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Introduction: What is Algebraic
Geometry?

Algebraic geometry emerged from the quest of solving arbitrary systems of poly-
nomial equations over a field.

Systems of linear equations are considered exhaustively in linear algebra. The algo-
rithm of Gauf3 provides a method to systematically compute all solutions to such
a system, by parameterizing them with only a finite amount of data. This is also
due to the fact that the space of all solutions, an affine space, is geometrically easy
tounderstand. The algebra behind all of this is the theory of vector spaces and lin-
ear maps, which is quite well understood.

Passing to systems of non-linear polynomial equations makes everything much more
complicated. In general there is no explicit algorithm producing all solutions any-
more, and the geometry of the set of solutions is also much more complicated.
To simplify things, one thus only searches for solutions in an algebraically closed
field. This avoids problems that would otherwise even arise in a one-dimensional
setup, as is well-known from the algebra courses. Further, instead of solving sys-
tems completely, we must restrict ourselves to classifying the solution sets up to
some suitable notion of isomorphism. Given an unknown system of equations,
one can then at least try to reduce it isomorphically to a system that is already
understood. This approach culminates in the classification of all solution sets via
their associated affine coordinate rings. It completely translates the problem to al-
gebra, where it is often easier to solve. This will be done in Section[f]of these lec-
ture notes.

More unexpected irregularities can arise when solving systems of polynomial equa-
tions. For example, already a system of two equations in many variables can be
unsolvable, although one would expect each equation to reduce the dimension
of the solution set by at most one. This already happens in linear algebra when
considering non-homogeneous systems, but not for homogeneous systems. In
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general such phenomena can be avoided by by homogenizing the problem, i.e. by
passing from affine to projective space. When adding points at infinity, the sets of
solutions suddenly behave much more regular. We will do this in Section 3|

On the other hand, the classification of solution sets up to isomorphism becomes
more complicated this way. The approach via affine coordinate rings does not
admit a direct generalization. One thus weakens the notion of isomorphism to
some isomorphism almost everywhere. This is called birational equivalence. Solving
one system completely then leads to an almost complete solution for any bira-
tionally equivalent system. For birational equivalence there again exists a purely
algebraic classification, via function fields of systems. We will deal with this in Sec-
tionfd]

The name algebraic geometry comes from the fact that we will always switch be-
tween a geometric view on the solution sets, and an algebraic view on objects de-
rived from the system of equations. Some problems can be solved easier on one
side, some on the other. We will see many of such examples in the course.

In Section [2|we consider algorithmic aspects. For example, given an explicit sys-
tem of polynomial equations, we would like to decide whether the system is solv-
able or not. Since the considered fields are always infinite, we cannot just search
through all possible points until we find a solution. However, there do exist meth-
ods to answer such questions computationally, even without numerical errors.
Its the theory of Grobner bases that provides such methods, which are also imple-
mented in many computer algebra systems.

The literature on algebraic geometry is almost uncountable, so we just cite a short
selection here. An elementary approach as in these lecture notes can be found in
the books of Harris [6], Hulek [8], Shafarevich [10, II] (and Fulton [5] for curves).
Hartshorne [7] contains a comprehensive account of the modern theory of schemes,
Eisenbud & Harris [4] provide a slightly easier introduction. For results on com-
mutative algebra we recommend Atiyah & Macdonald [1], Eisenbud [3], and Lang
[9]. The algorithmic aspects are for example described in Becker & Weispfenning

[2].

These lecture notes are mostly based on parts of the books of Shafarevich, and un-
published lecture notes of Claus Scheiderer at the University of Konstanz. How-
ever, I am responsible for errors, and I am more than happy for hints on such. I
thank Martin Berger for error corrections in a first version of this script, and Tom
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Drescher for providing many of the exercises, and for his help in translating the
initial German version into English. I also thank Daniel Scharler for providing
many interesting exercises on applications of algebraic geometry in kinematics.






Chapter1

Affine Varieties

1.1 Reminder from Algebra

All rings appearing in these lecture notes are commutative and have a multiplicative
identity element 1. Most of the time we denote rings by R or S. Ideals of rings are
usually denoted by I or J.

Definition1.1.1. Let / C R be anideal.
(i) The following set is also an ideal of R (Exercise[2), called the radical of I:

VIii={aeR|3IneN: a"el}.

If I = /I, then I is called a radical ideal.
(i7) An element a € R is called nilpotent if a” = 0 holds for some n € N. The
ideal

Nil(R) := /(0)

of all nilpotent elements is called nilradical of R.
(4i7) R is called reduced if Nil(R) = (0), i.e. if there are no nilpotent elements
except 0. A

Remark1.1.2. Obviously we have I C /T for all ideals I. In general the inclusion
is proper. For example let R = Z and I = (n) with the prime decomposition

n:pil...pﬁri']:hen\/_:(pl...pT). A
Lemmal.l.3. Let I, J C R beideals. Then

G) VINnJ=VINnVJ.
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(i) VI=R<< =R

(i49) IfT C J,then/J/I = \/J /I inthe quotientving R/I.
Proof. Exercise[2] O
As usual we denote with Spec(R) the set of all prime ideals of R.
Theorem 1.1.4. Foreveryideal I C R we have

Vi- N

p € Spec(R)
ICyp

Proof. "C": Lets € \/I,i.e. s" € I for some n € N. For every prime ideal p with
I C pthe prime ideal property yields that s™ € p implies s € p.

"D" Lets € R\ VI, ie s" ¢ Iforalln € N. Consider the multiplicative set
S ={1,s,s? - -} and the corresponding localization R, := S~' R as well as the
natural homomorphism

v: R— R,
arafl.

We have that 1 ¢ IR, otherwise 1/1 = a/s™ would hold for somea € I,n € N,
and this implies s € I for some m, a contradiction.

Hence there is a maximalidealmin R, over I R,,and p := ¢~!(m) is then a prime
ideal in Rwith I C p. Because s/1 is invertible in Ry, this implies s ¢ p. O

Corollary 1.1.5. Nil(R) is the intersection of all prime ideals in R.
Recall that a ring R is called noetherian, if every ideal in R is finitely generated.
Theorem 1.1.6. If R is a noetherian ring, then sois R|[t].

Proof. Assume I C R|[t] is an ideal that is not finitely generated. Iteratively we
choose py, po, ... € I such that p,,,, has minimal degreein I \ (pi,...,p,). For
d,, = deg(p,) wehave d; < dy < ---. Now let a,, € R be the leading coefficient
of the polynomial p,,. Consider the ideal

J=(a,|neN)CR.
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Since J is finitely generated by the assumption on R, there exists an identity

m
m41 = E bia;
i=1

with b; € R. Define

9 = Pmt1 — Z bipit™m T,
i=1
By our construction we have deg(g) < deg(pm+1), since the leading coefficients
cancel. On the other hand, p,,,.1 € I\ (p1, ..., pm) implies

geI\(p1,y--,Pm)

This contradicts the choice of p,, 41. O
Corollary 1.1.7 (Hilbert’s Basis Theorem). Let k be a field. Then k[z] is noetherian.

Proof. Afield onlyhasthe twoideals (0) and (1), both are finitely generated. Now
apply Theorem[L.1.6|iteratively on the adjunction of each individual variable. [J

The most important fundamental theorem in classical algebraic geometry is cer-
tainly Hilbert’s Nullstellensatz. We are going to prove it in its field-theoretic form
first and interpret it in a geometric fashion afterwards. Before we can prove it
however, we have to study the so called integrality of ring extensions. This is a
variant form of the notion of algebraic field extensions that is specifically suited
for rings.

Definition1.1.8. Let R C S be a ring extension.
(i) An element b € S is called integral over R if there are ay, ..., a, 1 € R such
that

ag+arb+ - +a,_ b =0.

Such an equation is called integrality equation for b over R.
(i1) S is called integral over R if every element b € S is integral over R. A

Remark 1.1.9. (i) The important detail for the integrality of b is that the corre-
sponding integrality equation must be monic. If R is a field, then obviously every
nontrivial equation can be normalized. Hence, in this case the integral elements
in S over R are just the algebraic elements.
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(i) For Z C Q the only integral elements over Z in Q are the elements of Z itself.
More generally this is true for the inclusion R C K of an unique factorization
domain in its field of fractions (Exercise|[s).

(¢i7) For R C S and by,...,b,, € S we define R[by,...,b,] as the subring of S
generated by by, ..., b, and R, i.e.

R[bl,...,bm]:{Zaeb?---bg;n|aee}z}.

eeN™

If we regard S as R-module, then R[by, . .., b,,] is a submodule, and in particular
an R-module by itself. A

Theorem 1.1.10. Let R C S be aring extensionandby, . .., b, € S. Then the following
are equivalent:

@) by, ..., by, areintegral over R.
(i) R[by, ..., by)isfinitely generated as R-module.
(ii7) Rby, ..., by]isintegral over R.
Proof. (i) = (i4): By solving the integrality equation of b, for b} we obtain
b = — (ap_1by " 4+ ag)

for certain a; € R. So we can replace the nth power of b; with lower powers of
by and coefficients in R. By doing the analogue procedure with b; we see that

R[by, ..., by]is generated by finitely many products bf* - - - bs.
(i1) = (zi7): Finitely many elements 1 = ¢y, . .., ¢, generate the R-module M :=
R[by,...,by]. Nowlet ¢ € M be arbitrary. Since M is alsoaring, wehavec- ¢; €

M and thus there are a;; € R such that

n
cC-C = E aijcj'
j=1

For the matrix
A= (aij) j € Matn(R)

1,
we then have
C1 C1
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So (c1,. .., cy)t is in the kernel of
N :=cl, — A.

Since
adj(N) - N =det(N) - I,
we obtain
1
det(N) - : = 0.

Cn

Now ¢; = 1 implies det(N) = 0. From the Leibniz formula for determinants we
see
det(N) =" 4+ ap_1c  + -+ ap,

for certain a; € R. This yields an integrality equation of ¢ over R.
(222) = (¢) is trivial. O

1.2 Affine Algebraic Varieties

From now on let k always be an arbitrary field, and K an algebraically closed exten-
sion field of k. For example we can choose K = k to be the algebraic closure of k.
But K can also be bigger, e.g. k = Q and K = C. Essential will only be that K is
algebraically closed! The field % is also called coefficient field and K is also called
coordinate field. With x we denote the n-tuple of variables (z1, ..., x,).

Definition1.2.1. (i) Let P C k|[z] be a set of polynomials. We define
V(P)={a€ K" |pla)=0Vp € P}

and call V(P) the affine variety defined by P. It is the solution set (over K) of the
system of polynomial equations defined by P.

(ii) A subset V' C K™ is called affine k-variety if V' = V(P) foraset P C k[z].
Affine k-varieties are thus the solutions sets for systems of polynomial equations
(with coefficients in k).

(i17) A hypersurface is a variety defined by a single polynomial, that is a variety of
the form V(p) for some p € kz].

(@) IfW C V are affine k-varieties, then W is called a subvariety of V.

(v) A" := K™ is called the n-dimensional affine space. A
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Example 1.2.2. Notice: The following figures only show the real points of the re-
spective affine variety in A%2. However as is well known, R is not algebraically
closed and we actually should consider the varieties over X' = C for instance.
Due to the dimension this is graphically hardly possible. But the real image usu-
ally (not always!) gives a good impression on the variety.

(@) Let P = {1 — 22 — 23} C Q[x1, z5]. Then V(P) is a circle.

O

(i) Let P = {z122} C Q|xy, z2]. Then V(P) is the union of the two coordinate

axis.

(173) Let P = {a3 —x%(x1 + 1)} C Q[x1, 72]. Then V(P) has the form of a ribbon.

(X

(iv) Let P = {a3 — 23} C Qlx1, 2o). Then V(P) is a curve with a cusp.

() Let P = {23 + 23} C Q[zy, o). Here the real image only shows the point
(0,0). But we also have for example (1,7) € V(P). Even worse is the case P =
{x? + 23 + 1}, in which we don't see anything in the real image. But again the
variety is not empty, for example we have (0,i) € V(P).

(vi) The following image shows a part of an affine hypersurface in A3. The defining
equation has degree 6:
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Author: Oliver Labs, www.imaginary.org, Project of the Mathematical Research Institute Oberwolfach, supported by the Klaus Tschira Foundation

(vit) Thus far the images have always shown hypersurfaces. But there are many
more varieties besides hypersufaces. For instance every pointa € k™ C A" isan
affine k-variety because

{a} =V(r1 —ar,..., 2, — ap)

and 1 — ay,...,x, — a, € k[z]. Fora € A™\ k" this is not true anymore. For
example {i} C C = Al is not an affine R-variety. Every real polynomial that
vanishes on ¢ must also vanish on —i. But we have

i€ {i,—i}=V(j+1) CC=A"

When we consider k£ = Q, K = C we get examples where this is even more ob-
vious. The only polynomial in Q[z] that vanishes on the pointa = 7 € A! is the
zero polynomial. In particular, the only affine Q-variety in A! that contains the
point a is the entire affine space. A

Lemmal.2.3. Let P C k[z|andlet I = (P) betheidealin k|x] generated by P. Then

Proof. Wehave P C I C +/I,andthus V(v/I) C V(I) C V(P). Nowletp € VI,
that is
p" = Z fipi

where p; € P, f; € k[z]. From this we see that a € V(P) implies p™(a) = 0, and
since fields don’t have nontrivial zero divisors, we obtain p(a) = 0. Therefore we
have p = 0 on V(P), and this shows V(P) C V(V/1). O
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Corollary 1.2.4. Every affine k-variety V is of the form

V= V<p17 s 7p7")
with finitely many polynomials py, . . ., p, € k[z].

Proof. LetV = V(P)with P C k[z]. Then we have (P) = (p1, ..., p,) by Corol-
lary[l.1.7, and from Lemmall.2.3lwe get V = V(p1, ..., p,). O

Lemma1.2.5. (i) (), A" are affine k-varieties.

(1) Vi, Vo C A" affine k-varieties = V; U V; affine k-variety.

(179) V C A" affine k-varieties (A € A) = (cp Vi affine k-variety.

(v)V C A" W C A™ affine k-varieties =V x W C A" x A™ = A" affine
k-variety.

Proof. (i): ) = V(1),A™ = V(0). (ii): For two ideals I1, Iy C k[z] we have

Both inclusions "C" are clear because the ideals get smaller. Now let a € V(;15)
anda ¢ V(I;). Thethereisap € I, with p(a) # 0. For every ¢ € I, we have
pq € 1115, and thus 0 = (pq)(a) = p(a)q(a). Since fields don't have nontrivial
zero divisors, it follows that ¢(a) = O holds forall ¢ € I5, hencea € V(I5).

(#30): For V), = V(Py) with Py C k[z] we obviously have (), V) = V(U, P»).

(iv): Letuswrite V = V(P)and W = V(Q) for certain subsets P C k[z, ..., x,]
and Q C k[y1, ..., Ym].- Then PUQ C k[z1,. .., Tn, Y1, - - -, Ym) and

Vx W =V(PUQ). 0
We want to put the constructions from the previous proof on record:
Corollary1.2.6. Let I, I5, I (A € A) beidealsin k[z]. Then we have
V(L)UV(l) =V NI)=V(11)

Nvi)=v (> n). 0

AEA

and

Definition1.2.7. Let V' C A" be an arbitrary subset. Then
Z(V) :={p € klz] | p(a) = 0Va € V}

is called the vanishing ideal of V. A



1.2. AFFINE ALGEBRAIC VARIETIES 13

Lemma1.2.8. Let V. W C A" be subsets. Then

(i) Z(V') is a radical ideal.

@)V CW = I(W)CI(V).

@) Z(VUW)=Z(V)NZ(W).

(iv) In case V' is an affine k-variety we have V(Z(V')) = V.

(v) Every descending chain Vi O V, O - - - of affine k-varieties becomes stationary.

Proof. (i)-(ii7) are clear. For (iv) let V' = V(I) for some ideal /. Then we have
I CZ(V),and thus V- = V(I) O V(Z(V)). The other inclusion "C" is clear. In
(v) we obtain the ascending chain of ideals Z(V;) C Z(V5) C - - -, which becomes
stationary by Hilbert's Basis Theorem. After applying V() we get from (iv) that
the chain of the V; becomes stationary as well. O

Theorem 1.2.9 (Hilbert’s Nullstellensatz, field theoretic form). Let F'/k be a field
extension such that F' is finitely generated as k-algebra. Then F'/ k is finite (and thus alge-
braic).

Proof. There are avy,...,q, € Fwith F = k[ay,...,q,]. We proof the claim by
induction on n.

n = 1:Since F' = k|a] is a field, there is a polynomial p € k[t] witha™! = p(a).
This implies o - p(a) — 1 = 0, and hence « is algebraic over k. But then the
extension is finite.

n—1— n:Wehave F = k(ay)[ag, ..., a,]| because F is a field. By the induction
hypothesis as, . . ., v, are algebraic over k(). It is now enough to show that oy
is algebraic over k. Then the entire extension F'/k is algebraic and thus finite.
Now «v, . . ., v, being algebraic over k() means that there are identities

d—1
. .
w0 + E rijod =0
J=0

with u;, 7;; € kloy| (possible denominators have been cleared). Consider u :=
Ug -+ U, € kl[ay]. Then ay, ..., a, are integral over the ring k[ay, 1/u], and by
Theorem the ring F' is an integral extension of k[ay, 1/u]. Assume a; is
transcendent over k, i.e. k[a4] is isomorphic to a polynomial ring. Then we can
choose an irreducible polynomial p € k[a;] such that p t u (there are infinitely
many irreducible polynomials in the unique factorization domain k[ |). Now for
p~! there exists an integrality equation
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with b; € k[aq,1/u]. Multiplication by p™ and a sufficiently large power of u
yields
u' +ap+ -+ amp™ =0

with a; € k[ay]. This implies p | u, a contradiction. O

Corollary1.2.10. Let A be a finitely generated k-algebra and let m be a maximal ideal in
A. Then A/m s a finite field extension of k.

Proof. A/mis still finitely generated as k-algebra and also a field. O

Corollary1.2.11 (Hilbert’s Nullstellensatz, geometric form). LetI C k[x]beaproper
ideal. Then V(I) # 0.

Proof. Choose a maximal ideal m of k[z] with I C m. By Corollary[l.2.10|k[z]/m
is a finite field extension of k. Hence there is a k-embedding of k[z]/m into K,
and we can assume

k C k[z]/m C K.
Now let a; := T;, the residue class of z; in k[z]/m C K. For every p € k[z] we
then have

p(a) =p(T) =P,
and for p € I (even for p € m) this implies p(a) = 0. Thusa € V(I). O

Remark 1.2.12. In the last proof, without Corollary[l.2.10|we would only get that
V(1) has an element over some extension field of k& (namely k[x|/m). With Corol-
lary[l.2.10|we see that there exists an element over a finite extension field and thus
over any algebraically closed extension field. Over £ itself this does not have to be
the case, as we can see for example for k = Qand I = (2? — 2),ork = Rand
I=(z*+1). JAN

Remark1.2.13. Corollary[l.2.11/says that a system of polynomial equations
pleJ"'7pr:0

with p; € k[z] does not have a solution over K if and only if there is an identity of
the form

Qp1+ -+ gepr =1

with ¢; € k[z]. In Chapter We will see how this last condition, and thus the
solvability of polynomial equation systems, can be checked algorithmically. A
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Theorem1.2.14 (Hilbert’s Nullstellensatz, ideal theoretic form). Foreveryideal I C
k|[x] we have

I(V(1)) = V1.
Proof. "D"is clear. For "C"let 0 # p € Z(V([)). Consider the ideal

Since p = 0 on V(I), we have V(.J) = 0. By Corollary[L.2.11|there is an identity

l=a(tp—1)+ Zbipi

with a,b; € k[t,z] and p; € I. Substituting p~' for ¢ and multiplying with a
sufficiently large power of p yields

P = Z bipi,

with b; € k[z], hence p € /1. O

Remark1.2.15. Note that Theorem|l.2.14]is true for any choice of the algebraically
closed field K, and that v/T does not depend on this choice. Thus it does not really
matter over which algebraically closed field K we consider the variety. A

Example 1.2.16. For a hypersurface V. C A", say V' = V(p), such that
p=0pi Dy
is the decomposition into irreducible polynomials, we have
Z(V) = (pr---pr)- A
Corollary1.2.17. Let I, J C kx| beideals. Then we have
V(I) CV(J) e VJC VI

Proof. From V(I) C V(J) it obviously follows that Z(V(J)) C Z(V(I)), and by
Theorem [1.2.14|therefore v/J C +/I. The other implication follows from Lemma

1.2.3]since V(I) = V(V/T) and V(J) = V(V/J). O
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Corollary 1.2.18. The mapping V' +— Z(V') is an inclusion-reversing bijection between
the set of all affine k-varieties in A™ and the set of all radical ideals in k[z]. The inverse
mapping is given by I — V(I).

Proof. Lemmall.2.8|(iv) , Theorem[l.2.14, and Corollary[l.2.17 O

Remark 1.2.19. (?) In particular, maximal ideals in k[z]| correspond to minimal
affine k-varieties # ().
(17) Leta € k™ C A". Then we have {a} = V(m,), where

m, = (x1 —a1,..., Ty — ay).

Itis easy to see that Z({a}) = m, holds. In particular m, is maximal.

(4i7) Not every maximal ideal m C k[z] has to be of the form m,, and not every
minimal variety # () hastobe of the form {a}. Fork = Rand K = C forinstance,
m = (27 + 1) is maximal in R[x;] and corresponds to the minimal R-variety
{i,—i} C AL A

Corollary1.2.20. Themapping a — m, isa bijection between k™ and the maximalideals
in k[z] with residue field k. In case k = k, these are all maximal ideals in k|x].

Proof. The injectivity is clear, and we have k[z|/m, = k. For the surjectivity let
m C k[z] be a maximal ideal with k[z]/m = k. Leta; := Z; € k. Then we have
z; — a; = 0, and thus m, C m. From this we get equality. Since k[x]/m is a finite
field extension of k for every maximal ideal by Corollary[1.2.10], we always have
klz]/m = kincase k = k. O

1.3 The Zariski Topology

Definition 1.3.1. The k-Zariski topology on A" has the affine k-varieties as its
closed sets. The k-Zariski topology on a subset X C A" is the induced subspace
topology. A

As long as we speak about k-varieties, all subsequent topological notions always
refer to the k-Zariski topology.

Remark/Example 1.3.2. (i) The k-Zariski topology is indeed a topology. This is a
consequence of Lemmall.2.5]

(¢1) The Zariski topology is the most natural topology on A", since the definition
only needs polynomial equations, i.e. just the already given field structure is used.
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(i77) In the case k = k = K the closed subsets of A! are exactly the finite subsets,
aswell as A! (cf. Exercise[9).

(¢v) The Zariski topology on A"*™ = A™ x A™ does not coincide with the product
topology (Exercise[17).

(v) For k C k' C K the k'-Zariski topology is in general finer than the k-Zariski
topology. For instance {i} C A' = C! is closed in the C-Zariski topology, but
not in the R-Zariski topology.

(vi) For every p € k|[x] the set

D(p) :={a € A" [ p(a) # 0}
is open. Every open set is of the form

D(p1)U---UD(pr),

where p, ..., p. € k[z] (cf. Corollary[L.2.4).
(vii) The map

a— (1/p(a),a)
defines a canonical bijection between the open set D(p) C A" and the variety
V(tp — 1) C AntL, A

Lemma1.3.3. (i) For X C A" wehave X = V(I(X)).

(i) Uy N Uy # () holds for any two nonempty open sets Uy, Uy C A™. In particular, every
nonempty open set is dense in A™.

(ii1) The Zariski topology is not Hausdorff.

Proof. (i) V(Z(X)) is closed and contains X, which shows "C". For "D" note that
Z(X) D Z(X) and thus V(Z(X)) C V(Z(X)) = X (Lemmal[L.2.8|(iv)).

(i) D(p) N D(q) = () implies pg = 0 on A™ and therefore pg = 0, since K is
infinite. It follows that p = 0 or ¢ = 0, or equivalently D(p) = () or D(q) = 0.
(i17) Follows immediately from (ii). O

Definition1.3.4. Let X be a topological space.
(4) X is called irreducible if X = () and for all closed subsets A, B C X we have

X=AUB = A=XorB=X.

Otherwise X is called reducible.
(@1) Y C X is called irreducible component of X if Y is a maximal irreducible
subset of X (w.r.t. set inclusion and the subspace topology). A
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Remark1.3.5. ForasubsetY C X theirreducibility (w.r.t. the subspace topology)
can be stated as follows:

A, BclosedinX, Y CAUB = Y CAorY C B.

Note that irreducibility is a property of a topological space itself, and is not de-
fined relative to an ambient space (in contrast to e.g. closedness). JAN

Lemmal.3.6. Let X + () be a topological space.
(i) The following are equivalent:
(a) X isirreducible.
(b) Every nonempty open subset of X is dense.
(¢c) Any two nonempty open subsets of X have a nonempty intersection.
(ii) ForY C X we have: Y irreducible < Y irreducible.
(i11) Every irreducible component of X is closed.

Proof. Exercise[2]] O

Remark/Example1.3.7. (i) For Hausdorff spaces the notion of irreducibility is not
quite meaningful. A Hausdorff space X is irreducible if and only if | X| = 1. In
particular, the irreducible components of a Hausdorff space are just the singleton
subsets.

(i1) A" is irreducible in the k-Zariski topology. This follows from Lemmall.3.3Jand
Lemmall.3.6 A

Lemma 1.3.8. Every irreducible subset of a topological space X is contained in an irre-
ducible component of X . In particular, X is the union of its irreducible components.

Proof. LetY C X beirreducible. Consider
M ={Z C X | Zirreducible,Y C Z}.

M is not empty since Y € M. Let (Zy),., be achainin M. Then | J, Z, is still
irreducible: From | J, Z, C AUBwith A, B closed it follows forall A that Z, C A
or Z, C B. Because the 7, form a chain, it must be the same case for all \.
Therefore | J, Z\ € M, and by Zorn's Lemma M has a maximal element. This is
obviously an irreducible component of X containing Y.

The second assertion follows from the fact that {z} C X is irreducible for all
reX. []

Remark1.3.9. Every irreducible topological space is connected. In particular, ev-
ery connected component of X is the union of irreducible componentsof X. A
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Definition 1.3.10. A topological space X is called noetherian if every descending
chain A; D Ay D --- of closed subsets of X becomes stationary. A

Lemma1.3.11. Fora topological space X the following are equivalent:

(1) X is noetherian.

(i1) Every nonempty system of closed subsets of X contains a minimal element.

(i11) Every open subset of X is quasi-compact, i.e. every open cover has a finite subcover.

Proof. Exercise[22] O

Example1.3.12. (i) Every subspace of a noetherian topological spaceisitself noethe-
rian.

(i1) A™ is noetherian in the k-Zariski topology (Lemmall.2.8|(v)).

(¢i7) Every affine k-variety is noetherian in the k-Zariski topology. A

Theorem 1.3.13. Let X be a noetherian topological space. Then
(i) X has only finitely many irreducible components.
(1) If X4, . .., X, ave the pairwise distinct irreducible components of X, then

X 21X,
J#i
foralli=1,... r.
(13) If X =Y, U - - - U Y isacovering with closed irreducible subsets Y; which satisfy

v, ¢ |Jvy;

J#i
foralli =1,... s thenYy, ..., Y aretheirreducible components of X.

Proof. (i) Let M be the set of all closed subsets of X that are not the union of
finitely many irreducible subsets. We show that M = (). Assume M # (). Then
there exists a minimal element Y in M, since X is noetherian. But then Y must
be reducible, thatis Y = Y; U Yo with Y; C X closed and Y7, Y, C Y. This im-
plies Y1, Ys ¢ M, and hence Y}, Y; are both a union of finitely many irreducible
subsets and so is Y, a contradiction.

In particular X is the union of finitely many irreducible subsets and by Lemma
[.3.8]of finitely many irreducible components X, ..., X,. Now let Z be another
irreducible component of X . Then

Z:OZO&,

=1



20 CHAPTER1. AFFINE VARIETIES

and since the X are closed and Z is irreducible, it follows Z C X, for some i.
Because Z is even an irreducible component, we have equality. This proves (i).
(¢3) From X; C U#i X; we obtain X; C Uj# X; N X, and as before X; C X;
for some j # i, a contradiction.

(ii7) Again let X, ..., X, be the irreducible components of X. As before X; C
U; ¥; N X; implies X; C Yj for some j, and thus equality. So the irreducible
components of X are among the Y;. FromY; ¢ J,_; Yj it follows that there are
no further sets among the Y. O

Corollary1.3.14. LetV bean affine k-variety. Then there are irveducible affine k-varieties

Vi,..., V. with
V:{/lu...uvr

and
vz JV;
JFi
fori = 1,.. ., r. These constraints uniquely determine the V; as the irreducible components
of V.

Theorem 1.3.15. Let V' be an affine k-variety. Then
Virreducible < Z(V') C kx| prime ideal.

Proof. Let I :=Z(V)andthus V = V(I).

First assume V is irreducible. V' # () implies I # (1). Let p,q € k[z] such that
pq € I. Thenwe have V' C V(p) U V(q), and from the irreducibility of V' we
deduce w.l.o.g. V" C V(p). This means p € . Therefore [ is a prime ideal.

Now assume [ is a prime ideal and

V C V(L) UV(DL) = V(1L 1)

for two ideals [}, > C k[z]. This implies [,/ C [ and from I being a prime
ideal we obtain w.l.o.g. Iy C [I. This in turn yields V' C V([;), and thus V' is
irreducible. O

Corollary 1.3.16. The mapping p +— V(p) defines an inclusion-reversing bijection be-
tween Spec(k|z]) and the set of all irreducible affine k-varieties in A™.

Corollary 1.3.17. Everyideal I C k|x]is contained in only finitely many minimal prime
idealspq, ..., p,. We have
VI=pin---Np,.

P1,- .., P, are called the minimal prime divisors of /.
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Proof. The minimal prime ideals over I are the minimal prime ideals over v/, and
by Corollary[L.2.18Jand Corollary[L.3.16|these exactly correspond to the maximalir-
reducible subsets of V' = V(I), of which there are only finitely many by Corollary

1.3.14, According to Theorem the intersection of the minimal prime ideals
containing [ is the radical of 1. O

Example 1.3.18. (i) Let V' = V(p) be a hypersurface, and let py, ..., p, the irre-
ducible factors of p. Then the varieties V(p;) are the irreducible components of
V, and the ideals (p;) are the minimal prime divisors of (p).

(1) The variety V(z1 22 (cf. Example[L.2.2)(i7)) has the two irreducible components
V(x1) and V(x5). Here V is connected.

(¢i7) The variety V(z1(x; — 1), z2(x; — 1)) has the two irreducible components
V(z1 — 1) and V(x1, z). The easiest way to see this is Corollary[l.3.14] Here the
irreducible components are also the connected components.

(iv) The variety V. = V(z} + 22) C A? = C? is irreducible in the R-Zariski
topology, because x? + 3 is irreducible in Rz, z5]. However, in the C-Zariski
topology V' is reducible:

V= V(.Tl + Zl’z) U V(.l’l — 2.772)

In both topologies V' is connected. A

1.4 Regular Functions and Morphisms

Let V' C A" be an affine k-variety. Every polynomial p € k[x] defines a poly-
nomial map p: A" — K = Al!, and by restricting the domain to V we obtain a
map

p: V — Al
The restrictions of two polynomials p, ¢ € k[z]| define the same map on V' if and
onlyifp — ¢ = 0 onV and therefore p — ¢ € Z(V') holds. Thus the polynomial maps
V' — A can be identified with the elements of k[z] /Z(V).

Remainder: A k-algebra is a ring extension of k.
Definition1.4.1. Let V. C A" be an affine k-variety. Then
k[V] = k[z]/Z(V)

is called the affine coordinate ring or the affine coordinate algebra of 1. We em-
phasize again that Z(V') and therefore £[V] does not depend on the choice of the
algebraically closed field K!
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Elements of k[V] are called regular functions on V. Regular functions can be
interpreted as polynomial functions on V. A

Example 1.4.2. (1) k[A"] = k[z] and k[0] = {0}.
(19) If V' = V(p) is a hypersurface and p is square free, then k[V] = k[z]/(p). A

Lemma 1.4.3. (i) For every affine variety V' the coordinate algebra k[V'] is a finitely gen-
erated reduced k-algebra.
(1) IfV, W C A" are affine varietieswith V N W = (), then

E[VUW] = k[V] x k[W].
In particular, for every finite variety V = {ay, ..., a,} C k™ we have

EV] 2 kx--xk.

T

Proof. (i) Follows from the fact that k[z] is finitely generated and Z (V') is a radical
ideal. For (i7) observe that

(H)=Z(VnW)=I(V)+Z(W)=Z(V)+Z(W),
where we have used Lemmall.1.3|(i7) for the last equation. From the Chinese Re-
mainder Theorem it follows that
KV UW] = k[z]/(Z(V)NIZ(W)) = k[z]/Z(V) x klz]/Z(W) = k[V] x k[W].
The second claim follows from k[{a}| = k[z]/m, = k for a € k". O

Remark 1.4.4. The ideals of k[V/] are in bijection with the ideals of k[z] that con-
tain Z(V'). The same is true for radical and prime ideals. These ideals in turn
correspond to subvarieties of V. Thus we obtain the following relative version of

Corollary[1.2.18}
The mapping

I'—Vy(I):={acV|pla)=0Vpel}
yields a bijection between the radical ideals of k£[V| and the subvarieties of V.
Under this bijection prime ideals exactly correspond to irreducible subvarieties.
The inverse mapping is given by

Wi—Zy(W) :={pecklV]|pla) =0Ya € W}.

Forp € k[V]let
Dy(p) :={a eV |p(a) # 0}.
Every open set in the k-Zariski topology of V' is a finite union of such D(p;). A
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Remark1.4.5. In the transition from V' to k£[V'| no information is lost: From k[V']
together with the generators 71, . . . T,, we can reconstruct V' in several ways.

(@) Let 7: k[z] — k[V] be the canonical projection z; — ;. Then we obviously
have ker(7) = Z(V'), and hence

V = V(ker(m)).
(i1) The following maps are mutually inverse bijections
K" «— Homk_alg(k:[g], K)

a e,
(a(z1),...,a(xy,)) < .

Here e, denotes the evaluation of a polynomial in a. Under this bijection the
points a € V exactly correspond to the homomorphisms o € Hom(k[z], K)
with @ = 0 on Z(V), and thus to the elements in Hom(k[V], K'). Therefore we
obtain the bijection

Hom(k[V],K) =V
a— (o (Tr), ..., a(Ty)). A

Corollary1.4.6. Every finitely generated reduced k-algebra A isisomorphic to the coordi-
nate algebra of an affine k-variety.

Proof. Follows immediately from the construction in Remark (4): Choose
generators ay, . . ., a, of A and consider the surjection

m: klz] » A

T; > Q.
For V' = V(ker(7)) we then have
KIV] = klal/Z(V) = kla)/ker(r) = A.

Here we use that ker(r) is a radical ideal, which follows from the fact that A is
reduced. O

Definition1.4.7. Let V C A" and W C A™ be affine k-varieties.
(1) A (k-)morphism from V' to IV is a map

p: V=W
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for which there are py, ..., p,, € k[V] such that

pla) = (pr(a), ..., pm(a)) VaeV.

Shorthand we write p = (p1,...,pm)-
(i7) A (k-)morphismp: V — W iscalled (k-)isomorphismif thereis a k-morphism
q: W — V such that

qop:idv andpoq:idw.

(i17) Two affine k-varieties V,W are called (k-)isomorphic if there exists a
(k-)isomorphism p: V' — W. In this situation we write V' =, W (or V= W
in case k is clear from the context).

(7v) With Homy (V, W) we denote the set of all k-morphisms from Vo W. A

Theorem1.4.8. Letp: V — W bea k-morphism. Forevery q € k[W| the composition
p*(q) :==qop € k[V]

is a regular function on V. The map p* defined as

P kW] — k[V]

g p(q)
is a k-algebra homomorphism. The map
*: Hom(V, W) — Hom(k[W], k[V])
p=p

is bijective.

Proof. Since the composition of two polynomial maps is obviously again polyno-
mial, the composition of two k-morphisms is again a k-morphism. Thus we have
p*(q) = go p € Hom(V, A') = k[V]. The map p* is obviously a k-algebra homo-
morphism. It remains to show that * is bijective. In order to do this we explicitly
define the inverse map. We have

Now let p: k[W] — k[V] be a k-algebra homomorphism. Let

pe = (0(@), -, ¢(Hn)) € Hom(V, A™).
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We show thateven p,: V' — W holds. For ¢ € k[y]and a € V' we have

1(po(a)) = q(e(@)(a), ..., o(F,)(a)) = e(q(@))(a) = ¥(q)(a).
Now if g € Z(W), theng = 0 holds in £[W], and hence ¢(p,(a)) = 0. This proves
po(a) € W, and thus p, € Hom(V, W). Now the map defined by
Hom(k[W], k[V]) — Hom(V, W)
Y= Py
is the inverse map of * (Exercise[35). O

Remark1.4.9. We put the following on record once more: For k[W] = k[y] /Z(W)
the inverse of

*: Hom(V, W) — Hom(k[W], k[V])
p—p

is the map

Hom(k[W], k[V]) — Hom(V, W)
= (P@) - Um)- a

Remark 1.4.10. The bijections from Remark [.4.9]yield an equivalence of categories
between the category of affine k-varieties together with k-morphisms and the
category of finitely generated reduced k-algebras together with k-algebra homo-
morphisms. Without defining these terms precisely we summarize the following:
First, every finitely generated reduced k-algebra is the coordinate algebra of some
k-variety (Corollary[l.4.6). Further, the map * is a bijection, i.e. the morphisms of
the varieties and the morphisms of the associated algebras correspond to each
other one to one. Moreover, * has the following functorial property: For each p €
Hom(V, W) and ¢ € Hom(W, X') we have

(qop)" =p"oq"
aswell as
ld*v = idk[v}.

It follows that every problem about varieties can be translated into an equivalent
problem about finitely generated reduced algebras and vice versa. In particular,
we obtain the following result. A
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Theorem 1.4.11. A k-morphismp: V' — W is an isomorphism of varieties if and only if
p*: k[W] — k[V]isanisomorphism of k-algebras. In particular, we have

VW e k[V] = kW],
Proof. Exercise[36 O
Example 1.4.12. (i) First simple examples for k-morphisms are

« inclusions of subvarieties Vy (1) < V for I C k[V].

« projections w: V; x Vo — Vi; (a,b) — a, for affine varieties Vi, V5.

(17) Let P = V(22 —x9) C A?beaparabola,and7: P — Al; (ay,as) — a;. Then
7 is a k-isomorphism. One can either state the inverse map r > (r,r?) directly.
Or one considers

]{?[P] = ]f[l’l,flfg]/(x% — .I'Q) = k‘[fl,fg] = k[fl]
and k[A'] = k[t], and the induced map
7 k[A'] — K[P]
t— T1.
Then 7* is obviously an isomorphism with inverse T, + t, Ty — t2.
(137) Let C' = V(a3 — %) be a cuspidal curve (cf. Example(z’v)). Then there is
a morphism
p: Al - C
r s (r3r?)
that is even bijective, as is easily verified (Exercise[37). Hence, the curve C' admits
a bijective polynomial parametrization by A'. However, p is not a k-isomorphism.
This is because for the inverse map we would had to take roots, which cannot be
done polynomially. An exact proof makes use of the coordinate algebras. We have
k[C] = Kk[x1, 2] /(23 — 22) = k[Ty, To), k[A'] = K[t] and
p*: k[C] — k[AY]
T — t2
T — t3.
The map p* is obviously not surjective, and hence neither p* nor p is an isomor-

phism (by Theorem[L.4.11). Thus bijectivity of a k-morphism does not imply that it is an
isomorphism! A
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Theorem1.4.13. Letp: V' — W bea k-morphism between affinevarietiesandletp* : k[W| —

k[V'] be the induced algebra homomorphism of the coordinate algebras.
(i) Forevery ideal J C k[W]we have

P (Vw(J)) = Vv (p*(J)).

In particular, the preimage of an affine variety under a morphism is again an affine variety.
(ii) For every ideal I C k[V'] we have

pVv (1)) = Vw ((p") (D).
In particular, we have Ly, (p(V')) = ker(p*).

Proof. Fora € V and ¢ € k[W] we have ¢(p(a)) = p*(¢)(a). This implies (7)
because of

p(a) € Vw(J) < q(p(a)) =0Yq € J
& p(q)(a) =0Vg € J
o ae W)

(ii) For ¢ € k[W] we have
=0onp(Vy(I)) & q=0onp(Vy(I))
& qop=0onVy(I)
& p(q) eV (D) = VI
sqe @) (VI) = Vi) D)
< ¢=0o0nVyw((p) (1))

But when two varieties have the same vanishing ideal, they are equal by Lemma
(¢v). In particular, we get for I = (0) that

Zw(p(V) = Zw (p(V)) = Zw (Vw (ker(p*))) = /ker(p*) = ker(p
because ker(p*) is a radical ideal, since k[V'] is reduced. O

Remark/Example 1.4.14. (i) Every k-morphism p: V' — W between affine k-
varieties is continuous with respect to the k-Zariski topology. This follows from
Theorem[.4.13|(¢). In particular, an isomorphism is always a homeomorphism of
the topological spaces.
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(i1) A k-morphism between affine varieties can be a homeomorphism with re-
spect to the Zariski topology without being an isomorphism. Example (i17)
demonstrates this (Exercise[37).

(¢i7) The image p(V') of a variety under a morphism is in general neither closed
nor open. For example for

p: A2 — A?
(al,CLQ) — (al>a1a2)

we have
p(A%) = A\ {(0,b) | b # 0}
(iv) If V is irreducible, then so is p(V). This follows either by a direct topologi-

cal argument using continuity of p, or algebraically from the fact that £[V] is a
domain and thus Zy, (p(V')) = ker(p*) is a prime ideal. A

To conclude this chapter we want to address finite varieties.
Definition1.4.15. Anideal I C k|x] is called 0-dimensional if
dimg k[z]/I < o0
holds. A
Theorem 1.4.16. Foranideal I C k[z] the following are equivalent:
(2) I1is0-dimensional

(i) |V(I)] < o0

(iii) TN klz;] # {0} foralli=1,... n.
Ifthis is fulfilled, then V(I) C k" and [V(I)| < dimy, k[V(I)] < dimy, k[z] /1.

Proof. FirstletV := V(I) C K" be a finite set. By Hilbert’s Nullstellensatz we

have
VI = ﬂ Z({a}).

Applying the fundamental theorem on homomorphisms to the evaluation map e,

yields
klz]/Z({a}) = klay, ..., an),
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andfora € k' the right-hand side is a field. Therefore Z({a}) is a maximal ideal
of k[z] foralla € V N'k". Hence

Vi=mn---Nm,

is a finite intersection of maximal ideals. Since the m; are pairwise distinct and
maximal, it obviously follows that m; + m; = (1) holds for ¢ # j. The Chinese
Remainder Theorem now yields

k[V] = klz]/VI = Ly x -+ x Ly,

where L; = k[z]/m; is a finite algebraic field extension of k by Corollary[L.2.10]
Together with Remark[L.4.5|(ii) we obtain

V = Homy, (k[V], K) = Homy, (L1 X -+ x L,, K) = Homy (L1 X -+ X L, k) .

For the last equality we used that the elements of all L; fulfill polynomial equa-
tions over k, and are thus always mapped to k by k-algebra homomorphisms. This
already shows V' C k" . Because of

Homy, (Ly x -+ x Ly, k) = | ) Homy (L;, k)

i=1

(Exercise[40), we now have

V| = [Homy (L;, k)|
=1

< [Li K]

=1
< dimy. kfz] /1.

This proves the last statement. Now for the equivalence of (7)—(ii7) let
mir A" — Al
be the projection onto the i-th component. We have

V finite < 7;(V) finite foralli =1,...,n

< m;(V) finite foralli = 1,... n,
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where we have used m;(V') C k for the last equivalence. By Theorem the
variety m; (V) is defined by the ideal I N k[z;], and thus (i7) is equivalent to (iii).
For (iii) = (i) we use that for every i some xf" can modulo / be replaced by lower
powers of x;. Therefore k[z]/I is finite dimensional. For (i)= (i) we use that
k[x;]/ (I N k[z;]) can be embedded into k[z]/I. Therefore k[z;]/ (I N k[x;]) is fi-

nite dimensional, which can only be true if I N k[z;] # {0}. O

Example 1.4.17. Again note that V(/) must be defined in K™ and not in k. For
example, V(x? + x3) is not finite, since k[zy, x5]/(z3 + 3) is not a finite dimen-
sional k-vector space. In R? however, we just see a single point of the variety. A



Chapter 2

Algorithmic Aspects

The previous chapter addressed questions that we would also like to solve algo-
rithmically. For example:

« Givenp,p1,...,p, € klz],isittruethatp € (py,...,p,)?

. Givenideals I = (p1,...,pr),J = (qu,...,qs) C k[z], find generators for
theideals I N .J, (1 : J), /1.

« Given a homomorphism : k[z] — k[y] and an ideal
J=(q1,---,q-) C k[y], find generators for ¢~ (J).

The theory of Gribner bases will allow us to settle such questions algorithmically, in
fact with symbolic computations, i.e. computations that are exact and not just nu-
merical approximations (at least if all the input data is exact, for example polyno-
mials over Q). These algorithms are also implemented in most computer algebra
systems that we use today.

2.1 Monomial Ideals

Notation2.1.1. Letagainkbeafieldandsetz = (z1,...,2,). Fora = (ay,...,a,) €
N" and ¢ € k we call

ga ::m?l...x

Qn
n

amonomial, and

31
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a term. We further set
|Oé| :Oél_i_"'_'—an-

The monomials form a k-vector space basis of k[z]. For

p=)_ paz® € klz]

aeN™

we define
supp(p) = {a € N" | po # 0}.
Note that supp(p) is a finite set for all polynomials p. The degree deg(p) of p is
defined as
deg(p) = max {[a| | o € supp(p)} .

The natural partial ordering on N" is defined by
a<pf:ea<6Vi=1,...,n. A

Definition2.1.2. Anideal I C k|x]is called monomial, if it is generated by mono-
mials. A

Lemma2.1.3. Let M C N"and I = (z® | « € M). Thenthe elements of I are precisely
the k-linear combinations of elements z°, with o < 3 forsomea € M.

Proof. This is clear. O

Remark 2.1.4. (i) The monomials z” with o < 3 for some o € M in fact form a
k-vector space basis of I.

(ii) A general ideal I C k|[x] will often not contain even a single monomial, for
example I = (z1 + 1) C k[xy]. A

Theorem 2.1.5 (Dickson’s Lemma). Foreverysubset M C N", the set M,;, of minimal
elements with respect to < is finite.

Proof. The ideal
I'=(z|aeM)

admits a finite generating set, using Hilbert’s Basis Theorem. So thereis S C M
finite with
Ve Mdae S a<p.

Since N" does not contain infinite descending chains with respect to <, this is
precisely the statement of the theorem. O
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2.2 Monomial Orderings and Grobner Bases

Definition 2.2.1. A monomial ordering is a total ordering < on N”, such that for
alla, B,y € N™:

) 00X«

@) axB=a+y<B+7. A

Remark/Example 2.2.2. (i) A monomial ordering can also be understood as a to-
tal ordering of the monomials of k[z], via

" g2’ e axp.

Condition (i7) in Definition then simply means compatibility with multipli-
cation:

e <2 = 2% 2P
(13) For n = 1 there exists exactly one monomial ordering: 1 < x; < 2% < - -
For n > 2 there are more, for example the lexicographic ordering

a <ex f = a=fora; < f;fori =min{j | a; # §;}
or the graded-lexicographic ordering
a Sgrex S & |a| < |B|or (|o| = |5 and a <iex ) - A

Lemma 2.2.3. Monomial orderings are well-orderings on N", i.e. every nonempty subset
has a smallest element.

Proof. Let < be a monomial ordering and ) # M C N". By Theorem [2.1.5the
set My, of minimal elements with respect to < is finite. But a <  implies o <
3, and thus the smallest element of M,,;, with respect to < is also the smallest
element of M. O

Notation 2.2.4. Let < be a monomial orderingand 0 # p = >°_ p,z® € klz].
Let v = max supp(p). We define

LM (p) =27 LCL(p) =p, LT(p)=p,a’

and call this the leading monomial, leading coefficient and leading term of p.
We call p monic, if LCL(p) = 1. We set

LM (0) = LCL(0) = LT-(0) = 0.

If the choice of the monomial ordering is clear from the context, we sometimes
omit the subscript <, and just write LM (p) instead of LM< (p) etc. A
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Lemma2.2.5. Forp, q € k[x] we have
LM(pq) = LM(p) - LM(q)

and
LM(p + ¢q) < max {LM(p), LM(q)},

where equality holds in the second equation if LM(p) # LM(q).
Proof. Clear. O

Definition 2.2.6. Let / C k[z] be an ideal and < a monomial ordering. We call

LIL(1) = (LM< (p) | p € I)

<

the leading ideal of / with respect to <. A monomial not contained in LIL(7) is
called a standard monomial of / with respect to <. A

Remark 2.2.7. (i) LI(]) is a monomial ideal. The monomials contained in it are
precisely the LM(p) with p € I, since z°LM(p) = LM (z"p).
(i) I = (p1,...,p.) implies

(LM(p1). ..., LM(p,)) € LI(Z),

but this is in general not an equality! In a representation
p=> apiel

the leading terms of the sum on the right can cancel. Thus from p alone we don’t
have control over the complexity of the ¢;. For example, for I = (p;, ps) with
pr=2ay+1,ps =y?> — 1wefind

rT+y=yp —xp2 €1,

and thus (depending on the monomial ordering) either x or y belongs to LI(I).
On the other hand we have LM(p;) = 2y and LM(p,) = y? (for every monomial
ordering), and

z.y & (zy,y°) .

It is precisely this problem that we will solve with the notion of a Grobner basis
below. A
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Theorem 2.2.8 (Macaulay). Let I C k[z] be anideal and < a monomial ordering. Then
the standard monomials of I with respect to < form a k-vector space basis of k[z] /1.

Proof. Linear independence: Let p = >, p;z™ € [ with z* ¢ LI(I) for all i.
If p; # 0 for some ¢, then LM(p) is one of the 2, and thus belongs to LI(]), a
contradiction.

Generating set: Denote by V' the k-vector space spanned by the standard mono-
mials of /. We will show V' + I = k[z]. Assume for contradiction that this fails.
Choose p € k[z]\ (V + I) with smallest leading monomial with respect to < (us-
ing Lemma2.2.3). Then LM(p) is not a standard monomial, for LT(p) € V and
thus p — LT(p) ¢ V + I otherwise, contradicting minimality. So we must have
LM(p) € LI(]), i.e. there exists ¢ € [ with LM(q) = LM(p). Now consider

LC(p)
T LC”

(
We seethath ¢ V + I, but LM(h) < LM(p), again a contradiction. O

Definition 2.2.9. Let [ C k[z] be an ideal, < a monomial ordering, and V' the
subspace of k[z]| spanned by the standard monomials of / with respect to <. By
Theorem [2.2.8|for every p € k[x] there exists a uniquely determined g € V with

p=q mod [.

We call this ¢ the canonical form of p modulo / (with respect to <), and use the
notation

q = cfr<(p).
Note that
cfr<: klz] -V
is a surjective linear map with 7 as its kernel. A

Definition 2.2.10. Let / C k[z| be an ideal and < a monomial ordering. A finite
subset G C I with 0 ¢ G is called a Grobner basis of 7 (with respect to <), if

LIL(I) = (LM(g) | g € G).

A finite subset G C k[z] is called a Grobner basis (with respect to <), if G is a
Grobner basis of the ideal (G). A

Lemma2.2.11. Let J C I beidealswith LI,(J) = LIL(I). Then J = I.
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Proof. From LI (/) = LIL(J) we see that both ideals possess the same standard
monomials. So the space V' spanned by those standard monomials coincides for
both ideals, and from k[z] = V & I = V & J (Theorem[2.2.8) we immediately
obtain I = J. ]

Theorem 2.2.12. Everyideal I C k[z] possesses a Grobner basis (with respect to every
monomial ordering), and each such Grobner basis generates I as an ideal.

Proof. By Hilbert’s Basis Theorem, the monomial ideal LI, (]) is generated by
finitely many monomials LM (p,), ..., LM< (p,) with p; € I. Then the set G =

{p1,...,pr}is clearly a Grobner basis of I with respect to <.
Now set J = (p1,...,p,).Then J C [ isanideal with LIL(J) = LIL(/), and by
Lemmal[2.2.1]lwe get I = J. So G generates [. O

Example 2.2.13. (1) Consider I = (py,p2) C k[z,y|withp; = zy+1,ps = y*> —1
as in Remark[2.2.7(ii). We have seen there that {p;, p,} is not a Grébner basis of
I for any monomial ordering.

(¢i) Consider I = (p1,p1) C klx,y, z| withp; = x + 2z, ps =y + 2.

« With respect to the lexicographic monomial ordering z < y < x we have

LM< (p1) =z, LMx(p2) =,

and thus
LI (1) 2 (z,y).

On the other hand we have I N k[z] = (0), which can for example be seen
from V(I) = {(t,t,—t) | t € K}. So the leading monomial of an element
from I cannot be a power of z, since the monomial ordering would imply
thatonly z appearsin the polynomial. So eachleading monomialis divisible
by either = or y, and this implies that LIS(7) = (z,y). So {p1,p2} is a
Grobner basis of  with respect to <.

« Now let < be a monomial ordering with z < z,y < 2. Then

LM< (p1) = LM<(p2) = 2.
From
r—y=p—p2€l

we see that either x or y belongs to LIL(/). So {p1,p2} is not a Grobner
basis of [ with respect to <. A
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2.3 The Buchberger Algorithm

Throughout this section let < be a fixed monomial ordering on N". All notions
such as LM(p), LI(]), Grobner basis,. . . . refer to this ordering.

Theorem 2.3.1 (Division Algorithm). Let0 # g1, ..., gs € k[z]. Foreveryp € k[z]
thereexistqy, ..., qs, 7 € k[z] with

P=qg1+ -+ qsgs 1
and:
(1) Nomonomialin 1 is divisible by some LM(g;)
2) LM(q;9:) < LM(p) foralli =1,...,s.

Proof. Writep = > poz®. If no monomial in p is divisible by some LM(g;), we
justsetq; = --- =¢qs = Oandr = p.

Otherwise let 2* be the largest monomial in p (with respect to <) which is divisible
by some LM(g;), say 2 = 2” - LM(g;). We now set

Pa 5 N
q:= -z” and P =p—qg.
Lc(gi)

The coefficient of z* in p vanishes, and each monomial of p which is divisible by
some LM(g;) is thus strictly smaller than 2 (otherwise it would already appear
in p).

We iterate this process, which terminates after finitely many steps (5 is a well or-
dering!). We finally obtain some polynomial r, in which no monomial is divisible
by some LM(g;). Backwards substitution yields the desired identity. Note that
we have

LM(qg:) = z"LM(g;) = z* < LM(p)

and thus
LM(p) < LM(p)

in the first step. O

Remark2.3.2. (i) The proof of Theorem[2.3.1jis constructive. Givenpand gy, . . . , gs,
we can find the ¢; and r explicitly through the given procedure.

(i) The polynomials ¢; and 7 are not uniquely determined by the conditions (1)
and (2) in Theorem . The division algorithm allows for choices, that this can
indeed lead to different results.
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« Letn=1and g; = x,go = x + 1. With p = x we have
p=g+0=go—L

Both identities fulfill (1) und (2) and can indeed arise from the division al-
gorithm.

« Letn = 2and g = zy + 1,90 = y*> — 1 as in Example [2.2.13|(z). For
p = xy? — x we have

p=yg — (v +y) =1xg92+0.

Both identities fulfill (1) und (2) (independent of the monomial ordering)
and can arise through the division algorithm. A

Definition 2.3.3. A polynomial r fulfilling the conditions from Theorem is

called a normal form of p modulo ¢, . . ., g; with respect to <. This is not to be
confused with the canonical form cf;(p) from Definition which is uniquely
determined. A

Corollary 2.3.4. If{¢,...,gs} is a Grobner basis of I, then every normal form r of p
modulo gy, . . ., gs coincides with the canonical form:

r = cf;(p).

In particular, the division algorithm always leads to the same normal form r, independent
of the choices made.

Proof. Let r be a normal form. Then every monomial in r is a standard mono-
mial of , due to property (1) in Theorem[2.3.1, and since the LM(g;) generate the
leading ideal of /. On the other hand we have p = r modulo /. But these two
properties precisely characterize cf;(p). O

We will now develop a method to actually compute a Grobner basis for a given
ideal. We will need some preliminaries for this.

Definition 2.3.5. Letp,q € k[z] \ {0}. Then

_ LT(q)-p—LT(p)-q
S(p.q) = ged(LM(p), LM(q))

is called the S-polynomial of p and q. A
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Remark 2.3.6. (i) The S-polynomial is really a polynomial. The greatest common
divisor of LM(p) and LM(q) divides the enumerator.
(i) The leading terms in the enumerator cancel by construction, so one has

LM(S(p, q)) < lem(LM(p), LM(q)).

The next lemma states that cancellation of leading monomials in linear combina-
tion is basically always due to this phenomenon in S-polynomials. A

Lemma 2.3.7. Let g1,...,9; € klz] \ {0} all have the same leading monomial
LM(g;) = z“. Letay, . .., as € kwith

LM (Z aigz) < z“.
i=1
Then ) . a;g; is a linear combination of the S(g;, gi1),fori =1,...,5 — 1.
Proof. Setb; := LC(g;) and p; := ;- Lgifori=1,. s. From

LM (Z g) <z
=1
we obtain

=1

With ps11 = 0 we thus get:

Z a;g; = Z a;bip;
-y (z o ) )

=1

= Z (Z ajbj> (Pi — Pit1) -

i=1 \j=1

The last equality uses > ., a;b; = 0. The claim now follows from

bix®g; — bjx%g;
S(gi, 95) = = ’

o = bjgi — big; = bibj(pi — p;)- -
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Theorem 2.3.8 (Buchberger Criterion for Grobner bases). Letgi,...,gs € k[z] \
{0}, and let h;; be a normal form of S(g;, g;) with respect to g1, ..., gs, foralli,j €
{1,...,s}. Then{qu, ..., gs}isa Grobner basis ifand only if h;; = 0 forall i < j.

Proof. WesetI = (g1, ...,9s). Firstassume that {¢y, ..., g5} is a Grobner basis.
From Corollary 2.3.4 we obtain that h;; = cf;(S(g;, g;)) is the canonical form
with respect to /. Since S(g;, g;) € I we thushave h;; = Oforalli < j.

For the other direction assume h;; = 0 for alli < j. We have to show that for all
0 # p € I there exists somei € {1, ..., s} with

M(g;)[LM(p).

By assumption there exists an identity

p= Z%‘gi ()
i=1
with ¢; € k[z]. Let
27 = max{LM(q;¢;) | i =1,...,s}.

We now show that if LM(p) < z” holds, we can find a new identity as in (%), in
which  is strictly smaller. By iteration we then end up with LM(p) = 27, proving
that LM(p) is divisible by some LM(g;).

So assume LM(p) < 2. After relabelling we can assume

M= =Y =Y " Vel -5 Vs

where 27 = LM(q;g;). We rewrite (x) as
ZLT (¢:) gﬁz ; — LT (a:))g: + Z i Gi-
i=t+1
~ t+
p
Every term in p has 27 as its leading monomial, every other term has a strictly

smaller leading monomial. We further have LM(p) < 27, since this is true for p.
So it suffices to find a representation

=Y dg (k)
j=1
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with LM(q;g;) < 27 forall j.
To the polynomials LM(¢;)g; ¢ = 1,...,¢) we can apply Lemma[2.3.7, So pisa
linear combination of the

Setting % := LM(g;) we get LM(¢;) = 27~ and thus

1 s s
Szjzﬁ 27" LT (g;) LM(q:) g — 27 *LT(g;) LM(q;) g;

=27 "% (LT (g;)9: — LT(g:)g;)

. S

y—aj

-~

S(gi,95)-ged(z>i,z%7)
= 2P - S(gi, g;).

Here

y P . _ x7

2P = g ged (g, 2) = ——————
lem(z2, %)

holds. Our conditions h;; = 0 now provide identities
S(giygj) = sz'jkgk
k=1
with LM(p;jxgx) < LM(S(g:,9;)). In total we see that p is a linear combination

of the elements
S
Z pz‘jkiﬂ“gm
k=1

and from LM(S(g;, g;)) < lem(z*, %) (by Remark[2.3.€|(ii)) we get
LM(pijk@@”gk) = &ﬁ”LM(Pijkgk) < 2P LM(S(g;, g5)) = 7.
That is precisely the desired identity (xx). O

Theorem 2.3.9 (Buchberger Algorithm). Let g,...,gs € kl[z] \ {0}. The follow-
ing algorithm terminates after finitely many steps, and outputs a Grobner basis of I =

(glu s 798):

« Compute a normal form h;; of S(g;, g;) with respectto g1, . .., gs, forall1 < i <
Jj < s.
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« Ifh;; = Oforalli, i, terminate and output { g1, . . ., gs}.

« Ifh;; # 0forsomei, j, add it to the g; and start again.

Proof. We have S(g;, g;) € I foralli, j. Thisimplies h;; € I foralli, j, and thus I
is not enlarged by adding the h;;. Upon termination of the algorithm we obtain a
Grobner basis of I, by Theorem[2.3.8] What remains to show is that the algorithm
does indeed terminate after finitely many steps.

Ifhw 7& 0 then

(LM(91>7 B JLM(QS)) g (LM(91)7 s 7LM(98)7 LM(hw>> )

since none of the monomials in h;; is divisible by some LM(g;). By Hilbert’s Basis
Theorem this can happen only finitely many times. O

Remark 2.3.10. (7) All steps in the Buchberger Algorithm are constructive. The
S(gi, g;) are explicitly given, and a normal form h;; can be computed with the di-
vision algorithm (Theorem[2.3.1). So if the input data is accurately representable
in a computer (for example if all polynomials have rational coefficients), a com-
puter can compute a Grobner basis accurately.

(i) The above described algorithm will in general produce a very redundant Grob-
ner basis.

(¢i7) If G is a Grobner basis of I and p, ¢ € G with p # g and LM (p)|LM(q), then
G \ {¢} is also a Grobner basis of /. A

Definition 2.3.11. A Grobner basis G is called minimal, if
LM(p) + LM(q)

forallp,q € G,p # q. A

Lemma 2.3.12. Let G be a minimal Grobner basis and [ = (G). Then the LM(g) (g €
() are exactly the different minimal monomials (with respect to <) in LI(1).

Proof. Every minimal monomial (with respect to <) in LI(7) must be of the form
LM(g) for some g € G. On the other hand, a minimal Groébner basis can only
provide these monomials. O

Remark 2.3.13. Any two minimal Grobner bases (generating the same ideal /)
have the same cardinality. They are minimal with respect to inclusion, and also
of smallest cardinality. A
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Definition 2.3.14. A Grobner basis G is called reduced, if all ¢ € G are monic,
and for p # ¢ € G we have :

LM(p) divides no monomial from q.

Obviously, every reduced Grobner basis is also minimal. A

Theorem 2.3.15. Everyideal I C kx| admits a unique reduced Grobner basis (with re-
spect to the fixed monomial ordering <).

Proof. Existence: Let G’ be aminimal Grobner basisof I. We callanelementg € G
reduced with respect to G, if no monomial of g is divisible by some LM(q) for ¢ €
G\ {g}. Now choose and fix some g € GG and compute a normal form ¢’ of g with
respectto G \ {g}. Then set

G = (G\{g}) U{d'}

From0 # ¢’ € IandLM(q) t LM(¢’) forallq € G\ {g} we get LM(g) = LM(¢’).
So G’ is again a minimal Grobner basis of /. Now ¢’ is reduced with respect to G’,
since it is a normal form with respect to G\ {¢}. By iteration we obtain a reduced
Grobner basis.

Uniqueness: Let G, G’ be two reduced Grobner bases of /. By minimality the sets
LM(G) and LM((’) coincide, using Lemma[2.3.12 For g € Glet ¢’ € G’ be the
unique element with LM(g) = LM(¢’). Theng — ¢’ € I, andif g — ¢’ # 0 we
findg € G, ¢ € G’ with

LM(q), LM(q') | LM(g — ¢').

On the other hand we have LM(g — ¢') < LM(g) = LM(¢’), which implies
q# 9,q # ¢'.Since LM(g — ¢') is a monomial of either g or ¢, this contradicts

reducedness of either G or G'. Thus we have ¢ — ¢’ = 0, which implies G =
G O

Remark/Example 2.3.16. (i) The computation of a reduced Grébner basis (from a
given Grobner basis) of I in the last proof is constructive.
(ii) Let g1, . . ., gs € k[z] be linear forms, g; = > 7_, c;jz; say. Let

A= (Cij)i,j € Myxn (k)
be the matrix of coefficients and

B = (bij)i,j € Msxn(k)
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its reduced row-echelon form (pivots are 1, pivotal columns otherwise 0). Let ¢; =
> 1 bijzjfori=1,... (= rank(A)). If 5 is a monomial ordering with x, >
Ty > +-+ = x,, then{q,...,q } is the reduced Grobner basis of (g1, ..., gs)
(Exercise[56). The Buchberger Algorithm (+ the construction of reduced Grébner
bases) thus generalizes the Gaussian Algorithm from linear algebra.

(¢i7) Letn = land p, ¢ € k[x] \ {0}. The only minimal Grébner basis of

(p,q) = (ged(p, q))

is {ged(p, ¢)}, up to scaling. The Buchberger Algorithm thus generalizes the Eu-
clidean Algorithm for k[x]. A

2.4 Applications

In this section we see how the theory of Grébner bases gives constructive answers
to the questions from the beginning of this chapter. We emphasize once more
that computation of (reduced) Grobner bases and the division algorithm are con-
structive.

Application 2.4.1 (Membership in anideal). Letp, p1,...,ps € k[z] be given. The
question whether p belongsto I = (py,. .., ps) can be solved as follows. Choose
an arbitrary monomial ordering <. Then compute a Grébner basis {g1, ..., g:}
of I with respect to < and a normal form r of p modulo ¢1, . . . , g;. We know that
r = cf; <(p) holds, and thus

pel & r=0.

This approach also provides a representationp = > 7 | ¢;p;, incase p € I. First
we obtain a representation
t
b= Z 4i9i
i=1

if r = 0 in the division algorithm. However, in the construction of the Grébner
basis{g1,. .., g: } we mighthave added some h;; to the p; (see Theorem|2.3.9). But
since the S(p;, p;) are explicit combinations of the p;, so are the h;;. Afteriterative
substitutions we thus obtain an explicit representation

S
p= Z qiDi- A
i=1
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Application 2.4.2 (Solvability of a system of polynomial equations). In Corollary
[1.2.13|we have seen that a system of equations

pi(x) =0,...,ps(x) =0

with p; € k[z] has a common solution in an algebraically closed field extension of
k, if and only if
1 ¢ (ph s 7ps> g k[&]

We can thus use Application to decide solvability. In fact 1 belongs to the
ideal if and only if the Grobner basis contains 1. This follows directly from the
definition of a Grobner basis. A

Application 2.4.3 (Membership in the radical). Checking whether

pE VDL, Ds)
holds is also possible with Grobner bases (see Exercise[59). JAN

Application 2.4.4 (Containment and equality of ideals). One has

I={p1,...,ps) S (1, - q0) =J

if and only if p; € J for all i. From Application[2.4.]we know how to check this.
In particular we can also check I = J. A

Application 2.4.5 (Elimination). Let [ C k[zy,...,x,] be anideal. The ideal
]j =1N k?[l‘j+1, ce 7In]

is called the j-th elimination ideal of /. Its geometric meaning has been studied
in Theorem (#4): It defines the closure of the projection of V(I) onto the
coordinates x 41, . .., z,. The following theorem says how to compute generators
Of[j . A

Theorem 2.4.6. Let GG be a Grobner basis of I with respect to the lexicographic monomial
ordering with xy > --- > z,. Then G N k[x 1, ..., xy] is a Grobner basis of 1, with
respect to this monomial ovdering, and in particular it generates 1.

Proof. Letp € I; be fixed. From p € I we know that there is some g € G with
LM(g)|LM(p). Since z,...,z; do not appear in p, they also do not appear in
LM(g) and thus not in g, by the choice of the monomial ordering. Sog € G N
ki, ..., Ty O
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Example 2.4.7. Consider
I=(+y+z-1y+o+2-12"+o+y—1) Cklz,y,z2].
The reduced Grobner basis of I with respect to the lexicographic monomial or-
dering with = > y > z consists of the following 4 polynomials:
g=x+y+2"-1
Go=y —y—2"+z
g5 = 2y2* + 24 — 22
ga =28 42t 1428 - 2 =2 (2 - 1)} (* + 22— 1).

Thus
I'Nkly, 2] = (92,95, 94)
and
I N k[z] = (g4)-
In particular, the projection of V(I) onto the third coordinate consists of 0, 1 and
—1+ V2. A

Application 2.4.8 (Finite varieties). Let/ C k[x]beanideal. We can check whether
V(I) is finite, i.e. whether [ is a 0-dimensional ideal (see Theorem|1.4.16). To this
end we compute generators for the ideals I N k[z;], as demonstrated in Theorem

[2.4.6) We then just check whether I N k[z;] # {0} holds for all <. In case this is
true, consider M; := V(I N k[z;]) C A'. Then

V() C My % -+ x M,

and we can directly check the finitely many elements from M; x --- x M, for
membership in V(7). A

Example 2.4.9. With the equations from Example[2.4.7we obtain
I'Nk[z] = (ga(2)), I NEly] = (94(y)) and I N k[z] = (ga(2)).
So V(I) is indeed finite, and contained in
{0,1, -1 £v2}* C K®.
We then find

1 1 0 0
V)= (-1+v2)| 1 |,[o ], [1],]0 : A
1 0 0 1
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Application 2.4.10 (Inverse images of ideals). Let ¢: k[z] — k[y| be a homo-

morphism of k-algebras, given by o(x;) = p; € k[y]fori = 1,...,n. Let J =

(91,---,9s) € K[y] be an ideal. We want to compute generators for ¢~ '(.J), see

Theorem [1.4.13| for the geometric interpretation. The following theorem shows
how to reduce this to elimination. A

Theorem 2.4.11. Let.J := (&1 — p1, ..., Zp — Py G1s - - - Gs) C k[z, ). Then

o™ (J) = J N kla).

Proof. For every (commutative) ring R and a € R™ the evaluation map

Rlz1, ... 2m) & R
pplay, ... an)
has kernel (z; — ay,..., 2, — a,). This can be seen easiest in case a = 0, the

general case follows with a linear transformation. So the homomorphism

Y klz,y] — E[y]

T = D;
Yi = Y;

has kernel (1 — p1, ..., 2, — p,). We also have ¢ = ¢ on k[z]. This implies
() = 7HT) N k]

and the claim now follows from the following identity in k|, y]

PHT) = (g1s- -, gs) + ker().

Here "D" is obvious. For "C" we use that for all p € k[z, y] we have

U(p = ¥(p)) =v(p) — ¥(p) =0.
Sop € v~1(J) implies

p=v{@)+{—v{) € (g1,--,9s) + ker(¥). O
\;7-/ €ker(y))
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Example 2.4.12. Consider the following morphism of varieties:
p: A? — A3
(a,b) — (ab,ab?, a?).
On the level of coordinate rings it corresponds to the following homomorphism:

p*: klz,y, 2] = klu, o]

T — uv
2

Y = uv
z e ut
With the above described method we can compute

ker(p*) = (a* — y%2).
By Theorem[.4.13|we thus have
p(A?) = V(" — y?z).

We can see that the full y-axis is contained in p(A?), the image of p however only

contains its point (0, 0, 0). A
Application 2.4.13 (Intersection of ideals). Let I = (pi,...,ps) and J =
(q1,-..,q-)beidealsin k[z]. Generators for the product I.J are easy to find: just

take the pairwise products p;g;. It is harder to compute generators for the in-
tersection / N .J. The following Theorem shows how to do that with elimination
(already settled in Application[2.4.5). A

Theorem 2.4.14. Lett be a new variable and () the ideal generated by

tpla>tpsa<1 _t)qlaa(l _t)QT

ink(x,t]. Then
InJ=Qnkxl.

Proof. For"C"letp e INJ.Fromp =1tp+ (1 —t)pwegetp € Q.
For "D" let
Klz) sp=1t> hipi+(1—1))  gjq; €Q,
( J

where h;, g; € k[z,t]. Substituting ¢ = 0 we obtain p € J, substituting ¢ = 1
yieldsp € I. O
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Application 2.4.15 (Homogenization of an ideal). For I C k[zy,...,z,| welet
]h: (ph |p€-[) gk[$07"'7xn]

be its homogenization (see Theorem [3.3.18|for the geometric interpretation). If
I = (p1,...,ps), thenin general we will have

(pila?pg) g Iha

see Remark|3.3.19. We now want to compute generators for I”. To this end, we
call a monomial ordering < degree compatible, if

la| < [B] = a=<p

for all o, 5 € N™. For example, the graded-lexicographic monomial ordering is
degree compatible. The following Theorem shows how to compute generators for

I". A

Theorem 2.4.16. Let < be a degree compatible monomial ordering on N™ and G a Grobner

basis of theideal I C k[xy, ..., x,| withrespectto <. Thenin k|xy, . .., ,| we have
I"=(¢"|1g€q).

Proof. Onk|xy,...,x,| we define a monomial ordering by

ah -2 < aie’ e 2 <2Por (o =Bandr < s).

Let G" = {¢"| g € G}. We show that G" is even a Grobner basis of I with
respect to ¢, this will imply the statement.
For0 # p € klxy, ..., x,| we have

deg (LM< (p)) = deg(p),
due to degree compatibility of <. This immediately implies
LM<’(ph) = LM<(p)
forallp € k[z1,...,z,). By Lemma3.3.16(;) every homogeneous g € I" is of the
form
q =P
for some p € I. Thus
LM (q) = 25 - LM (p").
Now there exists some g € G with
LM(¢") = LM«(g) | LM(p) = LM (p"),

since G is a Grobner basis of 1. This implies LM/ (¢")|LMx/(q), what was to be
shown. 0
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Projective Varieties

3.1 Projective Spaces

Definition 3.1.1. Let K be a field and V' a K -vector space.
(1) The projective space P(1/) is the set of all one-dimensional K -subspaces of V.
(i7) The dimension of a projective space is defined as

dim P(V) := dimg (V) — 1.

(#i9) IfW C Visa K -subspace, then P(11) is called linear or projective subspace
of P(V). Linear subspaces of P(V') of dimension 0, 1,2, dim P(V') — 1 are called
(projective) points, lines, planes, and hyperplanes, respectively.
(v) We write

P"(K) :=P(K")

and call P"( K) the n-dimensional projective space over K. A
The elements of P(V') are the sets [v] = K - v for 0 # v € V. Here we have that
[v] = [w] & 3Jce K* v=cw.

Definition 3.1.2. Elements of P"(K) are often denoted in homogeneous coordi-
nates. For 0 # (ay, ..., a,) € K" we write

(ap:...:ay):=[(ag....,a,)] = K- (ag,...,a,) € P"(K).

The colon notation indicates that not the vector but rather the line spanned by
the vector is meant to be the element of the projective space. Note that the point
(0:...:0)is notdefined. We have

(ag:...:apn)=(bg:...:b,) & Jc€ K* a;=cbh; fori =0,... n.

51
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One can also use the following characterization:

(ao L an) = (bo L bn> = (libj :Cljbi foralli,j = O,...,?’L.
This is because two nontrivial vectors (ao, . . . , ), (bo, - . . , b, ) are collinear if and
only if the matrix
ayg ap - Ay,
bo by --- b,
hasrank 1, i.e. ifall 2 x 2-minors vanish. A

Example 3.1.3. (1) P°(K) consists of exactly one point.
(17) P! (K) can be identified with K U {oo} via

P'(K) — K U {oo}
(a:b)—a/bifb#0
(a:0)— oo.

Geometrically this corresponds to intersecting lines through the origin in K2 with
the line b = 1. Every line through the origin corresponds to exactly one point on
the line b = 1, except for the line b = 0, which corresponds to co.

b

[/

(¢i7) Regarded as a set we have the identification P"(R) = S"/ ~, where S" is
the unit sphere in R"*! and @ ~ —a holds for all a € S™. In terms of differential
geometry this is a compact, smooth, and for n > 2 non-orientable manifold of
dimension n.

(1v) O, P(V) are linear subspaces of P(V'). We have dim() = —1 because } =
P({0}). Every intersection of linear subspaces is again a linear subspace:

ro-e ()

Alinein P(V) is of the form P(V) for a 2-dimensional subspace W C V. A
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Theorem 3.1.4. Let Uy = P(W,) and Uy = P(W,) be linear subspaces of P(V'). Then
we have
dim U1 + dim U2 = dlIIl(Ul N UQ) + dlmP(Wl + Wz)

In particular, from dim Uy + dim Uy > dim P(V) it already follows that Uy N Uy # ().
Hence any two lines in P?( K) intersect.

Proof. Follows immediately from the dimension formula for vector spaces
dimg Wi + dimg Wo = dlmK(W1 N Wg) -+ dlmK(W1 + Wg)
when we subtract 2 on both sides. O

Definition 3.1.5. Let f: V < W be an injective linear map. Then

P(f): P(V) — P(W)

[v] = [f(v)]
is a well-defined map. If f is bijective, then P(f)~' = P(f~!) and P(f) is called
a projectivity from P(V') to P(W). A

Theorem 3.1.6. The projectivities from P(V') to itself form a group, which is isomorphic to
PGL(V) := GL(V)/ (K™ -idy).
Proof. Let P be the group of projectivities. Consider the group homomorphism

GL(V) — P
f=P(f).

The kernel consists of those f € GL(V') for which every vector is an eigenvector.
It is well-known that these are precisely the multiples of the identity (see Exercise

64). []

a b

Example 3.1.7. For f = ( . d ) € GLy(K') we have

P(f): (z:y) — (ax + by : cx + dy).

Under the identification P* (K') = KU{co} from Example[3.1.3|(ii) this translates

to the map
ar +b a

— . 00—
cr +d c
a so called Mobius transformation of the line. AN

Y
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Construction 3.1.8. In P"(K) the set
H:={(ap:...:a,) | a =0}

is a hyperplane, and in particular we have H = P"!(K). There is a bijection
from the complement

P"(K)\ H > K"
(“0“--1%)H(ﬂ,...,“_n)

Qo Qo

(L:by:oo:by) 4 (byy ..., by).
More generally, for every hyperplane W C V there is a bijection

W —P(V)\P(W)
w — [v 4w,

where v € V' \ W is arbitrary but fixed (see Exercise[65). From this point of view
P(V) is a disjoint union of W and P(W). The points in P(1¥) are the points at

infinity with respect to .
/ Lo /
\ P"\ H 2 K"
\
T2
7 H
/

X1 A

3.2 Graded Rings
In this chapter we are going to discuss the underlying algebra of projective spaces.
For this purpose always let (G, 4, 0) be an abelian group.

Definition3.2.1. (i) A G-graded ringis a ring R together with additive subgroups
R, C Rforevery g € G, such that

R=EPR,

geG
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and Rg . Rh Q Rg+h

forallg,h € G.

(4i) An element @ € R is called homogeneous if a € R, for some g € G. In case
a # 0 we call deg(a) := g the degree of a. We set deg(0) := —o0.

(¢i7) Every element a € R has a unique decomposition

a = E ag,

geG

where a, is homogeneous of degree g, and just finitely many a, are # 0. With
this notation we call a, the homogeneous component of degree g of .

(iv) If R, S are two (G-graded rings, then a ring homomorphism ¢: R — S'is
called graded if
e(Ry) €5,

holds forall g € G. A

Example 3.2.2. (i) Every ring R can be trivially G-graded by R, := Rand R, :=

{0} for g # 0.
(41) On R = k[z] a Z-grading is uniquely defined by

k C Round deg(z;) = 1.

Here R, consists precisely of the polynomials

P=Y_ paz®

la=d

and R, = {0} for d < 0. This grading is also called the standard grading of k[z].
(i17) More generally we can prescribe k£ C Ry and deg(x;) = d; € Z, and obtain a
unique such grading on R = k[z], called a weighted degree-grading.

(iv) For R = k[z] there is for instance also the Z"-grading with R, = k - z* for
a € N"and Rz = {0} for 8 € Z™ \ N". A

Lemma 3.2.3. Forevery G-graded ring Rwe have 1 € Ry, and Ry is a subring of R.

Proof. Write

12269

geG
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with e, € R,. For homogeneous a € Rj, we then have
a=1-a= Z €g
g

and from ega € Ry, it follows that ega = a holds. Here we used the uniqueness
of the decomposition into homogeneous summands. This implies eya = a for all
a € R, and henceeg = 1. O

Remark 3.2.4. In graded rings computation are sometimes easier than in un-
graded rings. For example, below we are often going to use the following fact:

If
a = Z bicz’

and both a and all ¢; are homogeneous, then the b; can be assumed as homoge-
neous as well, with

deg(b;) = deg(a) — deg(c;).

This is because we can replace every b; by its homogeneous component of degree
deg(a) — deg(c;) and the equation will still hold. A

Lemma 3.2.5. Let R be a G-graded ving and I C R anideal. Then the following condi-
tions on I are equivalent:

(i) acl = a, € forallge G
(i) I =@, (INR,)
(i1i) I is generated by homogeneous elements.
Proof. Exercise[67 O

Definition3.2.6. Anideal ] which satisfies the conditions in Lemmal[3.2.5lis called
homogeneous ideal. A

Example 3.2.7. (i) Let p: R — S be a graded homomorphism. Then ker(¢p) is
a homogeneous ideal. More generally, ¢ ~*(/) is a homogeneous ideal for every
homogeneous ideal J C S.

(i1) If Ris Z-graded with R; = {0} for d < 0, then

R.=EPRy

d>1
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is ahomogeneous ideal. R, is called the irrelevantideal. If the ring R, is a field,
then every proper homogeneous ideal is contained in R, . In order to give the
set of proper homogeneous ideals multiple maximal elements, R, is often disre-
garded.

(i17) With respect to the grading in Example[3.2.2|(iv) the homogeneous ideals are
precisely the ideals generated by monomials (cf. Definition[2.1.2). A

Lemma 3.2.8. Let R be a G-graded ring.
(i) Sums, products, and intersection of homogeneous ideals in R are again homogeneous.
(i1) If I is a homogeneous ideal, then R /I becomes G-graded via the grading

(R/1)y = Ry/1
forg € G.

Proof. (i) is clear, for example with the property (i) in Lemma[3.2.5 For (i) first
note that the R, /I are additive subgroups of R/I. It is also clear that R,/I -
Ry/I C R/l aswellas R/I = 3 R,/I. It remains to show that the sum
is direct. Solet a, € R, such that

> a,=0inR/I.
g9

Thismeans ) a, € I, and from the homogeneity of [ it follows a, € I forall g.
This implies a, = 0 forall . O

Remark 3.2.9. Let I be a homogeneous ideal of the graded ring R, and let R/
be equipped with the grading just introduced. Then one can easily show that the
homogeneous ideals of R/ exactly correspond to the homogeneous ideals .J of
Rwith I C J. A

From now on we assume that GG is an ordered abelian group, i.e. there is a total
ordering < on G such that

a<b=a+c<b+c

forall a,b,c¢ € G. Almost always we will have G = Z anyway, and in this case
such an ordering exists. Our ring R from now on shall always be G-graded.

Lemma 3.2.10. Let I be a proper homogeneous ideal in R. Then I is a prime ideal if and
only if for all homogeneous a, b € R we have

abel =aclorbel.
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Proof. Oneimplication istrivial. Nowleta,b € R, not necessarily homogeneous,
with a,b ¢ I. Furtherlet g, h € G be the maximal indices with respect to < with
ag ¢ 1,b, ¢ 1. Then we have
(ab)gin = agby + - - -
er
because for ¢’ # g,h' # hwith ¢’ +h' = g+ heither g < ¢’ or h < A’ must hold.
From the assumption it follows that a,b, ¢ I, and hence also (ab),+ ¢ I. Since
I is homogeneous, we obtain ab ¢ I. O

Lemma 3.2.11. All minimal prime ideals over the homogeneous ideal I are also homaoge-
neous.

Proof. Exercise[69] O

Corollary 3.2.12. For every homogeneous ideal I of R, the radical /T is the intersection
of all homogeneous prime ideals over I. In particular, \/ I is itself homogeneous.

Lemma 3.2.13. Let R bea G-graded vring and M C R a multiplicative subset consisting
of homogeneous elements. Then the localization M~ R becomes a G-graded ring via the
grading
_ a
(M7'R), == {E ImeM,ac Rdeg(mw} .

Proof. Obviously (M ' R),isanadditive subgroup of M 'R, and we have (M ~'R),-
(M™'R);, C (M™'R) .1 aswell as

M™'R=> (M'R),.

It remains to show that the sum is direct. So let
ag  Dog0gllpzgmn .
0= L =59 22070 2 in IR,
Mg Hh mp

g

be a finite sum with a, € R homogeneous, m, € M, and

deg(ay) = deg(my) + g.
Then there is an m € M such that

m - (Z%Hmh> = 0in R.

g h#g
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Here the summand with index g is homogeneous of degree

deg(m) + g + deg <H mh> :
h
Since these are different degrees for different g, it follows that

m~ag-Hmh:O
h#g

for all g, and this implies ;_gq =0in M~ 'Rforallg. O

Definition 3.2.14. Let M be a multiplicative set consisting of homogeneous ele-
ments in R. The subring

a
R(M) = (MilR)O = {E ‘ a € Rdeg(m)}

of the localization M ~! R is called homogeneous localization with respect to )/ .
We will learn about its geometric interpretation for example in Theorem |4.1.20
below. A

Example 3.2.15. (i) Let m € R be homogeneous of degree g € G. Set M =
{1,m,m?, ...} and write

a
Rm) = Ry = {H |a€ R,,.g}.

(i7) Let p C R be a homogeneous prime ideal, and M the set of all homogeneous
elementsin R \ p. Then M is a multiplicative set and we call

Ry == Ry = {% | a,m € Rhomogeneous,m ¢ p,deg(a) = deg(m)}

the homogeneous localization of Rin p.
(4ii) Note that there is a natural homomorphism R — M 'R, butin general there
is no such homomorphism from R to R(yy). A

3.3 Projective Algebraic Varieties

Again let k be an arbitrary field and K an algebraically closed extension field. We
write
P" = P"(K) = P(K™).
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Note that with regard to Definition[3.1.]jwe consider K"** as K -vector space, and
not as k-vector space. Thus elements of P™ are one-dimensional K'-subspaces
of K"*1. From now on we set x = (o, ..., x,) and always equip k[z] with the
standard grading. For homogeneous p € k[z] andv € K" aswellas A € K we
have

p(A - v) = AP p(v).

Soifahomogeneous polynomial vanishes on a point, it vanishes on the entire line
spanned by that point, and hence for a = [v] € P™ the equation

pla) =0 & p(v) =0

is well-defined. Similarly we write p(a) # 0if p(v) # 0. For an arbitrary p € k[z]
write

P=po+p1+- -+ D4

with homogeneous p; € k[z]; and define

p(a) =0 & po(a) =pi(a) =+ = pa(a) = 0.

Because of
pA-v) =po+ A pi(v) + A2 pa(v) + - + A+ pa(v),

this is equivalent to
p(Av) =0forall\ € K,

i.e. pvanishes on the entire line spanned by v.

Definition3.3.1. Let P C k[z]and ) # V C P".
(1) We define
V. (P)={aeP"|pla) =0forallp € P}
and
Z,(V):={pe€klz]|pla) =0foralla € V}.

We call V, (P) the projective variety defined by P, and Z, (V) the vanishing
ideal of V.

(ii) A set of the form V, (P) with P C k[z] is called a projective k-variety.

(222) We set

‘7::Ua:{veKnﬂ\U%O,[U]GV}U{O}

aeV



3.3. PROJECTIVE ALGEBRAIC VARIETIES 61

and call V the affine cone over V.
(2v) We set
Z,(0):= (zo,...,2n)

(the irrelevant ideal) and

0= {0}.
(v) For homogeneous p € k|x] let
Di(p) :=={a € P" | p(a) # 0} =P"\ Vi (p). A

Remark 3.3.2. (i) For arbitrary V' C P" we have k[z]

In particular, Z, (V') is a radical ideal. On the other hand Z, (V') is by the defini-
tion of "p(a) = 0" also a homogeneous ideal.

(ii) For M C k[z] let M), be the set of all homogeneous components of elements
in M, and I = (M,,) the ideal generated by this set. Then we have

V(M) = V(M) = V(D) = Vs (V)

(127) We have
V—i‘ (k[i]) = V—‘r((x(h s axn)) = @

and

For homogeneousideals I, J, I, (A € A) we have
VD) UV (J) = Vi(I0J) = Vi (1))

and

() V(L) = Vs (Z A) .

AEA AEA

(iv) For arbitrary subsets V), C P (A € A) we have

@IUV/\ and @:ﬂff,\.
A A A A
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W) If I C k[z] is a homogeneous ideal, then we have

V. (I) = V({I) C A,
This is because for every point v € V(I) we have [v] C V(I), since I is generated

by homogeneous elements. Note that this is not true for I = k[z], because () =
{0} # (. For I = (xy,...,x,) howeveritis true. Further note that the statement
is also not true for non-homogeneous ideals. For instance, by definition we have

Vi(wo—1)=0C P,V (wo—1) = {0},

but
V(zg—1)={(1,r) |r € K} C A% A

Definition 3.3.3. The k-Zariski topology on P" is the topology with the projective
k-varieties as its closed sets. By Remark[3.3.2](¢77) this indeed is a topology. A

Lemma3.3.4. (i) Asubset V' C P"isclosed if and only if V C A" is closed.
(ii) The k-Zariski topology on P™ is noetherian.

Proof. For (i) firstlet V. = V, (I) for a homogeneous ideal I # 1 (cf. Remark
(¢7)). Then by Remark (v) we have V= V(I), which is closed in A"
Conversely let V C A"+ beclosed. Then I := I(\7) is a homogeneous ideal # 1,
because V is nonempty and a union of lines through the origin. For W := V(1)
we then have

W=v(I)=V,

where we have used that V is closed for the last equality. ButthenV = W =
V. (I)is closed.
For (#7) let

Vo2Vio---

be a descending chain of closed sets in P". Then
HhoViD-

is a descending chain of closed sets in A"*!. This chain becomes stationary, and
thus this is also true for the initial chain. O

Theorem 3.3.5. Let [ # 1 be a homogeneous ideal in k|x), and let V' C P™ be a subset.
Then we have
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i) Ty (Vi (1)) = VT
(i) Vi(Z,(V))=V.

(ii1) V > I, (V') is a bijection between the closed subsets of P and the homogeneous
radical ideals # 1in k|x]. The inverse mapping is given by [ — V, (I).

Proof. (i) can be seen by

—

T (V.(D)) = TV (1)) = IOV(D)) = V1,

where we have used Remark and Theorem[1.2.14 (i7) follows immediately
from the definition of the Zariski topology, because V, (Z, (V)) is obviously the
smallest closed superset of V. (ii7) follows immediately from (z) and (7). O

Remark 3.3.6. In the affine case, the empty variety is defined precisely by the
ideal I = (1) and by no other ideal (cf. Theorem|L.2.11). In the projective space, {)
arises either from a homogeneous system of equations that is already unsolvable
in A", i.e. from the trivial homogeneous radical ideal k[z], or from a homo-
geneous system that defines {0} in A"*!, for example from the irrelevant ideal
k|z]+. Both are homogeneous radical ideals, and in Theorem [3.3.5we have cho-
sen k[z] .

The (not necessarily radical) homogeneous ideals that define ) C P" can be de-
scribed even more precisely. In order to do this we consider the ideal quotient

(I:J)={a€Alal CI},

and further define

o0

(=)= J9.

d=0

Note that (1 : J°°) as the union of the ascending chain
IC{I:J)C({:J)C---
is again an ideal. It is called the saturation of / with respectto .J. A

Theorem 3.3.7. Let I C k[x] be a homogeneous ideal and m = (xo, . . ., z,,) the irrele-
vant ideal. Then the following are equivalent:

@ Vi(I) =10



64 CHAPTER 3. PROJECTIVE VARIETIES

(i3) m? C I forsomed > 0
Gii) (I:m>) = (1)
(iv) klz|q C I forsomed > 0.

Proof. We have (I : m™) = J,.,(I : m?) and therefore
(I:m>®)=(1) & 1€ (I:m%) forsomed >0 < m? C I forsomed > 0.

This shows the equivalence of (i7) and (ii). For (i))=-(ii) let V = V,(I) = 0 and
I # 1. From Theorem3.3.5]it follows that

m=7Z,(V)= \/77

and in particular we have 27 € I for all i and some r. This implies m"™+Y) C I,
as can be easily verified. The implication (i7)=-(iv) follows immediately from

k’[z]d - md.

(iv)=(i) holds because V, (zd, ... z9) = 0. O

rn

Definition 3.3.8. Let V' C P" be a projective k-variety. Then the Z-graded k-
algebra
ki[V] = k[z]/Z.(V)

is called the projective coordinate ring of V' (the grading is defined as in Lemma

B.2.8/(ii). A

Remark3.3.9. Let V C P be a projective k-variety.
(1) The affine cone V' C A™*! over V is an affine k-variety, and we have Z(V) =
Z. (V). Therefore

holds for the ungraded rings.
(¢i) The elements of k, [V] cannot be regarded as functions on V' as in the affine
case. Although the condition p(v) = 0is well defined forp € k. [V]andv € V,
the value p(v) is not. However if p,q € k. [V] are homogeneous of the same degree,
then
o 20
q(v)

is awell-defined map V' \ V,(q) — A®.
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(¢i7) For a homogeneous ideal J C k. [V] we define
W(J) ={veV|p(v)=0VpeJ},
and for a homogeneous element p € &, [V]| we define

Dv.+(p) ==V \ Vi (p).

The homogeneous radical ideals of k, [V'] correspond to the homogeneous radical
ideals of k[z] that contain Z, (V'), and these in turn correspond to the projective
k-subvarieties of V. Thus we obtain the following analogue to Remark([l.4.4} The
map Vy . (-) yields a bijection between homogeneous radical ideals # 1 in &k, [V]
and k-subvarieties of V. A

Construction 3.3.10. Fori € {0,...,n} consider the well-defined bijection

¢i: Di(z;) — A"

(ag :...:ap) — (@,...,ﬁ,...,a—n)
a; a; a;
(by :...:1:. . :by) < (by,...,by)
For simplicity we restrict ourselves to the case i = 0. For 0 # p € k[z1,...,x,]

we define

ho._ .deg(p) L1 Ln
pi=x, - p .
Zo Zo

0":=0
and call p" the homogenization of p by 7. For deg(p) = dand p = Zla\ <qPa®
we have
d— a
pr= Y paag g
|| <d

Thus we make p homogeneous by multiplying every monomial in p, which does
not have the maximal degree d, with x until it has degree d. For example we have

2 h_ .2 2
(2] —zo+ 1)" = 27 — xox2 + 7.

By the definition
(1 'pQ)h = p? -pg
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is clear. Conversely let ¢ € k[xy, ..., z,| be homogeneous. Then we set
G:=q(l,z1,...,2,) € k[z1,...,2,]
and call § the dehomogenization of ¢ by ;. We obviously have
" =p,

and
zi - (§)" = q for some m > 0.

In the last equation m > 1 occurs if and only if the degree of ¢ decreases when
dehomogenized, that is when every monomial in ¢ is divisible by xy. Hence we
have m = deg(q) — deg(§). In the following lemma we show that the algebraic
construction of homogenizing and dehomogenizing precisely corresponds to ap-
plying ¢, on the geometric side. A

Lemma 3.3.11. With the previous constructions we obtain forp € k[z1, ..., x,] that
¢ (V(p) = Vi (p") N Dy (o),
and for homogeneous q € k[xo, ..., x,|that
$o (Vi (@) N Do(z0)) = V().
Proof. We have

qbgl(V(p)):{(ao:...:an)|a0#0,p(Z—;,...,Z—Z>: }
:{<ao:-..:an>ia#o,aﬁeg“’*p(z—}..-,i—z):O}
={(aop:...:a,) | ag # 0,p"(ag,...,a,) =0}
= V+(ph) N D (zo)
and
aq Ay,
b0 (Ve(g) D (20)) = (——) [y # 0, q(do, .. an) = o}

(__) o # 0, 6t (1__) :o}
ag ap Qo Qg

(b, bo) | G(bas ... by) = 0}
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/ 4 (z0) = A"

V+ (.’I'())

/

T
Theorem 3.3.12. Foralli € {0,...,n}themap ¢;: Di(x;) — A" isa homeomor-

phism with respect to the Zariski topologies.

Proof. ¢; is bijective and by Lemmal[3.3.11limages and preimages of closed sets are
closed. O

Remark 3.3.13. Theorem[3.3.12/implies that
P" =Dy (x9) U- - UDy(xn)
is an open covering with subsets homeomorphic to A™. A

Definition 3.3.14. Let I C k[zy,...,x,] be an ideal. The homogenization I" of |
is the homogeneous ideal

I = (ph]pel)gk[xo,...,xn]. A
Corollary 3.3.15. We have
o (V(1)) = Vo (I") N Dy (20).
Proof

oy (VI (ﬂv >=ﬂ%%wm

pel pEI

.130 ﬂ m V+ D+ Io) N V+(Ih)

pel

where we have used Lemma[3.3.11l O
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Lemma3.3.16. Let [ C k[xq,...,x,] beanideal.

(i) Every homogeneous q € 1" is of the form q = xf; - p" forsomep € I.

(i7) We have VIh = /T " In particular, the homogenization of a radical ideal is again a
radical ideal.

Proof. For (@) writeq = >, g:p! with g; € k[zo, ..., z,]and p; € I. Since gand all
pl are homogeneous, we can assume that the g; are homogeneous as well. Thus

q= Z g gt

with deg(g;) + deg(p;) = deg(q) =: dand r; = deg(g;) — deg(g;). We have

d' = deg <Z §¢Pz‘) < d,

(2

since every term in the sum has at most degree d. We obtain

h
ngd’ <Z §¢pi> _ ngd’ ) ngg’*deg(éi)fdeg(pi)glhp?

i

md—deg(éi)—deg(pi)gzzp?

— Z To g = q.

This shows (7). (z¢) is Exercise|70| O

Definition 3.3.17. For every affine k-variety V' C A" the set

V=g, (V) C P

is called the projective closure of V in P" (with respect to ¢, ). Often we will
suppress ¢ in the notation. Since P" precisely induces the Zariski topology on

A" wehave VN A" = V. A
Theorem 3.3.18. Let I C k[xy,...,x,] beanideal. Forthe projective closure we then
have

W =V, (]h) and T, (W) —Th = \/Th — I(V(I))h,
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Proof. Let V' := V(I). The first assertion follows from the second by applying
V. (-). Sofirstlet p € /I = Z(V). Then p* = 0 holds on ¢;'(V) by Lemma
3.3.11, But then p" = Oalso holdson ¢y (V) =V, i.e. p" € Z, (V). This shows
VI'C1I, (V) . Converselylet g € Z, (V), and w.l.o.g. g homogeneous. Write
g = xy'gy with g { ¢1. Then g; = Oholdson D, (z7) NV, and hence §; = 0 holds
on V again by Lemma3.3.11, This implies §; € v/I, and g; = g/ holds because
xo 1 g1. Thus g; and likewise g are in \/.Th. O

Remark3.3.19. For I = (py,...,ps) we have
(of,....pk) 1"
but in general this is not an equality. For p; = x1,ps = x1 + 1 we have
I'=(p1,p2) = (1)
and therefore I = (1). But
(p’f,pg) = (21,21 + x0) # (1). A

Definition 3.3.20. (i) Let V C A" be an affine k-varietyand V' C P™ its projective
closure. Let H = V, (xy) C P". Then the points in

HNV =V\V

are called the points at infinity of V. They form a closed setin H = P~ 1.
(ii) For 0 # p € k[xq, ..., x,] write p = pg + p1 + - - - + pg with p; homogeneous
of degree i, p; # 0. Then

LF(p) := pa

is called the leading form of p. Note that
LF(p) = p"(0,24,...,2,)

holds.
(¢i7) For anideal I C k[xq,...,z,] theideal

LE(I) := (LF(p) | p € 1)

is called the leading form ideal of /, a homogeneous ideal in k[xy, ..., z,]. A
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Corollary 3.3.21. Let I C k[xy,...,x,| beanidealand V = V(I) C A™. Let H =
V. (x0). Then we have

VNH=V. (LF(I)) C H=P" !

where we consider H = P! with homogeneous coordinates (xy : ... : x,). In particu-
lanwehaveZ,(V N H) = \/LF(I)ink[xy, ..., z,).

Proof. Because V =V, (I"), we obtain in P" that
VOH =V, ((w0) + 1") = V. ((w0) + LF(D)),

since p" = LF(p) modulo (). When we restrict ourselves to H, we obtain
V. (LF(I)) C H = P, O

Example 3.3.22. (i) The projective closure of an affine hypersurface

V(p) C A"
with 0 # p € a1, 2] is
V=V,0"
because (p)" = (p"). If p is square-free, then 7, (V) = \/(p) = (p)" = (").

The points at infinity of V are the roots of LF(p) in V, (zy) = P 1.
(1) For p € k[zy, o] with deg(p) > 1 consider the affine curve V = V(p) C A2
There is a factorization

d
=c- H a;x1 + b;xs)
1=1

with (a; : b;) € P (k),c € k*, where the (a; : b;) are uniquely determined.
This factorization can be obtained by factorizing LF (p)(x1, 1) € k[x] over k and
re-homogenizing the factors. Hence the points at infinity of V' are just the

0:b:—a)eP>  i=1,...,d
or alternatively the points

(bii—ai>€P1:V+($U> Z:L,d
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(¢49) For p = 22 — x5 — 1 the set V(p) is a hyperbola. Since
LE(p) = 22 — 22 = (21 + ) (21 — 1),
we obtain the two points at infinity

(0:1:1) (0:1:-1).

/
/
(v) For p = (x1 — a1)* + (w9 — ag)? — r? the set V(p) is a circle. Because
LE(p) = a1 + a3,
there are the two points at infinity
(0:1:v/=1)  (0:1:—=V~=1),

which cannot be seen in the real image however.

/
(v) For p = 1?2 — x4 the set V(p) is a parabola. Since

LF(p) = a3,
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we just obtain the single point at infinity

(0:0:1).
/ A
Remark3.3.23. Evenif ] C k[x]isaradicalideal, this does not have to be the case

for LF (7). This can be seen for instance in the last example I = (2% — x5). Here
we have LF(I) = (2?). AN

3.4 The Fundamental Theorem of Elimination Theory

In Section[I.4we have seen that the image of an affine variety under a morphism
is not necessarily closed, i.e. is not necessarily again an affine variety. An example
is the projection of the variety V(z 25 — 1) € A? onto the x1-component. The
image in this example is A' \ {0}.

o)

V(rixg — 1)

The reason that the image fails to be closed is that the preimage of a pointa € A'
"vanishes towards infinity"” when a goes to 0. In the projective space we now also
have points at infinity available, which is the reason why the situation is different.
In this section let

£:<l’0,...,l’m>, g:(ybayn)
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be two tuples of variables. A polynomial p € k[z, y| is called homogeneous in »
if it is homogeneous in the polynomial ring (k[y|)[z] with respect to the standard

grading. This just means that for every monomial z*y” of p we have |a| = d for
some fixed d € N. Now let py, ..., p, € K[z, y| be homogeneous in z. Then the
following set is well-defined:

X :={(a,b) e P" x A" | p1(a,b) = --- = p.(a,b) = 0}.
Let

T P x A" - A"
(a,b) — b

be the projection onto the second component.

Theorem 3.4.1 (Fundamental Theorem of Elimination Theory). The set (X ) is k-
closedin A™.

Proof. Forb € A" we have
ben(X) & Vilpi(z,b),...,p(z,b) #0.
Let R = K|[z] equipped with the standard grading. From Theorem3.3.7it follows
ben(X) © Rag (pi(z,0),...,pr(2,0)) Vd > 0.
Ford > 0let
Yo={be A" | Ry & (pr(2,0),...,pr(2,0))} .
Then we have

Y921 2%, 2+ and [ )Yi=r(X).

d=0

Hence it suffices to show that Y is closed for all large enough d. Let d; = deg, (p;)
and d > max{dy,...,d.}. Then

b ¢ Yd g Rd g (p1<£7 b)7 s 7p7'<£7 b))
< the 2” - p;(z, b) with |o| = d — d; span the entire space R, over K.
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For the second equivalence we have used Remark [3.2.4. When we expand the
- p;(z,b) in a suitable basis of R, (e.g. the monomial basis) and write the co-
efficients into a matrix B, then the entries of B are polynomials over & in b and
altogether we obtain

b¢ Y, < rank(B) > dimg Ry.
Equivalently we can rewrite this as
be Y, < rank(B) < dimg Ry
& all minors of B of size dim g R, vanish.
The last condition defines a k-closed set. O

Remark 3.4.2. The Fundamental Theorem of Elimination Theory states that for
all z-homogeneous polynomials p1,...,p. € klz,y| thereareq,...,qs € k[y]
such that for all b € K™ we have

<E|a e P"(K) : /\pi(a,b) = o) & /\qj(b) = 0.

That is, the existential quantifier can be eliminated. A

Remark 3.4.3. All varieties are noetherian in the Zariski topology and are there-
fore quasi-compact, i.e. every open cover has a finite subcover. In non-Hausdorff
spaces the notion of quasi-compactness is often not quite helpful. The Funda-
mental Theorem of Elimination Theory is some kind of an alternative compact-
ness property for P". A Hausdorft space X is compact if and only if for all Haus-
dorft spaces Y the projection

T X XY =Y

maps closed sets to closed sets. This can be proven in Exercise[73] A

We also obtain the Fundamental Theorem of Elimination Theory for the case P™ x
P". Let

z= (o, ,Tm) Y= (Yo, -+ ¥n)
and let p; € k[z, y] be bihomageneous, i.e. homogeneous in both x and y. Then

X:{(a,b)GIP’mx]P’”|p1(a,b):---:pr(a,b):0}

is well-defined. Let 7: P™ x P — P" be the projection.
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Corollary 3.4.4. Theset w(X) C P"isclosed.
Proof. Let X’ C P™ x A™*! be the set of roots of the p; and let
' P ox AnH 5 AT

be the projection. By Theorem [3.4.]/the image 7/(X’) is closed in A™!. On the
other hand we obviously have 7/(X’) = 7w(X), and the assertion follows from

Lemma[3.3.4| (). O
Corollary 3.4.5. Letps,...,p, € k[xg, ..., T, be homogeneous andlet fo, ..., fn €
k[xo, ..., x| homogeneous of the same degree. Further let

V= V—i—(plv"'apr) g P

and assume that

VOV+<f0,...7fn> :(Z)
Then the image of the (well-defined!) map

f: V=P

@ (fola) s .t fula))
is closed in P™.
Proof. The graph

I'p:={(a,0) eP"xP"|aeV,b= f(a)}

can be defined bihomogeneously by the equations p;(a) = 0fori = 1,...rand

bj fr(a) = befi(a) =0
for j,k =0,...,n. By Corollary3.4.4|the set

f(V) ==(Ty)

is closed in P". O

In thelast corollary we can see how the Fundamental Theorem of Elimination The-
ory can be applied in situations where the compactness would be invoked in the
case of Hausdorff spaces. The set V' is quasi-compact in the Zariski topology and
the map f is continuous. Thus the image is again quasi-compact, and in Haus-
dorff spaces this implies that the image is closed.
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Chapter 4

Quasi-Projective Varieties

In this chapter we further generalize the notions of varieties and morphisms, to
reach amore flexible framework. In particular we obtain a suitable notion of mor-
phism for projective varieties.

4.1 Quasi-Projective Varieties, Regular Functions and
Morphisms

Definition 4.1.1. Let X be a topological space. A subset Y C X is called locally
closed in X, if it fulfills one of the following equivalent conditions:

(i) Y is relatively openin Y

(i1) There exists an open subset O C X and a closed subset A C X with Y =
O N A. A

Remark4.1.2. (i) Open and closed subsets of X are locally closed. Finite intersec-
tions of locally closed subsets of X are locally closed.
(i1) For alocally closed subset Y C X and Z C Y we have

Zlocally closedinY < Z locally closed in X.

(¢17) Inverse images of locally closed sets under continuous maps are locally closed.
A

Definition 4.1.3. A quasi-projective k-variety V' is a locally closed subset of some
A™ oder IP", with respect to the k-Zariski topology. If W C V is a locally closed

77
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(closed, open) subset, we call W a locally closed (closed, open) subvariety of V.
A

Remark4.1.4. Closed sets are defined by polynomial equations, open sets by their
complements. So a quasi-projective variety can be seen as the set of solutions to
a system of polynomial equations and inequations (and unions thereof). A

Definition4.1.5. Let VV C A™ (V' C P", respectively) be a locally closed subset.
(1) A (k-)regular function on V is a function

f: V= Al
with the following property: For all @ € V there exists an open neighborhood
U C V of a and polynomials p,q € k[z1,...,z,] (homogeneous polynomials
p,q € k[xg, ..., x,] of the same degree, respectively) with ¢ # 0 on U, and
p(b)
foy =22
®) q(b)
forallb e U.
(¢9) By O(V') we denote the set of all k-regular functions on the quasi-projective
variety V. A

Lemma4.1.6. LetV be a quasi-projective variet).
(i) The set O(V') is a k-algebra with respect to pointwise operations.
(ii) Forevery f € O(V') the set

Vv(f) :={aeV]fla) =0}

is closed in V', and the set
Dy(f) =V \Vv(f)
isopeninV.
@i If f € O(V) fulfills f(a) # Oforalla € V, then % is a regular functionon V.
() IfW C Vislocally closed and f € O(V), then f,, € O(W). The restriction map
O(V) — O(W) is a homomorphism of algebras.

Proof. (i) and (iv) are obvious. For (i7) it is enough to show that for eacha € V
there exists an open neighborhood U C V with U N Vy (f) closed in U. Now if
f = £ holds on an open neighborhood U of a, then Vi (f) NU = V(p) N U is

closed in U. Statement (i74) is easy, since f~! = % holdsonU, if f = § onU. [
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Remark 4.1.7. (i) For each quasi-projective variety V' and each locally closed sub-
set W C V the algebra O(W) is defined, since W itself is locally closed in A™ or
IP". For each inclusion W’ C W we have the restriction map O(W) — O(W’),
which is a k-algebra homomorphism.

(1) The property of being regular (of a function f: V' — A')is local with respect
to V. Thatis, whenever V' = | J,.; U; is an open covering, then

fregular < fi, regularforalli € I.

(i17) From now on we will say variety instead of quasi-projective k-variety. JAN

We will first show that the notion of a regular function coincides with the one
from Definition in case the variety is affine.

Theorem4.1.8. LetV C A" beclosedand s € k[V']. Then the canonical homomorphism
k[V]s = O(Dv(s))
is an isomorphism.

Proof. Injectivity: Take p/s™ € k[V]; and assume p/s™ = 0in O (Dy (s)). Then
Plp, o = 0,80ps = 0onV, and thus ps = 0in k[V]. This implies Z- = 0in
k[V]s.
For surjectivity let f € O (Dy(s)). By quasi-compactness of Dy (s) there exists a
finite open covering

Dv(S) :U1U"'UUT

and elements p;, ¢; € k[V] with

f= Pion U;.
q;

Without loss of generality we can even assume U; = Dy (s;) for certain s; € k[V].
From U; C Dy (q;) we conclude

U; = Dv(¢}s:),

and since
Di PiqiS;
— =——onl;
qi q; Si

we can finally assume
Ui = Dy (q:)
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as well as
pi = 0onVy(q;).
We now have
Pbigj = Pjdi
as elements of k[V], forall 4,5 = 1,...,r. This is because on Vy(¢,q;,) both sides
vanish, and on Dy (g;q;) = U; N U; we can divide by ¢,q; pointwisely and obtain

bi _ Pi

- )

4 gj
since both sides represent f on U; NU;. From Dy (s) = U; U- - - UU, we conclude
Vv(s)=Wiq....,q),
and Hilbert’s Nullstellensatz implies
s€ V(... q) CK[V].

So let
s =biqi + -+ bygy

for somem > landby,...,b, € k[V]. We set
p ::plbl + +prbr

and claim that

holds on the whole of Dy (). Fori = 1,...,r we indeed have

gp=Y_apibj =Y _qpibj =pi > _ q;b; = pis™,
j=1 Jj=1 Jj=1

and this means »

s™ g
Corollary 4.1.9. For every affine variety V- C A™ we have O(V') = k[V], i.e. every
regular function on V' is globally defined by a polynomial.
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Regular functions on a projective variety will be classified in Theorem below.
We first define and study morphisms between varieties. Also here we will later
ensure that the new definition coincides with the old one in the affine case.

Definition 4.1.10. (i) Let V, W be quasi-projective k-varieties. A k-morphism
from V to W is a continuous map

o:V—->W
such that for every open subset W/ C W and every g € O(W’) we have
9001, 1 € O~ (W),

(i7) A morphism ¢: V' — W is an isomorphism, if there exists a morphism
: W — Vwithgoy =idy, o ¢ =idy. A

Remark 4.1.11. (i) The map
B(9) == 9001, 1

is called pullback of g by ¢. A continuous map ¢ thus is a morphism, if each pull-
back of a locally defined regular function on W is a regular function on the re-
spective inverse image.

(i7) For W’ C W open, the induced mapping

¢ O(W') = O(¢~ (W)

is a k-algebra homomorphism. If ¢ is an isomorphism, then so is ¢*.
@) If ¢p: V — Wandy: W — X are morphisms, then so is

vogp:V — X.
For X’ C X open we have
(Yog) =¢ oy OX') = O™ (X)) = O((¥ 0 9) (X))

(iv) Being a morphism is a local property with respect to the domain variety. That
means, if V' = J,.; Vi is an open covering and ¢: V' — W is a mapping, then ¢
is a morphism if and only if all restrictions

(ﬁ‘vi:‘/;—)W
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are morphisms. This is immediate from Remark4.1.7(ii) and the fact that conti-
nuity is a local property.

(v) Being a morphism is also local with respect to the image variety. That means,
if W = U,c; Wi is an open covering and ¢: V' — W is a continuous mapping,
then ¢ is a morphism if and only if

¢‘¢71(Wi) : qbil(Wl) — W’L
is a morphism, foralli € 1. A

The following Lemma shows that domains and codomains of morphisms can be
restricted.

Lemma4.1.12. LetV bea k-variety and V' C V alocally closed subset.

(@) The inclusion V' — V is a morphism.

(i) Ifp: W — V isa morphism with o(W) C V', so the induced mapping ¢': W —
V' is again a morphism.

Proof. (i) is obvious, since the restriction of a regular function onto a locally closed
subset is again a regular function. For (i7) let U C V' be open in V', and take
g € O(U). Note that U need not be open in V. But without loss of generality
we can assume g = § on the whole of U, for some polynomials p, g (by making U
smaller, if necessary). Then ? is regular on the open subset Dy (¢) of V, and thus

f =9 <§> is regular on ¢! (Dy(q)). But then also f‘wl(U) is regular, and it
coincides with ¢"*(g). O

Theorem 4.1.13. Let V, W be varieties, and assume W C A™ is closed. Let
d=(P1,. ) V> W

be a mapping. Then ¢ is a morphism if and only if
0, € OV) fori=1,...,m.

In particular, the morphisms V- — Al are precisely the regular functionson V..

Proof. Firstassume ¢y, ..., ¢, € O(V). Foreachp € k[W]wethenhave ¢*(p) =
p(P1,. .., dm) € O(V), since O(V) is a k-algebra. For ¢ € k[W] we know that

¢~ (Dw(q)) = Dv (¢*(q))
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is openin V' (by Lemma (41)), and the pullback of the regular function

g € O (Dw(q))

o(2)-48

which is regular on ¢! (Dy (q)) by Lemmalf4.1.6|(é44). So ¢ is a morphism, since
every regular function is locally of the form .
Conversely, if ¢ is a morphism, then

¢i = ¢ (i) € O(V),

since z; € O(W). O

is

Corollary 4.1.14. LetV C A" and W C A™ be closed. Then a mapping
oV ->W

isamorphism (in the sense of the new Definitioni4.1.10), ifthere are vegular functionsps, . . ., p €
k[V] with

gb = (ph s 7pm)
For affine varieties, the new Definition thus coincides with the old Definition[l.4.7,

Proof. By Theoremlf4.1.13], ¢ is a morphism if and only if ¢; € O(V) holds for all <.
Furthermore we have O (V') = k[V] by Corollary[4.1.9, O

Remark 4.1.15. A morphism of varieties can be a homeomorphism of topological
spaces, without being an isomorphism of varieties. This can be seen in Example

[L.4.12] (i11). I
Theorem 4.1.16. Foralli = 0, ..., nthe mapping
¢i: Dy(z;) — A"
(w0 (2B

) ) )
Q; a; a;

is an isomorphism of varieties.
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Proof. We know from Theorem [3.3.12]that ¢; is a homeomorphism. By Theorem
¢; is also a morphism of varieties, since its components z;/z; are regular
functions on D (x;). For the inverse functions let us only consider i = 0, and
let p,q € k[zo,...,x,] be homogeneous functions of the same degree. If p =
p(1,z1,...,2,)and § = q(1,xy, ..., x,) are their dehomogenizations, then

¢o (D4 (70) N D1(q)) = D(q)

(1)

is a regular function on D(§). Again, every regular function is locally of the form
p/q, and thus ¢; ' is a morphism of varieties. ]

and

Theorem 4.1.17. Let V' C A" be closed and let s € k[V]. Then the open subvariety
Dy (s) of V is isomorphic to the closed subvariety

Vii={(a,t) |aeV,t e Al,t-s(a) —1=0} C A"
In particular we have k[V'] = O(Dy (s)) = k[V]s.
Proof. The mapping
o: V=V
(a,t) —a

is a morphism with domain im(¢) = Dy (s). Thus also ¢: V' — Dy(s) is a
morphism. The inverse mapping

: Dy(s) = V'

= (o5)

is also a morphism, since its components are regular functions on Dy (s). O
We now extend the notions of an affine and a projective variety.

Definition 4.1.18. A quasi-projective k-variety V' is called affine (projective, re-
spectively), if V' is isomorphic to a closed subvariety of some A" (P" respectively).
If V is affine, we also write k[V] instead of O(V). A



4.1. QUASI-PROJECTIVE VARIETIES, REGULAR FUNCTIONS AND
MORPHISMS 85

Remark/Example 4.1.19. (i) If V' is an affine variety and s € k[V], then the open
subvariety Dy (s) is also affine, and we have k[Dy (s)] = k[V]s. Indeed, an iso-
morphism ¢: V' — W to a closed subset W C A" restricts to an isomorphism

Dy(s) = Dw((671)"(s))
by Lemma4.1.12] We can then apply Theoremf4.1.17for V.
(ii) The open subvariety D, (z;) C P" is affine, by Theoremf.1.1¢|
(14i) Every open subvariety of A! is affine. Since k[z] is a principal ideal domain,

every open subset is in fact of the form D(s) for some s € k[z1].
(iv) In general, open subvarieties of affine varieties are not affine. For example,

A%\ {(0,0)}

is not affine (Exercise[74).

(v) Every closed subvariety of an affine (projective) variety is again affine (projec-
tive, respectively).

(vi) Every quasi-projective variety is an open subvariety of a projective variety. For
locally closed V' C P™ this is clear by definition, and a closed V' C A™ is open in
the projective closure V. A

Theorem 4.1.20. Let V' C P" be closed and i € {0, ..., n}. Then the open subset
Vii=VNDi(n)

of V' is affine, and the canonical homomorphism
ki [Vig) — KV

is an isomorphism.

Proof. As a closed subset of the affine variety D, (z;), V; is affine. Elements of
ki [V],) are of the form £- with p € k,[V] homogeneous of degree 7. Thus

they define regular functions on V;. This defines a canonical homomorphism
¢: ki[V]az,) — k[Vi] which is injective, since ¢ (Eﬁ) = 0 impliesp = O on
V;, and thus Z;p = 0 on V. We therefore obtain Z;p _ Oink,[V]and thus £ =0
inky [V, Z

For surjectivity first note that the coordinate algebra of an affine variety is gen-
erated by the coordinate functions. With respect to the isomorphism D, (z;) =

A" the coordinate functions are exactly the z;/x; on D, (x;), and the coordinate
functions of V; are thus 7, /7;. They however all lie in the image of . O
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Corollary 4.1.21. Everyvariety admits a basis of open sets that consists of affine open sets.

Proof. Ifthe variety V is affine, this follows from Theorem.1.17}, since the Dy (s)
for s € k[V] form a basis of open sets. Every projective variety is covered by open

affine subsets, by Theorem and thus the statement is also true for projec-
tive varieties and open subsets of such. O

Example 4.1.22. (i) Let py, ..., p, € k[xo, ..., ;| be homogeneous of the same
degree. Then the mapping

¢: P\ Vi(po,...,pn) = P"
a— (po(a):...:ppa))

is a morphism. In fact P™ \ V, (po, . . ., p») is the union of open sets D (p;) and
it suffices to show that
¢: Di(pi) — P"

is a morphism for alli = 0, ..., n. Under the isomorphism
¢(D+(pi)) € Difx;) = A"
the mapping ¢ translates to

o (po(a)j‘_"pi/@ ma)).

pi(a)

This however is a morphism by 'Iheorem since % is regular on D (p;).
(ii) A special case of (i) are linear morphisms. Let M be a matrix of size (n + 1) X
(m + 1) over k with rank(M) = m + 1. Then

dar: P — P
[v] = [M]

is a morphism, and we have ¢,y = ¢ © ¢n. In case m = n we obtain a group
homomorphism
GLn+1(l{3) — Autk (Pn)

with kernel £*I. This gives an embedding

PGLy41 (k) < Auty(P"),
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which can be shown to be surjective.
(i17) Consider the following morphism:

¢: PL — P2

(ap : a1) = (ag : apay : a?).

We have
G(P') C Vi(a] — ozg) =: C

and thus ¢: P! — (' is also a morphism, even an isomorphism. To see this we
define the inverse morphism as

b: C — P!
o (bo = b) if by 2 0
(bo'bl'bQ)H{ (b?:b;)isz;é()

Wehave C' C D, (29)UD. (x2), and on the intersection within C both definitions
coincide, since byby = b?. Thus ¢ is well-defined on C' and a morphism, since on
both subsets C' N D, (), C N D, (x2) it is one, by (¢). It is now easily checked
that ¢ is inverse to ¢. JAN

Remark 4.1.23. We have just shown
P!> C =V, (2 — xo1y) C P2
Let us now compare the projective coordinate rings of both varieties. We have
ki [C] = klwo, 21, 2]/ (2] — o)

and
dlmk k+ [C]l = 3,

since (22 — xoz,) does not contain any homogeneous polynomial of degree 1.
This implies that k. [C] is not generated by 2 elements as a k-algebra (the homo-
geneous terms of degree 1 of two generators would otherwise span k. [C]; over
k). Onthe other hand, k., [P'] = k[zo, 1] is obviously generated by two elements.
So we have

P' =~ C and k,[P'] 2 k. [C].

The projective coordinate ring is thus not even invariant under isomorphism! This is a sig-
nificant difference to the affine case, where it even classifies isomorphism com-
pletely. A
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4.2 The Veronese Embedding

In this section we introduce the Veronese Embedding, which can be used to lin-
earize equations. We will show that we can reduce every setup to quadratic equa-
tions in projective space

Construction4.2.1. Letx = (zq,...,x,)and d > 1 be fixed. Let
mo, My, ..., my € k[z]

be all monomials in z of degree (exactly) d. We have N' = ("') by Exercisel46| As
in Example[4.1.22|(i) we obtain a k-morphism

vg: PP — PV
a— (mgo(a) :...:my(a))

which is called the Veronese embedding of degree d. Its image

V= (P
is called the Veronese variety of degree d. A
Theorem 4.2.2. The Veronese variety V.% = v,(IP") is a closed subvariety of PV , and

vg: P*— V¢
is an isomorphism of k-varieties.

Proof. Note thatwe know closedness of V¢ already from Corollary[3.4.5, However,
we will provide an explicit description by homogeneous equations, since we need
it for the later construction of the inverse morphism. Set

J:={aeN"||a| =d}.
We can use homogeneous coordinates (z, : « € J) on PY and have
va(a) = (a%)acy

foralla € P". Nowlet Z C PV be the zero set of all quadratic polynomials of the
form
RakB — 2y
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fora, 3,v,0 € Jwitha + 8 = v + 6. Then clearly V¢ C Z, since

a®a® = a®? = 0 = @7ad
holds for all such «, 3, 7, 4. Thus
vg: P*— Z

is a morphism of varieties. We will now define an inverse mapping. To this end
let3 € Jandi € {0,...,n} with 5; > 1. We define

¢pi: Z N Dy(z5) = P"
(bOé)aGJ = (bﬁ—eﬁ-eo : bﬂ—eﬁ-el el b5—€i+en) .

Then ¢ ; is a well-defined morphism as in Examplef#.1.22)(7) (the image of ¢4 ; lies
inside D, (x;)). Nowlet 5,y € J,5; > 1,7; > landb € Z N D, (z3) N Di(2y).
We then have

Qbﬂ,i(b) = Oy, (0).
As explained in Definition[3.1.2]it is enough to show

bp—eitex b’Y—eg‘-i-ez = bg—c+e, b'Y_ej+ek
forall k,1 = 0,...,n to obtain this. But the last equation is true by definition of
7, since the indices on both sides sum up to the same tuple.
The ¢ ; thus define a global morphism
¢ Z — P,
We have povy = idpn: for a € P™ just choose some i with a; # 0 and set 5 := de;.

Then o’ = a? # 0 and thus vy(a) = (a*)aecs € Dy (25). We therefore have

P(va(a)) = dp.i(vala))

B—eiteq . .

Conversely we also have v, 0 ¢ = idz: choose € J,i € {0,...,n}with 5, > 1
andb € ZND,(23). Then

Ud(¢(b)) = (bgo—eﬁ—eo T bzzeﬁ-en)aej
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and this defines the same point as b = (b,),.; in PV. To see this we show the
following equality, for allv,d € J:
by - b b

B—ei+eo ’ B—ei+en

— bé _b’YO ..b'Yn

B—eiteo B—eiten”

Note that the indices on both sides sum up to the same:
Y+do-(B—eite)t -+ (B—€te)=7y+d (B—e€)+d="-

Thus the equation above is a consequence of the equations defining Z (Exercise

0). O

Remark 4.2.3. (i) We have found explicit equations defining the Veronese variety
V.4 of degree d. If P is equipped with homogeneous coordinates (z, ) jo|=q, these
are

RaRB — 242§

with a4 6 = v+ 4. In particular, Z is an intersection of quadratic hypersurfaces,
so-called quadrics.
(27) Forn = 1 one has

vg: P! — P?
(ag = a1) — (ad:altay: - :apad™" : af)

The image V¢ is also called rational normal curve of degree d. In case d = 2itis

the curve from Examplef4.1.22|(i1).
(¢i7) For every locally closed subvariety V' of P, the Veronese embedding v, de-
fines an isomorphism between V and vy(V) C PV, A

Remark4.2.4. Letp € k[xo, ..., x,| be homogeneous of degree d, and write p =
Y laj=d Poz®. Then for a € P" we have

a € Vi(p) & vila) € Vs Z PaZa

|a|=d

The isomorphism v, thus maps the degree d hypersurface V, (p) to the intersec-

tion of V¢ with a hyperplane. A slightly more general statement is the following
Theorem. A
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Theorem 4.2.5. Every closed k-subvariety of P™ is isomorphic (via some v,) to an inter-
section
vinL

where L is a linear subspace of PV defined over k.

Proof. Forp € k[x] homogeneous and all 7 > 0 we have

V—i—(p) = V+($6p, s 7$:Lp)

Thus every closed subset of P" is definable with homogeneous equations of the
same degree, and the statement follows from the last remark. O

Corollary 4.2.6. Every projective k-variety is isomorphic to an intersection of quadratic
k-hypersurfaces in some P

Proof. Thelinear space L from the last theorem is isomorphic to some P, and V¢
is defined by quadratic equations. O

We will now prove a generalization of Theorem 4.1.20|to general hypersurfaces
(and a projective version of Theorem4.1.8).

Theorem 4.2.7. Let V' C P" be closed and s € k. [V'] homogeneous. Then the open
subset Dy (s) of V' is affine, with

k[Dv+(s)] = k4 [V]s)-

Proof. It is enough to prove the statement for V' = P”, since for homogeneous
t € k[z] we know that Dy, (£) = V N D, (¢) is a closed subvariety of the affine
variety D, (t) C P", and thus also affine. In addition, construction of quotients
and homogeneous localization commute:

(R/I)(f) = R(t)/ (1)

Soassume V' = P" and let s € k[z] be homogeneous of degree d. Consider the
Veronese embedding
vg: PP — PN

and let H, C PV be the hypersurface associated to V (s) C P". We have

Do (s)=v; (PY\ Hy) 2 Vin (PV\ H,).
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From PV \ H, = A" we obtain that D, (s) is an affine variety. The canonical
homomorphism

klzls) = O (D(s))

isinjective, as we have seen in the proof of Theoremf.1.20] Surjectivity follows ex-
actly in the same way, since the generating coordinate functions on PV \ H, = AN
are precisely the 2, /s, which correspond to the % /s € k[z](s) under the isomor-
phism v,. O

4.3 Direct Products

In the affine setting there is a canonical identification A™ x A™ = A™*" and for
two closed subsets V. C A™ W C A" we know that V' x W is closed in A™ "™,
We can thus easily form direct products of affine varieties in the sense of Chapter
Il This is harder for projective varieties. For example, there is no canonical iden-

tification between P™ x P™ and P"*". But for vector spaces V, W over the same
field, there is a well-defined embedding

P(V) x P(W) = P(V ®@ W)
([v], [w]) = [v @]

the so-called Segre-Embedding. We now examine it in the case of P"* and P" in
more detail.

Construction 4.3.1. For m,n > 1 we identify P™" """ with the projective space
P (Mat(m1)x(n+1) (K)) -

For a matrix A € Mat (4 1)x (n+1) (/) one has
rank(A) =1 & A=uw'

for certain column vectors 0 # u € K™"1 0 # v € K"'. Here u, v are uniquely
determined up to scaling. The mapping

K™ x K — Mat (4 1)x (n+1)

(u,v) > uv’
thus induces a well-defined injective mapping

o:P"xP"— P (Mat(m+1)x(n+1)(K)) = ]P)anrern,
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the so-called Segre-embedding. Its image
Smn = {[A] | rank(A) = 1}

is called Segre variety. S,,, is really a k-closed subset of P™"*™*" since it is
defined by the vanishing of all 2 x 2-minors of A. A

Definition 4.3.2. If we talk about P™ x P™ as a variety from now on, we always
mean the projective k-variety S,, ,,. Even if we work with the Cartesian product
P™ x P" set-theoretically, all statements that refer to the structure of a variety are
to be understood in S, , via 0. YAN

Theorem 4.3.3. (i) Both projections
pri: P x P* — P™  pry: P x P" — P"
are morphisms of varieties.
@) Ifo: V — P™andp: V. — P are morphisms of varieties, then
(¢,0): V — P™ x P"
a = (¢(a),¥(a))

is also a morphism.
(i13) The projective variety P™ x P together with the morphisms pry and pr,, fulfills the
universal property of a dirvect product:

For any two morphisms ¢: V' — P™ 1) V' — P™ there is exactly one morphism
E:V — P™ x P"suchthatpry o £ = ¢, pryo & = 1.

]:P)m
¢
/%1;

pro
P pr

Proof. (i) If we translate to S,, ,, via o, we have for [A] € S, ,,
pry([A]) = [ul,

where u is an arbitrary non-zero column of A. This yields a local definition of pr,
as amorphism in the sense of Example}4.1.22|(:), on open subsets of S,,, ,, defined
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by the non-vanishing of a certain column. For pr, we use the same argument with
rows instead.
(27) Choose a local definition

¢=(1:61:...:0m): ¢ (Di(x0)) = Dy(x) S P™
b= (1t tn): 7 (Di(yo)) = Dilyo) S P"
with regular functions ¢;, 1;. Via the identification
D (o) X Dy (yo) «— Dy (200) € P (Mat(mi1)xnsn) (K))
the mapping (¢, ¢) then translates to

¢~ (D (0)) N~ (Do (y0)) = D (200)

1 dn(a) - u(a)
¢1(a)  dr(a)ir(a)

bmla) ' f(a)n(a)

Since D, (zy) is affine and all components are regular functions, (¢, ¢) is a mor-
phism. (ii7) is then clear, since £ is uniquely determined by ¢ and . O

Remark4.3.4. (i) If V C P and W C P" are locally closed subsets, then
pry H (V) Npry H(W) C Smn

isalsolocally closed, as the inverse image with respect to morphisms. Inthe direct
product P™ x P", via g, this corresponds to the product V' x W. In this way we can
understand the direct product of any two k-varieties as a k-variety, and V' x W
fulfills the universal property of direct products. This is immediate from Theorem

4.3.3land Lemmal4.1.12] The triple
(V' x W, pry, pry)

is uniquely determined up to isomorphism, by the universal property.

(i1) For closed subsets V' C A™ W C A" we have already constructed the direct
product V- x W C A™*" explicitly, in the first chapter. It obviously has the uni-
versal property, and thus coincides with the new construction. In particular, the
direct product of affine varieties is again affine.
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(¢17) The direct product of projective varieties is again projective, by construction.
(iv) In Section[3.4we have considered P™ x IP" just as a set, and we have used biho-
mogeneous polynomials to construct subsets X . We now observe that these sets
X are precisely the closed subsets with respect to our structure as a variety. Ho-
mogeneous polynomials on S,, ,, correspond, via o, directly to bithomogeneous
polynomials on P x P™, which are homogeneous of the same degree in both
types of variables x and y. With the same argument as in the proof of Theorem
[4.2.5/we see that this is not a restriction. A

Example4.3.5. P! x P! isthevariety of singular 2 x 2-matrices in P (Matyy2(K)) ,
and thus a quadric in P3:

P! x P! =V, (det ( To o )) =V, (zor3 — x129) C P3.
To T3
On P! x P! there are two families of lines :
{a} x P! aswellas P' x {a},

fora € P'.Ifa = (ag : a;) for example, then

1 bO bl Qo bo b1 .
{a} xP* = {( by by | rank a by by ) = 1o,
and this is defined by the two linear equations

aglo — A1 und agrs — a1

within S} ;. The same is true for P' x {a}. Any two different lines from the same
family are disjoint, any two lines from different families intersect in precisely one
point. The following picture shows two affine sections of P! x P!, on the left with
D, (), on the right with D, (z¢ + x3) :

D D
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One can show that any two infinite closed subsets of P? have nonempty intersec-
tion (compare Corollaries(4.3.18/and 4.3.19) . In particular we obtain P! x P* 2
P2 A

Theorem 4.3.6. Let V, W be k-varieties and V' projective. Then for any closed X C V' x
W the image pro(X) is closed in WW.

Proof. For X C Spm.n closed we know that X C P™ x P is definable by bihomo-
geneous polynomials, and X N (P™ x A") is definable by z-homogeneous poly-
nomials. Thus the statement follows for affine W directly from Theorem [3.4.1]
since X N (V x W) C P™ x A" is again definable like that. For general W
we choose an open covering W = J,.; W; by affine subsets 1¥; and consider
X; = XNV xW,)inV x W;. Then pry(X;) = pry(X) N W; is closed in W,
and this implies the statement. O

The following Lemma proves that quasi-projective varieties are separated. Of-
ten, nice arguments about topological spaces use the Hausdorff property. But
varieties are not Hausdorff, unfortunately. However, separateness can often be
used instead. Note that a topological space is Hausdorft if and only if the diago-
nal {(x,z) | z € X}isclosedin X x X (with respect to the product topology).

Lemma 4.3.7 (Separateness). Forevery k-variety V, the diagonal
Ay :={(a,a) | a €V}
is a closed subset of V' x V.

Proof. Lett: V' — PP™ be alocally closed embedding. By the universal property,
the morphisms

VXV ISV 5P
VXV Z5V 5P

induce a morphism
LX1: VXV —P"xP"

and Ay is the inverse image of Ap«. So it suffices to prove the statement for V' =
P™. With respect to the identification

P" x P" <" S,
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the diagonal corresponds to the symmetric matrices in S, ,,. So within S, ,,, Apn
is defined by the equations

Zij — Zji fori,j:(),...,n.
This proves closedness. O

Remark 4.3.8. Alternatively, one can define Ap.» within P" x P" by the bihomo-
geneous equations

riY; — 251 = 0

fori,j =0,...,n. A

The following statement is obvious for Hausdorft spaces. We will see how we can
prove it with separateness instead.

Lemma 4.3.9 (Identity Theorem). Let V, W be varieties and ¢,: V. — W mor-
phisms with ¢ = 1) on a Zariski dense subset U C V. Then ¢ = ).

Proof. The set
Vii={aeV|¢(a) =v(a)}

is dense in V, and also the inverse image of Ay, under the morphism
(f,9): V—o>WxW.
So V' is closed, and this implies V' = V. [
Theorem 4.3.10. Let p: V' — W be a morphism of varieties. Then its graph
Ly :={(a,¢(a)) [a €V}
is a closed subset of V' x W. The graph morphism
Vo: V= Ty
a— (a,¢(a))
is an isomorphism.

Proof. T’y is the inverse image of Ay, under the morphism

o xidy: VW —=>WxW
(a,0) = (¢(a),b).
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Thus I, is closed. The universal property of the product implies that 7, is a mor-
phism, and the inverse mapping

F¢ -V
(a,¢(a)) = a

is the restriction of the projection, and thus also a morphism. O
Corollary 4.3.11. Foreveryvariety V we have V' = Ay, viaa — (a, a).
Proof. This follows from Theorem[4.3.10] applied to ¢ = idy: V — V. O

Corollary 4.3.12. LetV beavarietyandlet Uy, . . ., U, be open affine subsets of V. Then
Uy N ---N U, isalso affine.

Proof. Itis clearly enough to consider the case r = 2. Then
UrNUsz = Ay, e,

and
AUlﬂUQ = (Ul X UQ) N Av.

Thus Ay, v, as a closed subset of the affine variety U; x Us, is affine. O

Theorem 4.3.13. Let V' be projective and ¢: V' — W a morphism. Then ¢(V') is closed
inW.

Proof. We know by Theorem4.3.10that I'y is closed in V' x W, and thus
¢(V) = pry(Ly)
is closed in W by Theorem[4.3.6, O

Definition 4.3.14. Let V be alocally closed subset of A™ (or P"). Letk C L C K
be an intermediate field. Then

V(L) :=VnL",

or
V(L):=Vn{v] €P"|vel"},

respectively, is called the set of L-rational points of V. A
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Remark4.3.15. (i) Let V bea k-varietyand £ C L C K anintermediate field. For
every f € O(V') we then have

f(V(L) <L,

since f is defined locally by fractions of polynomials over k. For every k-morphism
¢: V — W we thus have
¢ (V(L) € W(L),

since ¢ is defined locally by regular functions. In particular, every isomorphism
yields a bijection between the set of L-rational points.
(¢7) Finding L-rational points on a variety can be very hard. For example, the fact
that

V(2" —a" —y") S P(C)

does not have (nontrivial) Q-rational points for any n is exactly the famous Fer-
mat’s last theorem. A

Theorem 4.3.16. Let V' be an irreducible projective k-variety. Then O(V') is a finite field
extension of k. If V (k) # 0, then O(V') = k, i.e. every reqular function is constant.

Proof. Leta € V and f € O(V) with f(a) = 0. Consider f as a morphism
f:V = Al
By Theorem[4.3.13] f has a closed image, and thus either f(V) = Al or f(V) is
finite. Now
f: V= At P!
is also a morphism with closed image, and thus f (V') = A! is impossible. So
fOV)y={0,71,...,74} = V(p) C A!

for some p € k[t]. Write p = t°q with ¢(0) # 0. Then f(V) = {0} U V(q). Now
f(V) is irreducible (since V' is irreducible), and this implies f(V) = {0}. We
have thus shown that a regular function with a zero must be constant. So O(V)

is a field, by Lemmal4.1.€| (i) B
By Hilbert’s Nullstellensatz we have V' (k) # (), and thus there exists a finite field
extension L /k and some a € V(L). The k-algebra homomorphism
O\V)—L
[ fla)
is injective, as we have just shown. Thus O(V) is a finite field extension of k. In
case V' (k) # (), the same argument shows O(V') = k. O
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Corollary 4.3.17. IfV is both affine and projective, then |V'| < oo.

Proof. V has only finitely many irreducible components, each one of which is
again closed and thus both affine and projective. So we can assume that V' is ir-

reducible. By Theorem4.3.16/we have

and thus V' is finite by Theorem/|1.4.16| O
Corollary 4.3.18. Let V' C IP" be a hypersurface and Z C P™ an infinite closed set. Then
VNZ#0.

Proof. LetV = V,(p) for some homogeneous p € k[z]. Now V N Z = () would
imply that Z C D, (p) is a closed subset of an affine variety, which is itself affine.
This implies | Z| < oo, a contradiction. O

Corollary 4.3.19. Forn > 2, any two hypersurfaces in P" have nonempty intersection.

Proof. By Corollary[4.3.18]it is enough to show that hypersurfaces are infinite. Itis
enough to consider affine hypersurfaces and the case K = k. Solet V = V(p) #
() be a hypersurface in A"™. Choose some i withp ¢ k[z;]. Then (p) N k[z;] = {0},
and from Theorem[1.4.13we see that

pr;(V) C Al =k

is k-Zariski dense, and thus infinite. O

4.4 Rational Functions and Maps
We will now generalize the notion of a morphism, to obtain enough of such map-
pings also for projective varieties.

Definition 4.4.1. Let V, W be k-varieties.
() Arational map f: V --» W is an equivalence class of morphisms

o:U—W
on open and dense subsets U of V, under the following equivalence relation:
(0: U—=>W)~(@:U = W)
i
U" C U N U’ openand dense in V with ¢ = ¢ on U".
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We then also write f = [¢] for the equivalence class of ¢.
(i7) The set of all rational maps from V' to W is denoted by

Ratk (V, W) .
(4ii) A rational map f: V --» Alis called a rational function on V. A

Definition 4.4.2. Let f: V --» W be a rational map. Then
dom(f) :=| J{U | U € V openand dense, 3¢: U — W with f = [¢]}

is called the domain of f. A

Theorem 4.4.3. Let f: V' --» W be a rational map. Then there exists a morphism
fo: dom(f) — W, such that every representative of f is a restriction of fj.

Proof. Let¢: U — Wand1y: U’ — W beto representatives of f. By the Identity
Theorem[4.3.9|we have ¢ = ¢ on U N U'. Thus f; can be defined locally by the

representatives of f. O

Remark/Example 4.4.4. (i) For every open and dense subset U C V we have
Raty,(V, W) = Raty(U, W).

(47) Let V be an irreducible affine k-variety and F' = Quot(k[V]). Then every el-
ement of F" defines a rational functionon V. If ¢ with a,b € k[V],b # 0, then
4: Dy(b) — A'is a morphism. Since Dy (b) is open and nonempty, it is auto-
matically dense in V/, and we obtain the rational function f = [¢]. If

is another representation of the same fraction, the morphisms ¢ and ¢ coincide
on the open and dense subset Dy (bd) = Dy (b) N Dy (d), and thus define the
same rational function.

(¢i7) In general, dom( f) can be larger then visible at first sight. For example, con-
sider the projective curve

C =V, (1} — 2o2? — 2123) C P

The rule

(ap : ay :az) — (ag: ay)
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defines a morphism
C\{(0:0:1)} =P,

and thus a rational map f: C' — P!. On the other hand, there exists the mor-
phism

(ap : ay : ap) v (a3 : ai — a?),
defined on C'\ {(1 : £1 : 0)}. On all points of C' where both morphisms are
defined, they are easily checked to coincide. So f is defined on the whole of C,
i.e. it is even a global morphism.
(iv) Let V' C P™ be closed and irreducible. Every tuple po,...,p, € ki[V]of
homogeneous elements # 0 of the same degree then defines the rational map

f=Wo:...:ipn): V--2P"
with dom(f) 2 V\ Vi(p1,...,0n). A

Theorem 4.4.5. Let V' be a k-variety. Then the rational functions on V' form a k-algebra
k(V'), with respect to pointwise operations. If V' is irreducible, k (V') is a field, called the
function field of V.

Proof. For two rational functions fi, fo: V' --» Al, fi &+ fo, fi - fo are regu-
lar functions (and thus morphisms) on dom( f;) N dom(fs), and thus rational
functions on V. If V is irreducible and f: V' --» A! not identically zero, then
{a € dom(f) | f(z) # 0} is open, nonempty and thus dense in V. On this set

one can define % as a regular function, and thus k(1) is a field. O

From now on we will restrict ourselves to irreducible varieties. Then every nonempty
open subset is automatically dense.

Theorem 4.4.6. Let V' be an irreducible variety.
(i) Onehask(V') = k(U) forevery open subset U # (QinV'.

(13) Omehask(V') = U, Ov(U), where theunion runs over all nonempty open subsets
of V.

(ii7) The field extension k C k(V') is finitely generated.

(iv) IfV isaffine, then k(V') = Quot(k[V]).



4.4. RATIONAL FUNCTIONS AND MAPS 103

Proof. (i) is clear from Remark (1). (ii) is also clear, since the elements of
Oy (U) are morphisms from U to A'. (iv) follows from

KV)= |J o) = U O(Dy (s) Uk = Quot(k[V]),
k[V],s#£0

0#U open s€

where we have used Theorem . For (ii7) we can assume that V' is affine, using
(4), since by Corollary[4.1.21]V admits a nonempty affine open subset. For affine
varieties the statement follows from (iv), since k[V] is finitely generated as a k-
algebra, and thus Quot(k[V]) is finitely generated as a field. O

Remark 4.4.7. Let V' C P" be closed and irreducible. Then k. [V] is a Z-graded
ring. Let 7" be the set of all homogeneous elements # 0, and consider the field

kilV]y = (k+[Vir), = {E | p,0 # q € k[V] homogeneous of same degree} .
q

Then in complete analogy to the affine setting we have (V') = k.. [V/] (1), this time
using Theorem4.2.7} A

Example 4.4.8. (i) k(A") = k(P™) = k(xy,...,z,). This field is called the ratio-
nal function field in n variables.
(i) If p € k[xy, ..., 2,]isirreducible, for V =V (p) C A™ we have

E(V) = Quot (klxy,...,z,]/p) . A

Remark 4.4.9. Rational maps can in general not be composed! For example, con-
sider
f: A = A% a s (a,0)

and

g: A? ——s A'; (a,b) — a/b,
where im(f) Ndom(g) = @ and g o f is thus not defined. A
Definition 4.4.10. Let V, W be varieties with V' irreducible.
(1) Amorphism ¢: V' — W is called dominant, if (1) is dense in V.
(i7) Arational map f: V --» W is called dominant, if one (equivalently every) of

its representing morphisms is dominant.
(¢17) The set of all dominant rational maps is denoted by

Rat{o™(V, W). A
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Remark4.4.11. (i))If¢: V — Wandv¢: W — X are dominant morphisms, then
Y o ¢ is also dominant.

(¢1) A morphism ¢: V' — W of affine varieties is dominant if and only if the as-
sociated ring homomorphism ¢*: k[W] — k[V] is injective. This is immediate

from Theorem|1.4.13| A

Note again that we now assume all varieties to be irreducible!

Theorem 4.4.12. Let f: V --» W,g: W --» X be rational maps, and assume f is
dominant. Then g o f: V --» X is a well-defined rational map. If also g is dominant,
thensoisg o f.

Proof. Let ¢: V! — W and¢: W’ — X be representatives of f and g. Then
¢~ (W') # 0, since ¢ has dense image. Thus ¢~ (W) is dense in V, and the
morphism v o ¢ is defined here. So we obtain the rationalmapgo f: V --» X,
and the definition does obviously not depend on the choice of the representatives
¢ and 1). The rest of the statement is clear. Il

Definition 4.4.13. (/) A dominant rational map f: V --» W is called birational
equivalence (orjust birational), if there exists adominant rationalmapg: W --»
Vwithgo f=idy and f o g = idy .

(i) Two varieties V, W are called (k-)birationally equivalent, if there exists a bi-
rational equivalence f: V --» W.

(¢i7) A variety is called (k-)rational, if it is birationally equivalent to some P". A

Example4.4.14. (i) Let V beirreducibleand () # U C V open. Then the inclusion
U — V is a birational equivalence. In particular, A" is birationally equivalent to
P", and every irreducible variety is birationally equivalent to some affine variety.
(i1) For every irreducible projective variety V' C P", the affine cone v C Anrtl
is irreducible and birationally equivalent to V' x A!. In fact, there are mutually
inverse mappings

VxA -V
((ao:...:an),t)r—>t-(1,ﬂ,... %)

Qo ’ ag
(without loss of generality assume V N D, (o) # 0), as well as

V--» V x Al

(ag,...,an) — ((ag:...:ap),ap),
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definedon V' \ (0,...,0).

(@id) If f: V --» W is dominant and V' (k) is Zariski dense, then W (k) is Zariski
dense in W. In particular, if V| W are birationally equivalent varieties, V' (k) is
dense in V' if and only if W (k) is dense in W. For a rational variety V', V (k) is
always dense in V' (at least if k is infinite). AN

Theorem and Theorem can now easily be proven for rational maps as
well. For field extensions k¥ C E,k C F we denote by Homy(F, F') the set of
k-embeddings of £ to F', as usual.

Theorem 4.4.15. Let V, W be irreducible k-varieties.

(i) Every dominant vational map f: V --» W induces a k-embedding f*: k(W) —
k(V') of function fields. This assignment is functorial, i.e. we haveid™ = idand (go f)* =
f* o g* fordominantg: W --+ X.

(i1) The mapping * - Rat{®™(V, W) — Homy (k(W), k(V')) is bijective.

(i1i) A dominant vational map f: V' --+ W is a birational equivalence if and only if
[ k(W) — k(V) is an isomorphism of fields.

Proof. (i) is clear. For (i) we can assume V, W to be affine. We now construct the
inverse mapping to *. To thisend, let ¢ : k(W) — k(V') be a k-embedding. Since
k[W]is a finitely generated k-algebra, there exists some 0 # s € k[V]| with
@ lew): kW] = k[V]s = k[Dv(s)].
By Theorem 1.4.8|this ¢ | corresponds to a morphism
fo: Dy(s) = W

of affinevarieties. Nowlet f = [fo]: V' --» W be the rational map represented by
fo- It does not depend on the choice of s, as can be seen in the following diagram,
using the equivalence of categories (Remark(L.4.10):

/\
\/
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The assignment ¢ — [ defines the inverse mapping to *, as is easily checked (p
is already uniquely determined by ¢ |, and ¢ |k corresponds to fj).

(iii) If f is a birational equivalence, f* is an isomorphism, by functoriality from
(1). Conversely, if p: k(V) — k(W) is an inverse embedding to f*, and if p = g*
for some g € Rat{™ (W, V'), then

(fog) =g of =gof =idyw).

From bijectivity of * we obtain f o ¢ = idy (analogously for g o f). So fisa
birational equivalence. O

Corollary 4.4.16. For two irreducible k-varieties V and W, the following are equivalent:
(@) V and W are birationally equivalent.

(22) k(V) =, k(W)

(ii1) There are open subsets ) £ V' C V, 0 # W' C W with V' = W',

Proof. "(1) < (¢4)" is clear from Theorem[4.4.15] Also clear is "(144)=-(i)" . For "(;) =
(i)' let f: Vo — Wand g: Wy — V be morphisms on open and dense subsets,
with g o f = idj-1(wy) and f o g = idg-1(y;). This immediately implies

Fo W) S g (V). 0

Corollary 4.4.17. An irreducible variety V' is rational if and only if k(V) is a rational
function field k(xy, ..., x,).

Example4.4.18. Let C' = V(y? — 22 — 2°®) C A? be the curve from Example[l.2.2]
(247). The rational function

f:C--5 Al
b
(avb>H a

is a birational equivalence. The inverse mapping is

g: Al = C
res (rr—=1,r(r* —1)).

SoC'isarational curveand k(C') = k(x). Geometrically, f maps each point of C'\
{(0, 0} to the slope of the line through 0 and the point. We obtain an isomorphism
between the open subsets C' \ {(0,0)} and A' \ {£1}. Thus we have solved the
equation y? — 2% — 23 = 0 almost completely. A
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Example 4.4.19. (i) Let H C P” be a k-hyperplane, and = € P"(k) \ H. For
every point z # a € P™ we denote by m(a) € H the intersection point of the line
spanned by z and a with H. We obtain a rational map

T P*" - H = ]Pmil’

called projection from z. We can choose coordinates such thatz = (1:0: ... :
0)and H =V, (zo). Then

m(ag:...:a,)=(0:ay:...:a,),

and7: P*\ {z} — H is a morphism.

(i1) More generally, let Z, L belinear subspaces of P, with ZNL = (}and dim(Z)+
dim(L) = n — 1 (i.e. they come from k-subspaces Z, L. C K" with Z & L =
K™1). Every pointa € P"\ Z correspondstoaline through theoriginv C K"
for which span(Z, v) N L is one-dimensional. This defines a rational map

m:P" --» L
called projectionfrom Z. If coordinates are chosensuchthat L = V, (zy, ..., z,,)
and Z =V, (i1, ..., %), then
mlag: ... an)=(0:...:0: Qi1 ...:ap).

IfV C P"isan irreducible variety with V' ¢ Z, thenr |,: V --» Lisagaina
rational map. A

A quadric () is a variety in P" defined by a quadratic polynomial. If char(k) #
2, we can assume Q) = V, (cozf + - -+ + ¢,x2) with ¢; € k*, after a change of
basis (diagonalization of quadratic forms) Forr > 2the quadrlc @ isirreducible
(Exercise[75). @ is called non-degenerate, if r = n.

Theorem 4.4.20. Let k be infinite with char(k) # 2,andlet Q = V. (q) C P"bea
non-degenerate quadric. We then have

Q k-rational < Q(k) # 0.

Proof. "= is clear from Example4.4.14 (i44). For "<" choose z € Q(k) and a k-
hyperplane H C P" with z ¢ H. The projection from z yields a k-rational map

T Q --» H.
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We now construct an inverse mapping. To this end, for b € H we intersect the
line spanned by z and b with ). In most cases this will define exactly one point
besides z, which is the inverse image of b with respect to 7.

Solet z = [v] and b = [w]. We choose s € K with ¢(sv + w) = 0 and then set
a = [sv + w]. We have

q(sv +w) = s%q(v) + 2sby (v, w) + q(w) = 2sby(v, w) + q(w),

where b, is the symmetric bilinear form defined by ¢. The equation 0 = ¢(sv+w)
can be solved uniquely for s, in case b,(v, w) # 0, and yields

a = [2b,(v, w)w — q(w)v].

Outside of the k-hyperplane L = {[w] | b,(v,w) = 0} we thus obtaina morphism
f:P*\ L — @, which defines an inverse rational map f: H --» Q to 7, by
restriction (H can be chosen with H ¢ L). O

Example 4.4.21. The proof of Theorem provides us with an explicit bira-
tional equivalence. For example, let ¢ = xoz; + 25 — 22and Q = V. (q) C P3.
We choosez=(1:0:0:0) € Qand H =V, (z¢). Themapn: Q --» H isthus
defined by the rule

m(ag:ar:az:a3) =(0:ay:as: as).
The inverse mapping now has the following form:

f: H = P? --> Q)
(0 : b1 : bg : bg) — (bg—bg : b% : b1b2 : blb3),

and defines a rational parametrization of (). A

Example 4.4.22. There exists a birational equivalence between P! x P! and P2, It
is defined by the rule

P! x P! -—5 P?
((CLO : al), (bQ : bl)) — (aobo, aobl,albg)
(bg : bz), (b() : bl) < (bo : b1 : bg) A
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Exercises

Exercise 1. Let R be aring and I C R and ideal. Recall the definition of the
quotient ring R/I, and show the following:

(¢) Iisaradicalideal & R/I is reduced.
(¢3) Iisaprimeideal < R/Iisan integral domain.
(¢i7) Iisamaximalideal < R/ isa field.
(7v) Maximal ideals are prime, and prime ideals are radical.

() If o: R — Sisaring homomorphism and J C S is an ideal, then p=!(.J)
is an ideal in R. If J is radical/prime, then so is o' (.J). If J is a maximal
ideal, how about ¢ *(.J)?

Exercise 2. (i) Show that for every ideal [ the radical VI (cf. De is again an
ideal.

(77) Prove Lemmall.1.3]

Exercise 3. Let R be aring, S C R a multiplicative subset, and I C R anideal.
Show the following:

(¢) There is a canonical bijection between ideals of R/I, and ideals in R that
contain /.

(i7) The bijection from (i) preserves radical/prime/maximal ideals.

(179) Thereisacanonical bijection between prime ideals of the localization S™' R
and prime ideals of R that are disjoint to S.

(4v) Is (i7i) also true for arbitrary ideals?

111
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Exercise 4. Let R be a ring. Show the following:
(¢) Every prime ideal p C R contains a minimal prime ideal of R.

(¢i) Every minimal prime ideal of R contains only zero divisors.

Hint: examine the localization R, := (R\ p) 'R

(@17) If R is reduced, the set of zero divisors of R is precisely the union of all
minimal prime ideals of R.

Exercise 5. Let R be a unique factorization domain and let K be its field of frac-

tions. Show that the only elements in K that are integral over R are the elements
of R itself.

Exercise 6. Let R be a ring. Recall the definition of an R-module. An R-module
M is called Noetherian if every submodule is finitely generated. Show that the
direct sum of two Noetherian R-modules is again Noetherian.

Exercise 7. Show that:
(@) k[z,y]/(x? — y) is isomorphic to the polynomial ring k[t] in one variable.
(i) k[z,y]/(xy — 1) is not isomorphic to k[t].

(¢i7) If k is algebraically closed, then for every quadratic irreducible polynomial
p € k[z,y] the algebra k[z,y]/(p) is isomorphic to k[z, y]/(x? — y) or to

klz,y]/(zy — 1).

Exercise 8. Let p,q € k|t] be univariate polynomials, and set g := ged(p, q).
Show V(p, q) = V(g).

Exercise 9. Let k be an algebraically closed field. Show that every finite subset of
k™ is an affine k-variety.

Exercise10. Letp; = 22 —yz,pp = vz —xand I = (p1,p2) C Qlx, v, 2.
(1) Sketch or plot the real points of V(I) in R3.
(i1) Is [ a prime ideal?
(¢i7) Find three different prime ideals in Q[z, y, 2] that contain /.

(iv) Find generators for /1.
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Exercise1l. Let [ = (p1,...,p;s), J = (q1,...,qs) C k[z] be ideals. Show the
following:

@) I+J:={p+q|p€l, qec J}isthesmallestideal containing both I and
J.

(ZZ) I+J: <p177p7“7q177QS)
@) VI +J)=V{I)NV(J).

Exercise12. Let [ = (p1,...,p,) C k[z] anideal and y a new variable. Show the
following:

(i) \/ (2122, (21 — B2)71) = (21).

Exercise13. Leta, b, c,d € Rand d # 0. Consider the following ideals:

my = (r—a,y—b)
my = (v —a,(y —b)* +d?)
mz = ((x —a)> + d* y — (bx + ¢)).

Show that m;, my, m3 are maximal ideals in R|x, y], and that each maximal ideal
of R[z, y] is of one of that forms.

Exercise14. Let V' C C"be an affine C-variety. Show that V isan affine R-variety
if and only if V' is closed under coordinatewise complex conjugation.

Exercise 15. Let O C C be non-empty and open with respect to the Euclidean
topology on C. Show that O is an affine R-variety if and only if O = C. Then
extend the statement to C".

Exercise 16. Let a robotic arm in R? be given by two rods of length 2 and 1, con-
nected by swivel joints, as can be seen in Figure[4.1. The angles o and 3 can take
arbitrary real values.

(1) Show thatthe setofall points that A can reach in R? is the intersection of an
affine R-variety in C? with R? (i.e. it is the set of real points of this variety).

(1) Show that the set of all points that B can reach in R? is not the set of real
points of an affine variety in C2.
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(7ii) Sketch or plot the sets of points that A and B can reach in R2.

(7v) Show that the set of all points that B can reach in R? is the projection of the
real points of an affine variety in C*.

(v) Determine the set of all positions of A in C?, from which B can reach the
positions (2, 0), (3,0), (4,0).

B

A, 1
2 B
(0,0) L@

Figure 4.1: Planar robotic arm

Exercise 17. Show that the Zariski topology on A" = A™ x A™ does not coin-
cide with the product topology.

Exercise18. Let k be a field and K an algebraically closed field extension. Let
V={tr ) |te K} CK°
() Show that V' is an affine k-variety, and find defining equations for V.
(i7)) Compute Z(V).
(14i) Show that V is a subvariety of V(zz — 3?).

Exercise19. Let V and W be affine k-varieties with V' C . Show

W=VuW\V).

Exercise 20. Let R be a ring and denote by Spec(R) the set of all prime ideals of
R. Forasubsets I C Rand V' C Spec(R) we define

V(I) :={p € Spec(R) | I C p}
Z(V):= ().

pev

(¢) Prove an analogue of Hilbert’s Nullstellensatz in this setup.
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(¢7) Show that the sets V() fulfill the axioms for closed sets of a topology.
(#i7) If : R — Sisaring homomorphism, then the map
Spec(S) — Spec(R)
q— ¢ ' (q)
is continuous with respect to the topologies from (i7).
Exercise 21. Prove Lemmal[l.3.6
Exercise 22. Prove Lemmal[l.3.11l

Exercise 23.

(#) Find aset X C A", such that the topological space X (with respect to the
Zariski topology) contains an open set Y C X, which is not dense in X.

(27) Show that each non-discrete set X C A" is not hausdorff (also see Lemma
1.3.3).

Exercise 24. Show that GL,,(K) is open in the k-Zariski topology.

Exercise 25. Let V' C A3 be the affine variety defined by the following equations:

?—yz=0 und xz— .

Show that V" has 3 irreducible components and find their prime ideals.

Exercise 26. Let V = V(y*> — 23, 2% — z) C A3. Show that V is a union of two
subvarieties (curves), and find definig equation for these curves.
Hint: Consider (z4 + 222 + 22)(2? — 2) — (y? — 2%) € (y? — 23,22 — 2).

Exercise27. Let V = V; UV, C A3 be the union of the two curves V; = V(23 —
y,2? — z)and Vo = V(2 + y,2* — z). Furtherlet W = V(zy) C A%

(?) Show thatalso W is a union of two strict subvarieties (curves) W = V53UV,
and find defining equations for V3 and V.

(i7) Show that there exist polynomial mappingsp; : V; - Aand¢; = A — V,
such thatp; o ¢; = idy and ¢; o p; = idy;, fori = 1,..., 4.

(4i7) Do there exist polynomial mappingsp : V. — Wand g : W — V, such
that p o ¢ = idy and ¢ o p = idy? Sketch a proof of your answer.
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Exercise 28. Prove Corollary[l.3.17/for ideals I in an arbitrary noetherian ring A.
Exercise 29. Compute the Zariski closure of the following sets in A?:

(1) The projection of V(zy — 1) onto the x-axis.

(17) The boundary of the positive orthant in R?.
(i17) The graph of the sine function
{(z,sin(z)) € R* | z € R}
in R,

Exercise 30.

(1) Let Rbearingand/, J C Ridealsin R. Show that

(I:J):={a€R|aJ I}

isanidealin R, containing /.

(ii) Compute generators for (zz,yz) : (z) C k[z,y, z] and determine

V((wz,y2) : (2)) C A%

(iii) Compute generators for (y* — 2%, 22 — 2) : (2? — 2,23 —y) C k[x,vy, z] and

determine V((y* — 23, 2% — 2) : (2% — z,2° — y)) C A3.
Exercise31. Let IV C A" be an affine k-variety.
(1) Show that V is irreducible if and only if k[V] is an integral domain.

(i7) Assume V isreducible. Show that there exist polynomials p, ¢ € k[z1,. .., z,)
with

V=(VnVp)uV oY),

withV N V(p) CV,VNV(¢g) € VandV C V(pq).

Exercise 32.

() LetV = {(t,2,t3) : t € C} C C®and p; = 2% + 3%, po = 2% — y® + 322,
q1 =2y + z2, ¢ = 3y?. Show that p; = ¢; and p, = ¢» holds in k[V].
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(#4) Show that V(22 + x9? — z2,y2® + y* — yz) C C3is reducible.
Exercise33. Let V = V(z? — y?2% + 2%) C C® and

p:V—=C

(a1, a9,a3) — as.
(¢) Find defining equations for the affine R-variety
ple) " ={aeV|pa)=c}
where ¢ € R.

(i7) Show ¢(c) ™' NR3 #£ Pforallc € R.

(i77) Sketch or plot p(c)~* forc € {—2,—1,0,1,2}.

(iv) Sketch or plot¢)(c)~! forc € {—2,-1,0, 1,2}, where

v:V—C

(ay,a9,a3) — a% + ag.

Exercise 34. Let K be algebraically closed with prime field k. Show that
{A e K™ | Asingular}
is an irreducible affine k-variety.

Exercise 35. Show that the mappings p — p* and ¢ — p,, from the proof of
Theorem I.4.8|are mutually inverse.

Exercise 36. Prove Theorem[.4.11l

Exercise 37. Show that the map

Al = V(2 —23) C A?
7 (r2,r3)

is a homeomorphism with respect to the Zariski topology.

Exercise 38. Show that the following Q-varieties are isomorphic:
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@) V(z* —y) C A%2and A!
(1) V(z® —y,2* — 2) C A®and A!
Show that the following Q-varieties are not isomorphic:
@ii) V(xy — 1) C A? and A!
() V(y* — 23, 2% — 2) C A3and V(xy) C A?
Exercise 39. Let

Vi=V(y—a2®z+a°+2z) CC?
Vo = V(2 + 202+ 2y* + 3y, zy + 22 + 2,22 + y* + 2y) C C*

and 7;: V; — C;(ay, a9, a3) — aq fori = 1,2.
() Show that 7, is bijective and compute its inverse function.
(i7) Show that 7, is bijective and compute its inverse function.

Exercise 40. Let A, B, C be k-algebras where C' is a domain. Show that there is
a bijection between Homy (A x B, C') and

Homk(A, C) U HOIIlk(B, C)

(cf. proof of Theorem[[.4.16).

Exercise 41. Let a closed toggle chain in R? be given, consisting of four rods of
lengths a, b, ¢, and d, connected with swivel joints, as depicted in Figure[4.2]

(1) Show that the points that A can reach in R? (midpoint of upper rod) are
the real points of an affine R-variety, fora = b = ¢ = d = 5, and for
a=3,b=9,c=10,d = 13.

(13) Sketch or plot the set of points in R? that A canreachfora =b=c=d =5
anda =3,b=9,¢=10,d = 13.

Exercise 42. Let an ellipse compass in R? be given, consisting of two slides that
can move along the x- and y-axis, respectively. Both slides are joint to a rod of
length [ via swivel joints, see Figure4.3|
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a Cc

(0,0) y d,0)

Figure 4.2: Closed toggle chain

Figure 4.3: Ellipse compass

(i) Show that the sets of points that A and B can reach in R? (midpoint and
quarter point of rod, respectively) are the real points of affine R-varieties,
where we set [ = 2.

(13) Sketch or plot the sets of points that A and B can reach in R2.

Exercise 43. Show that every orthogonal matrix A € R**? with det(A) = 1isof
the form

1 1—t2 =2t
14+¢2| 2t 1—+¢2

for somet € R U {oo}, where p(c0) := LC(p) for p € R[t].

Exercise 44. Every element of the group SE(2) of Euclidean motions can be seen
as a mapping

5 s |z 1 [1—-¢ =2t ]z v
R%R'Lj'ﬁ—ljtt?{ ot 1—2| |y + vy 4.1
where vy, v, € Randt € R U {oo} We again consider the ellipse compass from
Exercise[d2]
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(@)

(22)

Sketch or plot the set of points that A and B can reach in R?, by proceeding
as follows:

Define a coordinate system at the moving rod, and one in the fixed plane.
Map the points of the moving system to the fixed system by the mapping
(4.1), where vy, vo and t are yet to be determined. You thus obtain trajecto-
ries of the corresponding points, which still depend on the points and the
parameters vy, vy and ¢. By suitable choice of points, of which the trajecto-
ries are known, it is possible to determine two of the three parameters vy,
v9 and t. The remaining parameter then parametrizes the trajectories.

Let the inverse mechanism to the ellipse compass be given: Two slides are
connected by swivel joints to a plane (= R?). The distance of the slides is
[ = 2. Two rods of lengths 2/ = 4 can slide through the slides. The two rods
are connected at a fixed angle of 90 degree in their midpoints, see Figure
i.4 Sketch or plot the set of points that C (intersection point of rods) and
D (quarter point of a rod) can reach in R?.

Figure 4.4: Inverse ellipse compass

Exercise45. Letthreerodsoflengths !y, [; and I; be given. The rods are connected
to a plane (= R?) with swivel joints at one end, and with a movable platform at the
other end, see Figure[4.5| The platform is an isosceles triangle with basis ¢ = 14
and height h. = 10. By changing the lengths of the rods, the platform can move.
Sketch or plot the position of the platform in R? for l; = 9, [, = 8 and I3 = 10,
where you can compute the solutions numerically Hint: Use the mapping #.1).

Exercise 46. Show that there are (
oy ...

n+d
n

) monomials of degree d in the variables
, Ty
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(0,0) (16,0)

Figure 4.5: Planar 3-RPR mechanism

Exercise 47. Show that the radical of a monomial ideal / C k[z] is again mono-
mial. Is the converse also true?

Exercise48. Let I C k[z]| be a monomial ideal, and
C(l)={aeN':z*¢ 1}
the set of exponents, whose monomials that are not contained in /. Further set

€1 = (1,0,...,0),

en=1(0,...,0,1),
€irs--r6i | ={ae, +...+ae | a; e N1 <<}

fori; < ... <i,.

() Show that V(1) is the union of finitely many coordinate subspaces (i.e. va-
rieties of the form V(zy,, ..., z,)).

(¢i) Show
V(xh)"'axls) g V(I> < [eil,...,6ir] g C(I)

wohere {ly,..., s} W {iy,...,i} ={1,...,n}.
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Exercise 49.

(¢) Order the following monomials with respect to the lexicographic monomial
ordering, and the degree-lexicographic monomial ordering, both in case of
x>y>zandr <y < z:

{z,y,2,2% 2% 2°}, {2?y®, 2°yz" ay2®, oy}

(¢i) Consider N with the usual ordering. Between any two numbers there exist
only finitely many other numbers. Is the same also true for all monomial
orderings on N”, if n > 2?

Exercise 50. Show the following:

() Every monomial ordering < on N can be extended to a linear ordering <
on Q", with the following property:

axf=at+y<x0+7
foralla, 5,y € Q™.

(i7) Let < be an ordering on Q" as in (7). Show that the following set is a hyper-
plane in R™:

H={zeR"|Ve>03q:,q- € B(x)NQ":q. x0=xq_}.

Hint for the dimension: Show Q" ¢ H, and thatfor ¢ < 0 < pin Q" the connect-
ing line always meets H.

(iti) Compute H from (ii) on case of <jey.
Exercise 51. Show that the following rule defines a monomial ordering on N?:
axpf & a1+a2\/§<51+52\/§.

Show that every element from N? has a direct predecessor with respect to <. Is
this true for every monomial ordering?

Exercise 52. Let k[z] be equipped with a lexicographic monomial ordering <je.
Show that for any ideal I C k[z], the following are equivalent:

(@) V(I) is finite.
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(ii) Foreveryi = 1,...,n there exists p; € I with LM(p;) = a2

)

Exercise 53.

(1) Compute a normal form of 27y? + 23y? — y + 1 modulo zy* — z, z — 93,
with respect to the lexicographic ordering and with respect to the degree-
lexicographic ordering (with > y). What happens if zy> — x,z — 3 is
replaced by z — 3, xy* — 2?

(17) Repeat (i) for xy? — z and xy + 1, y? — 1. What do you notice?

Exercise 54. Prove the converse assertion of Corollary[2.3.4} Let I C k[z] be an
idealand G = {g1, ..., gs} asubsetof I, such that for every p € k[z], any normal

form of p modulo G coincides with the canonical form cf;(p). Then G is a Grobner
basis of 1.

Exercise 55. Let | = (p) C k[z] be a principal ideal. Show that every Grobner
basis of  contains a constant multiple of p.

Exercise 56. Proof the assertion in Remark|2.3.16(37).

Exercise 57. Let g1, g» € k[x] be polynomials for which LM(g;), LM(g2) are rela-
tively prime. Show that 0 is the only normal form of S(g1, g2) modulo gy, go. What
does this mean for the Buchberger Algorithm in general, and in particular when
applied to a set of linear polynomials?

Exercise 58. Letp C kx| be a prime ideal. Show that all elements from the re-
duced Grobner basis of p are irreducible in k[x|. Is the converse also true?

Exercise59. Showhowp € \/(p1, ..., ps) canbe checked with Grobner bases (cf.

Application[2.4.3).

Exercise 60. Find all elements of the finite variety defined by the following 0-
dimensional ideals:

(2*y —1,2y° — y),

(2% +y, 2* 4+ 22%y + y* + 3)

(1P — 24 2% — gt oy — 2, 20222 — 3, 232 — 2 2t — )
Exercise 61. Use a computer algebra system to determine whether the polynomial
pisintheideal I, and if so, find an ideal representation.
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@) p=wy’ =22 +y° — 23 1= (y— 2 2%y — 2).
() p=a32— 2% I = (w2 — y, vy + 222,y — 2).
Exercise 62. Consider the ideal
Ii= (2 +9*+ 22 —4,22 +29° - 5,22 — 1) C Q[z, v, 2].

Use a computer algebra system to compute generators for / N Q|x], I N Q[y| and

INQIz].
Exercise 63. Let

Vo= {(u+v,v* + 2uv, v’ + 3u*v) | u,v € C} C C°.
Use a computer algebra system to find generators for the ideal Z(V).

Exercise 64. Let V be avector space and f: V' — V aninjective linear map with
P(f) = idp(v) . Show that f is a constant multiple of idy .

Exercise 65. Let V be a vector space and W C V a hyperplane. Show that for any
fixedv € V' \ W, the map

W —P(V)\P(W)
w — [v+ w)
is a well-defined bijection.
Exercise 66. Fori = 1,2letw; € R? v; € R?\ {0} and consider the lines
Li = {w; +tv; | t € R} CR?

If we extend the L; to projective lines in P?(R) via Construction where do
they intersect?

Exercise 67. Prove Lemmal[3.2.5].

Exercise 68. Show directly that the radical of a homogeneous ideal is again ho-
mogeneous (with ordered index group G).

Exercise 69. Prove Lemma[.2.11l

Exercise70. Showthat vI' = v/T" holds for ideals I C kl[zy,...,x,] (cf. Lemma
B.3.16).
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Exercise 71. Consider
V={(t¢)|teC} CC.

Show that Z(V') is homogeneous with respect to some nontrivial Z-grading of
Clz, y, 2], and determine homogeneous generators for this ideal. Show thatZ(V)
cannot be generated by 2 polynomials.

Exercise72. Let V' C A" be an affine variety with no points at infinity. Show that
V is finite.

Exercise 73. Show thata Hausdorff space X is compact if and only if for all Haus-
dorff spaces Y the projection

T X xY =Y

maps closed sets to closed sets (cf. Remark[3.4.3).

Exercise 74. Show that the variety V := A? \ {(0,0)} is not affine.
Hint: First compute O (V). If V was affine, to which simple affine variety would V' be
isomorphic? Why can't this be?

Exercise75. Let Q =V, (coz2 + - - - + ¢,2?) C P" be a quadric with ¢; # 0 for all
i. Show that () is irreducible for all » > 2. What holds for r < 2?

Exercise 76. Consider the three (affine) conic sections

Vi=V(*+y* 1)
Vo i=V(2* —y* — 1)
Vs = V(2 —y)

in C2, and let V; denote the projective closure of V; in P?(C). Show that for all
i,7 = 1,2, 3 there exists a projectivity p;; : P*(C) — P?(C) with

i (Vi) =V
Why is a similar statement wrong in the affine space?

Exercise 77. Show that a field K is finitely generated over £ if and only if X' =
k(V') holds for an irreducible k-variety V.
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Exercise 78. Let L; = V. (zo,z1) and Ly = V., (z2, r3) be two skew lines in P3.
Show that L; U Ly cannot be defined with 2 homogeneous equations. Does it
work with 3? How many polynomials does one need to generate Z(L; U L)?

Exercise 79. (i) Show that alocalization of a noetherian ring is again noetherian.
(4%) Let R be a ring and p a prime ideal in R. Then the localization R, has exactly
one maximal ideal, namely pR,. Show that

R,/pR, = Quot(R/p).

Exercise 80. Let J = {a € N" | |a|=d}, N = |J|, andlet Z C P" be the
projective variety defined by the equations

ZaRB = Z§Ry

fora, B,7,0 € Jwitha+ 8 =~v+0. Nowlet&y, ..., &, n1,...,n. € Jsuchthat
Zfz‘ = Zm.
Show that for b = (b, )acs € Z we then have

b$1"'b5 :bm"'bnw

r
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