideals of A.

Theorem 2.8 (Skolem-Noether, [Bre14], Theorem 4.46.). Let A be a finite dimensional
central simple algebra. If S is a simple sub-algebra of A that contains the unity 1 of A,
then every homomorphism φ from S into A that maps 1 into 1 can be extended to an
inner automorphism of A, that is there is x ∈ A satisfying

φ(a) = xax−1

for all a ∈ A.

Proof. See [Bre14], Theorem 4.46.
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The most interesting example of a central simple algebra in this thesis is the matrix
algebra Mn(F ). The following lemma proves that it is in fact a central simple algebra.

Lemma 2.9. Let F be a field. Then Mn(F ) is a central simple algebra.

Proof. By Lemma 2.1, Mn(F ) is central. In order to show that Mn(F ) is simple, we
follow [Bre14], Example 1.10. For that, let I be a non-zero ideal in Mn(F ) and let
0 ̸= A ∈ I. Then there exist j, k ∈ {1, ..., n} such that Ajk ̸= 0. In particular,

EijAEkl = AjkEil ∈ I

for all i, l ∈ {1, ..., n}. Hence,

(xA−1
ij Eij)AEkl = xEil ∈ I

for all x ∈ F and thus, I =Mn(F ).

2.1.1 Real Closed Fields

The following results aim to provide the reader with some basic ideas of the theory of
real closed fields. The statements should be regarded as a generalisation of the real
numbers. For an extended discussion, see [PD01].

Definition 2.10 ([PD01], Definition 1.1.1). Let F be a field. A relation ≤ on F 2 is
called an ordering on F , if ≤ is a linear ordering on F and additionally it satisfies

a ≤ b =⇒ a+ c ≤ b+ c

0 ≤ a, 0 ≤ b =⇒ 0 ≤ ab

for all a, b, c ∈ F . If ≤ is an ordering on F , then (F,≤) is called an ordered field.

The following lemma will not explicitly be used later. However, it is useful in motivating
the definition of real fields.

Lemma 2.11 ([PD01], Definition 1.1.6 and Lemma 1.1.7). Let F be a field and let
T ⊆ F be a subset satisfying

−1 ̸∈ P P + P ⊆ P P · P ⊆ P
∑

F 2 ⊆ P P ∪ −P = F

Then P defines an ordering by the relation a ≤ b : ⇐⇒ b − a ∈ P . Every ordering on
F arises this way and there is a bijection between these two notions of ordering.
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Proof. We roughly follow [PD01], Lemma 1.1.7. If P ⊆ F satisfies the conditions above,
then we immediately get the following for any a, b, c ∈ F :

• Reflexivity: a ≤ a, since a− a = 0 ∈ P by P ∪ −P = F .

• Anti-Symmetry: Assume that a ≤ b and b ≤ a. Then a − b, b − a ∈ P . If now
a−b ̸= 0, then without loss of generality 1

a−b ∈ P (since otherwise− 1
a−b =

1
b−a ∈ P )

and thus −1 = b−a
a−b ∈ P , a contradiction. Hence, a = b must hold.

• Transitivity: Assume that a ≤ b and b ≤ c. Then c− b, b− a ∈ P and hence also
(c− b) + (b− a) = c− a ∈ P , so a ≤ c.

• Linearity: By assumption, a − b ∈ P or b − a ∈ P . This immediately implies
linearity.

• Assume that a ≤ b. Then (b + c) − (a + c) = b − a ∈ P , which implies that
a+ c ≤ b+ c.

• Assume that 0 ≤ a, b. Then a, b ∈ P and as an immediate consequence ab ∈ P ,
which yields 0 ≤ ab.

Now let ≤ be a given ordering on F . Then it is clear that P := {a ∈ F |0 ≤ a} satisfies
all of the properties in the lemma. Bijectivity of the two constructions is also clear.

Definition 2.12 ([PD01], Corollary 1.1.12). A field F is called real, if it can be equipped
with an ordering.

Lemma 2.13 ([PD01], Definition 1.1.11). A field F is real if and only if −1 ̸∈
∑
F 2.

Proof. First not that T :=
∑
F 2 satisfies all conditions of Lemma 2.11 but T ∪−T = F .

However, any field with such a subset T may be equipped with an ordering by [PD01],
Theorem 1.1.9.

If conversely, −1 ∈
∑
F 2, then we cannot find an ordering on F by Lemma 2.11.

We are particularly interested in so-called real closed fields as they admit quantifier
elimination. We first give a definition and then introduce a nice characterisation.

Definition 2.14 ([PD01], Definition 1.2.8). A field R is called real closed, if R is real
and there is no proper algebraic field extension F of R that is real.
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Theorem 2.15 ([PD01], Theorem 1.2.10). The following statements are equivalent:

1. R is a real closed field.

2. K2 defines an ordering in the sense of Lemma 2.11 and every polynomial p ∈ K[x]
of odd degree has a root in K.

3. R ̸= R[
√
−1] and R[

√
−1] is an algebraically closed field.

Proof. See [PD01], Theorem 1.2.10. This draws on results of Galois theory and gener-
alises the proof of the fundamental theorem of algebra.

2.2 Model Theoretic Preliminaries

For the discussions in the next chapters, it is relevant to give some model theoretic
preliminaries. It is assumed that the reader is acquainted with basic notations and
results of mathematical logic and model theory. As a general reference, we refer to
[PD11]. In the following, we will only present statements that are not contained there
or which are of great importance.

The first result is a simple statement that gives a handy characterisation of all models
of a theory.

Lemma 2.16. Let A be a structure and let T be the theory of A. Then the structure B
is a model of T if and only if A ≡ B.

Proof. =⇒ : First note that T is complete by [PD11], p. 48, meaning that for all
sentences α, we either have α ∈ T or ¬α ∈ T . If B is a model of T , then from A ⊢ α,
we conclude that α ∈ T and thus B ⊢ α. If A ̸⊢ α, then A ⊢ ¬α and in an analogous
fashion as before, we conclude B ⊢ ¬α, which is equivalent to B ̸⊢ α. Hence, A ≡ B.

⇐= : This direction is trivial.

In the following discussions, we will often restrict the underlying language of a structure.
The next lemma proves that these restrictions do not affect certain relation between two
structures in the initial language.

9



Lemma 2.17. Let L be a language and let L̃ extend L. Further let Ã, B̃ be two L̃-
structures and let A,B denote the restrictions of Ã, B̃ to L. Then the following state-
ments hold.

1. If Ã ≡ B̃, then A ≡ B.

2. If Ã ∼= B̃, then A ∼= B.

3. If Ã ⪯ B̃, then A ⪯ B.

Proof. Let φ be an L-formula. Then we may in particular interpret φ as an L̃-formula.
We now turn to our statements.

1. For elementary equivalence, we only need to consider the case that φ is a sentence
and we note that clearly, Ã ⊨ φ if and only if A ⊨ φ, since A and Ã have the same
universe. The same holds for B. Using elementary equivalence in L̃, we now note
that

A ⊨ φ ⇐⇒ Ã ⊨ φ
Ã≡B̃⇐⇒ B̃ ⊨ φ ⇐⇒ B ⊨ φ

This proves the claim.

2. The argument works by the observation that Ã ⊨ φ[h] if and only if A ⊨ φ[h] for
any evaluation h in A, since A and Ã have the same universe. Using the same
argument for B instead of A, we may then continue in an analogous fashion to the
previous statement.

3. This works by analogous arguments as in the previous statements.

As our main results will focus on quantifier elimination and model completeness, we
require criteria for these properties. They are captured in the following central theo-
rems.

Theorem 2.18 ([PD11], Lemma 3.3.1.). Σ ⊆ Sent(L) is model complete if and only if,
for any two models A,B of Σ with A ⊆ B, we even have A ⪯ B.

Proof. See [PD11], Lemma 3.3.1.
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Theorem 2.19 ([PD11], Theorem 3.4.3.). Let T be an L-theory. Then T admits quanti-
fier elimination if and only if T is model complete and T has the amalgamation property
over substructures.

Proof. See [PD11], Theorem 3.4.3.

Remark 2.20. In the above setting, we may work with finitely generated substructures
instead, that is: T admits quantifier elimination if and only if T is model complete and
T has the amalgamation property over finitely generated substructures. To see this, it
is sufficient to note that in the proof of theorem 3.4.3. in [PD11], we may always work
with a finitely generated substructure without having to change anything else.

Throughout this thesis, we will use that both real closed fields (in particular, R) and
algebraically closed fields (in particular, C) admit quantifier elimination. For reference
purposes, we write down this result in the theorem below.

Theorem 2.21. The theory of real closed fields and the theory of algebraically closed
fields admit quantifier elimination.

Proof. See [PD01], Theorem 2.1.6. for real closed fields and [PD11], Theorem 3.4.4. for
algebraically closed fields.

We have now laid out all necessary preliminaries in order to present the first main result
of this thesis - quantifier elimination in matrix algebras.
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3 Quantifier Elimination in Matrix
Algebras

In this chapter, we will present the key findings of [KT20]. All statements that are
labelled to be taken from them and the corresponding proofs will rely on their work,
though we will fill in some details. Note that contrary to their approach, we will always
consider unital rings, that is: The language of rings is defined as LRi := {+, ·,−, 0, 1}.
Ring homomorphisms will not be required to be unital.

3.1 Quantifier Elimination using Matrix Units

In the first lemma, we start by collecting some properties that are inspired by the
standard matrix units (Eij)

n
i,j=1.

Definition 3.1. Let A be a (not necessarily commutative) ring and let CA denote its
center. A subfield F ⊆ A is called a central subfield, if F ⊆ CA.

Lemma 3.2 ([KT20], 2.1.1.). Let A be a ring, n ∈ N and for i, j ∈ {1, ..., n} let aij ∈ A.
Suppose that for all i, j, s, t ∈ {1, ..., n}, we have

aijast =

{
ait j = s
0 else

}
= δjsait

Then the following hold:

1. For all i, j, s, t ∈ {1, ..., n}, we have assaijatt = δisδjtaij.

2. If aij = 0 for some i, j ∈ {1, ..., n}, then ast = 0 for all s, t ∈ {1, ..., n}. If, however,
ast ̸= 0 for all s, t ∈ {1, ..., n}, then the family (aij)

n
i,j=1 is F -linearly independent

for any central subfield F of A.

12



3. Let F be a central subfield of A. If (xij)ni,j=1, (yij)
n
i,j=1 ∈Mn(F ), then we have(

n∑
i,j=1

xijaij

)
·

(
n∑

i,j=1

yijaij

)
=

n∑
i,j=1

(
n∑
k=1

xikykj

)
aij

4. If F is a central subfield of A, then the map

φ :Mn(F )→ A

(xij)
n
i,j=1 7→

n∑
i,j=1

xijaij

is an F -algebra-homomorphism. If aij ̸= 0 for all i, j ∈ {1, ..., n}, then φ is
injective.

Proof. 1. Note that by assumption, we have

assaijatt = δsiasjatt = δisδjtast = δisδjtaij

for all i, j, s, t ∈ {1, ..., n}, from which the statement follows immediately.

2. First, we note that if aij = 0 for some choice of i, j ∈ {1, ..., n}, then for all
s, t ∈ {1, ..., n}, we get

ast = asiaijajt = 0

Now we assume that aij ̸= 0 for all i, j ∈ {1, ..., n} and that F ⊆ A is a central
subfield. We further assume that we have a linear combination adding up to 0,
that is

n∑
i,j=1

fijaij = 0

for certain fij ∈ F . Multiplying with ass and att and using that F is central, we
observe that

0 = ass

(
n∑

i,j=1

fijaij

)
att =

n∑
i,j=1

fijassaijatt = fstast

for any s, t ∈ {1, ..., n}, where we used 1 in the last step. Assuming that fs,t ̸= 0,
we get an immediate contradiction, since ast ̸= 0 and fst ∈ F is invertible. We
conclude that fst = 0, which implies F -linear independence.

13



3. The statement follows from the commuting properties of xij and yij with i, j ∈
{1, ..., n} and the following observation:(

n∑
i,j=1

xijaij

)
·

(
n∑

i,j=1

yijaij

)
=

n∑
i,j,k,l=1

xijaijyklakl =

F central
=

n∑
i,j,k,l=1

xijyklaijakl︸ ︷︷ ︸
=δjkail

=
n∑

i,k,l=1

xikyklail =

=
n∑

i,j,k=1

xikykjaij =
n∑

i,j=1

(
n∑
k=1

xikykj

)
aij

4. F -linearity is clear, multiplicativity follows from part 3. Assuming that all aij are
non-zero, part 2 yields that φ(x) = 0 if and only if x = 0 and thus, φ is injective.

Remark 3.3. If in the above setting, n ≥ 2 and aij ∈ CA for some i, j ∈ {1, ..., n}, then
ast = 0 for all s, t ∈ {1, ..., n}. If indeed ast ̸= 0 for some choice of s, t ∈ {1, ..., n}, then
ast ̸= 0 for all s, t ∈ {1, ..., n} by 2. We may then conclude

0 ̸= ait = aijajt = ajtaij = δitajj =⇒ i = t

for arbitrary t. This is a clear contradiction.

Example 3.4 ([KT20], 2.1.1.). φ as above need not be unital. Take, for example, any
field F , set n = 1,m ≥ 2 and A := Mm(F ). Now choose a = a11 ∈ A\{0, Im} such that
a2 = a, e.g. a = E11.

Now note that F naturally embeds into A by the identification [c 7→ c · Im]. Obviously,
F ⊆ CA. Setting φ(x) := xa defines an F -algebra-homomorphism since φ(xy) = xya =
xya2 = xaya = φ(x)φ(y). However, since φ(1) = a ∈ A\{0, Im}, φ is not unital.

Example 3.5. Choosing A =Mn(F ) and aij = Eij satisfies all four properties of Lemma
3.2. Also note that by the Lemma 2.1, CA ∼= F . This example may be regarded as
prototypical. If indeed, aij ̸= 0 for i, j ∈ {1, ..., n} are given and F is a given central
subfield of A, then we define A′ := spanF (aij|i, j ∈ {1, ..., n}). By Lemma 3.2 4 , we get
that

Mn(F )→ A′

Eij 7→ aij

14



defines an F -algebra isomorphism. Then A′ ⊆ A is itself a ring. In many cases, this lets
us restrict our considerations to A = Mn(F ). Note that the 1 in A′ need not coincide
with the 1 in A.

Our goal is to formalise the results of Lemma 3.2, which motivates the formulae of
the following definition. If given as below, ε defines a tuple (aij)i,j of matrix units, δ
defines the elements commuting with all aij, giving a notion of center elements. λ defines
the map previously denoted by φ (not necessarily as an algebra homomorphism) and γ
describes the whole set of properties from Lemma 3.2. In particular, φ will once again
be a homomorphism.

Definition 3.6 ([KT20], 2.1.2.). Let F be a field and define M := Mn(F ) for some
n ∈ N. Then the center C := Cn of Mn is isomorphic to F by Lemma 2.1. We may
embed F ∼= C ↪→ MN(C) for all N ∈ N and thus interpret MN(C) both as a subset of
MN2 and as an F -algebra.

We now take 2N2 + 2 variables

u := (uij|i, j ∈ {1, . . . , N}), x := (xij|i, j ∈ {1, . . . , N}), v, y

and define the following LRi-formulae:

ε := εN(u) by
N∧

i,j,t=1

uijujt = uit ̸= 0 ∧
N∧

i,j,s,t=1

j ̸=s

uijust = 0

δ := δN(v, u) by
N∧

s,t=1

vust = ustv

λ := λN(x, y, u) by y =
N∑

i,j=1

xijuij

γ := γN(x, y, u) by λN(x, y, u) ∧ εN(u) ∧
N∧

i,j=1

δN(xij, u)

A realization a of ε is called a tuple of matrix units.

Lemma 3.7 ([KT20], 2.1.3.). Let F be a field and let C be the center of M :=Mn(F ).
For N, n ∈ N with N ≤ n and i, j ∈ {1, . . . , N}, let Eij ∈ MN(C) be the N ×N-matrix
that has exactly one non-zero entry, namely 1 ∈ C, at position (i, j).

1. If Θ :MN(C)→M is an embedding of F -algebras (which need not be unital), then
the N2-tuple a := (aij)

N
i,j=1 = (Θ(Eij))

N
i,j=1 ∈ MN2 is a realisation of εN(u) and

γN(x, y, a) defines the graph of Θ.
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2. Let a := (aji)
N
i,j=1 ∈ MN2 be a realization of εN(u) in M . Then there is a unique

F -algebra embedding Θa : MN(C) → Mn(F ) such that Θ(Eij) = aij for all i, j ∈
{1, . . . , N}. Explicitly, the graph of Θa is defined by γN(x, y, a).

Proof. 1. It can be verified by simple caclucations that a is a realization of ε as
all caclulations are done in the matrix ring MN(C) ∼= MN(F ). Now (Eij|i, j =
1, . . . , N) is a basis of MN(C) and thus the graph of Θ is defined by γ as all
X ∈MN(C) have a representation

X =
N∑

i,j=1

xijEij

2. Since a realizes ε, the aij are C-linearly independent by Lemma 3.2. Thus, Θa :
MN(C) → Mn(F ) satisfying Θ(Eij) = aij defines an embedding after unique
linear extension to MN(C). Now Θa is an F -algebra embedding, since a realizes
ε. Indeed, observe that for A = (cij)

N
i,j=1, B = (dij)

N
i,j=1 ∈MN(C)

Θa(AB) = Θa

((
N∑

i,j=1

cijEij

)(
N∑

k,l=1

dklEkl

))
= Θa

(
N∑

i,j,k=1

cijdjkEik

)
=

N∑
i,j,k=1

cijdjkaik =

(
N∑

i,j=1

cijaij

)(
N∑

k,l=1

dklakl

)
= Θa(A)Θa(B)

The statement about the graph of Θa follows from part 1.

Lemma 3.7 establishes a bijection between the two sets

Φ := {Θ :MN(C)→Mn(F )|Θ is an F -algebra embedding}

of embeddings and

E := {(a := (aij)
N
i,j=1 ∈ (Mn(F ))

N2|a realizes εN(u)}

of tuples of matrix units. This bijection is given by

Φ←→ E

Θ 7−→ (Θ(Eij))
N
i,j=1

Θa ←− [ a

There are several immediate corollaries, which we will state below.
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Corollary 3.8 ([KT20], 2.1.3.). The family of all embeddings Θ : MN(C)→ Mn(F ) of
F -algebras is definable without quantifiers in M =Mn(F ) by γN(x, y, u) and the family’s
parameter set is defined without quantifiers by εN(u).

Proof. This is an immediate consequence of Lemma 3.7.

Corollary 3.9 ([KT20], 2.1.4.). For any field F , the center of Mn(F ) is existentially
defined by

∃u : (εn(u) ∧ δn(v, u))

Proof. This uses the linear independence of (Eij|i, j = 1, . . . , N) and that for n = N , Θ
is an isomorphism.

Before proceeding with another corollary that will allow us to establish some impor-
tant relations between different models of the theory of Mn(F ) for a field F , we need
the following lemma. This will provide the necessary tools to transfer model theoretic
statements about fields to their associated matrix algebras.

Lemma 3.10. Let F be a field and let C be another LRi-structure. Then the following
hold:

1. C ≡ F ⇐⇒ Mn(C) ≡Mn(F )

2. C ∼= F ⇐⇒ Mn(C) ∼= Mn(F )

3. C ⪯ F ⇐⇒ Mn(C) ⪯Mn(F )

Proof. Let φn be an LRi-formula. We first want to show that for any evaluation hn in
Mn(F ), we have

Mn(F ) ⊨ φ
n[hn] ⇐⇒ F ⊨ φ[h]

for a suitable LRi-formula φ and a suitable evaluation h in F . The choice of these objects,
however, is clear as we just access the single entries of matrices by replacing each variable
occurring in φn by n2 new variables, each representing one entry of a matrix. Resolving
these replacements by the standard matrix addition and multiplication rules, we find φ
as desired. h simply gives an entrywise evaluation of hn.
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Conversely, we may start with any formula φ and any evaluation h in F , and define a
formula φn and an evaluation hn satisfying

Mn(F ) ⊨ φn[hn] ⇐⇒ F ⊨ φ[h]

by restricting all quantifiers in φ to centers and defining hn via the natural embedding
F 7→ F · In.

We may apply the same ideas to C as to F , since by elementary equivalence, C will
always be a ring in the scenarios described above. With this established, we deal with
the different claims separately:

1. =⇒ : We observe that for any LRi-sentence φn, we get

Mn(F ) ⊨ φ
n ⇐⇒ F ⊨ φ

F≡C⇐⇒ C ⊨ φ ⇐⇒ Mn(C) ⊨ φ
n

This proves our claim.

⇐= : We contrary assume that Mn(F ) ≡ Mn(C). Then an analogous line of
argument yields the result.

2. =⇒ : If τ : C → F is an isomorphism, we define τn : Mn(C) → Mn(F )
by τn(A) := (τ(Aij))

n
i,j=1. τn is clearly bijective and the properties of an LRi-

isomorphism are easily checked.

⇐= : We observe that restricting any isomorphism between Mn(F ) and Mn(C)
to centers again yields an isomorphism.

3. =⇒ : We note that for arbitrary φn and hn, we have

Mn(F ) ⊨ φ
n[hn] ⇐⇒ F ⊨ φ[h]

C⪯F⇐⇒ C ⊨ φ[h]

⇐⇒ Mn(C) ⊨ φ
n[hn]

⇐= : We observe that we may argue in an analogous fashion as before.

Example 3.11. We illustrate the construction in the previous proof by the following
examples.

1. We denote the formula x + y = 0 by φ2 and want to decide, whether it holds in
M2(F ) for some evaluation h2 with h2(x) = A, h2(y) = B. In order to do so, we
define φ as

a11 + b11 = 0 ∧ a12 + b12 = 0 ∧ a21 + b21 = 0 ∧ a22 + b22 = 0
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which we then decide over F . The definition of the evaluation h is self-evident.

2. We denote the formula xy = 1 by φ2 and want to decide, whether it holds in
M2(F ) for some evaluation h with h2(x) = A, h2(y) = B. In order to do so, we
define φ as

a11b11 + a12b21 = 1 ∧ a11b12 + a12b22 = 0 ∧
a21b11 + a22b21 = 0 ∧ a22b12 + a22b22 = 1

which we then decide over F . The definition of the evaluation h is again self-
evident.

3. We denote the formula ∃y : xy = 1 by φ and want to decide whether it holds in F
for some evaluation h with h(x) = a. In order to do so, we define φn as

∃y : (∀z : zy = yz) ∧ xy = 1

which we then decide over Mn(F ). The evaluation hn satisfies h(x) = a · In.

Corollary 3.12 ([KT20], 2.1.5.). Let F be a field.

1. The theory of Mn(F ) is axiomatized by saying the following about a model A:

a) A is a ring whose center C is elementarily equivalent to F , that is: A satisfies
the ring axioms and additionally, whenever F ⊨ φ for some LRi-sentence, we
add some sentence φ′ as an axiom. φ′ is defined in the same recursive way
as φ, except that whenever in the construction of φ we encounter a quantifier
construction ∀xψ, we write

∀x : (∀y : xy = yx)→ ψ

instead. In particular, the axiom set will not be finite.

b) There exists a := (aij)
n
i,j=1 ∈ An

2 realizing εn and each such realization a
defines an isomorphism Θa :Mn(C)→ A via γn(x, y, a).

2. Let A,B be rings that are elementarily equivalent to Mn(F ). If A ⊆ B, then
CA ⊆ CB where CA is the center of A and CB that of B. Furthermore, if a is a
realization of εn in An

2, then the following diagram commutes:

A B

Mn(CA) Mn(CB)

Θa
∼= Θa

∼=
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Proof. 1. Let A be a model satisfying 1a and 1b. By 1b, we get Mn(C) ∼= A and by
1a, C ≡ F . Thus, Mn(C) ≡ Mn(F ) by Lemma 3.10 1. This gives Mn(F ) ≡ A by
transitivity of elementary equivalence, and we observe that consequently, A is a
model of the theory of Mn(F ).

Now we contrarily assume that A ≡ Mn(F ). Then for 1a, we note that for any
LRi-sentence φ we have

C ⊨ φ ⇐⇒ A ⊨ φ′

where we define φ′ by replacing any string ∀xψ in the construction of φ as described
above. As this is independent of the ring considered, the same holds for Mn(F )
and its center F . Using that A ≡Mn(F ), we immediately get C ≡ F . This proves
1a.

For 1b, note that the existence of a tuple (aij)
n
i,j=1 satisfying εn that additionally

induces the desired isomorphism can be described by the LRi-sentence γn. This
sentence trivially holds in Mn(F ) and thus, by assumption, also in A.

2. Note that by isomorphism and Corollary 3.9, CA and CB are both existentially
defined by the formula ∃u(εn(u) ∧ δn(v, u)), where n does not depend on whether
we work over the ring CA or CB. Any a ∈ CA will therefore also lie in CB, since
A ⊆ B and any tuple a satisfying εn in A also satisfies εn in B.

For commutativity of the diagram, note that our embeddings are given by the
identity. Thus, the statement is trivial.

Remark 3.13. In the above setting, we have tacitly used that A and B have the same
dimension, if both are elementarily equivalent to Mn(F ). This holds as we may describe
the existence of a linearly independent tuple (b1, . . . , bn) (over F and C respectively) via
the LRi-sentence

∃b1, . . . bn : ∀c1, . . . cn :

(
∀x :

n∧
i=1

cix = xci

)
→

(
n∑
i=1

cibi = 0→
n∧
i=1

ci = 0

)
Since the sentence

∃b1, . . . , bn : ∀x : ∃c1, . . . cn : x =
n∑
i=1

cibi

defines b1, . . . , bn as generators of a vector space, this gives us dimensional equality
between Mn(F ), A, and B over their respective centers. Also note that the existence of
a basis of n2 elements can thus be derived within Mn(F ) and then transferred to A. As
a consequence, in the above diagram, Θa :Mn(CB)→ B still is an isomorphism.
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Definition 3.14. Let U be an L-structure. We call U model complete if the theory
Th(U) of U is model complete.

Definition 3.15 ([KT20], 2.1.6.). Let F be a field and let F̃ be an expansion of F
in some language L extending LRi, that is: F and F̃ have the same universe, but F̃
interprets additional symbols. Then we define Mn(F̃ ) as an L-structure in the following
way:

• Mn(F̃ ) expands Mn(F ), that is: They have the same universe, and symbols in LRi
are not newly interpreted.

• If R is a new relation symbol, then we give an interpretation of R only on the
center C of Mn(F ), that is: For arbitrary L-terms t1, t2, . . ., we have Mn(F̃ ) ⊨

RMn(F̃ )(t
Mn(F̃ )
1 , . . .) if and only if tMn(F̃ )

1 , . . . ∈ C and F̃ ⊨ RF̃ (tF̃1 , . . .).

• If f is a new m-place function symbol, then for given L-terms t1, t2, . . ., we define
fMn(F̃ ) on Cm by fMn(F̃ )(t

Mn(F̃ )
1 , . . .) := f F̃ (tF̃1 , . . .). Otherwise, we set the function

0.

• The interpretation of new constant symbols is already given by their interpretation
on F̃ .

Before putting this expansion to use to prove model completeness of matrix algebras in
Lemma 3.18, we make two observations about how a field relates to its associated matrix
algebra in an extended language.

Lemma 3.16. Let C and F be fields in a language L extending LRi. We interpret
Mn(F ) and Mn(C) as L-structures as described in Definition 3.15. If f : C → F is
an L-embedding, then f may be extended to an L-embedding f : Mn(C) → Mn(F ) by
applying f entry-wise.

Proof. Well-definedness follows from linear independence of the family (Eij)
n
i,j=1. The

rest is achieved by linearly extending the map.

Lemma 3.17. Let F be a field and let F̃ be an expansion of F in a language L extending
LRi. Now let C̃ be another L-structure. Then the following hold:

1. C̃ ≡ F̃ ⇐⇒ Mn(C̃) ≡Mn(F̃ )

2. C̃ ⪯ F̃ ⇐⇒ Mn(C̃) ⪯Mn(F̃ )
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Proof. 1. By Lemma 2.17 1 and Lemma 3.10 1, C̃ ≡ F̃ implies C ≡ F and Mn(C) ≡
Mn(F ). For any L-sentence, we also note that since containment in the center of
a matrix ring is expressible as an LRi-formula, by the definition of new symbols,
we immediately get that

Mn(C̃) ⊨ φ ⇐⇒ Mn(F̃ ) ⊨ φ

for any L-sentence φ and thus Mn(C̃) ≡Mn(F̃ ).

Contrary, if Mn(C̃) ≡Mn(F̃ ), we immediately get C ≡ F by Corollary 3.12 1a (or
equivalently Lemma 3.10 1). Again, since containment in the center is expressible
by an LRi-formula, we get the statement.

2. Note that by Lemma 2.17 3 and Lemma 3.10 3, we have C ⪯ F and Mn(C) ⪯
Mn(F ). For any L-formula φ and any evaluation h in Mn(C̃), we note that since
containment in the center of a matrix ring is expressible as an LRi-formula, we get
by the embedding property that for any X ∈ Mn(C̃), X ∈ C · In if and only if
X ∈ F · In. Thus, by the definition of new symbols, we immediately get that

Mn(C̃) ⊨ φ[h] ⇐⇒ Mn(F̃ ) ⊨ φ[h]

for any L-sentence φ and any evaluation h in Mn(C). Hence, Mn(C̃) ⪯Mn(F̃ ).

Again, if we assume that Mn(C̃) ⪯ Mn(F̃ ), then we get the converse implication
by restricting to centers.

Lemma 3.18 ([KT20], 2.1.7.). Let F be a field and let F̃ be a model complete expansion
of F in some language L extending LRi. Then Mn(F̃ ) is also model complete.

Proof. Let Ã, B̃ be L-structures that are elementarily equivalent to Mn(F̃ ). Further
assume that Ã ⊆ B̃. By Theorem 2.18, it is sufficient to prove Ã ⪯ B̃.

In order to do so, first note that since Ã, B̃ ≡Mn(F̃ ) and L extends LRi, both A := Ã|LRi

and B := B̃|LRi
are rings. Recall from Lemma 2.17 1 that elementary equivalence is

invariant under restrictions, that is: We get A ≡Mn(F ) ≡ B as LRi-structures.

By Corollary 3.12 1b, we may chose a ∈ An2 satisfying εn, and by Corollary 3.12 2, we
get CA ⊆ CB for the centers of A and B respectively. We also get the commutative
diagram
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A B

Mn(CA) Mn(CB)

Θa
∼= Θa

∼=

Here, we use that A ⊆ B is trivially invariant under the restriction of languages. We
may then let Ã induce an L-structure C̃A on CA by interpreting symbols of L according
to their definition on Ã. Analogously, we define C̃B. We immediately get the following
properties:

• C̃A ⊆ C̃B as CA ⊆ CB and Ã ⊆ B̃.

• C̃A ≡ F̃ ≡ C̃B, since by assumption, Ã ≡Mn(F̃ ) ≡ B̃

Thus, we may conclude C̃A ⪯ C̃B by model completeness of F̃ .

Now let Θa : Mn(CA) → A denote the algebra isomorphism induced by a. We claim
that this naturally extends to an isomorphism from Mn(C̃A) to Ã and we will denote
this extended isomorphism again by Θa.

Indeed, if X lies in the center of Mn(CA), then X =
∑n

i=1 λEii for some λ ∈ CA. Hence,
Θa(X) = λ because of

1 = Θa(In) = Θa

(
n∑
i=1

Eii

)
=

n∑
i=1

aii

Since new symbols on Mn(C̃A) are defined only on the center, this proves the claim.

Analogous ideas apply to B. Finally, C̃A ⪯ C̃B translates to Mn(C̃A) ⪯ Mn(C̃B) by
Lemma 3.17 2. Thus, we get the commutative diagram

Ã B̃

Mn(C̃A) Mn(C̃B)

Θa
∼= Θa

∼=

and conclude

Ã ⊨ φ[h] ⇐⇒ Mn(C̃A) ⊨ φ[Θ
−1
a ◦ h]

⇐⇒ Mn(C̃B) ⊨ φ[Θ
−1
a ◦ h]

⇐⇒ B̃ ⊨ φ[Θa ◦Θ−1
a ◦ h] = φ[h]
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Corollary 3.19 ([KT20], 2.1.7.). Both Mn(C) and Mn(R) (the latter expanded by <,
which is interpreted on its center) are model complete.

Proof. This is a direct application of Lemma 3.18 to the model complete structures
⟨C,+,−, ·, 0, 1⟩ and ⟨R, <,+,−, ·, 0, 1⟩. The model completeness of these structures
follows from Theorem 2.21.

Remark 3.20 ([KT20], 2.1.8.). There is no analogous result to that of the Lemma 3.18
that lets us lift quantifier elimination from F̃ to MN(F̃ ). For example, Mn(C) does
not admit quantifier elimination for n ≥ 2 (see [Ros78], Theorem 3.2.), yet C does (see
Theorem 2.21).

Still, we may save the result of the Lemma 3.18 for quantifier elimination if we allow
matrix units as parameters, which will be done in the next two lemmata. This should
come as no surprise. Indeed, let us assume that we have a field F̃ that admits quantifier
elimination. If we now admit (standard) matrix units as constant symbols, we may
regard them as a way to access single entries of a matrix and consequently to reduce
any question regarding quantifier elimination to an equivalent question in the underlying
field.

Lemma 3.21 ([KT20], 2.1.9.). Let F be a field and let U ⊆Mn(F ) be a subring. Further
let Eij ∈ U for all i, j ∈ {1, ..., n}. Then

RU := {a ∈ F |a is the (1, 1)-entry for some Y ∈ U}

is a subring of F and U =Mn(RU).

Proof. If a, b ∈ U , then X11 = a and Y11 = b for some X, Y ∈ U . As U is a ring,
X + Y ∈ U and thus a + b = (X + Y )11 ∈ RU . Similarly, −X ∈ U and thus −a ∈ RU .
For multiplication, note that since E11 ∈ U , we have E11XE11, E11Y E11 ∈ U and thus
ab = (E11XE11E11Y E11)11 ∈ RU . The remaining ring properties are trivial.

If now Y ∈ U , then also E1iY Ej1 ∈ U , which has only 0-entries except for the entry
Yij at the (1, 1)-place. Therefore, Y ∈ Mn(RU). If contrary Y ∈ Mn(RU), then for all
i, j ∈ {1, ..., n}, we find some X(i,j) ∈ U such that x(i,j)11 = Yij. We then note that

YijEij = Ei1X
(i,j)E1j ∈ U

and thus

Y =
n∑

i,j=1

Ei1X
(i,j)E1j ∈ U
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Lemma 3.22 ([KT20], 2.1.11.). Let F be a field and let F̃ be an expansion of F in
some language L extending LRi. Let F̃ admit quantifier elimination. Let further c =
(cij)

n
i,j=1 denote new constant symbols. By L(c), we denote the language L expanded by

the constants c. Then the L(c)-structure (Mn(F̃ ), e), where c is interpreted as a tuple of
matrix units e, also admits quantifier elimination.

Proof. By Lemma 3.18 and Theorem 2.19, Mn(F̃ ) is model complete. This immediately
transfers to (Mn(F̃ ), e). Indeed if both A′ := (Ã, a) and B′ := (B̃, b) are models of the
theory Th(Mn(F̃ ), e) satisfying A′ ⊆ B′, then we observe the following:

• a = b as A′ ⊆ B′.

• Both Ã and B̃ are models of Mn(F̃ ), where Ã, B̃ are the restrictions of A′, B′ to
L. This follows from Lemma 2.17 1.

• Ã ⊆ B̃, and thus already Ã ⪯ B̃ by model completeness.

Now observe that

A′ ⊨ φ[h] ⇐⇒ Ã ⊨ φ(c/a)[h]

⇐⇒ B̃ ⊨ φ(c/a)[h]

⇐⇒ B′ ⊨ φ[h]

for any evaluation h in A′ (i.e. Ã, since the universes coincide). Thus, A′ ⪯ B′.

Now it is sufficient to prove the amalgamation property. For that, let A′, B′ be elemen-
tarily equivalent to (Mn(F̃ ), e) and let U ′ := (Ũ , u) be a common substructure of A′ and
B′. This implies u = a = b. Now define A,B and U as the restrictions of Ã, B̃ and Ũ
respectively to LRi . Then U is a common subring of A and B. Further define the fields
CA and CB as the centers of A and B respectively.

By Lemma 3.12 1b, we may choose isomorphisms φ : A → Mn(CA) and ψ : B →
Mn(CB) that map the matrix units u to the matrix units (Eij)

n
i,j=1 (note that these

are formally different in Mn(CA) and Mn(CB)). We may extend these isomorphisms to
φ : Ã→Mn(C̃A) and ψ : B̃ →Mn(C̃B) as in the proof of Lemma 3.18.

Now we apply Lemma 3.21 to obtain two subrings R ⊆ CA and S ⊆ CB that satisfy
Mn(R) ∼= U ∼= Mn(S). In particular, the isomorphisms are given by φ|U and ψ|U respec-
tively. We may induce an L-structure on Mn(R) and Mn(S) through these isomorphisms
and thus extend the isomorphisms to L(c). This gives us the following commutative di-
agram.
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(Mn(C̃A), E) (Ã, a) (B̃, b) (Mn(C̃B), E)

(Mn(R̃), E) (Ũ , u), (Mn(S̃), E)

∼=
φ

∼=
ψ

∼=
φ|U

∼=
ψ|U

To prove the amalgamation property, we first restrict all maps in that diagram to centers
interpreted in L. This leaves isomorphisms invariant and by Lemma 2.1 and the choice
of R and S, the outer subring relations will be preserved as well. This gives us the
commutative diagram

C̃A C̃A C̃B C̃B

R̃ C̃U , S̃

∼=

∼=

∼=

∼=

C̃U may now be embedded into C̃A via R̃ and similar arguments work for C̃B. Note that
we may not embed via C̃A since a priori, C̃U need not be a subset of C̃A. Finally, this lets
us amalgamate using quantifier elimination in F̃ ≡ C̃A ≡ C̃B, yielding two embeddings

ε : C̃A → Ω̃

δ : C̃B → Ω̃

with Ω̃ ≡ F̃ satisfying ε(φ(u)) = δ(ψ(u)) for all u in C̃U .

We may extend ε and δ to embeddings

ε :Mn(C̃A)→Mn(Ω̃)

δ :Mn(C̃B)→Mn(Ω̃)

by applying the embeddings entry-wise using Lemma 3.16. The desired amalgamation
is then given by the mappings ε ◦ φ and δ ◦ ψ after noting that ε and δ are in fact
L(c)-homomorphisms - here we use that matrix units are mapped to matrix units.

3.2 Quantifier Elimination using Trace and
Transposition

A question that naturally arises is whether we actually need to access all matrix entries
to get quantifier elimination. Ideally, we may work with weaker properties of a matrix
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that still allow for quantifier elimination. For Pythagorean fields, this question may
be answered in the positive, provided they possess the so-called Specht property for the
transpose. Indeed, we will only need to consider the trace and the transpose as additional
unary functions to get that result. What is more, we will even get an equivalence between
quantifier elimination and the Specht property. All terms that were just introduced
informally will be properly defined later.

We prepare the main result in Theorem 3.30 by the following two lemmata and one
theorem. The first lemma tells us that adding two new functions for the trace and the
transposition will not affect model completeness as derived in Lemma 3.18. The second
lemma provides us with a criterion that lets us compare the traces of two words. The
theorem directly pertains to the Specht property as defined below for certain choices of
our base field F .

Lemma 3.23. Let F be a field and let F̃ be a model complete expansion of F in a
language L extending LRi. Let L′ be the language L extended by two new unary function
symbolds tr and invo. Then the L-structure (Mn(F̃ ), trF , [X 7→ XT ]) is model complete.

Proof. By Lemma 3.18, Mn(F̃ ) is model complete as an L-structure. We now set M ′ :=
(Mn(F̃ ), trF , [X 7→ XT ]) and assume that we are given A′, B′ ≡ M ′ satisfying A′ ⊆
B′. We show that A′ ⪯ B′ and first observe both A := A′|LRi and B := B′|LRi

are
elementarily equivalent to Mn(F ). Clearly, Ã ⊆ B̃. Now let φ′ be an L′-formula. Then
φ′ can be translated into an L-formula φ satisfying

A′ ⊨ φ′[h′] ⇐⇒ C̃A ⊨ φ[h]

for any evaluation h′ in A′ and accordingly chosen evaluation h in the L-center C̃A of
A′ (after potentially applying the isomorphism Θa from Corollary 3.12 1b; compare this
to the proof of Lemma 3.10). This translates to C̃B ⊨ φ[h] by model completeness and
C̃A ⊆ C̃B (see Corollary 3.12 2), which in turn is equivalent to B′ ⊨ φ′[h′].

Lemma 3.24 ([KT20], 2.2.1.). Let K,L be fields and let L be an extension of LRi by
a one-place function symbol F . We now consider the L-structures (Mn(K), trK) and
(Mn(L), trL), where trK and trL are interpretations of F . Let (U, f) be another L-
structure (where f interprets F ) and suppose that we are given L-embeddings

φ : (U, f) ↪→ (Mn(K), trK)

ψ : (U, f) ↪→ (Mn(L), trL)

Then the following hold.

1. The subring R of U genereated by the image of f is commutative and φ(R) ⊆
K · In, ψ(R) ⊆ L · In.
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2. Assume that K · In and L · In can be amalgamated over φ|R and ψ|R into some
field Ω by the maps

ε : K · In → Ω · In
δ : L · In → Ω · In

Ω · In

K · In L · In

R

ε δ

Then we may naturally (i.e. by mapping the standard matrix units to the corre-
sponding standard matrix units) induce maps

ε :Mn(K)→Mn(Ω)

δ :Mn(L)→Mn(Ω)

and for every X ∈ U we have

trΩ(ε(φ(X))) = trΩ(δ(ψ(X)))

The following (not necessarily commutative) diagram shows all maps.

(Mn(Ω), trΩ)

(Mn(K), trK) (Mn(L), trL)

(U, f)

(R, fR)

ε δ

φ ψ

φ|R ψ|R

Proof. 1. First note that U is a ring since as an L-structure it is closed under addition
and multiplication. The ring axioms follow from the fact that U embeds into the
rings (even fields) K and L. We also get f(U) ⊆ U by closedness of operations.
Thus, let X ∈ U . Then by the properties of φ as an L-homomophism, we get
φ(f(X)) = trK(φ(X)). Now observe that trK(φ(X)) ∈ K · In and thus φ(f(X)) ∈
K · In. Hence, φ(f(U)) ⊆ K · In. As φ is an embedding, f(U) ⊆ R inherits
commutativity from K · In. An analogous argument works for L.
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2. Let X ∈ U . Then note that

trΩ(ε(φ(X))) = ε(trK(φ(X))) =

= ε(φ(f(X))) =

ε◦φ=δ◦ψ
= δ(ψ(f(X)))

A similar calculation gives trΩ(δ(ψ(X))) = δ(ψ(f(X))). Thus, we are done.

Theorem 3.25 ([KT20], 2.2.2.). Let Ω be a real closed field or the algebraic closure
of a real closed field. Let further X1, . . . , Xd, Y1, . . . Yd ∈ Mn(Ω). The following are
equivalent:

1. There is some unitary O ∈Mn(Ω) satisfying OXiO
∗ = Yi for all i ∈ {1, ..., n}.

2. For every word ω in the letters x1, . . . xd, x∗1, . . . , x∗d we have

trΩ(ω(X1, . . . Xd, X
∗
1 , . . . , X

∗
d)) = trΩ(ω(Y1, . . . Yd, Y

∗
1 , . . . , Y

∗
d ))

3. For every word ω in the letters x1, . . . xd, x∗1, . . . , x∗d that has at most length n2 we
have

trΩ(ω(X1, . . . Xd, X
∗
1 , . . . , X

∗
d)) = trΩ(ω(Y1, . . . Yd, Y

∗
1 , . . . , Y

∗
d ))

Proof. 1) =⇒ 2): Choose O such that 1 holds. Recall that the (orthogonal) conjugation
of a matrix leaves its trace unchanged. Thus, trΩ(Xi) = trΩ(OXiO

∗) = trΩ(Yi) for all
i ∈ {1, ..., n}. Also note that OX∗

i O
∗ = (OXiO

∗)∗ = Y ∗
i . If now ω is a word given as

specified by 2, we use O∗O = In to obtain

ω(X1, . . . Xd, X
∗
1 , . . . , X

∗
d) = O∗ω(OX1O

∗, . . . OXdO
∗, OX∗

1O
∗, . . . , OX∗

dO
∗)O =

= O∗ω(Y1, . . . Yd, Y
∗
1 , . . . , Y

∗
d )O

This immediately yields the desired result about traces.

2) =⇒ 3): This is trivial.

3) =⇒ 2): This implication relies on invariant theory and can be found in [Pro76],
theorem 7.3., or [Raz74]. Note that dependent on the source, different degree bounds
may be given.

2) =⇒ 1): See [Sib68], Corollary 1 and Lemma 2, which also relies on invariant
theory.

29



Lemma 3.26 ([KT20], 2.2.3.). Let F be a real field and X ∈Mn(F ). Then

X = 0 ⇐⇒ tr(XTX) = 0

Proof. The statement follows from the identity

tr(XTX) =
n∑
i=1

n∑
k=1

x2ki

and the fact that, in real fields, squares are positive.

We are now ready to prove the main result of this section. This requires us to introduce
the following two definitions.

Definition 3.27 ([Har00], Proposition 16.1). A field F is called Pythagorean, if 1 + a2

is a square in F for all a ∈ F .

Lemma 3.28. A field F is Pythagorean if and only if any sum of squares is again a
square.

Proof. As 1+ a2 is a sum of squares for all a ∈ F , one direction is trivial. For the other
direction, it is sufficient to consider the case a2 + b2 for a, b ∈ F and a, b ̸= 0. Then
1 + ( b

a
)2 = c2 for some c ∈ F assumption. Hence, a2 + b2 = (ac)2, which proves the

claim.

It is obvious from the definition that every real closed field is Pythagorean. Contrary, a
Pythagorean field need not even be real. If, however, we postulate that 1+ a2 ̸= 0, then
it is. If, in fact, −1 were a sum of squares, then c2 = −1 for some c ∈ F . This implies
0 = 1 + c2 and thus we have a contradiction.

Definition 3.29 ([KT20], 2.2.4.). Let F be a field. We say that F has the Specht
Property for the transpose (SPT), if for any d, n ∈ N there is some D = D(d, n) ∈ N
such that the following holds:

For all d-tuples X = (X1, . . . , Xd), Y = (Y1, . . . , Yd) ∈ (Mn(F ))
d with

tr(ω(X,XT )) = tr(ω(Y, Y T ))

for all words ω in 2d variables x, xT of degree at most D, we find some O ∈ Mn(F )
satisfying OOT = In and OTXiO = Yi for all i ∈ {1, ..., n}.
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In the case that F is the algebraic closure of a real closed field, we may rephrase the
(SPT) using the matrix involution and will refer to it as the Specht Property for the
involution (SPI).

Theorem 3.30 ([KT20], 2.2.4.). Let F be a real, Pythagorean field, let F̃ be an expansion
of F in a language L extending LRi and suppose that F̃ admits quantifier elimination
in L. We expand L by two new one-place function symbols to L(tr, invo). Then the
following are equivalent:

1. The L(tr, invo)-structure (Mn(F̃ ), trF , [X 7→ XT ]) admits quantifier elimination.

2. F has the (SPT).

3. Let K̃ ≡ F̃ and let U be a substructure of (Mn(K̃), trF , [X 7→ XT ]). Let further
ψ : U → (Mn(K̃), trF , [X 7→ XT ]) be an embedding. Then there is an elementary
extension K̃ ⪯ Ω̃ and an extension of ψ to an embedding from (Mn(K̃), trF , [X 7→
XT ]) to (Mn(Ω̃), trF , [X 7→ XT ]). In particular, the following diagram commutes:

(Mn(Ω̃), trΩ, X 7→ XT )

(Mn(K̃), trK , X 7→ XT ) (Mn(K̃), trK , X 7→ XT )

U

⪯

id
ψ

Proof. 2) =⇒ 1): F̃ is model complete and thus, by Lemma 3.18, so is the L-structure
Mn(F̃ ). This also holds for (Mn(F̃ ), trF , [X 7→ XT ]) by Lemma 3.23. Hence, it is
sufficient to prove the amalgamation property for the theory T of (Mn(F̃ ), trF , [X 7→
XT ]) over finitely generated substructures as derived in Remark 2.20.

Thus, let M,N ⊨ T and let U be a common finitely generated L(tr, invo)-substructure of
M and N . We may choose an isomorphism φ :M → (Mn(K̃), trK , [X 7→ XT ]) following
Corollary 3.12 1b, where K̃ ≡ F̃ denotes the center K of M , lifted to the language L.
Note that compatibility with trace and involution follows from the fact that in Mn(K),
we may choose a tuple of matrix units (aij)ni,j=1 satisfying trK(aij) = δij and aTij = aji for
all i, j ∈ {1, ..., n}. Such units must therefore also exist in M by elementary equivalence
and the induced isomorphism trivially respects trace and involution. By φ, we denote
the restriction of φ to U. An analogous construction can be done for N , such that we
get the following diagram.
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(Mn(K̃), trK , X 7→ XT ) M N (Mn(L̃), trL, X 7→ XT )

U

∼=
φ ∼=

ψ
φ ψ

By identification via isomorphisms and by writing U = (Ũ , f, h), where f and h are the
interpretations of tr and invo in U , we get the diagram

(Mn(K̃), trK , X 7→ XT ) (Mn(L̃), trL, X 7→ XT )

(Ũ , f, h)

φ ψ

By R we denote the subring of U that is generated by the image of f , that is: R = (f(U)).
By Lemma 3.24 1, R is commutative and φ(R) ⊆ K ·In and ψ(R) ⊆ L ·In. In the future,
we will not strictly distinguish between K and K · In.

Since φ and ψ are L-embeddings, Mn(K̃) and Mn(L̃) induce the same L-structure R̃ on
R. Also note that consequently, φ|R : R̃ → K̃ and ψ|R : R̃ → L̃ may be regarded as
L-embeddings. As in Lemma 3.24 2, we now amalgamate over the field F̃ - using that
R ⊆ K,L and that F̃ admits quantifier elimination - and get the diagram

(Mn(Ω̃), trΩ, X 7→ XT )

(Mn(K̃), trK , X 7→ XT ) (Mn(L̃), trL, X 7→ XT )

(Ũ , f, h)

(R̃, fR, hR)

ε δ

φ ψ

φ|R ψ|R

There are two things to note. First, h|R is the identity, since R - being generated by
center elements alone (since f = trK |U = trL|U) - only consists of center elements, too.
Second, only the outer diagram (excluding (Ũ , f, h)) may generally be assumed to be
commutative (for that, recall that φ(R) ⊆ K).
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Now we recall that U is finitely generated, that is: There are X1, . . . , Xd ∈ U that
generate U as a ring. We claim that there is an orthogonal matrix O ∈ Mn(Ω) that
satisfies

Oε(φ(Xi))O
T = δ(ψ(Xi))

for all i = 1, . . . , d. Once this claim is established, we define

γ :Mn(Ω)→Mn(Ω)

X 7→ OXOT

where O is chosen as described above. Clearly, γ preserves the trace and transposition.
Thus, γ is an L(tr, invo)-automorphism of (Mn(Ω̃), trΩ, [X 7→ XT ]). Furthermore, we
have γ ◦ ε ◦ φ = δ ◦ ψ and these mappings define an amalgamation of M and N over φ
and ψ. It is therefore left to show that such an O exists.

For that, we write Yi := ε(φ(Xi)) and Zi := δ(ψ(Xi)). We let ω be an arbitrary word in
the variables x, xT and define X := ω(X1, . . . , Xd, h(X1), . . . , h(Xd)) ∈ U .

By Lemma 3.24 2, we immediately get that trΩ(ε(φ(X))) = trΩ(δ(ψ(X))). Since both ε
and φ respect the interpretations of tr and invo, we get

ε(φ(X)) = ε(φ(ω(X1, . . . , Xd, h(X1), . . . , h(Xd)))) =

= ω(ε(φ(X1)), ε(φ(Xd)), ε(φ(X1)
T ), ε(φ(Xd)

T )) =

= ω(Y1, . . . , Yd, Y
T
1 , . . . , Y

T
d )

Analogously,

δ(ψ(X)) = ω(Z1, . . . , Zd, Z
T
1 , . . . , Z

T
d )

Thus, trΩ(ω(Y, Y T ) = trΩ(ω(Z,Z
T ) This proves the existence of O by the (SPT) in

Ω. Indeed, by assumption, F has the (SPT) and since (Mn(Ω̃), trΩ, [X 7→ XT ]) is
elementarily equivalent to (Mn(F̃ ), trΩ, [X 7→ XT ]), so does Ω.

This uses the degree bound D in the (SPT) as this allows us to rewrite the (SPT)
following Theorem 3.25 as the L(tr, invo)-sentence

∀X1, . . . , XD, Y1, . . . , YD :

 ∧
ω

deg(ω)≤D

tr(ω(X,XT )) = tr(ω(Y, Y T ))


→

(
∃O : OTO = 1 ∧

d∧
i=1

OTXiO = Yi

)

1) =⇒ 3): This follows from quantifier elimination. Note that in the given scenario -
U being a two-fold substructure of (Mn(K̃), trK , [X 7→ XT ]) - we may first choose an
arbitrary amalgamation ε, δ into (Mn(Ω̃), trΩ, [X 7→ XT ]) as given in the diagram below.
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(Mn(Ω̃), trΩ, X 7→ XT )

(Mn(K̃), trK , X 7→ XT ) (Mn(K̃), trK , X 7→ XT )

U

ε
δ

id
ψ

Shuffling around elements (using that ε and δ as embeddings are injective) lets us choose
ε as an extension of ψ and δ as the identity. By model completeness of (Mn(F̃ ), trF , [X 7→
XT ]), we see that the extension given by δ must be elementary. As restricting our
considerations to L and to centers does not change that the embedding is elementary,
we immediately get that K̃ ⪯ Ω̃

3) =⇒ 2): We first prove the claim without a degree bound for all K̃ ≡ F̃ . Then we ar-
gue by compactness to establish the bound. For that, let d ∈ N, X1, . . . , Xd, Y1, . . . , Yd ∈
Mn(F ) be given, such that tr(ω(X,XT )) = tr(ω(Y, Y T )) for all words in the 2d variables
x, xT .

Let U ′ be the L(tr, invo)-substructure of (Mn(K̃), trK , [X 7→ XT ]) that is generated
by K · In and X1, . . . , Xd for some d ∈ N. We define U := U ′|LRi

and interpret U as
the K-algebra that is generated by the evaluations in X1, . . . , Xd of all words in the 2d
variables x, xT . Now let φ : U →Mn(K) be the identity and let ψ : U →Mn(K) be the
K-algebra homomorphism that is defined by setting ψ(Xi) := Yi, ψ(X

T
i ) := Y T

i . This
gives us the diagram

Mn(K) Mn(K)

U

id
ψ

We now claim the following:

• ψ is well-defined.

• ψ is an L(tr, invo)-homomorphism.

For well-definedness, it is sufficient to prove that for any non-commutative polynomial
p(x, xT ), we have the implication that if p(X,XT ) = 0, then p(Y, Y T ) = 0. By Lemma
3.26, we know that assuming this premise implies tr(p(X,XT )Tp(X,XT )) = 0. This
trace, however, is just a linear combination of words in X and XT . By the condition of
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the (SPT), we thus conclude tr(p(Y, Y T )Tp(Y, Y T )) = 0 and again by Lemma 3.26, we
get p(Y, Y T ) = 0. It is clear that ψ respects both trace and involution.

This lets us find an amalgamation as defined in 3. Namely, we find Ω̃ such that K̃ ⪯ Ω̃
and an L-embedding ε :Mn(K̃)→Mn(Ω̃) preserving tr and invo such that ψ(u) = ε(u)
for all u ∈ U . Since ψ is a K-algebra homomorphism and K ⊆ R, ε, too, is a K-algebra
homomorphism. We now want to apply the theorem of Skolem-Noether (Theorem 2.8).
For that, we first replace Mn(K̃) by Mn(K̃)⊗K Ω̃ ∼= Mn(Ω̃). We will denote the resulting
Ω-algebra homomorphism that is given by M ⊗ ω 7→ ω · ε(M) still by ε.

We may now apply the theorem of Skolem-Noether working over the algebra Mn(Ω) (also
recall Lemma 2.9) and find some Z ∈ Mn(Ω)

× satisfying ε(X ⊗ ω) = Z−1(X ⊗ ω)Z for
all X ∈Mn(K). Restricting to elementary tensors of the form M ⊗ ω ∼= ωM ∈Mn(K̃),
we conclude that

Z−1XTZ = ε(XT ) = ε(X)T = (Z−1XZ)T = ZTXT (Z−1)T

Thus, ZZTXT = XTZZT for all X ∈ Mn(Ω) and ZZT lies in the center of Mn(Ω).
Further, we know that there is some λ ∈

∑
Ω2 with ZZT = ZTZ = λIn by positivity of

ZZT and Lemma 2.1.

As the amalgamation diagram commutes, we have

Z−1XiZ = Yi

for all i = 1, . . . , d. Since Ω is Pythagorean, λ is a square itself and we replace Z by Z√
λ
.

This lets us choose λ = 1 without loss of generality.

Finally, we define O := Z and observe that O is orthogonal with coefficients in Ω
satisfying OTXiO = Yi for all i = 1, . . . , d. Since K ⪯ Ω, we may choose O with
coefficients in K and we are done.

It is only left to prove the claim with the degree bound. For that, we first let a non-
principal ultrafilter on N be given and we assume that K̃ is an ultrapower of F̃ with
respect to that ultrafilter. K̃ ≡ F̃ follows from the fact that F̃ ⪯ K̃ by [PD11], Corollary
2.6.3.

We now use the abbreviations X = (X1, . . . , Xd), Y = (Y1, . . . , Yd) and for every k ∈ N,
we define Wk as the set of all words of degree at most k. Then, for every k ∈ N, we
define the set

Sk :=
{
(X, Y ) ∈Mn(K̃)2d|∀ω ∈ Wk : tr(ω(X,X

T )) = tr(ω(Y, Y T ))
}

For every fixed k, Sk is clearly definable in L(tr, invo), since there are only finitely many
words. The intersection

⋂
k,d∈N Sk is also definable by the (SPT) without the degree
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bound as derived above. Namely, we define it by the formula

∃O : OOT = In ∧
d∧
i=1

OTXiO = Yi

Finally, since K̃ is ℵ1-saturated by [PD11], Theorem 2.6.5., we get that the intersection
is finite and thus finish the proof (for the argument in the last step - in the formulation
for real closed fields - see [PD01], Theorem 2.2.11.).

It is natural to ask for fields that are both Pythagorean and possess the (SPT). One
whole class of such fields - intersections of real closed fields - will be presented below.

Lemma 3.31. Let F be a field. If F is the intersection of Pythagorean fields, then F is
Pythagorean.

Proof. We write

F =
⋂
λ∈Λ

Pλ

where each Pλ is Pythagorean and embeddable into a large field K. Assume that s is
a sum of squares in F . Then s is a sum of squares in each Pλ and we see that s is in
fact a square in every such field. Since the square root of an element is unique (up to
multiplication with −1) if it exists, s is the same square in every Pλ and thus it lies in
F .

Definition 3.32 ([MSV93], p. 749). Let F be a field. We say that F satisfies the
principal axis property, if every symmetric matrix over F is orthogonally similar to a
diagonal matrix over F .

Lemma 3.33 ([MSV93], Corollary to Theorem 2). Let F be a field. If F is the inter-
section of real closed fields, then F satisfies the principal axis property.

Proof. [MSV93], Theorem 2 and the subsequent Corollary.

Theorem 3.34 ([KT20], 2.2.5.). Let F be a field and let F be the intersection of real
closed fields. Then F has the (SPT) and its constant D can be chosen as n2.
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Proof. Let d ∈ N, X1, . . . , Xd, Y1, . . . , Yd ∈ Mn(F ) be given such that tr(ω(X,XT )) =
tr(ω(Y, Y T )) for all words of length at most n2 in the 2d variables x, xT .

By Theorem 3.25, for any real closed field F ⊆ R, we find U ∈ Mn(R) such that U is
orthogonal and UTXiU = Yi for all i = 1, . . . , d. Now we consider the system of linear
equations

XiP = PYi

XT
i P = PY T

i

for i = 1, . . . , d. Applying the Gauß Algorithm, we may parametrise all solutions over
F as an F -vector space. Hence, they have the form b1P1 + . . . + brPr for some r ≤ n
and bk ∈ F, Pk ∈ Mn(F ) for all k = 1, . . . , r. Also note that (P1, . . . , Pk) is a basis of
the space. If we consider the system of equations over R instead, then we will get the
same parametrisation except that bk ∈ R for k = 1, . . . , r. Additionally, we know that
there exists an invertible solution to the system over R. Its determinant is given as the
evaluation of a polynomial p ∈ F [x1, . . . , xr] in the coefficients b1, . . . , br. Hence, p is not
the zero polynomial and it must necessarily be non-zero in some evaluation in F . Thus,
we find a matrix P ∈Mn(F ) that is invertible and solves the above system of equations.

This implies P−1XiP = Yi, P
−1XT

i P = Y T
i for all i = 1, . . . , d. In particular,

P−1XT
i P = Y T

i = (P−1XiP )
T = P TXT

i (P
T )−1

and hence PP T commutes with all Xi and XT
i .

By Lemma 3.33, F has the principal axis property and we can therefore diagonalise PP T

by an orthogonal matrix V ∈ Mn(F ), that is: There is a diagonal matrix D ∈ Mn(F )
satisfying V TPP TV = D. By construction, each entry of D is a sum of squares and thus
a square itself as F is Pythagorean by Lemma 3.31. This lets us define a squareroot√
D ∈Mn(F ).

Defining H := V
√
DV T ∈Mn(F ), we observe that H = HT and

H2 = V
√
DV TV

√
DV T = V

√
D

2
V T = PP T

That means that H is a symmetric square root of PP T and by Lemma 3.35 below, H
commutes with everything that commutes with PP T .

Finally, we set O := H−1P and observe that

OTO = P TH−1H−1P = P TH−2P = P T (PP T )−1P = In

and

OTXiO = O−1XiO = P−1HXiH
−1P = P−1XiHH

−1P = Yi

Thus, we have found O as desired.
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The argument that proves the existence of P ∈ Mn(F ) stems from a kind personal
conversation with Igor Klep, one of the authors of [KT20].

There is one step in the above proof left to be shown. This is done in the next lemma.

Lemma 3.35. In the above proof, H commutes with every matrix that commutes with
H2.

Proof. Let V and D be given as in the proof above. We note that H2X = XH2 if and
only if V DV TX = XVDV T or equivalentlyDV TXV = V TXVD. We write Y = V TXV
and denote the diagonal elements of D by (dii)

n
i=1.

Now we observe that diYij = (DY )ij = (Y D)ij = djYij for all i, j = 1, . . . , n. Therefore,
if Yij ̸= 0, then di = dj and in particular,

√
di =

√
dj. This lets us deduce (

√
DY )ij =√

diYij =
√
djYij = (Y

√
D)ij, which proves the claim by

√
D = V THV and since X and

Y stand in bijection.

Corollary 3.36 ([KT20], 2.2.6.). Let F be an intersection of real closed fields and let F̃
be an expanson of F in a language L extending LRi. We suppose that F̃ has quantifier
elimination in L and extend L to L(tr, invo) by two new unary function symbols. Then
(Mn(F̃ ), trF , [X 7→ XT ]) admits quantifier elimination in L(tr, invo).

Proof. This is a direct consequence of Theorem 3.30 and Lemma 3.34.

Remark 3.37 ([KT20], 2.4.1.). The proof of Theorem 3.30 does not work for complex
matrices with trace and transposition, which is shown in [KT20], Example 2.3.3. Sim-
ilarly, replacing the transposition with the involution will not allow us to give a proof
along the lines of Theorem 3.30 as there is no canonical way to interpret an involution
on an arbitrary given matrix algebra Mn(Ω). Instead, we are only able to prove quan-
tifier elimination for the structure (Mn(C),≤, trC, [X 7→ X∗]) using the (SPI). Here, we
interpret ≤ on R · In. Note that A∗ becomes meaningful for the algebraic closure F of
any real closed field R, since we always have F = R[

√
−1] by Theorem 2.15. As our

base field in Theorem 3.30, we then consider C̃ := (C, [z 7→ z],≤), where the complex
conjugation lets us define R as a subset of C.
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4 Applications

The previous chapter guarantees that in Mn(R) and Mn(C), the following formulae can
be expressed without quantifiers using only the trace and transposition (or involution
reespectively).

Description Formula
Invertibile matrices ∃B : (AB = 1 ∧BA = 1)

Positive semi-definite matrices ∃B : A = B∗B
∥ · ∥2-contractions ∀Λ : (Λ ∈ F · In → (Λ− A∗A ̸∈ GLn(F )→ Λ < 1))

Existence of roots of
a matrix polynomial P ∃X1, . . . , Xd : P (X1, . . . , Xd) = 0

Table 4.1: Formulae that may be expressed without quantifiers.

Note that in the second and the third example, the involution coincides with the trans-
position in the case of real matrices. In the third example, we have additionally used
the obvious abbreviations for the formulae describing that a matrix lies in the center of
Mn(F ) or that it is invertible over F .

For the last example, note that uniqueness may additionally be postulated by the formula
∀X, Y : P (X) = 0 = P (Y ) → X = Y . Further note that we may also phrase the
formula for inequalities, replacing the symbol = by the property that the evaluation of
the polynomial shall be positive (semi-)definite. Another immediate generalisation is to
ask for solutions of systems of polynomial equations.

For the above examples, we will present equivalent quantifier-free formulae using only
involution and trace. The results will mainly rely on linear algebra. We begin with
a characterisation of positive semi-definite matrices as this result will occur repeatedly
in the subsequent considerations. In the following, F always denotes either the real
numbers R or the complex numbers C.
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4.1 Positive Semi-Definite Matrices

Lemma 4.1. If A ∈ Mn(F ) is a positive semi-definite real- or complex-valued matrix
and if tr(A) = 0, then A = 0.

Proof. Since all eigenvalues of A are non-negative by assumption and their sum is 0, A
only has the eigenvalue 0. Therefore, A is also negative semi-definite. We now observe
that consequently,

x∗Ax = 0

for all column vectors x. Hence, by decomposing A = P ∗P , we conclude

0 = x∗Ax = (Px)∗Px = ⟨Px, Px⟩

for all x and thus Px = 0 for all x. This implies P = 0 and consequently A = 0.

The following lemma might appear obsolete in light of the more general results below.
It is good, though, for giving an idea of the behaviour of the eigenvalues of a positive
semi-definite matrix.

Lemma 4.2. A hermitian matrix A ∈M2(F ) is positive semi-definite if and only if

tr(A) +
k∑
i=1

(
tr(A)i − tr(Ai)

)
≥ 0

for all k ∈ N.

Proof. ⇐= : Considering k = 1 gives us tr(A) ≥ 0. Hence, we distinguish two cases.

• Case 1: tr(A) = 0. Then tr(A)2 = 0 as well. Since A2 = A∗A is positive semi-
definite, tr(A2) ≥ 0. If tr(A2) > 0, we get an immediate contradiction by observing
that for k = 2, the sum above simplifies to −tr(A2). If tr(A2) = 0, then A2 = 0
by Lemma 4.1. This implies A = 0, since otherwise, A2 ̸= 0 as well by symmetry.

• Case 2: tr(A) > 0. By scaling, we may assume tr(A) = 1. Assume that A is not
positive semi-definite. Then A has one positive non-zero eigenvalue λ+ > 1 and
one negative non-zero eigenvalue λ− = 1 − λ+. In particular, tr(A) < λ+ and
1 = tr(A)k < λk++λk− = tr(Ak) for all k ≥ 2, where we deduce the inequality from

λk+ − |λ−|k = (λ+ − |λ−|) · (λk−1
+ + |λ−|λk−2

+ + . . .+ |λ−|k−1) ≥ 1
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Thus, each term in the above sum must be negative. Since A2k is positive semi-
definite and λ2k+ > 1 + ε for all k ∈ N and some fixed ε > 0, it is not summable
and thus

tr(A) +
k∑
i=1

(
tr(A)k − tr(Ak)

)
< 0

for sufficiently large k ∈ N.

=⇒ : If A is positive semi-definite, then its trace must be positive. It is thus sufficient
to prove that tr(A)k ≥ tr(Ak) for all k ∈ N. Using that both eigenvalues λ1, λ2 of A are
non-negative by assumption, this follows from

tr(A)k = (λ1 + λ2)
k = λk1 + λk2 + d ≥ λk1 + λk2 = tr(Ak)

where d denotes all mixed terms after reducing the binomial.

Lemma 4.2 is not useful for checking whether a matrix is positive semi-definite. In fact,
we cannot bound the range of the sum. That is, we will always find a matrix A such
that the sum is positive for all k ≤ K, where K is arbitrary but fixed. However, the
same matrix fails to be positive semi-definite, which can only be established by checking
the sum for some n > K. Consider, for example, the matrix(

1 + ε 0
0 −ε

)
For any given K ∈ N, we may obviously choose ε > 0 small enough such that

tr(A) +
k∑
i=1

(
tr(A)i − tr(Ai)

)
≥ 0

for all k ≤ K. Since, however, (1 + ε)k diverges for k →∞, we get that ultimately, the
condition will not hold for all natural numbers.

Instead, we will now give a handy - and crucially quantifier-free - criterion that will work
for all real and complex 2× 2-matrices.

Theorem 4.3. The following statements about a hermitian matrix A ∈ M2(F ) are
equivalent:

1. A is positive semi-definite.

2. Both of the following hold:
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• tr(A) ≥ 0

• tr(A)2 − tr(A2) ≥ 0

Proof. =⇒ : We first note that if A is positive semi-definite and has trace 0, then
A = 0 by Lemma 4.1. If its trace is non-zero, then it must be strictly positive and
tr(A)2 − tr(A2) ≥ 0 is a special case of the proof of Lemma 4.2.

⇐= : If tr(A) = 0, then by assumption tr(A2) = 0 as well. Consequently the two
eigenvalues λ1, λ2 of A satisfy λ1 + λ2 = λ21 + λ22 = 0. Since A is hermitian, both λ1 and
λ2 are real and they must consequently be zero. Hence, A is positive semi-definite.

Now assume that tr(A) > 0. Without loss of generality, we may assume that tr(A) =
1. Based on the assumption that A is not positive semi-definite, we now deduce a
contradiction. For that, we note that both eigenvalues of A are real numbers by Lemma
2.2. Denoting them λ+, λ− we observe that they necessarily satisfy 1 < λ+ and λ− < 0.
In particular, we get

tr(A)2 = 1 < λ2+ + λ2− = tr(A2)

in contradiction to our assumption. This finishes the proof.

The result of Theorem 4.3 can be generalised for arbitrary matrix sizes, though we will
have to fundamentally adapt our methods and adapt to considering the eigenvalues of a
matrix wholistically - instead of one by one. The characteristic polynomial of a matrix
will allow us to do just that. We carry out the generalisation in the case of 3×3-matrices,
which will give a motivation for the full characterisation of positive semi-definite matrices
of arbitrary size n × n in terms of the trace and the transposition. However, we must
first derive some preliminaries. The first such result - Descartes’ rule of signs and some
of its immediate corollaries - will allow us to determine the number of positive roots of
a polynomial given only certain information about its coefficients. We will later apply
this rule to characteristic polynomials.

Definition 4.4. Let a = (ai)
n
i=0 be a real sequence. Then we define SC(a) to be the

number of sign changes in a. More precisely, it is the number of indices i ∈ {0, . . . , n}
such that for the first index j > i with aj ̸= 0, we get sign(aj) = −sign(ai).

If a is the coefficient sequence of a polynomial p, then we define SC(p) := SC(a).

Lemma 4.5 (Descartes’ rule of signs, [Wan04b]). Let p =
∑n

i=0 ait
bi be a polynomial with

natural exponents 0 ≤ b0 < . . . < bn and the real coefficient sequence (ai)
n
i=0 satisfying

ai ̸= 0 for all i. Then p has SC(p)− 2l = SC(a)− 2l positive (non-zero) roots for some
l ∈ N.
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Proof. We follow the proof given in [Wan04b]. As a first simplification, we may factor
out the monomial tb0 and then assume without loss of generality that b0 = 0. We now
claim that if a0an > 0, then the number of positive roots of p is even, and that if
a0an < 0, then the number of positive roots of p is odd. We argue by a case distinction
and consider 4 cases:

• Case 1: a0 > 0, an > 0: This implies that p(0) > 0 and p(x)
x→∞−→ ∞. Hence,

the positive x-axis will be crossed an even number of times. If the graph of p
touches the positive x-axis without truly crossing it, we have a root of p with an
even multiplicity. A true crossing will give rise to a root with an odd multiplicity.
Therefore, we have an even number of roots with an odd multiplicity and some
other roots with an even multiplicity, which taken together proves the claim.

• Case 2: a0 < 0, an < 0: We replace p by −p and repeat the proof of the first case.

• Case 3: a0 > 0, an < 0: A similar argument as above gives us an uneven number of
(true) crossings of the graph of p with the positive x-axis. This proves the claim.

• Case 4: a0 < 0, an > 0: Again, we look at −p instead of p and are in the previous
case.

In the following, let z(p) denote the number of positive roots of p. Now we deduce our
initial claim by induction on the number n of non-zero coefficients of p. If n = 1, there
is nothing to prove.

Now assume that the claim holds up to n− 1 for some n ∈ N. Then we may prove the
induction step by distinguishing two cases. We define p′ as the formal derivative of p.

• Case 1: a0a1 > 0: Then SC(p) = SC(p′). By the above considerations, we then
know that both z(p) and z(p′) have the same parity, so z(p) ≡ z(p′) mod 2. The
induction hypothesis yields z(p′) ≤ SC(p′) and z(p′) ≡ SC(p′) mod 2. Taken
together, we conclude z(p) ≡ SC(p) mod 2. We further know by Rolle’s Theorem
that z(p′) ≥ z(p)− 1. Thus,

SC(p) = SC(p′) ≥ z(p′) ≥ z(p)− 1 > z(p)− 2

and we conclude z(p) < SC(p) + 2 and hence z(p) ≤ SC(p).

• Case 2: a0a1 < 0: Then SC(p′) = SC(p) − 1. We immediately get that z(p) −
z(p′) ≡ 1 mod 2 by the above considerations about the parity of roots. Again,
we use the induction hypothesis to get z(p′) ≤ SC(p′) and z(p′) ≡ SC(p′) mod 2
and infer z(p) ≡ SC(p) mod 2. Rolle’s theorem now states that z(p′) ≥ z(p)− 1
and we conclude

SC(p) = SC(p′) + 1 ≥ z(p′) + 1 ≥ z(p)
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thus finishing the second case and the proof.

Corollary 4.6. Let p be a polynomial with alternating non-zero coefficients. Then all
real roots of p are positive.

Proof. Note that the coefficients of the polynomial q := p(−t) all have the same sign
and thus, q has no positive real roots by Lemma 4.5. The claim now follows from the
definition of q.

Corollary 4.7. Let p =
∑n

i=0 ait
i be a polynomial with real coefficients satisfying ai+1 ≥

0 ⇐⇒ ai ≤ 0 for all i = 0, . . . , n − 1. Further assume that p has no roots in C\R.
Then all roots of p are non-negative. Furthermore, all zero coefficients of p are grouped
together at the beginning of its coefficient sequence.

Proof. Note that p(−t) has no sign changes in its coefficient sequence. Thus, by Theorem
4.5, p has no strictly negative roots. Since all roots are real by assumption, they must
be non-negative.

For the second claim, we factor out tk with maximal k and call the resulting polynomial
q. Then q is a polynomial that has only strictly positive roots and thus, by Theorem 4.5,
all coefficients of q must be alternating in signs. In particular, they are non-zero.

A second preliminary result of interest are the Newton Identities. They allow for the
calculation of the sums of the powers of a polynomial’s roots. If we assume that poly-
nomial to be the characteristic polynomial of a matrix A, this immediately gives us the
traces of powers of A. The following results hold for more general fields that just R and
C and the proofs remain the same. However, this generality is not necessary here. Our
formulations closely follow [Net18].

Definition 4.8 (Newton Sums). Let p be a polynomial over F and let α1, . . . , αn denote
its roots over the algebraic closure of F . We define the k-th Newton Sum of p by

νk(p) := αk1 + . . .+ αkn

Theorem 4.9 (Newton Identities). Let p = tn + a1t
n−1 + . . . + an−1t + an be a monic

polynomial over F . For all k ≥ 1 we have the following identity:

νk(p) + a1νk−1(p) + a2νk−2(p) + . . .+ ak−1ν1(p) + kak = 0
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Proof. We follow the combinatorial proof given in [Zei84]. We let α1, . . . , αn denote the
roots of p over the algebraic closure of F . Using the elementary symmetric polynomials
sr,n in α1, . . . , αn , we then observe that the coefficients of p may also be written as

ar = (−1)rsr,n = (−1)r
∑

1≤i1,<...<ir≤n

αi1 · · ·αir

Thus, we may write the Newton Identities as

k−1∑
r=0

(−1)r
( ∑

1≤i1,<...<ir≤n

αi1 · · ·αir

)(
n∑
j=1

αk−rj

)
+ (−1)k

( ∑
1≤i1,<...<ik≤n

αi1 · · ·αir

)
k = 0

We now consider the set A dependent on n and k consisting of all pairs (A, jl) that
satisfy the following:

1. A ⊆ {1, ..., n}

2. j ∈ {1, ..., n}

3. |A|+ l = k

4. l ≥ 0 and l = 0 implies j ∈ A

We equip each such pair with a weight given by ω(A, jl) := (−1)|A|
(∏

i∈A αi
)
αlj. Adding

the weights of all pairs in A, we get the left hand side of the Newton Identities. It is
left to show that it equals zero. For that, we define a map T : A → A by

T (A, jl) =

{
(A\{j}, jl+1) , j ∈ A
(A ∪ {j}, jl−1) , j ̸∈ A

It is obvious that the codomain of T is A and that it is bijective (by surjectivity on
finite sets of equal size) without having a fix point. Furthermore T 2 = idA. Since we
also have ω(T (A, jl)) = −ω(A, jl), we may arrange the weights in mutually cancelling
pairs, which proves the claim.

Corollary 4.10. If p is a polynomial over F , then νk(p) ∈ F for all k ∈ N.

Proof. Note that −ν1 appears as a coefficient of p and hence lies in F . Thus, by the
recursion given in Theorem 4.9, we derive the claim.

Corollary 4.11. If A ∈ Mn(F ) is a polynomial over a field F , and χA denotes its
characteristic polynomial, then νk(χA) = tr(Ak) for all k ∈ N.
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Proof. This follows from the fact that if λ is an eigenvalue of A, then λk is an eigenvalue
of Ak.

The following theorem and its proof contain all essential arguments that we need to find
a characterisation of all positive semi-definite matrices. It is the result of combining
both Descartes’ rule of signs and the Newton Idendities.

Theorem 4.12. The following statements about a hermitian matrix A ∈ M3(F ) are
equivalent:

1. A is positive semi-definite.

2. All of the following hold:

• tr(A) ≥ 0

• tr(A)2 − tr(A2) ≥ 0

• 2tr(A3)− 3tr(A2)tr(A) + tr(A)3 ≥ 0

Proof. We begin by giving an idea on how the result may be derived. The case that
A = 0 is trivial and should be regarded as a fringe case. By scaling we assume that
tr(A) = 1 whenever tr(A) > 0. We first note that by (repeatedly) applying the Newton
Identities in Lemma 4.9 to the characteristic polynomial χA =

∑n
i=0 an−it

i of A we get
the identities

tr(A2) = 1− 2(λ1λ2 + λ2λ3 + λ1λ3)

tr(A3) = 1− 3(λ1λ2 + λ2λ3 + λ1λ3) + 3λ1λ2λ3

where λi, i = 1, 2, 3 denote the eigenvalues of A. Note that if A is positive semi-definite,
all eigenvalues are non-negative and a simple observation lets us conclude

1− tr(A2) = 2(λ1λ2 + λ2λ3 + λ1λ3) ≥ 0

2tr(A3)− 3tr(A2) + 1 = 6λ1λ2λ3 ≥ 0

Here, we also see that the coefficients of χA must be alternating (with the last few
coefficients potentially being 0, depending on the multiplicity of the eigenvalue 0). This
motivates the following converse implication.

Assume that A is hermitian. Then χA is a polynomial with only real roots and of the
form

χA =
n∑
i=0

an−it
i
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with a0 = 1. Further assume that an−i ̸= 0 for all i = 0, . . . , k for some k ≤ n and assume
that the coefficients are alternating. We note that by Lemma 4.7, χA has no strictly
negative roots. In other words, χA has only non-negative roots and A is positive semi-
definite. Since for n = 3, the coefficients of χA are just −(λ!+λ2+λ3), λ1λ2+λ2λ3+λ1λ3
and −λ1λ2λ3, this proves the claim.

Remark 4.13. We recall that for a given positive semi-definite matrix, as an immediate
consequence of Corollary 4.7, any 0 coefficients of its characteristic polynomial must be
grouped at the beginning of its coefficient sequence. This is especially relevant once we
generalise to larger matrix sizes (see Corollary 4.16). Thus, if during testing for positive
semi-definiteness a 0 coefficient occurs, all consecutive coefficients must be 0 as well.

We are now ready to generalise our result to arbitrary matrix sizes. The majority of
work has already been done. Still, we need the following lemma as a preparation to do
so. The lemma should be read as an inverse to Theorem 4.9.

Lemma 4.14. Let p = tn + a1t
n−1 + . . . + an−1t + an be a monic polynomial of degree

n and let the Newton Sums νk(p) be given for k = 1, . . . , n. Then we may calculate the
coefficient sequence (ai)

n
i=0 of p from the following recursion:

a1 = −ν1(p)
νk(p) + a1vk−1(p) + . . . ak−1(p) + kak = 0

Proof. This is an immediate result of the Newton Identities (Theorem 4.9).

The explicit calculation of the coefficients of the characteristic polynomial usually follows
a version of the Faddeev-LeVerrier-algorithm, see also Algorithm 8.17. and Algorithm
8.11. in [BPR06]. In the given setting, however, it is possible to omit all divisions as we
are only interested in whether the calculated coefficients are positive, negative or equal
to 0. This leads us to the following important remark.

Remark 4.15. In the above lemma, the Newton Identities can be multiplied by a natural
number N(k) > 0 such that N(k)ak can be calculated as a Z-linear combination of
products of Newton Sums. This lets us use these calculations (up to integer scaling) in
logical formulae.

Corollary 4.16. The following statements about a hermitian matrix A ∈ Mn(F ) are
equivalent:

1. A is positive semi-definite.
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2. All of the formulae

(−1)kN(k)ak ≥ 0

for k = 1, . . . , n hold. Here, ak shall be defined by the characteristic polynomial χA
of A through χA = tn + a1t

n−1 + . . .+ an−1t+ an and N(k) is chosen in the sense
of Remark 4.15.

Example 4.17. We want to give a complete characterisation of positive semi-definite
matrices in Mn(F ) for n ≤ 5. Note that the characterisation of 5× 5-matrices naturally
gives a characterisation of all smaller matrices by removing the conditions of higher
degrees. For that, we postulate that a hermitian matrix A ∈M5(F ) satisfies the following
inequalities:

• tr(A) ≥ 0

• tr(A)2 − tr(A2) ≥ 0

• tr(A)3 − 3tr(A)tr(A2) + 2tr(A3) ≥ 0

• tr(A)4 − 6tr(A)2tr(A2) + 3tr(A2)2 + 8tr(A)tr(A3)− 6tr(A4) ≥ 0

• tr(A)5 + 10tr(A)3tr(A2) − 15tr(A)tr(A2)2 − 20tr(A)2tr(A3) + 20tr(A2)tr(A3) +
30tr(A)tr(A4)− 24tr(A5) ≥ 0

The calculations can be replicated using the following sample code in the Mathematica
language, which does not claim to be in any way efficient. Instead, it aims at explaining
the results of the previous section in as clear terms as possible. The comments (marked
by the # sign) do not appear in the code used by the author and only serve explanatory
purposes.

In[1]:= NSums = {v1, v2, v3, v4, v5};
#defining Newton Sums of the zeros of chi_A

In[2]:= a=Table[0,5]; a[[1]]=-NSums[[1]];
#initialising table for calculating coefficients of chi_A
#a_1 = -v1

In[3]:= For[i=2,i<6,i++,
S=0;
For[j=1,j<i,j++,

S = S+a[[i-j]]*NSums[[j]]];
S=S+NSums[[i]];
a[[i]]=-S/i;];

#iteratively calculating the coefficients according to the
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#Newton Identities
In[4]:= a=Expand[a];

#writing the coefficients of chi_A as linear combinations
#of monomials in the Newton Sums

In[5]:= F=Table[Factorial[i],{i,5}];
#F = (1,2,6,24,120)

In[6]:= Expand[a*F]
Out[7]= {-v1,

v1^2 - v2,
-v1^3 + 3v1v2- 2v3,
v1^4 - 6v1^2v2 + 3v2^2 + 8v1v3 - 6v4,
-v1^5 + 10v1^3v2 - 15v1v2^2 - 20v1^2v3 + 20v2v3 + 30v1v4 - 24v5}
#writing suitable multiples of the coefficients of chi_A as
#Z-linear combinations of monomials in the Newton Sums

In a final remark of this section, we want to note that the close relationship between the
Newton Sums, traces of matrix powers and the characteristic polynomial of that matrix
has already been highlighted in both [Bre14], pp. 154–157 and [Whe19] before. How-
ever, the considerations there are not primarily concerned with questions of quantifier
elimination.

4.1.1 Positive Definite Matrices

It is not difficult to refine our result about positive semi-definiteness to get the following
result about positive definite matrices.

Corollary 4.18. The following statements about a hermitian matrix A ∈ Mn(F ) are
equivalent.

1. A is positive definite

2. All of the formulae

(−1)kN(k)ak > 0

for k = 1, . . . , n hold. Again, ak shall be defined by the characteristic polynomial
χA of A through χA = tn + a1t

n−1 + . . . + an−1t + an and N(k) is chosen in the
sense of Remark 4.15.
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Proof. The formula (−1)nN(k)ak > 0 guarantees that no eigenvalue of A is 0. All other
formulae give us non-negativity of the eigenvalues of A. Taken together, we immediately
deduce the claim.

Remark 4.19. In the above criterion, the only formula that truly needs the strict
inequality is the one resulting from k = n. This follows from Remark 4.13.

An alternative characterisation of positive definite matrices is given by combining the
result on positive semi-definite matrices with that on invertibility below.

4.1.2 Invertible Matrices

This subsection, too, is an immediate application of the previous results. It provides us
with a characterisation of invertibility that also relies on the Newton Sums.

Corollary 4.20. The following statements about a matrix A ∈Mn(F ) are equivalent:

1. A is invertible.

2. N(n)an ̸= 0 where an denotes the constant term in the characteristic polynomial
χA of A and N(n) is chosen as in Remark 4.15.

Proof. A is invertible if and only if all eigenvalues of A are non-zero. Since by definition,
an is the product of all eigenvalues of A, this implies the claim.

4.2 ∥ · ∥2-Contractive Maps

We first prove that the characterisation of contractions given in Table 4.1 is valid.

Lemma 4.21. A matrix A ∈Mn(F ) is a ∥ ·∥2-contraction if and only if each eigenvalue
λ of A∗A satisfies |λ| < 1.

Proof. If there were an eigenvalue λ of A∗A with |λ| > 1, then we could choose an
according eigenvector x and get

∥A∗Ax∥ = ∥λx∥ = |λ|∥x∥ > 1 · ∥x∥
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Hence, ||A∗A|| > 0, and using ||A∗A|| = ||A||2 since Mn(C) is a C∗-algebra, we get a
contradiction. If conversely, all eigenvalues λ of A∗A satisfy |λ| < 1, then by definition
of ∥ · ∥op,2, we get that A is a contraction.

Fascinatingly, both the eigenvalues of A and its explicit norm are not necessary for us to
decide whether A is a contraction. Instead, it is sufficient to work with the trace and the
involution on Mn(C). Now, we will concern ourselves with deriving an explicit formula
for such a characterisation. For that, we have the following preparatory lemma that lets
us restrict the matrices in question to positive semi-definite matrices.

Lemma 4.22. Let A ∈ Mn(F ). Then A is a contraction if and only if A∗A is a
contraction.

Proof. If A is a contraction, then by submultiplicativity of the norm, so is A∗A. If A∗A is
contractive, then we may use that ∥A∗A∥ = ∥A∥2 as Mn(C) is a C∗-algera and conclude
the converse.

To test whether an arbitrary matrix A is a contraction, it is thus sufficient to decide the
claim for A∗A. This can be done by the following equivalence.

Corollary 4.23. The following statements about a matrix A ∈Mn(F ) are equivalent:

1. A is a contraction.

2. In − A∗A is positive semi-definite.

In particular, by Corollary 4.16, we have found a quantifier-free criterion to determine
whether A is a contraction.

Proof. Note that since A∗A is hermitian, we may choose a unitary matrix U such that
U∗A∗AU = D for a diagonal matrix D, the entries of which are the non-negative eigen-
values of A∗A. Now obviously, D is a contraction if and only if all its diagonal entries
are smaller than 1. In other words: D is a contraction if and only if In −D is positive
semi-definite.

Since definiteness is preserved under similarity conjugation, we immediately get that
In − A∗A = U(In − D)U∗ is positive semi-definite as well. This readily implies our
claim.

Remark 4.24. If we replace semi-definiteness by definiteness in Corollary 4.23, then we
get a criterion for strict contractions, that is ∥A∥ < 1.
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4.3 Solubility of Matrix Equations

We begin by stating the most basic (non-trivial) examples for quantifier elimination
regarding the existence of roots of a polynomial. Still, F may denote either R or C.

Example 4.25. 1. We consider the real- or complex-valued polynomial p = ax + b
with a, b ∈ F and we assume that p ̸= 0. It is well-known that p has a root in F
if and only if a ̸= 0.

2. We consider the polynomial q = ax2 + bx + c with a, b, c ∈ F, a ̸= 0. It is well-
known that over the real numbers, q has a root if and only if b2 − 4ac ≥ 0. Over
the complex numbers, q will always have a root.

Our goal in this section is to give results in the spirit of the above examples. However, we
will work over matrix algebras, which means that we can neither rely on commutativity,
nor on the existence of multiplicative inverses, nor on the existence of square roots. It is
thus considerably harder to develop quantifier-free formulae describing the existence of
roots of matrix polynomials. Our starting point will be the seemingly simple examples
AX and AX +B.

Lemma 4.26. The polynomial P = AX with A ∈ Mn(F ) has a non-trivial root X ∈
Mn(F ) if and only if A is a zero divisor. In other words: A must not be invertible. This
may be expressed without quantifiers.

Proof. If A is invertible, then AX = 0 implies X = 0 by multiplication with A−1. If
A is not invertible, then we may choose a non-zero column vector x such that Ax = 0.
Defining X = (x, 0, . . . , 0), we get a non-zero matrix X satisfying AX = 0.

The quantifier-free formulation is directly obtained by Corollary 4.20.

The next theorem provides the algebraical groundwork that will allow us to find a
quantifier-free characterisation of the solubility of the equation AX + B = 0. First,
however, we prove two preparatory lemmata.

Lemma 4.27. Let A ∈ Mn(F ) be a real- or complex-valued square matrix. Then
rk(A∗A) = rk(A) = rk(AA∗).

Proof. We follow the proof provided online by [htt13] and observe that the real case is
a special case of the complex case. Note that it is sufficient to prove that the kernels
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of the induced linear maps of A and A∗A are identical. We start by assuming Ax = 0
and by abuse of notation, we write x ∈ ker(A). This implies A∗Ax = 0 and therefore
x ∈ ker(A∗A). Now, we let x ∈ ker(A∗A). Thus, A∗Ax = 0 and in particular (Ax)∗Ax =
x∗A∗Ax = 0. By the properties of the scalar product, we get Ax = 0 and thus x ∈
ker(A). Hence, ker(A) = ker(A∗A).

Finally, we conclude that rk(A) = rk(A∗A) since ker(A) = ker(A∗A) implies dimen-
sional equality of the kernels and thus the dimensions of the images of the maps induced
by A and AA∗ are equal as well. The other equality follows by applying the same
arguments to the matrix A∗ which is known to satisfy rk(A∗) = rk(A).

Lemma 4.28. Let A,B ∈Mn(F ) be two positive semi-definite matrices. Then the rank
of A+B is greater or equal than the rank of both A and B.

Proof. We note that since A + B is positive semi-definite, any 0-eigenvector of A + B
must be a 0-eigenvector of both A and B. Again by positive semi-definiteness A,B and
A + B are diagonalisable and their eigenvalues’ algebraic and geometric multiplicities
coincide. Thus, the 0-eigenspace of A has a higher (or equal) dimension than that of
A+B and the claim follows for A. An analogous argument works for B.

Theorem 4.29. Let A,B ∈ Mn(F ). Then the polynomial AX + B has a root if and
only if AA∗ +BB∗ has the same rank as AA∗.

Proof. According to Theorem 2.3 and Theorem 2.4, we may transform A into Schur form
SA = P−1AP , where P is unitary. We note that X is a solution to AX + B = 0 if and
only if Y := P−1XP is a solution to SAY = −P−1BP =: C. By cancelling all zero-rows
at the bottom of SA, we see that the resulting map induced by the reduced form of SA is
surjective. Thus, we have a solution if and only if C has the same (and possibly more)
zero-rows as SA.

We observe that the rank of SAS∗
A is the same as that of SA by Lemma 4.27. Further,

we observe that SA has the block form

SA :=

(
M 0
0 0

)
In conclusion, we get that as a necessary condition, SAS∗

A + CC∗ has the same rank as
SAS

∗
A. If this were not the case, then the rank would be higher by Lemma 4.28. This,

however is impossible by the choice of zero-rows in SA and C. Multiplying by P and
P−1 from left and right respectively now yields the statement.
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Corollary 4.30. The existence of a matrix X satisfying AX + B = 0 is given without
quantifiers by the formula

n∧
k=0

(N(k)aQk = 0→ N(k)aPk = 0)

We use the abbreviations P := AA∗+BB∗ and Q := BB∗ and let aPk and aQk denote the
coefficients of the characteristic polynomials of P and Q respectively. N(k) is chosen
according to Remark 4.15.

Proof. This is an immediate consequence of the fact that both P and Q are positive
semi-definite. The rank of both matrices is determined by the algebraic multiplicity
of the eigenvalue 0, which may be determined by the number of zero-coefficients in
the characteristic polynomial. The comparison between the matrices is then possible
according to Remark 4.13.

It is now time to make this criterion explicit in the case that n = 2 and n = 3. The
formulae for larger matrices can be derived in an analogous fashion. For the specific steps
taken to derive these formulae, compare the previous results on positive semi-definite
matrices, mainly Corollary 4.16 and Exampe 4.17.

Example 4.31. If n = 2, our formula is given by

tr(BB∗) = 0→ tr(AA∗ +BB∗) = 0 ∧
tr(BB∗)2 − tr((BB∗)2) = 0→ tr(AA∗ +BB∗)2 − tr((AA∗ +BB∗)2) = 0

If n = 3, the calculations are in no way more difficult, though it is ostensibly more
tedious to spell out the formula in detail. It is given by

tr(BB∗) = 0→ tr(AA∗ +BB∗) = 0 ∧
tr(BB∗)2 − tr((BB∗)2) = 0→ tr(AA∗ +BB∗)2 − tr((AA∗ +BB∗)2) = 0 ∧

tr(BB∗)3 − 3tr(BB∗)tr((BB∗)2) + 2tr((BB∗)3) = 0→
tr(AA∗ +BB∗)3 − 3tr(AA∗ +BB∗)tr((AA∗ +BB∗)2) + 2tr((AA∗ +BB∗)3) = 0

For the next slight generalisation to the equation AXB = C, we need a few prelimi-
naries developed in [Wan04a]. Note that in comparison, our setting is significantly less
general.

Definition 4.32 ([Wan04a], p. 44). Let A ∈ Mn(F ). We call A+ ∈ Mn(F ) a reflexive
inverse of A, if it satisfies both A+AA+ = A+ and AA+A = A.
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Lemma 4.33 ([Wan04a], Proposition 1.1.). Every A ∈ Mn(F ) possesses a reflexive
inverse.

Proof. We start by solving the equation AXA = A. First, we assume that F = C and
choose P ∈ Gln(C) such that P−1AP =: J has Jordan canonical form according to
Theorem 2.5. We now solve the equation JY J = J . This is straightforward as without
loss of generality we may restrict our considerations to single Jordan blocks Jm(λ), where
m ≤ n and λ denotes an arbitrary eigenvalue of A. Hence, Y will be a block diagonal
matrix as well. There are three cases:

• Case 1: λ ̸= 0: Then Jm(λ) is invertible and there is a unique solution for Y
restricted to that block.

• Case 2: λ = 0 and Jm(λ) = 0. Then we simply define Y = I on that block.

• Case 3: λ = 0 and Jm(λ) ̸= 0: Then we consider a matrix Y that satisfies

Y Jλ =

(
0F 0
0 I

)
and observe that this yields a solution to JλY Jλ = Jλ. Y exists by observing that
it simply encodes repeated changes of rows.

By defining X := PY P−1, we get a solution to the initial equation. Also, XAX will
now be the desired reflexive inverse since

A(XAX)A = (AXA)XA = AXA = A

(XAX)A(XAX) = X(AXA)(XAX) = XA(XAX) = X(AXA)X = XAX

If F = R and there are non-real eigenvalues, then we may still transform A into a block
diagonal form by Theorem 2.6 and repeat the above arguments.

The following lemma lets us reduce the question of solubility of the equation AXB = C
to that of the two equations AX = C and XB = C, which we know how to deal with
following Corollary 4.30.

Lemma 4.34 ([Wan04a], Lemma 2.2.). Let A,B,C ∈Mn(F ). The following statements
are equivalent.

1. The equation AXB = C has a solution X ∈Mn(F ).

2. AA+CB+B = C.
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3. AA+C = C and CB+B = C.

Proof. 1) =⇒ 3): Let X be a solution of AXB = C. Then AA+C = AA+AXB =
AXB = C. Similarly, CB+B = AXBB+B = AXB = C.

3) =⇒ 2): Note that AA+CB+B = CB+B = C.

2) =⇒ 1): We define X = A+CB+. Then AXB = AA+CB+B = C.

Corollary 4.35. Let A,B,C ∈ Mn(C). Then the polynomial AXB − C has a root if
and only if AA∗ + CC∗ has the same rank as AA∗ and B∗B + C∗C has the same rank
as B∗B.

Proof. We make use of Lemma 4.34 3. By Theorem 4.30, AA+C = C translates to
the solubility of AX = C and CB+B = C translates to the solubility of XB = C, or
equivalently B∗X∗ = C∗. Both these statements may be expressed without quantifiers
through the above criteria following Theorem 4.29 and Corollary 4.30.

4.3.1 Unique Solubility of Sylvester’s Equation

We now turn to a question raised, but not answered, in [KT20], 2.2.7. We want to give
a characterisation of the solubility of Sylvester’s Equation only in terms of the trace and
the transpose. A thorough analysis of characteristic polynomials will once again prove
to be the crucial step in finding such a description.

Definition 4.36 (Sylvester’s Equation for square matrices). Let A,B,C ∈Mn(F ). The
matrix equation

AX −XB = C (4.1)

is called Sylvester’s Equation.

Theorem 4.37 (Sylvester-Rosenblum, [KT20], 2.2.7.). For A,B ∈ Mn(F ), Sylvester’s
Equation AX −XB = C has a unique solution X for any C ∈Mn(F ) if and only if the
(complex) spectra of A and B are disjoint.

Proof. =⇒ : This proof follows the argument given in [con21]. Assume that the spectra
of A and B are not disjoint and choose vectors u, v ∈ Cn satisfying Au = λu and
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v∗B = λv∗ for some shared eigenvalue λ. Then we note that uv∗ ̸= 0 since both u and
v are non-zero vectors. Consequently, Auv∗ − uv∗B = λuv∗ − uλv∗ = 0 is a non-trivial
solution to Sylvester’s Equation in contradiction to our assumption.

If we consider the real case, then we may consider the matrices Re(uv∗) and Im(uv∗) to
get the same result.

⇐= : We follow the proof given in [BR97], Theorem VII.2.1. For that, we define the
linear operator τ :Mn(F )→Mn(F ) by τ(X) = AX−XB and prove that τ is invertible
if the spectra of A and B are disjoint. This will imply our statement.

We first define two further operators A and B on Mn(F ) by A(X) := AX and B(X) =
XB. Using that A(B(X)) = AXB = B(A(X)), we follow [HJ13], Theorem 2.3.3., and
choose a basis such that both A and B are upper triangular. Their eigenvalues now
lie on the diagonal and hence, the spectrum σ(A − B) is contained in the difference
σ(A)− σ(B).

It is now easy to observe that if λ is an eigenvalue of A, then it is one of A as well.
For that assume that AX = A(X) = λX for some 0 ̸= X ∈ Mn(F ). If we restrict
to single columns of X, we immediately get λ-eigenvectors of the matrix A and thus
σ(A) ⊆ σ(A). Repeating this argument for B and B, this yields that if the spectra of A
and B are disjoint, then 0 is not an eigenvalue of τ = A−B and thus, τ is invertible.

Definition 4.38. Let p be a real or complex polynomial. By Z(p), we denote the number
of different zeros of p in C.

Corollary 4.39. For A,B ∈Mn(F ), Sylvester’s Equation AX −XB = C has a unique
solution X for any C ∈Mn(F ) if and only if Z(χAχB) = Z(χA) + Z(χB).

Proof. This is an immediate consequence of Theorem 4.37.

Definition 4.40 ([NPT13], p. 410). Let p be a monic polynomial of degree d over F .
We define the Hermite-Matrix of p via its Newton Sums by

H(p) = (νi+j(p))
d−1
i,j=0 =


ν0(p) ν1(p) . . . νd−1(p)
ν1(p) ν2(p) . . . νd(p)

...
...

νd−1(p) νd(p) . . . ν2d−2(p)


The Hermite-Matrix has some really nice properties that we will not talk about here.
Instead, we will just derive that its rank equals the number of solutions of p in the
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algebraic closure of F (here, C). This will be of great use in deciding whether Sylvester’s
Equation has a unique solution or not. The theorem in question is a weaker version of
Theorem 6.2.6. in [BCR98], which we will cite in the version of [Net18], Theorem 1.3.4.
We start with a small lemma first.

Lemma 4.41. Let K be a field, n ∈ N and let s ≤ n. Further, let v1, . . . , vs be linearly
independent column vectors in Kn. Then

n∑
i=1

viv
T
i

is a matrix of rank s.

Proof. By assumption, the matrix A := (v1, . . . , vs) has full column rank (that is s).
Thus, AAT will also have column rank s. Now we observe that

∑n
i=1 viv

T
i = AAT and

finish the proof.

Theorem 4.42. Let p be a real or a complex polynomial of degree d ≥ 1. Then the
number of different roots of p in C is equal to the rank of H(p).

Proof. We follow the proofs given in [Net18], Theorem 1.3.4., and [BCR98], Theorem
6.2.6. Let α1, . . . , αd denote all roots of p. We write

ωi := (1, αi, . . . , α
d
i )

It is then clear that

H(p) =
d∑
i=1

ωiω
T
i

We now assume without loss of generality that α1, . . . , αs are the different roots of p and
we denote the algebraic multiplicity of αi by ni. Then consequently

H(p) =
s∑
i=1

niωiω
T
i

By our assumption and the properties of the Vandermonde matrix, (ωi|i = 1, . . . , s) is a
linearly independent tuple. By Lemma 4.41, this proves that H(p) has rank s and thus
the statement follows.

Corollary 4.43. A quantifier-free criterion for the unique solubility of Sylvester’s Equa-
tion AX +XB = C dependent on A and B is given by the following formula.

rk(H(χA)) + rk(H(χB)) = rk(H(χAχB))
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Proof. It is a direct consequence of Corollary 4.39 that the criterion fully describes the
solubility of Silvester’s equation . It can be realised without quantifiers following Lemma
4.27 and then applying Remark 4.13 as in the proof of Corollary 4.30. Note that for
comparability of dimensions, prior to applying our results it is necessary to embed the
Hermite-Matrices H(χA),H(χB) into a larger matrix that is then filled with zero-entries,
that is: We map

(H(χA),H(χB)) 7→
(
H(χA) 0

0 H(χB)

)
such that

rk(H(χA)) + rk(H(χB)) = rk

((
H(χA) 0

0 H(χB)

))

Note that in the above setting of characteristic polynomials, we always get H(χA) =
(tr(Ai+j)n−1

i,j=0.

The criterion derived is not yet very tangible and can only be spelled out if we refer
back to our previous results step by step. We exemplify an idea of the specific formula
in the simplest case, n = 2.

Example 4.44. We first spell out the relevant Hermite-Matrices in detail:

H(χA) =
(

2 tr(A)
tr(A) tr(A2)

)
H(χB) =

(
2 tr(B)

tr(B) tr(B2)

)

H(χAχB) =


4 tr(A) + tr(B) tr(A2) + tr(B2) tr(A3) + tr(B3)

tr(A) + tr(B) tr(A2) + tr(B2) tr(A3) + tr(B3) tr(A4) + tr(B4)
tr(A2) + tr(B2) tr(A3) + tr(B3) tr(A4) + tr(B4) tr(A5) + tr(B5)
tr(A3) + tr(B3) tr(A4) + tr(B4) tr(A5) + tr(B5) tr(A6) + tr(B6)


We now embed H(χA) and H(χB) as in the proof of 4.43 and thus we need to compare
the rank of

H(χAχB) and


2 tr(A) 0 0

tr(A) tr(A2) 0 0
0 0 2 tr(B)
0 0 tr(B) tr(B2)


or equivalently that of the positive semi-definite matrices

H(χAχB)∗H(χAχB) and
(
H(χA)∗H(χA) 0

0 H(χB)∗H(χB)

)
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where

H(χA)∗H(χA) =
(

4 + |tr(A)|2 2tr(A) + tr(A)tr(A2)

tr(A) + tr(A)tr(A2) |tr(A)|2 + |tr(A2)|2

)
and similarly for B. This can be done following Corollary 4.30.

For n = 3, the procedure to derive the formula is the same, though the formula itself is
much longer. We refrain from presenting it here.
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5 Dimensional Compatibility of
Quantifier Elimination

For this chapter, we return to our general model theoretic setting. We have already
seen that we have quantifier elimintation in suitable matrix algebras Mn(F̃ ) expanded
by trace and transposition for arbitrary but fixed n. We are now interested in whether
some sort of homogeneity between dimensions of matrix algebras exists, that is: We
assume that k < n and we want to discuss an arbitrary formula (potentially containing
quantifiers) in Mk(F ). Is it possible to embed Mk(F ) into Mn(F ) and then work in the
larger algebra instead? Or is it possible to simply use a quantifier-free formula derived
for the n-dimensional case Mn(F ) and apply it to Mk(F )?

Although desirable, in both cases the answer is no. For n > k and standard identifi-
cations ι : Mk(F ) → Mn(F ), it is not possible to work in Mn(F ) instead. This shall
be exemplified below and then generalised to show that fixing this problem by a better
choice of identification is hopeless. Similarly, we may not recycle quantifier-free formulae
in order to use them in lower dimensions. This will also be exemplified. Our results
from the previous sections prove to be tailor-made for highlighting the problems that
may occur.

Example 5.1. For k < n, we consider the identification of Mk(R) in Mn(R) via

A 7→ ι(A) :=

(
A 0
0 0

)
We hope to show that

Mn(R) ⊨ φ
[(
h 0
0 0

)]
⇐⇒ Mk(R) ⊨ φ[h]

for all quantifier-free formulae φ and all evaluations h in Mk(R). By quantifier elimina-
tion, we may look at arbitrary formulae φ.

We want to decide whether A is positive definite (not semi-definite) and wish to apply
the quantifier-free formula derived in Corollary 4.18. This formula, however, will not
hold for ι(A) as ι(A) always has the eigenvalue 0 with multiplicity n − k. Similarly,
invertibility does not carry over. Note that this may be attributed to the fact that Ik
keeps its rank under ι.
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Example 5.2. For k < n, we consider the identification of Mk(F ) in Mn(F ) via

A 7→ ι(A) :=

(
A 0
0 In−k

)
We hope to show that

Mn(F ) ⊨ φ

[(
h 0
0 In−k

)]
⇐⇒ Mk(F ) ⊨ φ[h]

for all quantifier-free formulae φ and all evaluations h in Mk(F ). By quantifier elimina-
tion, we may look at arbitrary formulae φ.

We want to decide whether the difference of matrices B −A is invertible in Mk(F ) and
use the criterion established in Corollary 4.20. For our matrices, we choose A = Ik and
B = 2Ik. Now B−A clearly is invertible in Mk(F ). However, ι(B)−ι(A) is not invertible
in Mn(F ). Note that this may be attributed to the fact that ι is not an embedding.

Lemma 5.3. Let f be an injective function from Mk(F ) into Mn(F ), where k < n.
Then we will always find a formula φ violating

Mn(F ) ⊨ φ[f ◦ h] ⇐⇒ Mk(F ) ⊨ φ[h]

for some evaluation h in Mk(F ). In particular, in the above examples we cannot replace
ι by another function that yields the desired result.

Proof. Necessarily, f must map matrix units to matrix units. Otherwise, we may choose
the formula εk (see Definition 3.6) as a counterexample. By Lemma 3.7, we conclude
that f must be an F -algebra homomorphism and that the rank of a matrix is preserved
under f . That, however, means that f(Ik) will never be invertible in Mn(F ), which is a
contradiction.

Remark 5.4. In absence of a possibility to embed Mk(F ) into Mn(F ) and then work
with quantifier-free formulae in Mn(F ), we might hope to instead take a formula φ, find
equivalent quantifier-free formulae φn in Mn(F ) and φk in Mk(F ) and hope that

Mk(F ) ⊨ φ
n[h] ⇐⇒ Mk(F ) ⊨ φ

k[h]

for all evaluations h in Mk(F ). This, however, will also prove to be not the case.

Example 5.5. We want to decide, whether an element a ∈ R =M1(R) is invertible and
use the criterion established in Corollary 4.20 for M2(R), that is: a is invertible if and
only if tr(a)2 − tr(a2) ̸= 0. In our case, however, this will never be satisfied for a ̸= 0,
such that we may not use the criterion.
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6 Conclusion and Outlook

In this thesis, we have established that under certain circumstances, the matrix algebra
Mn(F ) over a field F admits quantifier elimination. These results have been exemplified
by a series of examples, most notably by giving a characterisation of positive semi-definite
matrices, from which other examples could be derived. We have also seen that switching
between dimensions (that is: Considering n in Mn(F ) as variable) while keeping results
on quantifier elimination is generally not possible.

At the same time, many things could not be done in this thesis. Indeed, there are several
starting points for further development of the ideas presented in the previous chapters.
We want to sketch some of them without giving an assessment of whether they merit
further study in the formulations below. These considerations will mark the end of this
thesis.

6.1 Systems of Linear Equations

It is a small step to generalise the setting of section 4.3 to allow for systems of linear
matrix equations. The question we ask is: How far can we stretch the results derived so
far? [Wan04a] derives solutions to the system of equations

A1XB1 = C1

A2XB2 = C2

which, while still looking deceptively simple, already requires much more elaborate ar-
guments. Also, this work is not done with quantifier elimination in mind.

While desirable, it seems out of reach to derive a general criterion for the solubility of
linear matrix equations in one variable. If we allow equations in more than one variable,
this goal seems even more distant.
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6.2 Non-Linear Matrix Equations

Another very natural questions to ask is whether we can generalise the matrix polyno-
mials that we want to find roots of. In the simplest terms possible: How can we decide
whether the polynomial AX2 + BX + C has a root? What does a tractable formula to
decide the (unique?) solubility of such an equation look like?

There are ideas for the one-variable case in [Wil], though it would still be necessary to
derive a quantifier-free criterion in trace and transposition from his ideas.

Further complications are to be expected when generalising to more than one variable
or to systems of equations.

6.3 Quantifier Elimination in Other Languages

A less obvious point of further study concerns other or further extensions of the language
L by new functions giving us information about a matrix A without accessing its entries.
For example, take ∥ · ∥ as an additional function and interpret it as some operator norm.
Does Mn(F ) still admit quantifier elimination?

Alternatively, we could extend L(tr, invo) by some unary function symbol f where f is
interpreted as a linear map fMn(F ) :Mn(F )→Mn(F ). Is it possible to still get quantifier
elimination? What does that tell us about certain properties of f? Such results would
immediately lead to the discussion of the C∗-algebra Mn(C) and questions associated to
operators on it, for example boundedness or positivity.

We are only what we know, and I wished to be much more than I was, sorely.
David Mitchell: Cloud Atlas, 2008, p. 208.
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