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1 Introduction

The truth is, quantum mechanics is hard. It is not a rarity to find yourself confused while
doing a long calculation, forgetting about the physical meaning behind the mathematical rigor
necessary in order to obtain a quantitative result. A good intuition about these abstract concepts
is therefore a necessary skill for theoretical physicists. This thesis analyses the set of all possible
states, denoted by D(H), a quantum mechanical system can be in - a very abstract set of complex
matrices. Using the fact that this set is convex, some interesting visualisations are created via
the mathematics of convex geometry. The two main goals of this thesis are to

1. create appropriate, geometric pictures useful to gain an intuition for the set of quantum
states D(H).

2. give quantitative size estimations for D(H) and some of its subsets dependent on Hilbert
space of the system.

These estimates will be done by calculating the
radii rin and rout of the biggest hypersphere
completely inside the set and the smallest one
outside. These are the higher dimensional
generalizations of the in- and outward circle in
classical euclidian geometry, as seen in Figure
1.1.

The main source for this work was the book
Alice and Bob meet Banach - The Interface of
Asymptotic Geometric Analysis and Quantum
Information Theory by Guillaume Aubrun and
Stanslaw J. Szarek. It explains, how the
mathematics of convexity and cone geometry can
be used in order to gain insights into quantum
information theory. While many arguments
presented in this thesis can also be found there
(as well as many others), most calculations
are presented here more detailed and in a
more beginner-friendly way, avoiding advanced
mathematical concepts whenever it is possible.

Figure 1.1: A visualization of the inward
and outward circle of a pentagon. Their
higher dimensional generalization will be
used to estimate the size of the set of
quantum states D(H).

This thesis is structured as follows: Chapter 2 talks about quantum states in general, introducing
the concept of density matrices and the differences between pure and mixed states - a important
distinction used in quantum information theory. Chapter 3 is about the set of all possible quantum
states D(H), characterising its center and shape. Furthermore the eigenvalue picture, being a
geometric visualization for D(H), will be defined and used in order to measure the values for
rin and rout. Chapter 4 looks at bipartite systems, consisting of two distinct subsystems. Here,

3



1 Introduction

the concept of separability and entanglement will emerge, after which in- and outward radii for
the D(H)’s subsets SEP(H) and PPT(H) will be calculated. Chapter 5 tries to generalize these
results to a Hilbert space consisting of more than two parties, while Chapter 6 summarizes the
results presented throughout the thesis and motivates some interesting further question in this
field of study.
One should note that the hyperspheres with a radius rin/rout will always be denoted as the set’s
in- and outward circle, even though they will typically be of much higher dimension.
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2 Quantum states

This chapter answers the question, what a quantum state of a given system is and how we are able
to describe it. Afterwards, the distinction between pure and mixed states is introduced. This will
be done using the concept of density matrices, which give a more natural way of describing mixed
states in comparison to the typical Hilbert space vector formulation of quantum mechanics.

2.1 Density matrices
When talking about quantum mechanics, one always also talks about probabilities. It is very
important though to distinguish, if a system’s uncertainty arises from its quantum nature (=quantum
uncertainty) or if one simply does not have enough information to describe it in more detail
(=classical uncertainty). The typical formulation of quantum mechanics, which describes a
system via normed vectors |Ψ⟩ in a Hilbert space H, can describe the quantum uncertainty
of a system very well. However, when trying to introduce classical certainty, one will realize that
this is very unintuitive in this formulation.
A more natural way of describing classical probability is via so called density matrices. One
can, when having a Hilbert space vector |Ψ⟩, form the corresponding density matrix ρ = |Ψ⟩⟨Ψ|.
The advantage of density matrices can be seen, when wanting to describe a system, that has
(classical) probability 1/2 of being in the state |Ψ⟩ and 1/2 for state |Φ⟩. This can be described
by the density matrix

ρ = 1
2(|Ψ⟩⟨Ψ| + |Φ⟩⟨Φ|)

which would not be possible in a simillar way using Hilbert space vectors. A density matrix is
therefore any quadratic matrix of the form

ρ =
∑

k

pk|Ψk⟩⟨Ψk| (2.1)

with |Ψk⟩ ∈ H and some coefficients pk, which state the probability to measure ρ as |Ψk⟩⟨Ψk|.1
It follows, that all the coefficients have to be non-negative and sum to 1.
In order for a matrix to describe a physical state and be of the form 2.1, it must obey three
conditions:

1. Hermiticity
A matrix A is said to be hermitian, if its adjoint A† is itself. This can be checked, as

ρ† = (
∑

k

pk|Ψk⟩⟨Ψk|)† =
∑

k

pk(|Ψk⟩⟨Ψk|)† =
∑

k

pk|Ψk⟩⟨Ψk| = ρ

1It should be stated, that in order to really measure |Ψk⟩⟨Ψk|, one needs to transfer the matrix into the eigenbasis
{|Φj⟩⟨Φj |, j = 1,...,n} of the measurement operator Â. |Ψk⟩⟨Ψk| =

∑
j

cjk|Φj⟩⟨Φj |. The measurement is
described by Âρ =

∑
k

pk

∑
j

cjkÂ|Φj⟩⟨Φj | =
∑

j,k
λjpkcjk|Φj⟩⟨Φj |. So, when measuring Â of a system

described by ρ, the result will give eigenvalue λj with a probability of
∑

k
pkcjk.
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2 Quantum states

2. Normalization
A matrix is normalised, if its norm ||A|| is equal to one. The corresponding norm is the
matrix trace (the sum over its diagonal elements). It follows from

Tr(ρ) = Tr(
∑

k

pk|Ψk⟩⟨Ψk|) =
∑

k

pkTr(|Ψk⟩⟨Ψk|) =
∑

k

pkTr(⟨Ψk||Ψk⟩) =

=
∑

k

pk⟨Ψk||Ψk⟩ =
∑

k

pk = 1

where the linearity and the invariance under cyclic permutations of the trace are used.

3. Positive semidefinitness
A matrix is positive semidefinite, if the product x⊤Ax is non-negative for any vector x of
appropriate size. This is equivalent with saying all eigenvalues of the matrix have to be
non-negative. In braket notation this can be seen for density matrices via

⟨x|ρ|x⟩ =
∑

k

pk⟨x|Ψk⟩⟨Ψk|x⟩ =
∑

k

pk|⟨Ψk|x⟩|2 ≥ 0

where the semipositivity of the absolute value is used.

Now that the defining properties of density matrices and their ability to describe quantum states
are understood, lets introduce a very important distinction in quantum information theory, which
is the difference between pure and mixed states.

2.2 Pure and mixed states
The destinction into pure and mixed states is deeply connected to the difference between classical
and quantum uncertainty. A pure state is defined as a density matrix for which a normed Hilbert
space element |Ψ⟩ exists, such that

ρpure = |Ψ⟩⟨Ψ| (2.2)

They are therefore all the density matrices to which a single Hilbert space vector corresponds.
Their classical uncertainty is therefore zero. Mixed states, however, do carry classical uncertainty
about what quantum state the system actually is in. Such a density matrix is of the form

ρmixed =
∑

k

pk|Ψk⟩⟨Ψk| (2.3)

where all the pk have to be non-negative and sum up to 1. In the language of convexity, one can
say that the mixed states are convex combinations of pure ones - which is equivalent to saying
mixed states are of the form 2.3. This makes the set of all states a convex set with the pure
states as its extreme points, studyable via the tools of convex geometry.
A very special state, whose importance will arise in the next chapter, is the so called maximally
mixed state denoted by ρ∗. It’s density matrix is

ρ∗ := 1
d
Id (2.4)

where d gives the (complex) dimension of the Hilbert space and Id is the identity matrix of size
d× d.
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3 The set of quantum states

This chapter analyses the set of all possible quantum states, denoted by D(H). Using it’s
convexity, we will be able to deduce some facts about the size of this set. By doing that, one can
derive interesting geometrical pictures describing D(H). The main result of this chapter will be
a derivation of it’s in- and outward radii rin and rout dependent on the dimension of the Hilbert
space. The norm used for this will be the Hilbert-Schmidt norm ||A|| =

√
⟨A,A⟩ =

√
Tr(A2).

3.1 The shape and center of D(H)
The set of quantum states includes all the matrices of size dim(H)×dim(H), being hermitian,
normed and positive semidefinite. However, as positive semidefiniteness implies hermiticity, there
really are two conditions necessary to be fulfilled by a quadratic matrix in order to describe a
quantum state. A sketch, how one might visualize the set of quantum states, can be seen in
Figure 3.1.

Figure 3.1: A visualisation of the set of quantum states on a finite dimensional Hilbert space H = Cd.
One can see the hyperplane of trace one matrices embedded in the space of all hermitian matrices of size
d×d. Also the cone of semidefinite matrices is visible. The set of states corresponds to the intersection
of hyperplane and cone. There is also a point drawn in its center, corresponding to the maximally mixed
state ρ∗. Taken from Geometrical aspects of entanglement, Leinaas et al., Figure 1. [2]

When talking about the center of a convex set, one needs to clarify what being the center actually
means. There are more possibilities in defining this. One choice, for example, would be the set’s
center of mass 1. However, the definition used in this thesis will be, that the center of a body
must be the focus point of its in- and outward circle.
For most „typical“ shapes, like circles, cubes or pyramids for example, these definitions will yield

1The center of mass is calculated by defining a density function which is constant over every point in the set and
zero everywhere else and then taking a weighted average over all points.
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3 The set of quantum states

the same point as a center. Nevertheless, as even rectangles have different possible choices for
the focus point of their inward circle, as shown in Figure 3.2, while there is always just one center
of mass, the choosen center is in general dependent on the used definition.

Figure 3.2: A visualisation of the ambiguity of the inward circle of a rectangle. All points along the ocher
colored line are possible choices for the center of the inward circle. This picture should raise awareness,
that one has to be mindful when talking about the centers of convex bodies.

Theorem 1. The maximally mixed state ρ∗ = 1
dId is the center for the set of states D(H). If

this selection is ambiguous, one can always use ρ∗ as a chanonical choice.

As D(H) is a convex set, one knows that an inward circle (=cirlce with maximal radius, whose
points are all inside or on the border of D(H)) as well as an outward circle (=circle with minimal
radius, whose points are all outside or on the border of D(H)) must exist. The proof will show,
that the center - though in general ambiguous - can always be chosen to be ρ∗.

Proof. The proof will be done in two parts, the first showing that ρ∗ is a chanonical choice for
the inward circle’s focus and the second doing the same for the outward radius. As they both
yield ρ∗ as a result, it can be chosen as the general center.

1. inwards circle:
Let M be a possible focus for the inward circle of D(H) and let A be a state with distance
rin from M. As the norm is invariant under unitary transformations

||A−M || = ||U †AU − U †MU || = rin

and unitary transformations do not change the spectrum (=set of eigenvalues) of a matrix

Spect(A) = Spect(U †AU)

one concludes, that U †AU will again be a quantum state with distance rin to U †MU . As
this is true for any state on the incirlce around M, U †MU must also be a possible focus
point (which is true for any unitary matrix U), showing that {U †MU | U unitary} must be
a subset of all choosable focii. As the set of all possible centers of a convex set must also
be convex, one can be sure that also all convex combinations of elements in {U †MU | U
unitary} will yield choosable focus points. By calculating its center of mass one will get M̃
as

M̃ =
∫

U(d)
U †MUdU
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3 The set of quantum states

where U(d) is the unitary group of size d. By definition, M̃ has to be invariant under all
unitary transformations, as for any unitary matrix V

V †M̃V = V †(
∫

U(d)
U †MUdU)V =

∫
U(d)

V †U †MUV dU =
∫

U(d)
(UV )†M(UV )dU =

=
∫

U(d)
(U ′)†MU ′dU ′ = M̃

The only matrices invariant under all unitary transforamtions are matrices of the form
M̃ = α · Id for α ∈ C. From the normalisation constraint Tr(M̃) = 1 follows α = 1/d.

2. outwards circle:
Again, one picks a possible choice N for the focus of the outwards circle and an point B
with the maximal distance rout from it. Using the same argumentation as before, one sees
that also ||U †BU − U †NU || = rout for any unitary U. Again, as this argument is true for
any B with maximal distance, U †BU will yield another outcircle focus for every unitary U.
By averaging over the unitary group of corresponding size U(d),

Ñ =
∫

U(d)
U †NUdU

arises, which again is invariant under all unitary transformations (the calculation is the
same as in the first part of the proof), yielding Ñ = αId with α ∈ C. The normalization
gives α = 1/d.

This says that no point in D(H), when choosen as the midpoint of the in- and outward cirlces,
yields a bigger value for rin and smaller one for rout. Therefore, all derivations of these values
will correspond the calculations of the form

rin = ||ρin − ρ∗|| =
√
Tr((ρin − ρ∗)2)

rout = ||ρout − ρ∗|| =
√
Tr((ρout − ρ∗)2)

(3.1)

for some ρin/ρout fullfilling the condition to be on either the in- or outward circle’s line. The
goal of the next section is to characterise states fullfilling these conditions. This will yield a very
interesting geometric interpretation of D(H), by thinking about the set of all possible eigenvalues,
density matrices can have.

3.2 Eigenvalue picture
Using equations 3.1, the following theorem shows that the distance of any state ρ ∈ D(H) towards
the maximally mixed state ρ∗ specifically does only depend on its eigenvalues.

Theorem 2. The metric defined in 3.1 is only dependent on the eigenvalues λk of a density
matrix ρ.

r = ||ρ− ρ∗|| = ||

λ1
...
λd

− 1
d

 1
...
1

 ||

Distances from the set’s center can therefore be measured in Rd instead of Herm(Cd×d).
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3 The set of quantum states

Proof. As norms are invariant under unitary transformations,

r = ||ρ− ρ∗|| = ||U †ρU − U †ρ∗U ||

follows for every unitary matrix U . Therefore, one can always do the transformation with a
unitary Uρ, which diagonalises ρ into Dρ. As ρ∗ is just a scalar times the identity matrix, it will
commute with Uρ and stay invariant, making sure that Dρ − ρ∗ is diagonal.

r = ||U †
ρρUρ −U †

ρρ∗Uρ|| = ||Dρ − ρ∗|| =
√
Tr((Dρ − ρ∗)2) =

√∑
k

(Dρ,k − ρ∗k)2 =
√∑

k

(λk − 1
d

)2

Here λk denotes the k-th eigenvalue of ρ. As every density matrix ρ has to be hermitian, its
eigenvalues - which are the diagonal entries in Dρ - are real. The distance a density matrix has
from ρ∗ is therefore only dependent on the entries of its diagonalized form, which in fact are the
eigenvalues of ρ.

When measuring distances on D(H) towards the maximally mixed state ρ∗ specifically, one can
therefore simplify the problem by looking at the eigenvalue picture. The set can be visualised as
a convex subset of Rd, corresponding to all points, whose coordinates yield a density matrix when
used as its eigenvalues. As these have to sum up to 1 (normalisation) and all be non-negative
(positive semidefinitness), the set of states can be visualised as seen in Figures 3.3 and 3.4.

Figure 3.3: The set of states for Hilbert space H = C3 in the eigenvalue picture. The convex set is the
intersection of points, whose coordinates sum up to 1 and the first octant with the coordinate axes(for
an arbitrary dimension this is called the positive cone of Rd). This follows from the fact, that density
matrices have to be positive semidefinite and of trace one.

Such a convex body in Rd having d+1 extreme points is called d-simplex. It is the generalization
of the equilateral triangle (=2-simplex) and tetrahedron (=3-simplex). By analysing these higher
dimensional geometric bodies, interesting facts about D(H) can be deduced.
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3 The set of quantum states

Figure 3.4: The set of states for the H = C4 in the eigenvalue picture. The tetrahedron is the intersection
of the hyperplane of points in R4, whose coordinates sum up to 1 with the cone of points, whose coordinates
are all positive.

3.3 Size estimates

The goal of this section is to caluculate
the values of rin and rout for D(H)
on a finite dimensional Hilbert space
H = Cd. As Theorem 2 states,
distances from the set’s center ρ∗ can
be calculated in the eigenvalue picture.
This way of thinking about D(H)
makes it much easier to characterise
states fullfilling the condition to lie on
the in- or outward cirlce’s line. As the
set corresponds to a d-simplex in Rd,
geometric arguments can be used in
order to find such special states.
A visualisation of this is shown in
Figure 3.5

Figure 3.5: A visualization of the set of states for
H = C3. The dot in the center of the triangle
corresponds to the maximally mixed state ρ∗, also
its inward and outward circles are drawn.

Theorem 3. For a Hilbert space H = Cd, the radius of D(H)’s outward circle equals

rout =

√
d− 1
d

while its inward circle’s radius is

rin =
√

1
d(d− 1)

Proof. The calculations will be shown using the eigenvalue picture.
In order to calculate rout, one has to find a vector v⃗ maximising ||v⃗ − v⃗ρ∗ || =

√∑
k(vk − 1/d)2
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3 The set of quantum states

for v⃗ρ∗ = 1
d(1,...,1)⊤ under the constraints

∑
k vk = 1 and ∀k : vk ≥ 0. This can be done via the

use of lagrange parameters, for example. Otherwise, one can also look at Figure 3.5, see that
the extreme points have a 1 in one coordinate and 0 for every other and generalize this to higher
dimensions. Both ways yield as a possible choice for such a vector v⃗ = (1,0,...,0)⊤ (or every vector
with permutated coordinates). Such a state’s distance from ρ∗ can be calculated via

rout = ||v⃗ − v⃗ρ∗ || = ||


1
0
...
0

− 1
d


1
1
...
1

 || =
√

(1 − 1
d

)2 + (d− 1) 1
d2 =

=

√
1
d2 − 2

d
+ 1 + d− 1

d2 =
√

1 − 1
d

=

√
d− 1
d

In order to find vectors w⃗ which lie on the incirlce, some geometric argumentation is needed.
The inward radius can be characterised as the minimal distance, a point on the surface of a
body has to its center. For tetrahedra it is quite obvious, that these points must be the centers
of the bodies faces, which are equilateral triangles. For a general dimension, the faces of d-
simplex will be a (d-1)-simplex. The orientation of these (d-1)-simplices in Rd is such, that the
simplex is orthogonal to the one extreme point not touching it. This means, that the vector,
which connects the center of the (d-1)-simplex to the opposite extreme point, is orthogonal to
every vector connecting two points inside the (d-1)-simplex. This can be visualized nicely by the
3-simplex (=tetrahedron), whose surface is made up by 4 2-simplices (=equilateral triangles),
which are in fact by themselves constructed from 3 2-simplices (=lines) each.
The eigenvalue picture shows that the center of a d̃-simplex is v⃗ρ∗ = 1/d̃(1,...,1)⊤. Embedding this
point in a space 1 dimension higher, in the orthogonal plane to a extreme point v⃗ = (1,0,...,0)⊤,
will give the center of the face opposite to v⃗. The centers of the different (d-1)-simplices are
therefore all vectors w⃗ = 1

d−1(0,1,...1)⊤ (as well as all vectors with permutated coordinates).
Using this, the inwards radius can be calculated via

rin = ||w⃗ − v⃗ρ∗ || = || 1
d− 1


0
1
...
1

− 1
d


1
1
...
1

 || =
√

1
d2 + (d− 1)( 1

d− 1 − 1
d

)2 =

=
√

1
d2 + (d− 1)( 1

d(d− 1))2 =
√

d− 1
d2(d− 1) + 1

d2(d− 1) =
√

1
d(d− 1)

Theorem 3 says, that for large Hilbert spaces rin goes towards 0, while rout slowly approaches 1.
Therefore, one might visualize the set of all quantum states of a system as an ellipsoid, as shown
in Figure 3.1, with highly differing major- and minor-semi axes.
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4 Bipartite quantum systems

This chapter focuses on bipartite systems, which consist of two distinct subsystems able to
interact. As both of these parties are quantum systems, one is able to describe them each with
Hilbert space HA/B respectivley. The structure of this situation (having two distinct subsystems)
can mathematically be expressed by a tensor product, yielding the system’s Hilbert space H =
HA ⊗ HB. While all results of the last chapter remain true for this global system, the tensor
decomposition of H gives rise to some physically important subsets of D(H) with an interesting
geometry.
After an introduction of entanglement and separability, the set of positive partial transpose
PPT(H) will be defined. This is a subset of D(H) used for approximating the set of separable
states SEP(H). Afterwards, the in- and outwards radii of those two sets will be calculated and
compared to the results from Theorem 3.

4.1 Separability and entanglement
Bipartite quantum systems are all systems described by a Hilbert space of the form

H = HA ⊗ HB (4.1)

where HA and HB are the Hilbert spaces of the two parties on their own. In order to describe
states on this global Hilbert space, the definition of a pure product state

ρ = |ϕ⟩⟨ϕ| ⊗ |ψ⟩⟨ψ|

with |ϕ⟩ ∈ HA and |ψ⟩ ∈ HB, is needed. These are all the states corresponding to one pure state
on both subsystems. If a system is described by a pure product state, its subsystems do not
interfere with eachother and do not carry classical uncertainty. This can be seen, as the partial
trace over one of the Hilbert spaces TrA(ρ) = |ψ⟩⟨ψ| stays invariant under measuring subsystem
B in an arbitrary state |α⟩. This will be discussed in more detail once entanglement is introduced.
In order to also describe systems with classical uncertainty, one has to allow convex combinations

ρ =
∑

k

ck|ϕk⟩⟨ϕk| ⊗ |ψk⟩⟨ψk| (4.2)

States writable in this form are called separable. The set of separable states, consisting of all
density matrices of the form 4.2, therefore is a convex subset of D(H) with the pure product
states as its extreme points. This is also the set of all solely classical correlated states.1

However, not all states on H are writable in this form. The ones that are not are called entangled.
Some typical examples for entangled states are the four Bell states on H = C2⊗C2 shown below.[3]
The two pure basis states of C2 are denoted by |0⟩ and |1⟩. Also the tensor product |0⟩⟨0|⊗ |0⟩⟨0|
gets surpressed into |00⟩⟨00| to simplify the notations.

1For a state to be classically correlated means, that a measurement taken on one of the subsystems can not affect
the state of the other subsystem.
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4 Bipartite quantum systems

|Φ+⟩⟨Φ+| = 1
2(|00⟩⟨00| + |00⟩⟨11| + |11⟩⟨00| + |11⟩⟨11|)

|Φ−⟩⟨Φ−| = 1
2(|00⟩⟨00| − |00⟩⟨11| − |11⟩⟨00| + |11⟩⟨11|)

|Ψ+⟩⟨Ψ+| = 1
2(|01⟩⟨01| + |01⟩⟨10| + |10⟩⟨01| + |10⟩⟨10|)

|Ψ−⟩⟨Ψ−| = 1
2(|01⟩⟨01| − |01⟩⟨10| − |10⟩⟨01| + |10⟩⟨10|)

(4.3)

The Bell states are not of the form 4.2, as not all terms in 4.3 are density matrices, as for example

|00⟩⟨11| = |0⟩⟨1| ⊗ |0⟩⟨1|=̇
(

0 1
0 0

)
⊗
(

0 1
0 0

)

which is neither positive semidefinite nor normed.
The key distinction between these Bell states (or any other entangled state) and separable ones
is, that measurements on one subsystem of the states in 4.3 do affect the other party’s state.
When looking at a system described by |Φ+⟩⟨Φ+| for example, both of the subsystems are in a
superposition of |0⟩ and |1⟩. The state on subsystem B would be

ρB = TrA(|Φ+⟩⟨Φ+|) = ⟨0|A|Φ+⟩⟨Φ+|0⟩A + ⟨1|A|Φ+⟩⟨Φ+|1⟩A = 1
2(|0⟩⟨0|B + |1⟩⟨1|B)

where the index denotes state’s system. However, when taking a measurement on A before
measuring B this result is no longer true, as measuring system A in the |1⟩A state for example

⟨1|A|Φ+⟩⟨Φ+|1⟩A = |1⟩⟨1|B

The measurement done on A therefore changed the state on B, which corresponds to Einstein’s
„spooky action at a distance“, as this is true no matter how far the subsystems are apart.
The Bell state |Φ+⟩⟨Φ+| (as well as |Φ−⟩⟨Φ−|) therefore yields perfectly correlated measurements,
while the results for |Ψ±⟩⟨Ψ±| would be perfectly anticorrelated. In general, the defining property
of entanglement is, that measurements on one subsystem affect the state of the other one, which
does not happen with a separable state as in 4.2. The subsystems are therefore non-classically
correlated.

Even though separable and entangled states behave differently under measurements, it is not
clear on first sight what conditions a density matrix has to fullfill in order to be writable as in
4.2. In order to be able to answer the question, if a given state is separable or not, the concept
of the partial transpose will get introduced in the next section. From this a necessary condition
for separabilty arises.

14



4 Bipartite quantum systems

4.2 The partial transpose
The partial transpose operator is defined as

ΓB := Id ⊗ T (4.4)

It acts as the identity on the first subsystem and does a matrix transpose on the second one.
As the matrix transpose is a positive, though not completely positive, map2 [6], the transpose
of a density matrix will always yield another density matrix. As the eigenvalues can change
under a partial transposition, this is not true for partially transposed states. Therefore one is
able to define the set of positive partially transposed states, which consits of all density matrices
remaining states after getting partially transposed

PPT := {ρ ∈ D(H) : ΓBρ ∈ D(H)} (4.5)

ρ being an element of PPT therefore is equivalent to saying that ΓBρ only has non-negative
eigenvalues, as the trace of a matrix is not affected by such a transformation. This definition
of PPT is independent of the choice, which of the two subsystems is transposed, as the partial
transpose on system B just gives the global transpose of the partial transpose on A.

ΓBρ = (Id ⊗ T )ρ = T ⊗ T (T ⊗ Id)ρ = Tglobal(ΓAρ)

When taking the partial transpose of a separable state

ΓBρ = (Id ⊗ T )
∑

k

ck|ϕk⟩⟨ϕk| ⊗ |ψk⟩⟨ψk| =
∑

k

ck|ϕk⟩⟨ϕk| ⊗ T |ψk⟩⟨ψk| =
∑

k

ck|ϕk⟩⟨ϕk| ⊗ |ψ̃k⟩⟨ψ̃k|

it remains separable. This follows from the fact that the density matrices |ψk⟩⟨ψk| all get
transposed globally and must therefore not change their eigenvalues. This is stated in the Peres-
Horodecki criterion, yielding a necessary condition for separability.[4]

SEP ⊂ PPT (4.6)

Interestingly, for the low dimensional Hilbert spaces H = C2⊗C2 and H = C2⊗C3, this condition
is not only necessary, but also sufficient.[4]

4.3 Size estimates
Similar to Theorem 3, this section will be dedicated to calculate the values for rin and rout for the
two sets SEP(H) and PPT(H), consisting of all separable/positive partially transposable states
on a general bipartite Hilbert space.

Theorem 4. The outward radii rout of SEP(H) and PPT(H) match for an arbitrary bipartite
Hilbert space H = Cd1 ⊗ Cd2. Its value is

rout =

√
d− 1
d

with d being the global Hilbert space dimension d = d1 · d2.
2This means, that the eigenvalues of a general matrix do not change when transposing it globally, while they do

change under a partial transpose.

15



4 Bipartite quantum systems

Proof. At first the statement will be shown for the separable states. As SEP(H) is a convex
set, it follows that the maximal distance from the center ||ρ− ρ∗|| will get realised for a extreme
point of the set, which corresponds to a product state ρ = Λ ⊗ Φ with Λ ∈ Hermd1×d1 and
Φ ∈ Hermd2×d2 . The distance such a state has towards ρ∗ is therefore

||ρ− ρ∗|| =
√
Tr((Λ ⊗ Φ − 1

d
Id)2) =

√
Tr(Λ2 ⊗ Φ2 − 2

d
Λ ⊗ Φ + 1

d2 Id) =

=
√
Tr(Λ2)Tr(Φ2) − 2

d
Tr(Λ)Tr(Φ) + 1

d2Tr(Id) =
√
Tr(Λ2)Tr(Φ2) − 2

d
+ 1
d

=

=
√
Tr(Λ2)Tr(Φ2) − 1

d

where Tr(Λ) = Tr(Φ) = 1 was used. As the outward radius corresponds to the maximal distance
a state can have from the center, rout can be calculated via

rout = max(||ρ− ρ∗||) = max(
√
Tr(Λ2)Tr(Φ2) − 1

d
) =

√
1 − 1

d
=

√
d− 1
d

which coincides with the outward radius of D(H). As SEP⊂PPT⊂D implies that rout(SEP)≤
rout(PPT)≤ rout(D) holds, the same follows for PPT(H).

Theorem 5. The inward radii rin of SEP(H) and PPT(H) match for an arbitrary bipartite
Hilbert space H = Cd1 ⊗ Cd2. Its value is

rin =
√

1
d(d− 1)

with d being the global Hilbert space dimension d = d1 · d2.

Proof. At first, one may choose an orthogonal basis of the set of Hermitian matrices Hermd×d,
such that e0 = ρ∗ aswell as Tr(ei) = 0 and ||ei|| = 1 for i = 1,...,N . Using this basis, an arbitrary
density matrix can be expressed as ρ = ρ∗ +

∑
k rkek for some coordinate vector r⃗ ∈ RN . The set

D(H), as well as all of its subsets can therefore be associated with subsets of RN . Furthermore,
let K be defined as the set of all states, lying inside the hypersphere of radius

√
1

d(d−1) around
ρ∗, so ||ρ− ρ∗||2 ≤ 1

d(d−1) for every ρ ∈ K. This can be simplified to the condition ||r⃗||2 ≤ 1
d(d−1) ,

as

||ρ− ρ∗||2 = Tr((ρ− ρ∗)2) = Tr((
∑

k

rkek)2) = Tr((
∑

k

r2
ke

2
k) =

∑
k

r2
kTr(e2

k) =
∑

k

r2
k = ||r⃗||2

Instead of showing the inclusion K⊂SEP implied by the theorem, one can make use of the bipolar
theorem in RN and change to the polar of these sets, denoted by a *, and show SEP*⊂K*.3 As K
just corresponds to a hypersphere with radius r=

√
1

d(d−1) around the origin in RN , one deduces
that its polar is a hypersphere of inverted radius. This can be seen as ⟨r⃗,x⃗⟩ ≥ −1 implies that a
x⃗ being anti-parallel to a vector r⃗ can maximally be of lenght 1

r in order to be in the polar.

We will now characterise elements of SEP*. It is known, that the dual of the separable cone -
which corresponds to all separable matrices ignoring the normalization constraint - is the cone of

3The polar X* of a set X⊂ RN is defined as all y ∈ RN fullfilling the inequality ⟨x,y⟩ ≥ −1 for every x ∈ X.
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4 Bipartite quantum systems

all block-positive matrices[1]. This means, that saying a matrix M is block positive is equivalent
to ⟨M,S⟩ ≥ 0 ∀S ∈ SEP. By restricting us to elements in the hyperplane of unit trace, this scalar
product equals

⟨M,S⟩ = Tr(ρ2
∗) + ⟨m⃗,s⃗⟩ = 1

d
+ ⟨m⃗,s⃗⟩

where m⃗ and s⃗ are the coordinate vectors of the block-positive/separable matrix in the chosen
basis. For a matrix M to be block-positive can therfore be expressed as a criterion for its
coordinate vector m⃗

d⟨m⃗,s⃗⟩ = ⟨dm⃗, s⃗⟩ ≥ −1
Comparing this result to the definition of the polar, we see that a matrix M=ρ∗ +

∑
k mkek is

block-positive, if and only if its scaled coordinate vector dm⃗ is inside the polar. We can therefore
describe the polar of the separable set SEP* as the set of all vectors a⃗, for which ρ∗ +

∑
k

ak
d ek

yields a block-positve density matrix.
The inclusion SEP*⊂K* is therefore equivalent to showing that such a vector a⃗ is an element of
the hypersphere of radius

√
d(d− 1) in RN or prooving, that all block-positive density matrices

ly inside the hypersphere of radius
√

d−1
d around ρ∗.

By calculating ||ρ− ρ∗||2

||ρ− ρ∗||2 = Tr((ρ− ρ∗)2) = Tr(ρ2) − 2Tr(ρρ∗) + Tr(ρ2
∗) = Tr(ρ2) − 2

d
+ 1
d

= ||ρ||2 − 1
d

one gets a general condition to prove

||ρ||2 ≤ d− 1
d

+ 1
d

= 1

for a general bipartite block-positive density matrix. By using the tensor decomposition, any
matrix ρ can be expressed as ρ =

∑
i,j Eij ⊗ ρij , where Eij is an matrix unit of size d1 × d1,

meaning its only nonzero entry is a 1 at the (i,j)-spot, ρi,j is the matrix block of size d2 × d2 at
the (i,j)-spot. By using the identity Eij · Ekl = δjkEil, one gets

ρ2 = (
∑
i,k

Eik ⊗ ρik) · (
∑
l,j

Elj ⊗ ρlj) =
∑
i,j

Eij ⊗
∑

k

ρikρkj

Taking the trace, this simplifies to

Tr(ρ2) =
∑
i,j,k

Tr(Eij) · Tr(ρikρkj) =
∑
i,k

Tr(ρikρki) =
∑
i,k

Tr(ρikρ
†
ik) =

∑
i,k

||ρik||2

where the hermiticity of the matrix and its blocks was used.
Finally, one must apply Lemma 9.16 in [1], which states for a self adjoint, block-positive matrix
in the Hilbert space H = Cn ⊗ C2, representable as(

A B
B† C

)

the inequallity ||B||2 ≤ Tr(A)Tr(C) must hold. From this

Tr(ρ2) =
∑
i,k

||ρik||2 ≤
∑
i,k

Tr(ρii)Tr(ρkk) = Tr(ρ)2 = 1

follows, completing the proof for SEP(H). Simillar to the proof of Theorem 4, from SEP⊂PPT⊂D
follows that rin(SEP)≤ rin(PPT)≤ rin(D) holds. As the inward radii of SEP(H) and D(H) match,
the same must be true for PPT(H).
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4 Bipartite quantum systems

It should be stated here, that the radii calculated in Theorem 4 and 5 are always measured in
regard to ρ∗. While Theorem 1 proved that this state is the center of D(H), this was not shown
for SEP(H) and PPT(H). In other words, it must also be shown that there is no state in both
these sets, that yields bigger values for rin or rout when used as their center. However, as their
in- and outward circle match the ones of D(H), one can conclude that such points can not exist
as they would have to violate the condition rin/out(SEP)≤ rin/out(PPT)≤ rin/out(D) implied by
SEP⊂PPT⊂D.
Interestingly, the in- and outward radii for the set SEP(H) and PPT(H) do not depend on the
tensor decomposition of the Hilbert space in 4.1, but only on the dimension of the global Hilbert
space. Theorems 4 and 5 yield the same values for rin and rout for the sets PPT(H) and SEP(H)
as Theorem 3 for the set of all states D(H). This seems surprising, as it is a well-known fact
in quantum information theory, that in the limit of large hilbert spaces, the probability for a
randomly choosen state to be entangled is 1.[5] However, it should be noted that there are other
size estimates (for example the mean-width as shown in Chapter 9 in [1]) for which the sets
SEP(H), PPT(H) and D(H) yield different values.
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5 Multipartite quantum systems

Multipartite systems are systems with two or more parties. As the bipartite case was discussed in
detail in the last chapter, the focus will lie on Hilbert spaces with at least 3 subsystems. This has
a big effect on the definition of PPT(H), which was independent of the choice which subsystem
was transposed for the bipartite case. As this is no longer the case for Hilbert spaces with three
or more parties, this chapter only discusses the set of separable states.
A general multipartite Hilbert space is of the form

H =
N⊗

k=1
Hk (5.1)

Interestingly, the in- and outward circle of the set SEP(H) behave highly different for a Hilbert
space of the form 5.1.

Theorem 6. The radius of the outward circle rout of the set of separable states SEP(H) yields

rout =

√
d− 1
d

for an arbitrary Hilbert space of the form 5.1.

Proof. Smilliar to the proof of Theorem 4 one can argue, that from SEP(H) being convex follows
that rout - being the maximal distance from the body’s center - must be realised toward its
extreme points. These, being product states, are of the form ρ =

⊗N
k=1 Λk for some Λk ∈ D(Hk).

The metric can then be calculated via

||ρ− ρ∗|| =
√
Tr((ρ− ρ∗)2) =

√√√√Tr( N⊗
k=1

Λ2
k − 2

d

N⊗
k=1

Λk − 1
d2 Id) =

=

√√√√Tr( N⊗
k=1

Λ2
k) − 2

d
Tr(

N⊗
k=1

Λk) + 1
d2Tr(Id) =

√√√√ N∏
k=1

Tr(Λ2
k) − 1

d

As Tr(Λ2
k) is maximal, if Λ2

k = Λk, rout can be calculated via

rout = max(||ρ− ρ∗||) = max(

√√√√ N∏
k=1

Tr(Λ2
k) − 1

d
) =

√√√√ N∏
k=1

Tr(Λk) − 1
d

=
√

1 − 1
d

=

√
d− 1
d

However, while the outward radius of SEP(H) and D(H) match for an arbitrary Hilbert space
H, the inward radius of SEP(H) is highly dependent on the form of the tensor decomposition of
the Hilbert space in 5.1 and very hard to calculate even for specific cases. To give an example,
in Chapter 9 in Alice and Bob meet Banach the authors are able to calculate that the inward
radius for a N-qubit system is proportional to 6− N

2 .[1]
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6 Conclusion

Now that we discussed the set of states on its own, looked at bipartite systems and how the
sets PPT(H) and SEP(H) behave for a two party Hilbert space and also shortly discussed the
multipartite case, lets summarize. Though the set of all quantum states of a system is an abstract
set of complex matrices, fullfilling some conditions enabling us to interpret them in a physical
way, we have been able to conclude some interesting facts about its structure. Being centered
about the maximally mixed states ρ∗ = 1

dId, its rich geometry yields the eigenvalue picture,
associating D(Cd) with a (d-1)-dimensional simplex. This reduction enabled us not only to gain
a visual interpretation of the set of states, unraveling some of its hidden beauty and symmetry,
but also to calculate the in- and outward radii in a real vectorspace picture. This made the
derivation less abstract and more intuitive, which is of course more than welcome.
Afterwards, we focussed on bipartite systems with a Hilbert space of the form H = Cd1 ⊗Cd2 . In
this context, the distinction into separable and entangled states was introduced, which brought us
to the analysation of the set of positive partial transposed states PPT(H). The partial transpose
- being a positive, though not completely positve map [6] - brought us the Peres-Horodecki-
criterion; a necessary condition for separability. Furthermore, the radii of the in- and outward
circle have been derived for these sets as well. Theorems 4 and 5 proved, that their size is
only dependent on the global Hilbert space dimension and not on the specific form of the tensor
decomposition. What is more, rin and rout have the same value for all three sets D(H), PPT(H)
and SEP(H)), as long as the Hilbert space is bipartite. This result was surprising, as the sets
differ highly in volume and have to be convex. A picture, on how one might interpret this result
and therefore visualize the different sets can be seen in Figure 6.1.

Figure 6.1: An illustration showing how different convex sets can share their in- and outward circle while
differing in volume. The figure shows SEP(H1 ⊗ H2) (green), PPT(H1 ⊗ H2) (union of green and orange)
and D(H1 ⊗ H2) (union of green, orange and blue) for the bipartite case. It should be noted that the
shape of the different sets was chosen to illustrate this fact and has no other physical justification.
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6 Conclusion

Even for a general multipartite system we have been able to prove that SEP(H)’s outward radius
always matches with the one of all states. This says, that for every Hilbert space, there are some
separable states near the border of the set D(H). Using the eigenvalue picture, one concludes
that every Hilbert space has to have separable states with some of its eigenvalues being arbitrary
small. However, the inward radius of the set of separable states depends highly non-trivially on
the tensor decomposition of the Hilbert space, which makes it very difficult to calculate it. To
obtain deeper insights into the reasons why this is the case and how one might overcome this
hurdles, seems like an interesting topic for futher research. Some other very interesting questions
would be to try to find other cases than the bipartite one, where the inward radii of SEP(H) and
D(H) match or use other ways of measuring sizes for these sets and find out, which one yield
the same result for the different sets and which do not. I think that doing this will yield some
interesting facts about entanglement and, in the long run, increase our understanding for this
very counterintuitive quantum behaviour.
To conclude, the internal structure of the set of quantum states enables us to find interesting
pictures in order to characterize it. Describing this theoretical abstraction as a part of reality lets
us derive further facts about quantum mechanics; helping us to not only understand our theories
better, but also nature itself.
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