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Ich erkläre mich mit der Archivierung der vorliegenden Bachelorarbeit einverstanden.

2



Contents

1 Introduction 4

2 Fundamentals 5
2.1 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Fundamental Group 15

4 Covering spaces 17

5 The Theorem of Seifert and van Kampen 23
5.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



1 Introduction

The Theorem of Seifert and van Kampen is a powerful statement in Algebraic Topology that has
many applications including the theory of covering spaces, groups, and homotopy. The theorem
essentially states that if we have two open sets in a given space with a common intersection,
and we know the fundamental groups of these sets and their intersection, then we can compute
the fundamental group of the entire space. This allows us to determine the fundamental group
of spaces where a direct approach would be much more challenging. In this thesis I will give
a short introduction to Algebraic Topology. We will provide the most important definitions,
prove some interesting facts about covering spaces and learn about the deep connection between
group theory and topology.
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2 Fundamentals

All of the definitions,theorems and propositions in this chapter were taken from [1],[2],[3],[4],[5],[6].

2.1 Category Theory

Definition 2.1. (Category) A category C consists of:

1. A class Obj(C) who’s elements are called objects

2. For every 2 objects X,Y ∈ Obj(C) a class C(X,Y ) who’s elements are called morphisms

3. For every three objects X,Y, Z ∈ Obj(C) a binary operation ◦ on morphisms called the
composition of morphisms

comp : C(X,Y )× C(Y,Z) → C(X,Z)
(f, g) → g ◦ f

such that for any morphisms f ∈ C(X,Y ), g ∈ C(W,X), h ∈ C(Y, Z):

h ◦ (f ◦ g) = (h ◦ f) ◦ g

4. For every object X ∈ Obj(C) a morphism idX : X → X called the identity such that for
any Y and every morphism f ∈ C(X,Y )

f ◦ idX = f
idY ◦ f = f

A morphism f : X → Y is called isomorphism if there exists a morphism g : Y → X such that:

f ◦ g = idY
g ◦ f = idX

Definition 2.2. (Small category) A category C is called small category if Obj(C) and C(X,Y )
are sets.

Definition 2.3. (Functor) Let C1, C2 be categories. A functor F consists of 2 mappings:

� F : Obj(C1) → Obj(C2)

� F : C1(X,Y ) → C2(F (X), F (Y )) , ∀X,Y ∈ Obj(C)

such that for every object X and every two morphisms f, g :

F (idX) = idF (X)

F (g ◦ f) = F (g) ◦ F (f)

Definition 2.4. (Diagram) Let C be a category and D a small category A diagram of type D
in C is a functor F : D → C. A morphism of diagrams is a natural transformation.
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2 Fundamentals

Definition 2.5. (Natural Transformation) Let C1,C2 be categories and F1, F2 : C1 → C2 be
functors. A natural transformation α : F1 → F2 consists of morphisms αX : F1(X) → F2(X)
for every X ∈ Obj(C1) such that the following diagram commutes for all f ∈ C1(X,Y ):

F1(X)
F1(f) //

αX

��

F1(Y )

αY

��
F2(X)

F2(f) // F2(Y )

Definition 2.6. (Retraction) Consider a category C and X,Y ∈ Obj(C) and two morphisms
r : X → Y , s : Y → X. If rs = idY then r is called a retraction of s and s is called a section
of r.

Definition 2.7. (Cocone) Let F : D → C be a diagram. A cocone in F is a pair (x, α) with
x ∈ Obj(C) and α a family of morphisms αd : F (d) → x for each object d ∈ Obj(D) such that for
each morphism f ∈ D(d1, d2) ,d1, d2 ∈ Obj(D) with F (f) : F (d1) → F (d2) ∈ C(F (d1), F (d2))
the following diagram commutes:

F (d1)

αd1 ""

F (f) // F (d2)

αd2||
x

Definition 2.8. (Colimit) Let F : D → C be a diagram. Let K be the category having all
cocones of F as objects and and as morphisms from the cone (x, α) to the cocone (y, β) all
morphisms η : x → y such that for each d ∈ Obj(D) the following diagram commutes:

x
η // y

F (d)

αd

aa

βd

==

(u, γ) ∈ Obj(K) is called a colimit of F if for any cocone (x, α) ∈ Obj(K) there exists a unique
morphism λx : u → x such that for every d ∈ Obj(D) the following diagram commutes:

u
λx // x

F (d)

γd

aa

αd

==

I.e we can factorize over the cocone (u, γ). We obtain the following commutative diagram:

F (d1)
F (f) //

γd1

""
αd1

��

F (d2)

αd2

��

γd2

||
u

λ
��
x

Following are two examples of colimtits.

Definition 2.9. (Coproduct) Consider a category C. Let X,Y, Z be objects of C. A coproduct
is an object P together with two morphisms i1 : X → P ,i2 : Y → P such that for every two
morphisms f : X → Z, g : Y → Z there exist a unique morphism u : P → Z such that the
following diagram commutes:
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2 Fundamentals

Z

X

f
>>

i1
// P

u

OO

Y

g
__

i2
oo

Definition 2.10. (Pushout) Let C be a category, f ∈ C(X,Y ), g ∈ C(X,Z) two morphisms
with common domain. A pushout of f, g consists of

� an object P ∈ Obj(C)

� two morphisms i1 : Y → P, i2 : Z → P that satisfy:

i2 ◦ g = i1 ◦ f

such that for any Q ∈ Obj(C) together with two morphisms j1 : Y → Q, j2 : z → Q that satisfy
j1 ◦ f = j2 ◦ g there exists a unique p : P → Q such that the following diagram commutes:

X

f
��

g // Z

j2

��

i2
��

Y
i1
//

j1

++

P

p

��
Q

Definition 2.11. (Lift) Given two morphisms f : X → Z , g : Y → Z a lift of f to Y is a
map h : X → Y such that:

f = g ◦ h

Theorem 2.12. Let C,D be commutative squares in a category C, such that D is a pushout.
If there is a retraction r : D → C, then C is a pushout.

Proof. Consider the commutative squares

C0

i2
��

i1 // C1

u1

��
C2 u2

// C

D0

j2
��

j1 // D1

v1
��

D2 v2
// D

Let c : C → D, d : D → C be morphisms such that dc = 1C . Suppose we are given morphisms

wk : Ck → W

such that w1i1 = w2i2. Consider the morphisms

wkdk : Dk → W

Since d is a map of squares , d1j1 = i1d0 , d2j2 = i2d0 so

(w1d1)j1 = (w2d2)j2

since D is a pushout, there is a unique morphism p : D → W such that
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2 Fundamentals

pv1 = w1d1, pv2 = w2d2

Let w = pc : C → W . Then for k ∈ {1, 2}

wuk = pcuk = pvkck = wkdkck = wk

as required. Suppose w̃ : C → W also satisfied w̃kuk = wk, k ∈ {1, 2}. Then

w̃dvk = w̃ukdk = wkdk = pvk

Hence

w̃d = p and so w̃ = w̃dc = pc = w

2.2 Topology

Definition 2.13. (Topology) Consider a non empty set X. A topology on X is a subset T of
P (X) that satisfies the following:

� ∅, X ∈ T

� A,B ∈ X ⇒ A ∩B ∈ X

� Ai ∈ X ⇒
⋃

i∈I Ai ∈ X

We call sets A ∈ T open and sets X\A closed. (X,T ) is called a topological space.

Definition 2.14. (Basis) Let (X,T ) be a topological space then a set B ⊂ P (X) such that

T = {
⋃

B∈MB|M ⊆ B}

is called a basis of (X,T ).

Definition 2.15. (Continuous map) Consider two topological spaces (X,T ), (Y,G). A map
f : X → Y is called continuous if and only if: ∀A ∈ G : f−1(A) ∈ T .

Remark 2.16. We can now define the category TOP . The objects of TOP are topological
spaces, morphisms between topological spaces are continuous maps.

Definition 2.17. (Quotient topology) Consider an equivalence relation ∽ on X together with
the canonic projection p : X → X/∽. We can define:

T/ ∽= {A ⊆ X/ ∽ | p−1(A) ∈ T}

Definition 2.18. (Subspace topology) Given a topological space (X,T ) and a subset A ⊆ X.
Then

TA = {A ∩B|B ∈ T}

is the subspace topology on A.

Definition 2.19. (Adjunction space) Consider two topological spacesX,Y together with a map
f : A ⊂ X → Y called an attaching map. Let X∪Y be the disjoint union and jk : X,Y → X∪Y
be the respective inclusions. We define an equivalence relation ∽ where x ∽ y ⇔ y = f(x) for
x ∈ A, y ∈ Y . Additionally let i : A → X be the inclusion. The following pushout is called an
adjunction space:

A

f
��

i // X

j1
��

Y
j2// (X ∪ Y )/ ∽
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2 Fundamentals

We will use the notations (X ∪ Y )/ ∽= X ∪f Y = X ∪∽ Y

Definition 2.20. (Wedge sum) Consider pointed topological spaces (Xi, xi), i ∈ I. The wedge
sum

∨
i(Xi, xi) is a quotient of the disjoint union

⋃
Xi that is obtained by identifying the xi

with a single point. The wedged sum of circles S1 ⊂ R is called a bouquet of circles.

Definition 2.21. (N-cell)

en = {x ∈ Rn|||x|| < 1}

is called an n-cell.

Definition 2.22. (Cell-complex) We inductively define adjunction spaces.

1. Start with a discrete set X0 who’s points can be regarded as 0-cells.

2. Inductively start attaching the closure of n-cells enk ⊂ Dn
k between the n − 1-cells via a

family of attaching maps f where fk : δDn
k → Xn−1. For every attaching map we define

the equivalence relation x ∽k y ↔ y = fk(x) and define ∽:= (∽1, ...,∽k, ...). This gives
the following adjunction space:

Xn = (Xn−1 ∪
⋃
k

Dn
k )/ ∽

Since, Dn
k\δDn

k = enk , as a set, Xn is given by:

Xn = Xn−1 ∪
⋃
k

enk

A space constructed this way is called a cell-complex. A set U ⊂ Xn is open if U ∩ enk is open
for every enk .

Definition 2.23. (Connected) A topological space (T,X) is called connected if and only if the
following holds:

∀A,B ∈ T : (A ∩B = ∅ ∧A ∪B = X) ⇒ (A = X ∨B = X)
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2 Fundamentals

Definition 2.24. (Path connected) A topological space X is called path connected if and only
if for every two points x, y ∈ X there exists a continuous path φ : [0, 1] → X that satisfies

φ(0) = x, φ(1) = y

Definition 2.25. (Path components) We can define an equivalence relation:

x, y ∈ X : x ∽ y ⇔ ∃φ : [0, 1] → X : φ continuous, φ(0) = x, φ(1) = y.

We call the elements [x] ∈ X/ ∽ the path components of X.

Definition 2.26. (Locally path connected) Consider a topological space X. If for each x ∈ X
and each neighbourhood Ux there exists a path connected neighbourhood Vx ⊆ Ux we call X
locally path connected.

Definition 2.27. (Homotopy) Let f1, f2 : X → Y be continuous maps. A homotopy between
f1 and f2 is a continuous map H : X × [0, 1] → Y such that

� H(0, t) = f1(t)

� H(1, t) = f2(t)

Then f1 is homotopic to f2. A map is said to be nullhomotopic if it is homotopic to a constant
map.

Definition 2.28. (Homotopy of paths) Consider a topological space (X,T ) and two paths
φ1, φ2 : [a, b] → X where φ1(a) = φ2(a) and φ1(b) = φ2(b). A path homotopy between φ1, φ2

relative to {0, 1} is a continuous map H(s, t) : [a, b]× [0, 1] → X that satisfies the following:

� ∀ t ∈ [0, 1] : H(a, t) = φ1(a) = φ2(a)

� ∀ t ∈ [0, 1] : H(b, t) = φ1(b) = φ2(b)

� H(s, 0) = φ1(s)

� H(s, 1) = φ2(s)

If such a map H exists we call φ1, φ2 homotopic.

Proposition 2.29. Given a topological space (X,T ), we can define an equivalence relation,
where φ1 ∽ φ2 if and only if φ1, φ2 are homotopic. We denote the corresponding equivalence
class with [φ1].

Definition 2.30. (Retraction on topological spaces) A subset A ⊆ X is called a retract if the
exists a continuous map r : X → A such that r|A = idA. r is then called a retraction

Definition 2.31. (Deformation retract) A deformation retract of a space X onto a subspace
A is a continuous map

H : X × [0, 1] → X

such that:

� H(·, 0) = idX

� H(x, 1) ∈ A ,∀x ∈ X

� H(·, t)|A = idA, ∀ t ∈ I
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2 Fundamentals

The map r : X → A defined by H(x, 1) is a retraction of X onto A and H is a homotopy
between idX and i ◦ r where i : A → X is the inclusion.

Definition 2.32. (Contractible) A space X where idX is homotopic to a constant map is called
contractible. In this case there exists an x ∈ X such that {x} is a deformation retract of X.

Definition 2.33. (Homotopy equivalence) Two spacesX, Y are said to be homotopy equivalent
if there exist continuous maps f : X → Y , g : Y → X such that g ◦ f is homotopic to idX and
f ◦ g is homotopic to idY .

Proposition 2.34. (Lebesgue) Let X be a compact metric space. Let U be an open covering of
X. There exists an ϵ > 0 such that for each x ∈ X the neighbourhood Uϵ(x) = {y ∈ X| d(x, y) <
ϵ} is contained in some member of U .

Proof. Since X is compact there is a finite subcover {A1, A2, ...} ⊆ U . Let Ci = X\Ai (we can
assume that Ci ̸= ∅. If that would be the case then, since Ai is open, there exists an ϵ > 0 such
that Uϵ(x) ⊂ Ai ,∀x ∈ X). We define

f : X → R : x → 1

n

n∑
i=1

d(x,Ci)

Since f is continuous it has a minimum value ϵ on a compact set. Since f(x) ≥ ϵ there must
exist an i, such that d(x,Ci) ≥ ϵ. This means that Bϵ(x) ⊆ Ai.

2.3 Group Theory

Definition 2.35. (Groupoid) A category G is called a groupoid if it satisfies the following
conditions:

� Obj(G) is a set

� ∀x, y ∈ Obj(G) : G(x, y) is a (possibly empty) set

� ∀x, y ∈ Obj(G)∃ inv : G(x, y) → G(y, x) : f → f−1

Definition 2.36. (Group as a category) A category G is called a group if it can be considered
a groupoid with only one object.

Definition 2.37. (Group) A group (G, ∗) consists of the following :

� A set G

� A total binary operation ∗ : G×G → G

that satisfy the following conditions:

� associativity : ∀f, g, h ∈ G :
(f ∗ g) ∗ h = f ∗ (g ∗ h)

� neutral element : ∃ e ∈ G ∀f ∈ G :

f ∗ e = e ∗ f = f

� inverse : ∀f ∈ G ∃f−1 ∈ G :
f ∗ f−1 = f−1 ∗ f = e

11



2 Fundamentals

If additionally (G, ∗) satisfies commutativity, we call it an Abelian group. A subgroup H of G
consists of a non empty subset H ⊂ G that is closed under ∗ and contains all inverse elements.
We write H < G. We call H a normal subgroup of G, if ∀g ∈ G : H ∗ g = g ∗ H. This is
equivalent so saying:

∀h ∈ H ∀g ∈ G : g ∗ h ∗ g−1 ∈ H.

We will denote a group (G, ∗) just with G for following definitions if not required otherwise.

Remark 2.38. We can easily show that the algebraic definition of a group is equivalent to the
category theoretic definition. The set of morphisms {G(x, x)} is the set G of group elements.
compx : G(x, x)× G(x, x) → G(x, x) is the total binary operation on ∗ G.

Definition 2.39. (Group homomorphism) Consider the groups (G, ∗), (H, ◦). A map φ :
(G, ∗) → (H, ◦) is called a group homomorphism if it satisfies the following

∀g, h ∈ G : φ(g ∗ h) = φ(g) ◦ φ(h)

ker(φ) = {g ∈ G|φ(g) = eH} is called the kernel of φ.

Remark 2.40. We can now define the category GRP of groups. Objects of GRP are groups,
morphisms are group homomorphisms.

Proposition 2.41. (Quotient group) Consider a group G and a normal subgoup N . The set
G/N together with a binary operation for g1, g2 ∈ G

g1N · g2N = g1g2N

forms a group called a quotient group of G.

Proposition 2.42. If φ : G → H is a group homomorphism then ker(φ) is a normal subgroup
of G, φ is injective if and only if ker(φ) = {eG}.

Proof. We check conditions for a subgroup

� φ(eG) = eH

� ∀g ∈ ker(φ) : φ(gg−1) = φ(g)φ(g−1) = eHφ(g−1). So g−1 ∈ ker(φ)

� h ∈ ker(φ), g ∈ G : φ(g−1hg) = φ(g−1)φ(h)φ(g) = φ(g)−1eHφ(g) = eH

So g−1hg ∈ H For g1, g2 ∈ G assume ker(φ) = {eG} and φ(g1) = φ(g2) then

eH = φ(g1)
−1φ(g2) = φ(g−1

1 g2)

so g−1
1 g2 ∈ ker(φ) and so g−1

1 g2 = eG.

Theorem 2.43. Consider a group homomorphism φ : G → H. The following homomorphism
is well defined:

φ̃ : G/ker(φ) → H : gker(φ) → φ(g)

Furthermore G/ker(φ) → im(φ) is an isomorphism.

Proof. First we show φ̃ is well defined. Consider g1, g2 ∈ G. If g1ker(φ) = g2ker(φ) then

eH = φ(g−1
1 g2) = φ(g−1

1 )φ(g2)

so φ(g1) = φ(g2). For injectivity note that e = φ̃(gker(φ)) = φ(g) implies g ∈ ker(φ), so
gker(φ) = eker(φ) in G/ker(φ) so ker(φ̃) = e. Now because im(φ) = im(φ̃) its follows that
G/ker(φ) → im(ϕ) is an isomorphism.
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2 Fundamentals

Definition 2.44. (Generating set) Consider a group G. A generating set of G is a set S such
that:

∀ g ∈ G∃ s1, s2, .. ∈ S ∪ S−1 : g = s1s2...

where S−1 is the set of all inverses of elements in S We call the set of all possible written
products of elements in S ∪ S−1 the set of words over S.

Definition 2.45. (Presentation of a group) Consider a group G. The presentation of G consists
of a generating set S and a set R called relations on S. We write G = ⟨S|R⟩. The words in R
represent the words in S ∪ S−1 that reduce to the group identity.

Definition 2.46. (Free product) A free product between groups G = ⟨SG|RG⟩, H = ⟨SH |RH⟩
is a coproduct in the category of groups. We define it as follows:

G ∗H = ⟨SG ∪ SH |RG, RH⟩

For a group G will use the notation ∗iG = G ∗G ∗ ... ∗G , i-times

Definition 2.47. (Free group) A group FS over a given set S is called free if it satisfies the
following:

� the set FS consists of all words over S.

� the binary operation is just the written product of elements in S∪S−1 where aa−1 reduces
to the empty word.

� the neutral element is the empty word.

The group operation only depends on the general group axioms. Given a set S and any function
from S to G, there exists a unique homomorphism φ : FS → G such that the following diagram
commutes:

FS

φ

��

S
f

  

>>

G

This is called the universal property of free groups We say FS is of rank n if |S| = n.

Proposition 2.48. For every group G that is generated by a set S, G ∽ FS/ker(φ) so G =
⟨S|ker(φ)⟩.

Example 2.49. Z/2Z = ⟨a|a2⟩. Here S = a and φ : FS → Z/2Z is the homomorphisms that
maps a2n to the identity for every n ∈ N i.e ker(φ) = {a2n|n ∈ Z}.

Proposition 2.50. A free group of rank n is isomorphic to the free product ∗nZ. Z = ⟨a|∅⟩ is
presentation of Z. The rest follows by definition of a free group and the free product.
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2 Fundamentals

2.4 Graphs

Definition 2.51. (Graph) A graph is a topological space X obtained from a discrete set X0

by attaching a collection of 1-cells ea. Thus, X is obtained from the disjoint union of closed
intervals Ia, by identifying the endpoints of Ia with points in X0. The 1-cells are called edges
and the points in X0 are called vertices. The two endpoints of an edge can be the same vertex,
so the closure of ea can be either homeomorphic to I or S1. A graph Y ⊂ X is called a subgraph
of X if ea ⊆ Y always implies the closure of ea is in Y

� a walk inX is a sequence of edges (e1, ..., en) such there is a sequence of vertices (v1, ..., vn+1)
such that the the boundary C(ea) = {va, va+1}.

� a trail is a walk in which all edges are distinct.

� a cycle in X is a trail in which (only) the first and the last vertices are equal.

Remark 2.52. By the definition above a graph is just a 1-dimensional cell−complex. Vertices
are 0-cells edges are 1-cells.

Definition 2.53. (Tree) A graph T is called a tree if it is connected and contains no cycles i.e
every two vertices are joined by exactly one path. It follows that trees are contractible. A tree
T in X is a subgraph that is a tree. A tree T in X is called maximal if it contains all vertices
of X.

Proposition 2.54. A connected graph contains a maximal tree.

Proof. For a connected graph X let {Ti|i ∈ I} be the set of all trees in X partially ordered by
the subgraph relation. Subgraph inclusion means that for every cycle in a union of trees from
any chain in {Ti|i ∈ I} there is a tree that contains this cycle. That is a contradiction, so the
union of trees from a chain doesn’t contain cycles. If the union is disconnected, then there are
two vertices in the union which are not joined by a path and there is a tree which contains both
vertices. So this tree is not connected. Again a contradiction. So any union of trees from a
chain is connected with no cycles. Since every chain of trees totally ordered by the subgraph
relation has an upper bound, it follows by Zorn’s lemma that the set of all trees in X has a
maximal element T . If T does not contain every vertex in X, we can find an edge from a vertex
in T to a vertex in X\T , which yields a larger tree that contains T . Therefore T must already
contain every vertex in X.
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3 The Fundamental Group

All definitions,theorems and propositions in this chapter were mailny taken from [1],[3],[5]. In
the following sections [0, 1] = I.

Definition 3.1. (product of paths) Consider a topological space X and two paths u, v : [0, 1] →
X. If u(1) = v(0) the product u ∗ v exists and we define it as follows:

u ∗ v = w : [0, 1] → X, w(t) =

{
u(2t) t ∈ [0, 12 ]

v(2t− 1) t ∈ (12 , 1]
.

Proposition 3.2. The product of paths satisfies the following conditions:

1. Let φ : I → I continuous and φ(0) = 0, φ(1) = 1 then [u] = [uφ]

2. u1 ∗ (u2 ∗ u3) = (u1 ∗ u2) ∗ u3 if defined.

3. If u1 ≃ u2 and u3 ≃ u4 then u1 ∗ u3 ≃ u2 ∗ u4

4. u ∗ u−1 is always defined and homotopic to the constant path

Proof. 1. H : (s, t) → u(s(1− t) + tφ(s)) is a homotopy from u to uφ

2. ∃φ as in 1. such that u1 ∗ (u2 ∗ u3)φ = (u1 ∗ u2) ∗ u3 specifically

φ(t) =


2t t ∈ [0, 14 ]

t+ 1
4 t ∈ (14 ,

1
2 ]

t
2 + 1

2 t ∈ [12 , 1]

.

3. Given homotopies Fi(s, t) : ui ≃ ui+1 then

G(s, t) =

{
F1(2s, t) s ∈ [0, 12 ]

F3(2s− 1, t) s ∈ [12 , 1]
.

provides a homotopy G(s, t) : u1 ∗ u3 ≃ u2 ∗ u4

4. The map F : I × I → X defined as

F (s, t) =

{
u(2s(1− t)) s ∈ [0, 12 ]

u(2(1− s)(1− t)) s ∈ [12 , 1]

is a homotopy from u ∗ u−1 to the constant path. (At time t we only use the path from 0
to (1− t) and compose it with its inverse.)

Remark 3.3. Whenever we use the product of paths and not the composition of maps we will
use ∗. Note that the writing order differs between composition and product.

Definition 3.4. (The Fundamental Groupoid) Consider a topological space X. We define the
fundamental groupoid Π(X) of X as follows:
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3 The Fundamental Group

� Obj(Π(X)) are the points in X

� ∀x, y ∈ Obj(Π(X)) : Π(X)(x, y) consists of all homotopy classes of paths from x to y

� ∀x, y, z [f ] ∈ Π(X)(x, y) , [g] ∈ Π(X)(y, z) :

comp : Π(X)(x, y)×Π(X)(y, z) → Π(X)(x, z)

([f ], [g]) → [g] ◦ [f ] = [f ∗ g]

� ∀x, y ∈ Obj(Π(X)) , [f ] ∈ Π(X)(x, y) :

inv : Π(X)(x, y) → Π(X)(y, x)

[f ] → [f−1] = [f ]−1

Using the properties of the product path we can see that comp and inv are well defined.

Definition 3.5. (The Fundamental Group) Consider a topological space X together with a
point x0. We denote this space with (X,x0). By only considering paths u with u(0) = u(1) = x0
we obtain a groupoid with only one object π1(X,x0) called the fundamental group of (X,x0).
We denote this group π1(X,x0).

Proposition 3.6. If X is path connected then

∀x, y ∈ X : π1(X,x) = π1(X, y)

In the case that X is path connected and if not required otherwise we will denote the funda-
mental group of X with π1(X).

Proposition 3.7. Let X,Y be topological spaces. A continuous map f : X → Y induces a
functor

Π(f) : Π(X) → Π(Y ) : x → f(x), [u] → [fu]

Definition 3.8. (Simply connected) A path connected topological space X is called simply
connected if π1(X) = {e} = 0.

Definition 3.9. (Semi-locally simply connected) A path connected topological spaceX is called
semi-locally simply connected if for every x ∈ X there exists a simply connected neighbourhood
Ux.

Definition 3.10. (Locally simply connected) A path connected topological space X is called
locally simply connected if the set of simply connected neighbourhoods Ux, x ∈ X forms a
basis of X.

16



4 Covering spaces

All of the definitions,theorems and propositions in this chapter were mainly taken from [4],[5]

Definition 4.1. (Trivialization) Let p : E → B be surjective and continuous, U ⊆ B open.
A homeomorphism φ : p−1(U) → U × F is called a trivialization of p over U if the following
diagram commutes :

p−1(U)

p

��

φ // U × F

pr1
yy

U

F is uniquely determined up to homeomorphism since φ induces a homeomorphism of p−1(u)
with {u}×F for all u ∈ U . F is called a fibre. We call the map p locally trivial if there exists
an open covering U of B such that p has a trivialization over each U ∈ U . A locally trivial map
is also called a fibre bundle.

Definition 4.2. (Covering space) A covering space of B is a fibre bundle p : E → B where
for each trivialization of p over U ∈ U , every subset in the fibre F is open and closed so
U ×F is homeomorphic to the coproduct of topological spaces :

⋃
x∈F U ×{x}. The summands

U × {x} are canonically homeomorphic to U . Hence, p|φ−1(U×{x}) : φ−1(U × {x}) → U is
a homeomorphism and consequently, p is a local homeomorphism. We call the summands
φ−1(U × {x}) the sheets of p. If |F | = n ∈ N we talk about an n-fold covering.

Example 4.3. (Covering of S1) The exponential function p : R → S1 : t → exp(2πit) is a
covering with fibre Z. For each t ∈ R and p(t) = z we have a homeomorphism

p−1(S1\z) =
⋃
n∈Z

]t+ n, t+ n+ 1[≃ ]t, t+ 1[×Z

17



4 Covering spaces

Proposition 4.4. (Uniqueness of liftings) Let X be a connected topological space, p : E → B
be a covering and F1, F2 : X → E be liftings of f : X → B, such that S = {x ∈ X|F1(x) =
F2(x)} ≠ ∅. Then F1 = F2

Proof. We show that S is open and closed in X. By connectedness of X, it then follows that
S = X. Let Uf(x) be an evenly covered neighbourhood of f(x) ∈ B, so p−1(Uf(x)) is composed of
disjoint sheets mapped homeomorphically onto Uf(x) by p. Let U1, U2 be the sheets containing
F1(x), F2(x). Because F1(x), F2(x) are continuous, there is a neighbourhood Vx mapped into
U1, U2 by F1(x), F2(x)

� For x /∈ S , F1(x) ̸= F2(x) so U1 ̸= U2, hence U1, U2 are disjoint and F1|Vx ̸= F2|Vx . Thus
we have found an open neighbourhood Vx such that Vx ∩ S = ∅, so Sc is open and S is
closed.

� For x ∈ S, F1(x) = F2(x) then U1 = U2, so F1|Vx = F2|Vx . Since pF1 = pF2 and p is
injective on U1 = U2, we have found an open neighbourhood Vx ⊆ S, so S is open.

Definition 4.5. (Homotopy lifting property) A map p : E → B is said to have a the hlp for
the space B if the following holds: For each homotopy h : X× I → B and each map f : X → E
such that pf(x) = hi(x), i(x) = (x, 0) there exists a homotopy H : X × I → E with pH = h
and Hi = f . We call H a lifting of h with initial condition f . The following diagram commutes

X × {0}

i
��

f // E

p

��
X × I

H

;;

h // B

The map p is called a fibration.

Proposition 4.6. A projection p : B × F → B is a fibration

Proof. Let f(x) = (f1(x), f2(x)). The condition pf = hi says f1(x) = h(x, 0). If we set H(x, t) =
(h(x, t), f2(x)) then H is a lifting of h with initial condition f .

Theorem 4.7. A covering p : E → B is a fibration. The obtained lifting H is unique.

Proof. Let the homotopy h : X × I → B and an initial condition f be given. I is connected.
We already showed that a lifting with initial condition is uniquely determined. Therefore we
just need to show that

∀x ∈ X ∃Vx open: For h|Vx×I there’s a lifting Hx with initial condition f |Vx .

such that the following diagram commutes:

E

p

��
Vx × I

Hx

;;

h // B

Since h is continuous, every point (x, t) ∈ X × I has a neighbourhood Vx × (at, bt) such that
h(Vx × (at, bt)) ⊆ Ui where p is trivial over Ui. By 2.34 we can choose a Lebesgue number for
the open cover (at, bt) , t ∈ I. Then there exists an n ∈ N such that [i/n, (i+1)/n] ⊂ (at, bt) for
some i ∈ (0, ..., n). If we set i/n = ti we get a partition

0 = t0 < t1 < t2 < ... < tn = 1

18



4 Covering spaces

such that h(Vx × [ti, ti+1]) ⊆ Ui where p is trivial over Ui. Now since p : p−1(Ui) → Ui is by 4.6
a fibration, h|Vx × [ti, tj ] has a lifting for each initial condition. Thus we can use induction:

� For l = 1 the lifting Hx on Vx × [0, t1] to one of the sheets p−1(Ui) is determined by the
initial condition f |Vx×{0} .

p−1(Ui)

p

��
Vx × I

Hx

99

h // Ui

� Suppose we have constructed a lifting Hx on Vx× [ti, tj ]. The lifting of h on Vx× [tj , tj+1]
to one of the sheets p−1(Ui) is now uniquely determined by f |Vx×{tj}, which can be glued
to the lifting on Vx × [ti, tj ] to give a lifting on Vx × [tj , tj+1].

Because every two such liftings Hx, H
′
x agree on every initial condition f |Vx they are the same

by uniqueness of liftings. Likewise, if for two sets (Vx × I) ∩ (Vy × I) ̸= ∅ the respected liftings
Hx, Hy must agree on (Vx × I) ∩ (Vy × I). So the constructed liftings Hx, x ∈ X glue to give
the desired unique lifting H.

Proposition 4.8. For each path w : I → B starting at point p(e) = w(0) ∈ B there is a
unique lifting of w starting at e. Furthermore two paths in E which start at the same points
are homotopic if and only if their images in B are homotopic.

Proof. We already showed the uniqueness and existence in 4.7. Now let h : I × I → B be a
homotopy of paths and H : I × I → E be a lifting of h. Since t → H(s, t), s ∈ {0, 1} are
continuous maps into a discrete fibre, they are constant. Hence H is indeed a homotopy of
paths. Let u1, u2 : I → E be paths which start at x and suppose pu1, pu2 are homotopic. If we
lift a homotopy g : I × I → E between them with constant initial condition pu0(x) = gi(x) the
result is a homotopy between u1, u2.

Proposition 4.9. For each homotopy h : I × I → B starting at point p(e) = h(0, 0) ∈ B there
is a unique lifting of h starting at e.

Proof. Follows directly from theorem 4.7

Proposition 4.10. (Fundamental group of a circle) π1(S
1, 1) is an infinite cyclic group gener-

ated by the homotopy class of the loop u(s) = exp(2πis) based at 1 ∈ C.

Proof. Let u : I → S1 be a loop at basepoint x0 = 1 representing a given element of π1(S
1, x0).

By 4.8 there is a unique lift ũ : I → R starting at 0. The path ũ ends at some integer n
since pũ(1) = u(1) = x0 and p−1(x0) = Z. Consider the paths w̃n : I → R on R from 0 to n,
then ũ ≃ w̃n via the homotopy H̃ : I × I → R : (s, t) → (1 − t)ũ + tw̃n. Then pH̃ = H is a
homotopy between u,wn so [u] = [wn]. We now have to show that n is uniquely determined
by [u]. Suppose that u ≃ wn and u ≃ wm. Let H be a homotopy from wm(s) = H(s, 0) to
wn(s) = H(s, 1). By 4.9 this homotopy lifts to a homotopy H̃ of paths starting at 0. By 4.8
w̃m(s) = H̃(s, 0) and w̃n(s) = H̃(s, 1). Since H̃ is a homotopy of paths the endpoint H̃(1, t) is
independent of t . For t = 0 this endpoint is m, for t = 1 this endpoint is n, so m = n.

Proposition 4.11. If a space B is simply connected, then there is a unique homotopy class of
paths connecting any two points in B .

Proposition 4.12. The map π1(p) : π1(E, e) → π1(B, b) induced by a covering space p :
(E, e) → (B, b) is injective. The image subgroup π1(p)(π1(E, e)) in π1(B, b) consists of homotopy
classes of loops in B based at b who’s lifts in E starting at e are loops.
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4 Covering spaces

Proof. An element in ker(π1(p)) is represented by a loop u : I → E with a homotopy H :
I× I → B of H(s, 0) = pu to the trivial loop H(s, 1). By 4.9 there is a lifted homotopy of loops
H̃ starting with u = H̃(s, 0) and ending with a constant loop. Hence [u] = 0 in π1(E, e) and
π1(p) is injective. For the second statement of the proposition, loops at b lifting to loops at e
represent elements of the image of π1(p). By the hlp there must be such a lift.

Note that by this proposition a subgroup of a free group on two generators can be isomorphic
to a group on any number of generators.

Theorem 4.13. Let (B, b0) be locally path connected, path connected, semi-locally simply-
connected. Then B has a simply connected covering space. This covering space is called a
universal covering.

Proof. We first define a covering space p : (E, e0) → (B, b0) who’s points are homotopy classes
of paths in B starting at b relative to {0, 1}. Let

E = {[u]|u is a path in B starting at b0 = p(e0)}

and

p : E → B : [u] → u(1)

Since all paths in [u] have the same endpoints this is well defined. Since B is path connected,
p is surjective. Using 4.8, E consists of paths that start at e0 lifting paths in B that start at
b0 (here e0 can be considered the homotopy class of the constant path in B starting at b0). We
will now define a topology on E such that p is a covering map. Let U be the set of all open
path connected subsets U of B. Suppose for two sets U1, U2 ∈ U , b ∈ U1 ∩ U2, then U1 ∩ U2

is open neighbourhood of b. Since B is locally path connected there is a path connected set
V ⊆ U1∩U2 containig b, thus V ∈ U . Since B is locally path connected and semi-locally simply
connected any open set in B can be written a s the union of set in U . It follows that U is a
basis for the topology on B. For a set U ∈ U and a path u in B from b0 to a point in U define

U[u] = {[u ∗ v]|v is a path in U with v(0)= u(1)}

where [w] ∈ U[u] are homotopy classes relative to {0, 1}. Now because E consists of homotopy
classes of paths starting at b0, U[u] is a subset of E. We show that the collection of such U[u] is
a basis for the topology on E.
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4 Covering spaces

� First we show that

[u′] ∈ U[u] ⇒ U[u] = U[u′]

This fact is rather trivial. If [u′] ∈ U[u] then [u′] = [u ∗ v] for some path in U with
v(0) = u(1). Then [w] ∈ U[u′] is of the from [u∗v∗v′] for some [v′] ∈ U with v′(0) = u∗v(1).
But then v ∗ v′ is a path in U with v ∗ v′(0) = u(1) so [u ∗ v ∗ v′] ∈ U[u]. Thus U[u′] ⊆ U[u].
The proof of the reverse inclusion works the same. Now, since X is path connected and
locally path connected, every element of E is contained in some U[u].

� Suppose [w] is contained in some intersection U[u] ∩ V[v] for some U, V ∈ U . Then U[w] =
U[u] and V[w] = V[v]. Since U is a basis for the topology on B, we can choose W ∈ U with
W ⊆ U ∩ V . Then W[w] ⊆ U[w] ∩ V[w] thus W[w] ⊆ U[u] ∩ V[v]. Since [w] ∈ W[w], it follows
that the set of all U[u] is a basis for the topology on E, namely the collection of all possible
unions of the basis elements of the form U[u] where U ∈ U .

Thus we have defined a topology on E. We now show that p is a local homeomorphism. Since
U ∈ U is path connected, for any b ∈ U we can choose a path v in U from u(1) to b so that
u ∗ v = b. Then p([u ∗ v]) = b, so p|U[u]

is surjective. Suppose we have paths v, v′ from u(1)
to some point b ∈ U , with p([u ∗ v′]) = p([u ∗ v]). Since the inclusion π1(p) : π1(U) → π1(B)
is trivial by definition of the set U , all paths that connect u(1) to the fixed point b ∈ U are
homotopic in B. Thus [v] = [v′] and so [u ∗ v] = [u ∗ v′]. It follows that p|U[u]

is bijective.
The image of any basis element U[u] ,[u] ∈ E for the topology on E is a set U ∈ U and the
inverse image p−1(U) is the union of the sets U[u] where u is a path from b0 to a point in U .
Thus inverse images of open sets in B are open in E, so p is continuous. Hence p is a local
homeomorphism. Note that p−1(U) =

⋃
u U[u] where u is a path from b0 to a point in U . By

earlier reasoning this union is disjoint. Now for every b ∈ B, each of these U[u] intersects the
set p−1(b) in a single point, therefore these points are open and closed in p−1(b) (where the
topology on p−1(b) is induced by all intersections of open sets in p−1(U) with p−1(b)). We can
choose any point b ∈ U as a representative to obtain the discrete fibre p−1(b) and construct the
relevant trivializations of p over any set U ∈ U with the morphism φ : p−1(U) → U × p−1(b).
Since U is a basis, E is a covering space of B. It remains to show that E is simply connected.
To show that it is path connected, let u be any path in B starting at b0 and define ut

ut(s) =

{
u(s) s ∈ [0, t]

u(t) s ∈ (t, 1]

That is ut traces out u on the intervall [0, t] and is constant on (t, 1]. The function fu : t → [ut]
is a path in E lifting u that starts at e0 and ends at [u]. We can do this for any [u] ∈ E. So E is
path connected. This leaves to show that π1(E, e0) = 0. Since π1(p) is injective we just need to
show that π1(p)(π1(E, e0)) = 0. Elements in im(π1(p)) are represented by loops u starting at
b0 lifting to loops in E starting at e0 where e0 = [u0] the homotopy class of the constant paths
starting at b0 . We have observed that the path fu : t → [ut] lifts u, for this lifted path to be a
loop means that [u1] = e0. Since u1 = u this means that [u] = e0, so u is nullhomotopic.

Proposition 4.14. Suppose B is path connected, locally path connected, and semi-locally
simply connected. For every subgroup of H < π1(B, b) there is a covering space p : EH → B
such that π1(p)(π1(EH , e)) = H for a suitable basepoint e ∈ EH .

Proof. We construct a universal cover E. For points [u], [v] ∈ E we define an equivalence
relation [u] ∽ [v] if u(1) = v(1) and [u∗v−1] ∈ H. So u∗v−1 is a loop and this loop is contained
in an element of the subgroup H. Since H is a subgroup this indeed satisfies the conditions for
an equivalence relation.
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4 Covering spaces

� Since H contains the identity element it is reflexive

� Since H is closed under inverses its symmetric

� Since H is closed under multiplication its transitive

Let EH be the quotient space E/ ∽. Note that [u] ∽ [v] only if [v ∗w] ∽ [u ∗w] . So if any two
points in the neighbourhoods U[u] and U[v] are equal under ∽ then U[u], U[v] are equal under ∽
. In this way the quotient map sending [u] to its equivalence class under ∽ gives a quotient
topology on EH . The covering map pH : EH → B is just the extension of the universal cover
p : E → B defined by p([u]) = u(1) to equivalence classes under ∽. To see that pH is well
defined note that [u] ∽ [v] only if u(1) = v(1), so it sends members of the same equivalence
class under ∽ to the same point in B. With the properties of the quotient topology, following
from the previous theorem, we conclude that p−1

H (U) is a disjoint union of open sets in EH .
Thus EH is a covering space of B. If we choose a basepoint e0 ∈ EH as the equivalence class of
the constant path starting at b then the image of π1(p)(π1(EH , e0)) is exactly H. Because for a
loop u based at b its lift to E starting at e0 ends at [u], so the image of this lifted path in EH

is a loop if and only if [u] ≃ e0 or equivalently [u] ∈ H.

Proposition 4.15. Every covering space of a connected graph is a connected graph.

Proof. Let B be a graph and p : E → B be a covering space of B. By definition of a graph, we
can write B as B0∪

⋃
∽ Ik where Ik are copy’s of the unit interval joining vertices in the discrete

set B0. If we take p−1(B0) = E0 to be a set of vertices in E and consider each Ik to be the
image of a path u : I → B then by 4.8, there is a unique lift ũ : I → E passing through every
point p−1(b) for b ∈ Ik. These lifts define the edges in E. Since p is a local homeomorphism we
can use the uniqueness of liftings on neighbourhoods Ue, where Ue is homeomorphic to p(Ue)
via p, to show that every point e ∈ E\E0 must be an interior point of exactly one of these
edges: For paths in p(Ue) a lifting is unique. If e lies in the interior of two paths in Ue then
both paths in Ue get mapped onto separate paths in p(Ue). But since p(e) ∈ B\B0 only one of
those paths can exist in p(Ue).
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5 The Theorem of Seifert and van Kampen

All of the definitions,theorems and propositions in this chapter were mainly taken from [5],[7],[8].

Theorem 5.1. (Brown’s Theorem) Let X = X1 ∪X2 be a topological space where X1 ∩X2 =
X12 ̸= ∅ and X1, X2, X12 are open. Let ik : X12 → Xk, jk : Xk → X be inclusions. The
following diagram is a pushout in the category of groupoids:

Π(X12)

Π(i2)
��

Π(i1) // Π(X1)

Π(j1)
��

Π(X2)
Π(j2)

// Π(X)

Proof. Because ik, jk are inclusions the above diagram commutes. Let Fk : Π(Xk) → G be
functors into a groupoid such that F1Π(i1) = F2Π(i2). We have to show that there exists a
unique functor F : Π(X) → G such that F1 = FΠ(j1) and F2 = FΠ(j2). Consider a path
u : I → X that represents a morphism [u] ∈ Π(X) from u(0) → u(1). By 2.34 we can choose a
decomposition

0 = t1 < t2 < ... < tn+1 = 1

such that ∀ i ∈ (1, n) : u|(ti,ti+1) = ui is included in some Xk. We get a decomposition:

u = un ◦ un−1 ◦ ... ◦ u1
Consider a function γn : {1, ..., n} → {1, 2} such that ui ∈ Xγn(i), then

[u] = Π(jγn(n))([un]) ◦ ... ◦Π(jγn(1))([u1])

We want to show that there exists a unique functor F that doesn’t depend on the decomposition
or γn such that:

F ([u]) = Fγn(n)([un]) ◦ ... ◦ Fγn(1)([u1])

It is important to note that in this case the compositions ◦ above always exist for a viable
decomposition of [u]. To see this consider the composition Fγn(i+1)([ui+1]) ◦ Fγn(i)([ui]). If
γn(i) = γn(i + 1) we can simply apply that Fγn(i+1)([ui+1]) ◦ Fγn(i)([ui]) = Fγn(i)([ui+1] ◦ [ui]).
If γn(i) ̸= γn(i+1), u(ti+1) must lie in the intersection X1 ∩X2 since ui must fully lie in Xγn(i)

and ui+1 must fully lie in Xγn(i+1). It follows that there is a path w containing u(ti+1) that
fully lies in X1 ∩X2. We can modify the decomposition of u in such a way that between every
change in im(u) from X1 to X2 and X2 to X1 there is such a w. Since F1Π(i1) = F2Π(i2) on
[w] ∈ Π(X1 ∩X2) and Fk([u] ◦ [w]) = Fk([u]) ◦ Fk([w]), the compositions always exist. We will
show that F is a well defined functor.

� By commutativity of
F1Π(i1) = F2Π(i2)

F doesn’t depend on γn for every n.

� Given any viable decomposition of u we can obtain any other viable decomposition by
splitting and joining paths with a suitable γn. So we just have to argue that F yields
the same result after splitting and joining paths, this then implies that F doesn’t depend
on the decomposition. To join paths, all of them have to lie fully in one of the Xk

for the new decomposition to be viable. The same is true for splitting paths. Using
Fk([u ◦ w]) = Fk([u] ◦ [w]) = Fk([u]) ◦ Fk([w]) we get the desired result.

23



5 The Theorem of Seifert and van Kampen

� if u,v are paths and u ◦ v is defined,

F ([u] ◦ [v]) = F ([u]) ◦ F ([v])

.

� F maps constant paths to zeros of G since both F1 and F2 do so.

This leaves to show that [u] = [v] implies F ([u]) = F ([v]). We will use an induction argument.
Let H : I × I → X be a homotopy of paths H(0, t), H(1, t) from u to v . There exists n ∈ N
such that H sends each subsquare Rk = (i/n, (i + 1)/n] × [j/n, (j + 1/n)] into one of the sets
Xk. This follows from 2.34 and the fact that H is continuous. If we consider two edge paths
u, u′ who’s inverse images a, b differ on a subsquare Rk ⊂ I × I as indicated in the following
figure:

then by construction of the squares Rk both a and b are fully mapped into the same set Xk.
Now because F1, F2 are well defined functors Fk([u]) = Fk([u

′]) , k ∈ {1, 2}. So

F ([u]) = F ([u′])

With changes like these we can inductively pass from H(0, s) = u to H(1, s) = v.

Theorem 5.2. (The Theorem of Seifert and van Kampen) Let X = X1 ∪X2 be a topological
space where X1 ∩X2 = X12 ̸= ∅ and X1, X2, X1,2 are open and path connected Let ik : X12 →
Xk, jk : Xk → X be inclusions. The following diagram is a pushout in the category of groups:

π1(X12)

π1(i2)
��

π1(i1) // π1(X1)

π1(j1)
��

π1(X2)
π1(j2)

// π1(X)

Proof. If Z is path connected there is a retraction functor r : Π(Z) → π1(Z, z) onto a subcat-
egory with the single object x We choose a morphism [ux] ∈ Π(Z) from x to z with uz = id.
hence r assigns uyvu

−1
x : z → z to a morphism v : x → y. We apply this to Z = X12, X1, X2

and X x0 = z and choose a morphism ux ∈ Π(Z) if x is contained in Z. We choose r1 and
r2 in such a way that r1i1 = r12i1, r2i2 = r12i2. Furthermore with tk : Π(Xk) → Π(X) we
get the retraction r by demanding: rtk = tkrk. This is possible because every path in Π(X12)
is included in both Π(X1) and Π(X2). Having constructed the restrictions rk, r from Π(X) to
π1(X) we can apply 2.12 and the proof is finished.
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5 The Theorem of Seifert and van Kampen

Theorem 5.3. (Alternative formulation) If X is the union of open path connected sets X1, X2

and if X1 ∩X2 is path connected then the homomorphism

ϕ : π1(X1) ∗ π1(X2) → π1(X)

is surjective and there is an isomorphism

π1(X) ≃ (π1(X1) ∗ π1(X2))/N

where N is the normal subgroup generated by all elements of the form

π1(i1)([u])π1(i2)([u])
−1

for
[u] ∈ π1(X1 ∩X2)

Remark 5.4. Note that in the future, N will refer to the set of generators of N and N as a
normal subgroup equivalently. To see why this makes sense consider the formulation in terms
of the presentation of groups. For this refer to Proposition 2.48. Given the two fundamental
groups π1(X1) = ⟨S1|R1⟩, π1(X2) = ⟨S2|R2⟩ and RN the set of generators of N . π1(X) is given
by π1(X) = ⟨S1 ∪ S2|R1, R2, RN ⟩.

Proposition 5.5. 5.2 holds for any number of intersecting open path connected sets Xi where⋂
i∈I Xi is non empty.

Proof. Consider an increasing sequence of adjunction spaces Yi+1 = Yi ∪ Xi+1, where the at-
taching map for every i is given by fi : Xi+1 ∩ Yi → Yi. We construct a diagram F : I → TOP
in the category of topological spaces where F (i) = Yi. We choose morphisms in this diagram
to be inclusions of topological spaces. For the topologies on Xi we simply use the subspace
topology from X. The colimit of this diagram is X (the proof is rather trivial and will be
left out). Since π1 is a functor, by applying π1 to the diagram F we obtain another diagram
P : I → GRP ,P (i) = π1(F (i)) = π1(Yi) where morphisms exist in P if and only if morphism
exist in F . Note that by 5.2 we can inductively define the fundamental groups of F (i) by ap-
plying the theorem in the following way:

π1(Yi ∩Xi+1)

π1(i2)

��

π1(i1) // π1(Yi)

π1(j1)

��
π1(Xi+1)

π(j2)
// π1(Yi+1)

If we construct P (i) in this way then, remembering 5.4, we can write the sequence of groups
as P (i + 1) = ((∗(1,..,i)π1(Xi)/

⋃
(1,..,i)Nj) ∗ π1(Xi+1))/Ni+1 = ∗(1,...,i+1)π1(Xj)/

⋃
(1,...i+1)Nj .

Where the Nj are the sets of generators of the normal subgroups specified in 5.3. We want
to show that, under these conditions, P has a colimit with colim(P ) = π1(colim(F )). First
we show that the colimit exists. For (H,α) to be a cocone in P , the following diagram has to
commute whenever i ≤ j:

P (i)
π1(i) //

αi
##

P (j)

αj

��
H
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5 The Theorem of Seifert and van Kampen

Consider the smallest normal subgroup N that contains all generators of the subgroups Ni.
By construction of the diagram P , (H,α) can only be a cocone if N ⊆ ker(αi) for every i.
Consider the group ∗i∈IP (i)/N together with a morphism γi : P (i) → ∗i∈IP (i)/N induced by
the inclusion of topological spaces. Since ker(γi) ⊆ N ⊆ ker(αi) for all i, we can find a λ such
that ai = λ◦γi for all i. To show uniqueness of λ consider a loop u : I → X with [u] ∈ ∗i∈IP (i)/N
then, by compactness of I, there exists an j such that u lies in F (j) and thus γ−1

j ([u]) ∈ P (j).

So αj(γ
−1
j ([u])) = λ([u]) = λ̃([u]). Since this must hold for any u, λ is unique. It follows that

(∗i∈IP (i)/N, λ) is the unique colimit of P . Consider the map ϕ : colim(P ) → π1(X). We need
to show that ϕ is an isomorphism. Let u : I → X be a loop in X. Since u is continuous and
I is compact, its image in X is compact. Therefore there exists a space Yi, which is the union
of finitely many Xi, such that u is contained in Yi. Thus ϕ is surjective. Consider two loops
u, v where [u] = [v] in X via a homotopy H : I × I → X. The image of H is by compactness
contained in some Yi, thus [v] = [u] in π1(Yj) for all i ≤ j. It follows that ϕ is bijective.

Remark 5.6. If we define the adjunction spaces on any possible sequences (Xi)i∈I together
with the diagram where morphism are inclusions, then we can use the result from the proof for
finite intersections, the respective diagram induced by the functor π1 and the same compactness
argument as before to show that the theorem also holds if any finite intersection

⋂
i∈J⊂I Xi is

non empty.

5.1 Applications

Example 5.7. We can use a different approach to find the fundamental group of a S1 without
the theory of covering spaces, by defining a groupoidG and applying Brown’s theorem to show an
isomorphism G ≃ Π(S1). We use complex number notation for S1. Let X1 = S1\1, X2 = S1\−1
Let G be constructed as follows:

� Obj(G) = S1

� G(a, b) = {(a, t) ∈ S1 × R| aexp(2itπ) = b}

� ida = (a, 0) ∈ G(a, a)

� (b, s) ∈ G(b, c), (a, t) ∈ G(a, b) : (b, s) ◦ (a, t) = (a, s+ t) ∈ G(a, c)

with inclusions ik : X12 → Xk and jk : Xk → S1. The sets Xk are simply connected. Therefore
there exists a single morphism (a, b)k : a → b between two objects a, b. There are bijective
maps f1 :]0, 1[→ X1 : t → exp(2itπ), f2 :] − 1/2, 1/2[→ X2 : t → exp(2itπ).We define functors
γk : Π(Xk) → G through the identity on objects and by γk(a, b) = (a, f−1

k (b) − f−1
k (a)). Now

there is a functor F : G → Π(S1) which is the identity on objects and sends morphisms
(a, t) ∈ G(a, b) to a class of paths I → S1, s → aexp(2itsπ) from a to b. Since F is a functor,
the following diagram is commutative :

Π(X12)

Π(i2)
��

Π(i1) // Π(X1)

Π(j1)

��

γ1

��
Π(X2)

γ2 //

Π(j2)

,,

G

F

$$
Π(S1)

Now we show that F is an isomorphism. We apply 5.1 to the pair (γ1, γ2)
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5 The Theorem of Seifert and van Kampen

Π(X12)

Π(i2)

��

Π(i1) // Π(X1)

γ1

��

Π(j1)
��

Π(X2)
Π(j2) //

γ2

,,

Π(S1)

γ

""
G

and obtain a unique functor γ : Π(S1) → G, so Fγ = id. To show that γF = id, note
that the morphisms of G are generated by the images of γ1 and γ2. Given (a, t) ∈ G(a, b),
choose a decomposition t = t1 + ... + tm such that |tr| < 1/2 for each r. Set a0 = a and
ar = aexp(2i(t1 + ... + tr)π). Then (a, t) = (am−1, tm) ◦ ... ◦ (a0, t1) in the G. Since |tr| < 1/2
there exists a function k : 1, ...,m → {0, 1} such that ar−1exp(2itrsπ) ∈ Xk(r) for s ∈ I. Then
(ar−1, tr) = γk(r)(ar−1, ar). Thus G(a, b) is generated by morphisms in the images of the γk i.e.
the images of γ. The set of automorphism of the object 1 in G are given by {(1, n)|n ∈ Z}
where F (1, n) is the loop t → exp(2intπ). With the composition of morphisms, {(1, n)|n ∈ Z}
forms a group that is isomorphic to Z. Thus we have determined the fundamental group of a
circle as the automorphisms group of the object 1 in Π(S1).

Example 5.8. If X = X1 ∪X2 , X1, X2 are path connected and X1 ∩X2 is simply connected
then π1(X) = π1(X1) ∗π1(X2) where ∗ denotes the free product. There are several applications
for this, here are two examples:

� If a sequence ofXi is connected through a basepoint that has a contractible neighbourhood
then π(

∨n
i=1Xi) ≃ ∗nπ1(Xi) If we apply this to a bouquet of circles, we see that its

fundamental group is isomorphic to ∗nZ.

� Removing a point from a manifold: Given an n-dimensional manifold M with n > 2 that
is homeomorphic to Dn and Up ⊂ M a neighbourhood of p ∈ M . Then M is a pushout
of M\{p} and Up, so π1(M) = π1(Up) ∗π1(Up\{p}) π1(M\{p}).

Example 5.9. (Compact surfaces) We can compute the fundamental group of compact surfaces
by starting with a construction identifying sides of a polygon. For example the Klein bottle X
would be obtained from the rectangle

b

��

a //

b

��
a
oo

by gluing opposite sites as indicated by the arrows. To compute the fundamental group of X,
we draw a smaller square X1 inside the one above and let X2 be the frame around it.

27



5 The Theorem of Seifert and van Kampen

Now π1(X2) ≃ {e} , π1(X2 ∩X2) ≃ Z and π1(X1) ≃ Z ∗ Z. The first two statements are pretty
clear, for the last one note that X1 deformation retracts onto the edges in the above figure. If
we glue the rectangle as indicated by the arrows, all the vertices become the same point. Thus,
we get two loops connected by a point i.e a bouquet of two circles. In the previous example we
saw that its fundamental group is isomorphic to Z ∗ Z = ⟨[a], [b]|∅⟩. By 5.2,

π1(X) = π1(X1) ∗π1(X1∩X2) π1(X2)

Given 5.3, we now have to compute N . Let [u] ∈ π1(X1 ∩X2) be a loop (if u is nullhomotopic
then j1(u) and j2(u) are nullhomotopic). Then π(i1)([u]) = e. This implies that π(j2)([u]) =
π(j1)([u]) = e in π1(X). Now π(j2)([u]) = [abab−1] as indicated by the arrows in the first figure
above. So [abab−1] ∈ π1(X1 ∩X2) becomes e ∈ π1(X). Therefore

N = π1(i1)([u])π1(i2)([u])
−1 = {[abab−1]}

π1(X) ≃ ⟨[a], [b]|[abab−1]⟩

Proposition 5.10. Every group G is the fundamental group of some topological space.

Proof. Choose a presentation G = ⟨S,R⟩. Now construct X from
∨
S1 by attaching 2-cells

along the loops specified in R.

Proposition 5.11. If X is a finite connected graph and T is a maximal tree in X then π1(X)
is a free group generated by the the edges in X\T .

Proof. Let ei, i ∈ I be the edges in X\T . Because T is contractible, π1(T ) = {e}. Because T
is a maximal tree, it contains all vertices in X. So if we glue an edge ei onto T , it will always
connect two vertices that already lie in T . Since for any vertex v1, v2 there is a unique path
connecting these points to v0 in T , we create exactly one loop if we connect v1, v2 by an edge
e1. To see this clearly we could deformation retract T onto v0 to which we connect the edges
ei. Every edge then creates a single loop. Consider the spaces T ∪ ei. These are path connected
and their pairwise intersection is T . We can inductively define a sequence of adjunction spaces
Ti+1 = Ti ∪ ei+1 then we set T ∪ ei = Xi and Ti = Yi and apply 5.2 in the following way:

π1(Yi ∩Xi+1)

π(i)
��

π(i1) // π1(Yi)

π(j)
��

π1(Xi+1)
π(j)

// π1(Yi+1)

This shows that π1(Ti) = ∗iZ. For infinite graphs X we construct the diagrams and colimits as
in 5.5 and the proof is finished.

Theorem 5.12. Every subgroup H of a free group F is free.

Proof. Given a free group F of rank n, we know by 5.8, that F ≃ π1(
∨
S1) = B. By 4.14, for

each subgroup H < F there is a covering space p : E → B with π1(p)(π1(E)) = H. Since π1(p)
is injective, π1(E) ≃ H . By 4.15, H is a connected graph, by 5.11, H is free.
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