
MASTER’S THESIS

QUANTITATIVE ASPECTS OF

POLYTOPES AND SPECTRAHEDRA

AUTHOR:
MAG. JOHANNA LERCHER BSC

SUPERVISOR:
UNIV.-PROF. DR. TIM NETZER

FACULTY OF MATHEMATICS, COMPUTER SCIENCE AND PHYSICS

INSTITUTE OF MATHEMATICS

UNIVERSITY OF INNSBRUCK

AUGUST 18, 2019



 
Eidesstattliche Erklärung 

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die 
vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und 
Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen Quellen 
entnommen wurden, sind als solche kenntlich gemacht. 

Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Magister-
/Master-/Diplomarbeit/Dissertation eingereicht.  

 

         
 Datum Unterschrift 

 



Acknowledgements

At this point I would like to thank Mr. Univ.-Prof. Dr. Tim Netzer for his constructive
and always helpful ideas and his expert guidance in search of basic closed descrip-
tions of polytopes and spectrahedra with few polynomials.



Contents

Introduction 1

Preliminaries 4
Definitions and Notations 4
Main Results 6

Chapter 1. Polytopes 8
1. Some basic properties 8
2. Faces of Polytopes 10
3. Bernig’s construction 16
4. Simple Polytopes 29
5. Polytopes 59

Chapter 2. Spectrahedra 63
1. Some basic properties 66
2. Basic closed descriptions of smooth spectrahedra with two polynomials 69
3. The Main Theorem 75

Conclusion 82

Bibliography 83



Introduction

A basic closed (semialgebraic) set W ✓ Rn is defined as the set of solutions of a
system of non-strict polynomial inequalities. If such a set is given by a huge number
of polynomials, it could sometimes be useful to find a handier basic closed descrip-
tion of the set which is given by less polynomials. If a basic closed set is defined
by as little polynomials as possible, the corresponding polynomials are said to be a
minimal description of the set. One impulse that animated mathematicians to deal
with minimal descriptions of basic closed sets comes from optimization theory. If
one does linear or semidefinite programming, the feasible regions of the respective
optimization problems are polyhedra or spectrahedra, which are important classes
of basic closed semialgebraic sets. If a polyhedron or a spectrahedron is given by
a huge number of inequalities, one could try to find a minimal description of the set.
If the degrees of the corresponding polynomials are not too high, the new descrip-
tion of the feasible region could be easier to handle. Of course, the transition from
the usual description of a feasible region to another representation creates some
problems since the common optimization techniques do not work anymore. Never-
theless, there exist solution techniques for optimization problems where the feasible
region is represented by non-strict polynomial inequalities. This is one reason why
trying to find minimal descriptions of basic closed semialgebraic sets could be use-
ful.

About thirty years ago, Ludwig Bröcker and Claus Scheiderer found out that it is
possible to represent every basic closed subset of Rn – no matter how complicated
it looks like – by at most n(n+1)

2 polynomials (for instance, one can find a proof
of this fact in [AnBrRu96]). Scheiderer was even able to construct basic closed
sets for which it is impossible to find a polynomial description with less than n(n+1)

2

polynomials. This shows that the number n(n+1)
2 , which serves as an upper bound

for the number of polynomials needed in a minimal description of a basic closed
semialgebraic set, cannot be improved in general.

The only possible way to still find better bounds is to tighten the conditions on the
basic closed semialgebraic set. Scheiderer’s examples, which cannot be described
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CHAPTER 0. INTRODUCTION 2

by less than n(n+1)
2 polynomials, are not convex. Therefore, one could suggest that

every full-dimensional convex basic closed semialgebraic set can be represented by
less than n(n+1)

2 polynomials. This conjecture has not yet been proven. It should just
demonstrate that Scheiderer’s and Bröcker’s discoveries were just the beginning of
the story and served other mathematicians as a motivation to find descriptions of
special kinds of basic closed semialgebraic sets with as little polynomials as possi-
ble.

About twenty years later, Gennadiy Averkov and Bröcker drew their attention to
an important class of basic closed sets, namely polyhedra. They showed that it is
possible to improve Scheiderer’s and Bröcker’s bound for n-dimensional polyhedra,
which are basic closed semialgebraic sets given by linear polynomials.

After all the theoretical work that was done so far, people focused on the ques-
tion how the polynomials which pertain to the minimal description of a basic closed
semialgebraic set look like. Scheiderer’s and Bröcker’s proofs were not constructive.
Therefore, the new aim concerning this topic was to explicitly construct the polyno-
mials. Andreas Bernig [Be97] was able to show that the interior of a 2-dimensional
polygon P ✓ R2 can be described by 2 polynomials p1, p2 2 R[x, y]. Remarkably,
he was even able to construct these polynomials. Several years after Bernig’s con-
struction Averkov and Martin Henk constructed n polynomials which can be used
for the description of a simple n-dimensional polytope P ✓ Rn. At this point, simple

just means that each vertex arises as the intersection of exactly n facets. Averkov

was even able to construct these polynomials for more general basic closed semial-
gebraic sets.

The main purpose of the present master’s thesis is trying to find descriptions of spec-

trahedra with few polynomials. The starting point of all considerations are some
results which were discovered by Averkov, Bröcker, Grötschel, Henk, and Bernig

([Av08], [AvBr10], [AvHe07], [Be97], [GrHe03]). Averkov’s paper Representing El-

ementary Semi-Algebraic Sets by a Few Polynomial Inequalities: A constructive

Approach [Av08] is of particular interest for this thesis. Given a basic closed semial-
gebraic set of a very special form, Averkov was able to find a basic closed descrip-
tion of the set with few polynomials. In this thesis some ideas of his discoveries will
be applied to spectrahedra.

The master’s thesis will be divided into two main chapters. The first chapter deals
with polytopes. Apart from a short introduction concerning some basic properties of
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polytopes the work gives an overview of Bernig’s construction in the 2-dimensional
case. Afterwards, Averkov’s main results will be stated.

The center of attention of the second chapter are spectrahedra. Some basic prop-
erties of spectrahedra will be stated. Afterwards, using a main result of Averkov’s

work, it will be shown that one can find basic closed descriptions of spectrahedra
with two polynomials if they fulfill some smoothness conditions. This description
neither depends on the dimension of the space nor on the size of the corresponding
matrices.



Preliminaries

At the beginning of the thesis some basic notations will be introduced and some well
known facts concerning basic closed semialgebraic sets will be stated.

Definitions and Notations

During the whole work the multivariate polynomial ring in n variables over the real
numbers is denoted by R[x] := R[x1, . . . , xn]. A basic closed semialgebraic set

defined by polynomials p1, . . . , pk 2 R[x] will be abbreviated as follows:

W(p1, . . . , pk) := {a 2 Rn : p1(a) � 0, . . . , pk(a) � 0} (0.1)

Moreover, a basic open semialgebraic set is defined by

O(p1, . . . , pk) := {a 2 Rn : p1(a) > 0, . . . , pk(a) > 0}. (0.2)

Sometimes, the shorthand notation W (respectively O) instead of W(p1, . . . , pk)

(respectively O(p1, . . . , pk)) will be used.

For a given basic closed semialgebraic set W the minimal number of polynomials
which are necessary for a basic closed description of the set is denoted by

m(W) := min{l 2 N : 9p1, . . . , pl 2 R[x] : W = W(p1, . . . , pl)}. (0.3)

The corresponding set of polynomials {p1, . . . , pl} is called a minimal description of
W . Analogously, for a basic open semialgebraic set O

m(O) := min{l 2 N : 9p1, . . . , pl 2 R[x] : O = O(p1, . . . , pl)}. (0.4)

An algebraic set in Rn is defined as the set of real solutions of system of polynomial
equations. It is denoted by

V(p1, . . . , pk) := {a 2 Rn : p1(a) = . . . = pk(a) = 0}. (0.5)

4



CHAPTER 0. PRELIMINARIES 5

It can easily be seen that an algebraic set can be defined by just one polynomial. If
one sets p := p21 + . . .+ p2

k
, it holds that

V(p1, . . . , pk) = V(p).

This shows that it is not very interesting to search for minimal descriptions of alge-
braic sets.

A set S ✓ Rn is called semialgebraic if it is a Boolean combination of basic open
semialgebraic sets. This means that S arises from finite unions, intersections and
complements of sets of the form (0.2). To be more precisely, a semialgebraic set is
given by polynomial equations and inequalities of the form "p(a) = 0", "p(a) � 0",
"p(a)  0", "p(a) > 0", "p(a) < 0" and Boolean combinations of them.

Let S ✓ Rn, T ✓ Rm be semialgebraic sets. A function f : S ! T is called
semialgebraic if its graph

�(f) := {(a, f(a)) 2 Rn
⇥ Rm : a 2 S}

is a semialgebraic subset of Rn
⇥ Rm.

0.1. First-Order Formulas. The concept of first-order formulas is sometimes
a very useful tool for describing semialgebraic sets. It will be used at a later time.
One can find detailed information about this concept in [PrDe01]. Let’s start with the
definition of first-order formulas:

DEFINITION 0.1: A R-prime formula is a formula of the form

"p(x) > 0"

for a polynomial p 2 R[x]. With the help of prime formulas one can iteratively define

(first-order) R-formulas as follows:

(i) Every R-prime formula is a R -formula.

(ii) If �, are R-formulas, then also � ^  , ¬� and 9xi�.

A variable xi of � which is not quantified is called free variable.
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EXAMPLE 0.2: With the help of the above definition it can be seen that the following
expressions are also R-formulas:

� _  = ¬(¬� ^ ¬ )

�!  = (¬�) _  

8xi� = ¬(9xi(¬�))

⌥

PROPOSITION 0.3: Let � be a R-formula with free variables x1, . . . , xl. Then

�(R) := {(x1, . . . , xl) 2 Rl : �(x1, . . . , xl) is true in Rl
} (0.6)

is a semialgebraic set.

PROOF: The statement follows from the famous projection theorem, which states
that projections of semialgebraic sets are again semialgebraic (for instance, see
[PrDe01]). Let � be a formula which is free of quantifiers. Then

{x 2 Rn : �(x) is true in R} (0.7)

is semialgebraic. This is due to the fact that one can receive every form of polyno-
mial inequality by linking formulas of the form �^ , ¬� or �_ , where � and  are
prime formulas. For example,

p(x) = 0 corresponds to the formula ¬(p(x) > 0) ^ ¬(�p(x) > 0).

The expression (0.6) is not of the form (0.7) since not every variable is free. But a
set of the form 9xi�(R) corresponds to the projection of �(R) onto the orthogonal
complement of the xi-axis. If �(R) is semialgebraic, 9xi�(R) is also semialgebraic
by the projection theorem. This proves the above proposition.

Main Results

In this subsection the two most important results concerning minimal descriptions of
basic closed semialgebraic sets will be summarized. The main result is the following:

THEOREM 0.4: (Theorem of Bröcker and Scheiderer )
Let W ✓ Rn be a basic closed semialgebraic set. Moreover, let O ✓ Rn be basic



CHAPTER 0. PRELIMINARIES 7

open. Then it holds that

m(W) 
n(n+ 1)

2
,

m(O)  n.

One can find detailed information about this theorem in [AnBrRu96].

Another important theorem concerning minimal descriptions of polyhedra was shown
by Averkov and Bröcker.

THEOREM 0.5: (Averkov and Bröcker [AvBr10])
Let P ✓ Rn be a n-dimensional polyhedron and k be the maximal dimension of an
affine subspace contained in P . Then:

9 p1, . . . , pn�k 2 R[x] : P = {a 2 Rn : p1(a) � 0, . . . , pn�k(a) � 0}

Moreover, m(P ) = n � k, which means that P cannot be represented by less
polynomials.

REMARK 0.6: If one just focuses on bounded polyhedra, which are also known as
polytopes, the maximal dimension of an affine subspace contained in a polytope is 0.
Therefore, every n-dimensional polytope in Rn can be represented by n polynomial
inequalities.

REMARK 0.7: Even though THEOREM 0.4 and THEOREM 0.5 are well-known and
already proven results, the present master’s thesis is orientating on a weaker result
which has been proven by Averkov. This result only shows that every simple n-
dimensional polytope in Rn can be represented by n polynomials. This weaker
result is fully sufficient for the purpose of this thesis since it can be extended to
spectrahedra. Averkov’s main ideas will be presented later on.



CHAPTER 1

Polytopes

The following introductory chapter states some basic properties of polytopes. All
of them are well-known. Therefore, they won’t be proven. One can find detailed
information about the properties including their proofs in [Web94] or [Zie07]. All of
the plots below were created by the author of the thesis using GeoGebra or Mathe-

matica.

1. Some basic properties

Let’s start with the definition of a polytope, followed by an easy example:

DEFINITION 1.1: A polytope P ✓ Rn
is defined as the convex hull of a finite set of

points v1, . . . , vr 2 Rn
:

P := conv{v1, . . . , vr} =

(
rX

i=1

�ivi : �1 � 0, . . . ,�r � 0,
rX

i=1

�i = 1

)
(1.1)

EXAMPLE 1.2: Let

v1 =

 
1

�2

!
, v2 =

 
6

2

!
, v3 =

 
3

4

!
, v4 =

 
�1

3

!

and P := conv {v1, . . . v4} ✓ R2. P has the following form:

FIGURE 1.1. P is the convex hull of a finite set of points in R2

8



CHAPTER 1. POLYTOPES 9

Since the main aim of the present master’s thesis is to find minimal descriptions of
basic closed semialgebraic sets, one has to show that polytopes are indeed basic
closed semialgebraic. If one just takes a look at DEFINITION 1.1, it is not clear how
the defining polynomial inequalities of P look like. But it turns out that P can also
be represented as the set of solutions of a system of non-strict linear inequalities.
Indeed, let

l1 := �4x+ 5y + 14

l2 := �2x� 3y + 18

l3 := x� 4y + 13

l4 := 5x+ 2y � 1.

Then in holds that P = {a 2 R2 : l1(a) � 0, . . . , l4(a) � 0} as one can easily verify.

FIGURE 1.2. P ist the set of solutions of a system of non-strict linear inequalities

⌥

The fact that the polytope P from EXAMPLE 1.2 can be described by linear polyno-
mial inequalities is not a lucky coincidence. Indeed, every polytope possesses this
remarkable property:

PROPOSITION 1.3: Let P ✓ Rn. Then the following are equivalent:

(i) P is a polytope
(ii) P is bounded and

P = {a 2 Rn : l1(a) � 0, . . . , lk(a) � 0} (1.2)
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for linear polynomials l1, . . . , lk 2 R[x]1. A set of the form (1.2) is called a
polyhedron.

PROOF: One proof of this fact, which is not that trivial, can be found in [Web94],
p.114.

Now let P ✓ Rn be a polytope. According to PROPOSITION 1.3, there exist linear
polynomials l1, . . . , lk 2 R[x]1 such that

P = {a 2 Rn : l1(a) � 0, . . . , lk(a) � 0}.

This shows that a polytope is a basic closed semialgebraic set and, therefore, one
can try to find minimal descriptions of polytopes. The fact that polytopes are given
by linear inequalities entails some very useful advantages, which will be stated in
the next section.

2. Faces of Polytopes

DEFINITION 1.4: Let C ✓ Rn
be a convex set. A subset F ✓ C is called a face of C

:, 8x, y 2 C 8� 2 (0, 1) : (�x+ (1� �)y 2 F ) x, y 2 F ) (1.3)

An element v 2 C is called an extremal point of C if the set {v} is a face of C, more

precisely:

8x, y 2 C 8� 2 (0, 1) : (v = �x+ (1� �)y ) x = v = y)

ex(C) := {v 2 C : v is an extremal point} denotes the set of extremal points of

C, dim(F ) is the dimension of the affine hull of a face F . Since C and ; are also

special kinds of faces, a face F with ; 6= F 6= C is called a proper face.

Extremal points play an important role in describing convex and compact sets. This
will be stated in the next theorem:

THEOREM 1.5: (Krein-Milman):
Let ; 6= C ✓ Rn be convex and compact. Then the following holds:

(i) ex(C) 6= ;

(ii) C = conv(ex(C))
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PROOF: See [Pla11], p. 19, or [Wer05], p. 418-419, for a more general version of
the statement.

DEFINITION 1.6: Let C ✓ Rn
be convex and l 2 R[x]1 such that l(c)  0 for all

c 2 C. Then the following set is a face of C as one can easily verify:

F = C \ {l = 0} = {c 2 C : l(c) = 0}

A proper face of this form is called exposed. It just arises as an intersection of the set

with a hyperplane. The hyperplane {l = 0} is also called a supporting hyperplane.

EXAMPLE 1.7: Let C ✓ R2 be the convex and compact set which is shown in the
figure below. The extremal points of the set are drawn in red. By taking a close look
at the graphic one believes that ex(C) 6= ; and C = conv(ex(C)) holds. Besides
the already mentioned extremal points there exist some other proper faces, namely
[v1, v2], [v1, v3] and [v3, v4]. Some of the faces are exposed, some of them are not.
For example, [v3, v4] and v are exposed. To see this, the two supporting hyperplanes
are plotted in the graphic. On the other hand, the two extremal points v2 and v4 are
non-exposed faces. It is impossible to find a line passing through the points with the
required properties.

FIGURE 1.3. Faces of the set C

⌥
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By definition, polytopes are convex sets. Therefore, one can define faces of poly-

topes. The extremal points of polytopes are better known as vertices, the one-
dimensional faces are called edges and the (dim(P )�1)-dimensional faces are also
known as facets. To avoid confusion, the set of all vertices of a polytope P ✓ Rn

will be denoted by vert(P ) instead of ex(P ). The faces of polytopes possess some
interesting properties, which will be stated in the next proposition.

PROPOSITION 1.8: Let P ✓ Rn be a n-dimensional polytope. Then the following
holds:

(i) The set {F ✓ P : F is a face of P} is finite.
(ii) Let F be a face of P . Then: F = a↵(F ) \ P

(iii) Every face of P is exposed.
(iv) An intersection of faces of P is again a face of P .
(v) Every proper face F arises as the intersection of all facets of P containing F .
(vi) Assume that G1 = P \ {l1 = 0}, . . . , Gs = P \ {ls = 0} with li|P  0 for

i 2 {1, . . . , s} are all the facets of P . The polyhedral description of P is given
by

P = {a 2 Rn : l1(a)  0, . . . , ls(a)  0} = {a 2 Rn : �l1(a) � 0, . . . ,�ls(a) � 0}.

(vii) bd(P ) = G1 [ . . . [ Gs.
(viii) If F ✓ P is a face of P with dim(F ) = k, then P has faces of all dimensions

from k to n = dim(P ). For each dimension from k to n one can find a face
containing F .

(ix) Every face F of P is a polytope with

9V ✓ vert(P ) : F = conv(V ).

(x) Let F ✓ P be a face of P . The faces of F are exactly the faces of P that are
contained in F .

PROOF: This is a collection of results from [Web94] and [Zie07].

With all the information from PROPOSITION 1.8 one can easily see that a
k-dimensional face F of a n-dimensional polytope P is contained in at least n � k

facets. Like above, assume that G1 = P \ {l1 = 0}, . . . , Gs = P \ {ls = 0} with
li|P  0 for i 2 {1, . . . , s} are all the facets of P . By part (v) of the above proposition
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one has

F =
\

i2I

(P \ {li = 0}) = P \

\

i2I

{li = 0} for I ✓ {1, . . . , s}. (1.4)

Note that P is a full-dimensional polytope. Intersecting a↵(P ) = Rn with |I| hyper-
planes will reduce the dimension of the new set by at most |I|. In other words,

k = dim(F ) � n� |I| , |I| � n� k.

This shows that one needs at least n � k facets in (1.4) to obtain a k-dimensional
face. The same holds true if the polytope P is given by polynomial inequalities.
This was proven by Grötschel and Henk. Their results will be stated in the next
proposition.

PROPOSITION 1.9: (derived from Grötschel and Henk, [GrHe03], Proposition 2.1)
Let P ✓ Rn be a n-dimensional polytope. Moreover, for i 2 {1, . . . , s} let li 2 R[x]1

with li|P  0 and

F1 = P \ {l1 = 0}, . . . , Fs = P \ {ls = 0}

be the facets of P . By PROPOSITION 1.8, part (vi), P has the following form:

P = {a 2 Rn : l1(a)  0, . . . , lk(a)  0}

Assume that there exist (not necessarily linear) polynomials p1, . . . , pl 2 R[x] such
that P has another basic closed description of the form

P = W(p1, . . . , pl) = {a 2 Rn : p1(a) � 0, . . . , pl(a) � 0}.

Then the following holds:

(i) 8i 2 1, . . . , s 9j 2 1, . . . , l : li|pj
(ii) Let F be a k-dimensional face of P . Then:

9I ✓ {1, . . . , l}, |I| = n� k : a↵(F ) ✓ {a 2 Rn : pi(a) = 0 8i 2 I}

This shows that at least n � k polynomials vanish on F , which has been
demonstrated for the linear case above.

In the following, a short sketch of the proof of this proposition is given, which can be
found in [GrHe03] (Proposition 2.1.):
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PROOF: For i 2 {1, . . . s} let Fi = P \ {li = 0} be a facet of P and y 2 Fi. Assume
that 8j = 1, . . . , l : pj(y) 6= 0. Since y 2 Fi ✓ P , it holds that 8j = 1, . . . , l : pj(y) >

0. Therefore, one can find some ✏ > 0 such that

8j = 1, . . . , l : pj|B✏(y) > 0

This implies that y /2 bd(P ). By part (vii) of PROPOSITION 1.8 all facets of P are
contained in the boundary of the polytope. Therefore, y /2 bd(P ) yields a contradic-
tion. Hence 8y 2 Fi 9j 2 {1, . . . , l} : pj(y) = 0. Now define

f :=
lY

j=1

pj 2 R[x].

The above computation shows that f |Fi = 0. Let a 2 relint(Fi), where relint(Fi)

denotes the relative interior of the face Fi. By definition of the relative interior one
gets that

9✏ > 0 :(B✏(a) \ a↵(Fi)) ✓ Fi ) f |B✏(a)\a↵(Fi) = 0

) f ⌘ 0 on a↵(Fi) = {a 2 Rn : li(a) = 0} = V(li)

(?)
) li|f

(1.5)

The implication (?) needs a more precise explanation. One important topic of real
algebraic geometry is trying to formulate so called Positivstellensätze for polynomi-
als. Such theorems describe how polynomials which vanish on certain basic closed
semialgebraic or algebraic sets look like. One important theorem is called Real

Nullstellensatz and states the following:

THEOREM 1.10: (Real Nullstellensatz)
Let p, p1, . . . , pr 2 R[x]. Then:

p ⌘ 0 on V(p1, . . . , pr) , p 2 rrad((p1, . . . , pr)), (1.6)

where (p1, . . . , pr) denotes the ideal generated by the polynomials p1, . . . , pr and
rrad((p1, . . . , pr)) := {g 2 R[x] : 9m 2 N, � 2

P
R[x]2, g2m + � 2 (p1, . . . , pr)} is

the real radical of (p1, . . . , pr).

PROOF: One proof of this important theorem can be found in [PrDe01].
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Let us return to the primary proof. In (1.5) it was shown that

f ⌘ 0 on V(li).

Hence by the Real Nullstellensatz

f 2 rrad((li))
(4)
= (li). (1.7)

The equality in (4) holds true since the real radical of an ideal I is just the in-
tersection of all real prime ideals containing I . Since li is irreducible, (li) is a
prime ideal. Without going into too much detail, it should be emphasized that (li)
is also a real ideal. One can find information about real rings and real ideals in
[PrDe01]. Hence the intersection of all real ideals containing (li) is just (li). There-
fore, f 2 (li) := {g · li : g 2 R[x]}, which implies that li|f .

Finally, notice that the polynomial li is irreducible and hence prime. Therefore,

li
��

lY

j=1

pj ) 9j 2 {1, . . . , l} : li
��pj ) pj

��
a↵(Fi)

= pj
��
{li=0} = 0.

ad (ii): The second part will be proven by induction over k = dim(F ).

BASE CASE: Let k = n� 1. Then F is a facet of P and by part (i) of the proof there
exists j 2 {1, . . . , l} : pj|a↵(F ) = 0.

STEP CASE: Let k < n � 1. By PROPOSITION 1.8, part (viii), there exists a face
G ✓ P with dim(G) = k + 1 and F ✓ G. By induction hypothesis

9I ✓ {1, . . . , l}, |I| = n� k � 1 : a↵(G) ✓ {a 2 Rn : pi(a) = 0 8i 2 I} (1.8)

Applying part (ii) of PROPOSITION 1.8 yields

G = a↵(G) \ P = {a 2 a↵(G) : p1(a) � 0, . . . , pl(a) � 0}

= [pi(a) = 0 8a 2 a↵(G), 8i 2 I]

= {a 2 a↵(G) : pj(a) � 0 8j 2 {1, . . . , l}\I}

Finally, note that F ✓ G is also a face of G with dim(F ) = dim(G)� 1 (by part (x)
of PROPOSITION 1.8). This means that F is a facet of G (which is a polytope in the
space a↵(G)) and by part (i) of the proof one can choose j 2 {1, . . . , l}\I such that
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pj|a↵(F ) = 0. Therefore, it holds that

a↵(F ) ✓ {pj = 0} \ a↵(G)
(1.8)

✓ {a 2 Rn : pi(a) = 0 8i 2 I, pj(a) = 0}.

Since |I| = n� k � 1, this shows that at least n� k polynomials vanish on a↵(F ).

REMARK 1.11: The last proposition demonstrates a first important fact concerning
minimal descriptions of polytopes. For a n-dimensional polytope ; 6= P ✓ Rn one
has vert(P ) 6= ; by the Theorem of Krein-Milman. Therefore, there exists a ver-
tex v 2 P . Let P = W(p1, . . . , pl) be any basic closed description of the polytope.
Since vertices are 0-dimensional faces, it follows from PROPOSITION 1.9 that at least
n polynomials pi1 , . . . , pin 2 {p1, . . . , pl} vanish on v. This shows that it is impossi-
ble to find basic closed descriptions of n-dimensional polytopes P ✓ Rn with less
than n polynomials. This important observation should be emphasized:

OBSERVATION 1: Let ; 6= P ✓ Rn be a n-dimensional polytope.

Then the following holds:

m(P ) � n

REMARK 1.12: It should be mentioned that n-dimensional polytopes cannot be de-
scribed by less than n polynomials due to the fact that they are not smooth enough.
The vertices cause some problems, which are responsible for the lower bound n of
m(P ). If one takes a look at spectrahedra, there are no lower bounds concerning
the number of polynomials which are necessary for a minimal description of them.
For example, the unit ball {x 2 Rn : 1� x2

1 � x2
2 � . . .� x2

n
� 0} is a spectrahedron

in Rn, which can be described by just one polynomial (independent of the space-
dimension). But these observations will be dealt with in the second chapter. The
next aim of the thesis is showing that m(P ) = 2 for polygons P ✓ R2.

3. Bernig’s construction

In [Be97] Andreas Bernig was able to show that each basic open semialgebraic
set in R2 given by linear polynomials possesses a basic open description with two
polynomials. He was even able to construct these polynomials. The purpose of this
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chapter is to give an overview of his construction. His discoveries can easily be
extended to the basic closed case. This is formulated in the next theorem.

THEOREM 1.13: (derived from Bernig [Be97], p.18-21)
Let P ✓ R2 be a 2-dimensional polytope. There exist polynomials p1, p2 2 R[x, y]
such that

P = W(p1, p2).

PROOF: The whole proof for basic open sets can be found in [Be97], p.18-21. In
the present thesis the proof is slightly modified to be able to extend the statement
to the basic closed case. This is done by a little additional consideration, namely by
showing that one of Bernig’s defining polynomials is strictly concave, which will be
done in REMARK 1.16. Sometimes, Bernig’s proof is slightly modified, but – on the
whole – the following pages are derived from [Be97].

To be able to understand the main idea of the proof, one can consider the following
example: Let

l1 : = �2x� 3y + 9 2 R[x, y],

l2 : = �x+ 5y � 2 2 R[x, y],

l3 : = 3x� 2y + 6 2 R[x, y]

be linear polynomials and P := W(l1, l2, l3) ✓ R2. The polytope defined by these
polynomials is a triangle. This can be seen in FIGURE 1.4.

FIGURE 1.4. P is a triangle

In a first step, Bernig constructed a polynomial p1 such that W(p1) contains the
set P , namely the product of all linear polynomials which pertain to the polyhedral
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description of the set. Without loss of generality one can assume that none of the
defining linear polynomials is redundant.

p1 :=
sY

k=1

lk

For a 2 P it holds that 8k 2 {1, . . . , s} : lk(a) � 0 and, therefore, p1(a) � 0.
Hence P ✓ W(p1). The problem is that W(p1) ✓ P does not hold. For example, let
a 2 R2

\P such that

9i, j 2 {1, . . . , s} : li(a) < 0, lj(a) < 0 and lk(a) � 0 8k 2 {1, . . . , s}\{i, j}.

Then it holds that

p1(a) =
sY

i=1

li(a) = li(a)|{z}
<0

· lj(a)|{z}
<0| {z }

>0

·

Y

k2{1,...,l}\{i,j}

lk(a)

| {z }
�0

� 0.

As long as an even number of polynomials is less than 0 on a, it holds that a 2

W(p1). Moreover, if just one linear polynomial li vanishes on a, the product of all
linear polynomials evaluated at a is 0 – independent of the value lj(a) of the other
linear polynomials lj, j 2 {1, . . . , s}\{i}. Hence p1(a) = 0 and therefore a 2 W(p1).
This fact will be illustrated with the above example. If one defines p1 := l1 · l2 · l3, the
green and orange areas in FIGURE 1.5 mark W(p1).

FIGURE 1.5. Visualisation of W(p1)

Since the polytope P is just the green set in FIGURE 1.5., one needs to construct
a polynomial which, casually speaking, cuts off the orange area. If one just focuses
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on the present example, this can easily be done by taking

p2 :=
13

2
�

✓
x�

1

2

◆2

�

✓
y �

1

2

◆2

.

The zero set of this polynomial is just the circumcircle of the triangle. The red area
in FIGURE 1.6. represents W(p2). By taking a close look at the picture, one could
suggest that P = W(p1, p2). Indeed, the equality holds true since p2 is a strictly
concave polynomial. This will be proven below.

FIGURE 1.6. P = W(p1, p2)

The tricky part of Bernig’s proof was to explicitly construct a polynomial p2 with the
required property for any given polytope P ✓ R2, namely a polynomial cutting off
the surplus area arisen from W(p1). He was able to show the following:

LEMMA 1.14: (derived from [Be97], Theorem 3.1.2)
With the same assumptions like in THEOREM 1.13 there exists a concave polynomial
p 2 R[x, y] such that

8v 2 vert(P ) : p(v) = 0.

By the concavity of the function it follows that W(p) and O(p) are convex.

PROOF (SEE ALSO [Be97], P. 18-20):
Step 1: Choose v 2 vert(P ) and set C := conv(vert(P )\{v}). At first, notice that
v /2 C. This follows from the fact that v is a vertex. If v 2 C, one could find
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v1, . . . , vk 2 vert(P )\{v} such that v =
P

k

i=1 �ivi with
P

k

i=1 �i = 1. Hence

v = �1v1 + (1� �1)
kX

i=2

�i
1� �1

| {z }
=1

vi. (1.9)

Since
P

k

i=2
�i

1��1
= 1, w :=

P
k

i=2
�i

1��1
vi is a convex combination of v2, . . . , vk 2 P

and hence w 2 P . Therefore, v can be written as a convex combination of two
points v1, w 2 P , v1 6= v, w 6= v, which yields a contradiction since v is a vertex of
P .

The set C is convex and closed. Therefore, one can apply a Hahn-Banach Separa-

tion Theorem and separate v from C. Indeed, there exists an affine-linear polyno-
mial lv 2 R[x, y]1 such that

lv(v) > 0 and lv(c)  0 8c 2 C (especially lv(c)  0 8c 2 vert(P )\{v}).

After applying an appropriate linear transformation, one is even able to assume that

lv(v) = 1 and � 1 < lv(c) < 1 8 c 2 vert(P )\{v}.

Hence for a given ✏ > 0 one can choose s 2 N big enough and set pv,✏ := l2s
v

, which
yields a polynomial with

pv,✏(v) = 1 and |pv,✏(c)| < ✏ 8c 2 vert(P )\{v}. (1.10)

pv,✏ is convex as a composition of convex functions (affine-linear functions are con-
vex and [x 7! x2l] is convex).

Step 2: The idea of the proof is finding positive real numbers �v 2 R>0 and ✏ > 0

such that

p := 1�

0

@
X

v2vert(P )

�vpv,✏

1

A (1.11)

is the sought-after concave polynomial which is vanishing on all the vertices of P .
Let v1, . . . , vs 2 vert(P ) be all the vertices of P . Remember that a polytope has only
finitely many faces, hence also finitely many vertices. Since the polynomial has to
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vanish on each vertex, the following conditions have to be satisfied:

p(vl) = 1�
X

v2vert(P )

�vpv,✏(vl)
!
= 0 8l 2 {1, . . . , s}

,

X

v2vert(P )

�vpv,✏(vl) = 1 8l 2 {1, . . . , s}

Equivalently, one could write

0

B@
pv1,✏(v1) . . . pvs,✏(v1)

. . .
pv1,✏(vs) . . . pvs,✏(vs)

1

CA

| {z }
=:B

·

0

B@
�v1

...
�vs

1

CA

| {z }
=:�

=

0

B@
1
...
1

1

CA

| {z }
:=1

. (1.12)

By construction of pvj ,✏, j 2 {1, . . . , s}, pvj ,✏(vj) = 1 and hence the diagonal of the
above matrix contains only 1’s. Therefore, one can write

B = Is +

0

BBBB@

0 pv2,✏(v1) . . . pvs,✏(v1)

pv1,✏(v2) 0 . . . pvs,✏(v2)
...

... . . . ...

pv1,✏(vs) pv2,✏(vs)
... 0

1

CCCCA

| {z }
=:A

, (1.13)

where Is denotes the unitary (s ⇥ s)-matrix. Remember that the entries of the new
matrix A = (aij)i,j = (pvj ,✏(vi))i,j , which are not in the diagonal, are of absolute
value less than ✏ (see 1.10). By k · k1,1 let us denote the matrix norm induced by
the vector norm k · k1, which is just the maximum row sum of the matrix. It holds
that

kAk1,1 =max
i=1,...s

sX

j=1

|aij| = max
i=1,...s

0

B@ |aii||{z}
=0

+
X

j 6=i

|aij||{z}
=|pvj,✏(vi)|

1

CA

=max
i=1,...s

0

@|0|+
X

j 6=i

|pvj ,✏(vi)|| {z }
<✏

1

A < (s� 1)✏.

(1.14)

If one chooses ✏ < 1
2(s�1) , it follows from (1.14) that kAk1,1 < 1

2 .

To finish the proof, one needs the so called Banach Lemma. It states the following:
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LEMMA 1.15: (Banach Lemma):
Let k · k be an operator norm in Rn⇥n and M 2 Rn⇥n. If kMk < 1, then In �M is
invertible. Moreover,

k(In �M)�1
k 

1

1� kMk
. (1.15)

PROOF: For instance, see [Sh07].

In the above situation for k · k := k · k1,1 and M := �A it has already been
proven that kMk = k � Ak < 1

2 < 1, which implies that Is � M = Is + A = B is
invertible. Hence (1.12) possesses a unique solution. This shows that one can find
(�v)v2vert(P ) as claimed in (1.11). It remains to show that �v > 0 for all v 2 vert(P ).
This is necessary since �v > 0 guarantees that the polynomial p constructed in
(1.11) is indeed concave.

It follows from (1.11) and (1.12) that

(I + A)� = 1 , �+ A� = 1 , �� 1 = �A�

Since � = (A+ I)�11,

k�� 1k1 = k � A�k1 = kA�k1 =kA(A+ I)�11k1  kAkk(A+ I)�1
k k1k1| {z }

=1

(1.15)


kAk

1� kAk
<


kAk <

1

2

�
< 1.

Note that

k�� 1k1 = max
v2vert(P )

|�v � 1|,

which implies 8v 2 vert(P ) : |�v � 1| < 1. This condition is not satisfied for �v  0.
Hence �v > 0 and this immediately finishes the proof.

By the convexity of the functions pv,✏ it follows that

h :=
X

v2vert(P )

�v|{z}
>0

pv,✏ (1.16)

is a positive linear combination of convex functions and hence convex. Therefore,
p := 1 � h is concave. Moreover, for x, y 2 W(p), x̃, ỹ 2 O(p), � 2 [0, 1], it holds
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that

p(�x+ (1� �)y)
p concave

� � p(x)|{z}
�0

+(1� �) p(y)|{z}
�0

� 0

p(�x̃+ (1� �)ỹ)
p convave

� � p(x̃)|{z}
>0

+(1� �) p(ỹ)|{z}
>0

> 0.

This shows that W(p) and O(p) are convex, which finishes the proof.

REMARK 1.16: If one takes a close look at the constructed polynomials pv,✏, it turns
out that these polynomials are convex but not strictly convex. For given x, y 2 R2,
x 6= y, � 2 (0, 1) and a vertex v 2 vert(P )

pv,✏(�x+ (1� �)y) = (lv(�x+ (1� �)y))2s
lv affine-linear

= (�lv(x) + (1� �)lv(y))
2s

< �lv(x)
2s + (1� �)lv(y)

2s = �pv,✏(x) + (1� �)pv,✏(y)

, lv(x) 6= lv(y).

(1.17)

This follows from the fact that the function [x 7! x2s] is strictly convex, hence 8x, y 2

R, x 6= y, 8� 2 (0, 1) it holds that (�x + (1 � �)y)2s < �x2s + (1 � �)y2s. To get
the strict inequality sign, one has to guarantee that lv(x) and lv(y) are not the same.
This is not always the case. This consideration should just emphasize that one
needs to be careful when using the strict inequality signs "<" or ">" instead of ""
or "�".

Nevertheless, the polynomial p defined by the polynomials pv,✏, v 2 vert(P ), is even
strictly concave. To see this, let x, y 2 R2, x 6= y, and � 2 (0, 1). One has to show
that there exists at least one v 2 vert(P ) with lv(x) 6= lv(y). If this was true, then

p(�x+ (1� �)y) = 1��vpv,✏(�x+ (1� �)y)| {z }
>��v(�pv,✏(x)+(1��)pv,✏(y))

�

X

w2vert(P ),w 6=v

�wpw,✏(�x+ (1� �)y)

| {z }
��

P
w2vert(P ),w 6=v �w(�pw,✏(x)+(1��)pw,✏(y))

> �+ (1� �)| {z }
=1

��
X

v2vert(P )

�vpv,✏(x)� (1� �)
X

v2vert(P )

�vpv,✏(y)

= �p(x) + (1� �)p(y).
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Assume that 8v 2 vert(P ) : lv(x) = lv(y) = cv, cv 2 R. By the convexity of
{lv = cv} it follows that [x, y] ✓ {lv = cv} for all v 2 vert(P ). This is only possible if
the sets {lv = cv}, v 2 vert(P ), coincide. Hence {lv = 1}, v 2 vert(P ), are parallel
lines.

Notice that |vert(P )| � 3, since dim(P ) = 2. Hence pick v1, v2 and v3 in vert(P ).
By the construction of the affine-linear functions lv each vertex vi is an element of
{lvi = 1}. One ought to consider that the parallel lines {lvi = 1}, i 2 {1, 2, 3},

do not coincide since lvi(vj) < 1 for all i, j 2 {1, 2, 3}, i 6= j. Since they do not
coincide, one can assume without loss of generality that {lv2 = 1} separates the
sets {lv1 = 1} and {lv3 = 1} (compare with FIGURE 1.7). But this must not happen
since

lv2(v1) < 1 and lv2(v3) < 1.

FIGURE 1.7. Three parallel lines

This computation shows that p is even strictly concave which will turn out to be a
great advantage.

Now let us finish the proof of THEOREM 1.13:
Let p2 := p. One has to show that P = W(p1, p2) indeed holds. Therefore, let
a 2 P . Then p1(a) � 0 trivially holds. To show that p2(a) � 0 is also true, again let
v1, . . . , vs be all vertices of P . Using the Theorem of Krein-Milman, one can write
a =

P
s

i=1 �ivi with
P

s

i=1 �i = 1. By the concavity of the polynomial p2 one gets

p2(a) = p2(
sX

i=1

�ivi)
p2 concave

�

sX

i=1

�i p2(vi)| {z }
=0

= 0.

The fact p2(vi) = 0 holds true since p2 vanishes on all vertices of P . For a 2

P\vert(P) it even holds that p2(a) > 0 by the strict concavity of the polynomial.
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Therefore,

P ✓ W(p1, p2).

For the other inclusion, let a 2 R2
\P . Then one has to show that a 2 R2

\W(p1, p2).
We distinguish three cases:

Case 1: p1(a) < 0: Then there is nothing to show.

Case 2: p1(a) > 0: One has to show that a /2 W(p1, p2), i.e. p2(a) < 0. Since a /2 P

and p1(a) > 0, there exists an index set J ✓ {1, . . . , s}, |J | = 2n, n 2 N, such that

8j 2 J : lj(a) < 0, 8i 2 {1, . . . , s}\J : li(a) > 0.

Now choose a point b 2 P such that

8i, j 2 {1, . . . , s}, i 6= j : [a, b] \ ({li = 0} \ {lj = 0}) = ;. (1.18)

This is possible since the number of the above intersection points is finite. Note that

|[a, b] \ {y 2 R2 : 9j 2 J : lj(y) = 0}| = |J | = 2n.

This holds true since

8j 2 J : lj(a) < 0 ^ lj(b) > 0

and hence for all j 2 J there exists exactly one vj 2 [a, b] such that lj(vj) = 0.
(1.18) guarantees that vi 6= vj for i, j 2 J, i 6= j. Now choose v 2 {vj : j 2 J} such
that

kv � ak = min{kvj � ak : j 2 J},

where k · k denotes the Euclidian norm. Moreover, let l 2 {lj : j 2 J} be the
corresponding linear polynomial with l(v) = 0. One can find an illustration of this
procedure in the next graphic.
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FIGURE 1.8. Correct construction FIGURE 1.9. Incorrect construction

In the example on the left-hand side one can see that the set [a, b] intersects exactly
two times a zero set of li, i = 1, 2. According to the above procedure one has to
choose v := v1 and l := l1. The picture on the right-hand side does not yield the
desired result since (1.18) is violated.

Note that

8j 2 J : (vj 6= v ) lj(v) < 0).

Since |J | is even, this computation shows that there exists at least one j 2 J with
lj(v) < 0 and hence v /2 P .

Assumption: p2(a) � 0. Choose � 2 (0, 1) such that

p2(v) = p2(�a+ (1� �)b)

� � p2(a)| {z }
�0 by assumption

+(1� �) p2(b)|{z}
>0, since b/2vert(P )

> 0

From v 2 {l = 0}\P and the fact that {l = 0} is a facet-defining equation it follows
that there exist e1, e2 2 {l = 0} \ vert(P ). Without loss of generality one may
assume that e2 2 [e1, v]. Since v /2 P it holds that v 6= e1, v 6= e2, and, therefore,
one can use the strict concavity of p to cause a contradiction:

9� 2 (0, 1) : 0 = p2(e2) = p2(�e1 + (1� �)v) > � p2(e1)| {z }
=0

+(1� �) p2(v)| {z }
>0

> 0  

(1.19)
Case 3: p1(a) = 0: By definition of p1 there exists an i 2 {1, . . . , s} such that li(a) =
0. Again, since li is a facet-defining linear polynomial, one can find e1, e2 2 vert(P )
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such that

{li = 0} \ P = [e1, e2].

Since a /2 P , again without loss of generality one may assume that e2 2 [e1, a],
e1 6= e2 6= a. Hence there exists � 2 (0, 1) such that e2 = �e1 + (1 � �)a. With a
similar argumentation like above one can finish the proof:

0 = p2(e2) = p2(�e1 + (1� �)x) > � p2(e1)| {z }
=0

+(1� �)p2(a). (1.20)

Since (1� �) > 0, this implies that p2(a) < 0, hence a /2 W(p1, p2).

REMARK 1.17: As mentioned above, in [Be97] Bernig was able to show that THEO-
REM 1.13 holds for basic open semialgebraic sets. The slight difference when only
concerning basic open sets is that one does not have to assume that p2 is strictly

concave. The strict concavity was needed to show inequality (1.20). If one focuses
on basic open semialgebraic sets, the third case in the above proof is trivial. If
p1(a) = 0, there is nothing to show since it implies that a /2 O(p1, p2) = {a 2 R2 :

p1(a) > 0, p2(a) > 0}. Hence one does not need the inequality in (1.20).

REMARK 1.18: One has to mention that Bernig’s proof in the two-dimensional case,
which was done about twenty years ago, was a great innovation in that times. Even
though the Theorem of Bröcker and Scheiderer was well-known, nobody was able
to explicitly construct polynomials which belong to a minimal description of a poly-
tope. Hence Bernig’s discovery turned out to be a great advance and, therefore,
mathematicians tried to generalize his ideas. At first, Henk and Averkov managed
to extend his idea on simple polytopes in Rn ([AvHe07]). With the help of the prepa-
rations from Henk and himself, Averkov was even able to find descriptions of more
general basic closed semialgebraic sets with few polynomials ([Av08]). His ideas
will be the topic of the next section. He did the following:

At first he defined a set of polynomials such that the corresponding basic closed
semialgebraic set contains the original basic closed set. For this purpose Bernig just
used the product of all the facet-defining linear polynomials. To achieve the same
effect in Rn, Averkov used elementary-symmetric functions, which can be seen as
a generalization of Bernig’s polynomial. Afterwards, he constructed a further poly-
nomial which behaves like the strictly concave polynomial in the above proof. It
cuts off the surplus area such that the basic closed semialgebraic set given by the
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elementary-symmetric functions and the further polynomial is a new basic closed
description of the set.

Finally, let us bring the ideas of the present section to a conclusion:

OBSERVATION 2: Let ; 6= P ✓ R2 be a 2-dimensional polytope.

Then the following holds:

m(P ) = 2
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4. Simple Polytopes

The main purpose of the present section is precisely explaining an approach for
finding basic closed descriptions of special kinds of basic closed sets developed
by Averkov. Most of the theorems from this section can be found in [Av08]. On the
following pages they will be worked out in detail and emphasized by some examples.
Let us start with the main theorems:

THEOREM 1.19: ([Av08], Theorem 1.1.)
Let p1, . . . , ps 2 R[x] and ; 6= W(p1, . . . , ps) ✓ Rn be the corresponding basic
closed semialgebraic set. Moreover, assume that W is bounded. Define

d := max{|i 2 {1, . . . , s} : pi(a) = 0| : a 2 W}. (1.21)

d denotes the maximal number of polynomials which vanish on a point a 2 W . The
following holds:

m(W)  d+ 1 (1.22)

In other words:

9 q1, . . . , qd+1 2 R[x] : W = W(q1, . . . , qd+1) (1.23)

THEOREM 1.20: ([Av08], Theorem 1.2.)
Let the assumptions from THEOREM 1.19 hold. If one additionally assumes that

|{a 2 S : |i 2 {1, . . . , s} : pi(a) = 0| = d}| < 1, (1.24)

it even holds that

m(W)  d, (1.25)

or equivalentely

9q1, . . . , qd 2 R[x] : W = W(q1, . . . , qd). (1.26)

REMARK 1.21: If one takes a close look at the above theorems, it turns out that the
basic closed semialgebraic set W does not have to be convex. Remember that the
convexity of the set was an important assumption in Bernig’s proof since it guaran-
teed that the set W(p2) defined by the strictly concave polynomial p2 indeed contains
the polytope. As mentioned before, the idea of Averkov’s proof is similar to Bernig’s
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idea, namely cutting off the surplus area arisen from the basic closed set defined
by elementary-symmetric functions. Nevertheless, this cannot be managed by just
constructing a strictly concave polynomial, since with this approach one would need
the convexity of W . Hence Averkov constructed a different polynomial p with the
property that W(p) approximates W sufficiently well.

REMARK 1.22: With the statement of the above theorem one is easily able to show
that each simple polytope in Rn can be defined by n non-strict polynomial inequali-
ties. This fact will be demonstrated at the end of the present section.

The next aim of the present work is to prove THEOREM 1.19 and THEOREM 1.20.
To be able to understand the idea of the proof, one has to introduce the concept of
elementary-symmetric functions:

DEFINITION 1.23: (Elementary-Symmetric Functions)

Let y1, . . . , ys 2 R. For k 2 {1, . . . , s}

�k(y1, . . . , ys) :=
X

I✓{1,...,s},
|I|=k

Y

i2I

yi (1.27)

is called the k-th elementary-symmetric function in the variables y1, . . . , ys.

The most important property of these functions concerning the proof of the above
theorems is the following proposition, which was shown by Bernig in [Be97] and
afterwards proven by Averkov using a slightly different idea:

PROPOSITION 1.24: For y1, . . . , ys 2 R the following are equivalent:

(i) y1 � 0, . . . , ys � 0

(ii) �1(y1, . . . , ys) � 0, . . . , �s(y1, . . . , ys) � 0

The statement is also true if one replaces "�" by ">".

PROOF([Av08], P. 11):
Note that the inclusion (i) ) (ii) trivially holds. Hence one has to prove the other
direction.
(ii) ) (i): Let f := (t + y1) · . . . · (t + ys) 2 R[t]. Expanding the polynomial leads
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to the following form:

f = (t+ y1) · . . . · (t+ ys) = ts + (y1 + . . .+ ys)t
s�1

+

 
X

i<j

yiyj

!
ts�2 + . . .+

0

BB@
X

I✓{1,...,s},
|I|=s�1

Y

i2I

yi

1

CCA t1 +

 
sY

i=1

yi

!
t0

= ts +
sX

i=1

�i(y1, . . . , ys)t
s�i

(1.28)

To be able to finish the proof of the theorem, let us state the following lemma:

LEMMA 1.25: Let

p = c0 + c1t+ . . .+ ck�1t
k�1 + tk = (t� ↵1) · . . . · (t� ↵s) 2 R[t]

be a monic polynomial with real roots ↵1, . . . ,↵s 2 R. Then the following holds:

↵1, . . . ,↵s  0 , 8i 2 {0, . . . , k � 1} : ci � 0

Moreover,

↵1, . . . ,↵s � 0 , 8i 2 {0, . . . , k � 1} : (�1)k�ici � 0,

which means that p has alternating coefficients.

PROOF: This is a well known fact and can easily be proven.

By assumption, it holds that 8i 2 {1, . . . , s} : �i(y1, . . . , ys) � 0. Hence the coeffi-
cients of the polynomial f are greater or equal than 0. Therefore, using the results
from LEMMA 1.25, it follows that

� y1, . . . ,�ys  0 , y1, . . . , ys � 0. (1.29)

Moreover, assume that for i 2 {1, . . . , s} the strict inequalities �i(y1, . . . , ys) > 0

hold. By (1.28) it can be seen that

f(0) = �s(y1, . . . ys) > 0.

Hence 0 is not contained in the zero set of f . This shows that y1, . . . , ys 6= 0 and by
(1.29) it follows that y1, . . . , ys > 0.
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Before being able to prove THEOREM 1.19 and THEOREM 1.20, one needs some
important approximation results, which will be stated in the next subsection.

4.1. Some Approximation Results.

ASSUMPTION 1.26: During the whole subsection let p1, . . . , ps 2 R[x] be polynomi-
als defining the non-empty and bounded set W := W(p1, . . . , ps).

REMARK 1.27: Averkov’s preparations for the proofs of THEOREM 1.19 and THEO-
REM 1.20 can be divided into two main parts. In a first step he defined a set which
depends on some ✏ > 0, contains the original set W and approximates W suffi-
ciently well for ✏ small enough. This set will later be called WM,✏. At that moment
it is not clear what this notation means in detail, but this neglicence will be caught
up below. Afterwards, Averkov constructed two polynomials g 2 R[x] and q 2 R[x]
such that W ✓ W(g) ✓ WM,✏ respectively W ✓ W(q) ✓ WM,2✏ for some given
✏ > 0. Once having accomplished this, one can prove THEOREM 1.19 and THE-
OREM 1.20 using the following idea: Since WM,✏ approximates W sufficiently well,
this is also true for W(g) just because of the fact that W(g) is pinched in between
the two other sets. Hence g will be the sought-after polynomial, which – together
with the elementary-symmetric functions – will provide the basic closed description
of W in THEOREM 1.19. The same holds true for the polynomial q. It will be used for
the proof of THEOREM 1.20.

PROOF-INGREDIENT 1 (CONSTRUCTION OF WM,✏):
To be able to state some approximation results, first of all one has to define what
approximating a set means in detail:

DEFINITION 1.28: Let A,B ✓ Rn, A 6= ; 6= B, be two compact sets. The number

dH(A,B) := max

8
>><

>>:
max
a2A

min
b2B

ka� bk
| {z }

=d(a,B)

,max
b2B

min
a2A

ka� bk
| {z }

=d(b,A)

9
>>=

>>;
2 R

is called Hausdorff-distance between the two sets. Note that k · k denotes the Eu-

clidian norm and d(x, C) the Euclidian distance between a point x and a set C.

REMARK 1.29: Due to the compactness of the sets A and B it makes sense to
define the Hausdorff-distance as above. Both sets are bounded and, therefore, the
maxima and minima from the above definition are well defined.
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DEFINITION 1.30: Let (An)n2N and A be non-empty compact sets in Rn
. (An)n2N is

called Hausdorff-convergent to A

:, (An)n2N
H
�! A :, dH(An, A)

n!1
�! 0,

where the latter convergence is just the usual convergence in R. Note that one can

define the limit of an arbitrary family (At)t>0
H
�! A satisfying the above assump-

tions in a similar way. But this is not necessary since in R one can always pass to

sequences.

EXAMPLE 1.31: Consider the following triangles A and B.

FIGURE 1.10. Hausdorff-distance between two sets

To be able to find the Hausdorff-distance between the two sets, in a first step one
has to go through all elements b 2 B and compute the distance mina2A ka � bk

between the point b and the set A. After doing this, one has to take the maximum
of the arisen distances over all b 2 B, which has been done in the above figure.
Afterwards, one has to exchange the roles of the sets, namely passing through
all the points a 2 A, compute the distance between a and B and then taking the
maximum of the distances over all a 2 A, which was also done in FIGURE 1.10.
The maximum over these two numbers is the sought-after Hausdorff-distance. ⌥

With this knowledge one can state the first approximation result. Therefore, let
M 2 N and ✏ > 0. Define

WM,✏ :=
�
a 2 Rn

| 8i 2 {1, . . . , s} : (1 + kak2)Mpi(a) � �✏
 
. (1.30)
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THEOREM 1.32: ([Av08], Theorem 3.2)
Let p1, . . . , ps 2 R[x] be the polynomials from ASSUMPTION 1.26. There exists
M 2 N and ✏0 > 0 such that

(i) WM,✏0 is bounded and
(ii) WM,✏

✏!0
�! W(p1, . . . , ps), where the convergence is given in the Hausdorff-

distance.

REMARK 1.33: At first glance, the definition of the set (1.30) seems to be rather
complicated. The main purpose of the set is approximating W sufficiently well if ✏
is small enough. Therefore, one could legitimately ask where the additional factor
(1 + kak2)M comes from and why it is needed to achieve this aim. If one sets
M := 0, Averkov was able to find an example such that the set W0,✏ is unbounded for
every ✏ > 0 ([Av08], Remark 3.3.). This case must not happen since it implies that
d(W ,W0,✏) is not well-defined. To be able to prove part (ii) of the above theorem,
one necessarily needs to ensure that the approximating set is bounded for some
✏0 > 0. This is guaranteed by the additional factor (1 + kak2)M .

To be able to prove the above theorem, one needs an important inequality from real
algebraic geometry:

THEOREM 1.34: (Łojasiewicz inequality )
Let ; 6= A ✓ Rn be a bounded and closed semialgebraic set. Moreover, let
f, g : A ! R be continuous semialgebraic functions. Assume that the following
holds: {x 2 A : f(x) = 0} ✓ {x 2 A : g(x) = 0}. Then:

9M 2 N 9� � 0 8x 2 A : |g(x)|M  �|f(x)| (1.31)

PROOF OF THEOREM 1.32 ([Av08], P. 5-6):
ad (i): By assumption, the set W is bounded and hence after applying an appropri-
ate transformation one can assume that W ✓ B1(0), where B1(0) ✓ Rn denotes
the open ball with midpoint 0 and radius 1. Define the function

f : Rn
! R : x 7! � min

1is

pi(x).

f has an important property, which will will be needed below, namely:

8a 2 Rn : (kak � 1 ) f(a) > 0) (1.32)
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This is due to the assumption that W ✓ B1(0). Hence kak � 1 implies that a /2

W , which means that 9j 2 {1, . . . , s} : pj(a) < 0. This immediately implies that
min1is pi(a) < 0 and, therefore,

f(a) = � min
1is

pi(a)
| {z }

<0

> 0.

Moreover, with the help of f one can rewrite (1.30) into

WM,✏ =
�
a 2 Rn : 8i 2 {1, . . . , s} : (1 + kak2)Mpi(a) � �✏

 

=

⇢
a 2 Rn : (1 + kak2)M min

1is

pi(a) � �✏

�

=

⇢
a 2 Rn : (1 + kak2)M

✓
� min

1is

pi(a)

◆
 ✏

�

=
�
a 2 Rn : (1 + kak2)Mf(a)  ✏

 
.

(1.33)

In a next step, Averkov defined a function

a : [1,1) ! R

t 7! min{f(c) : 1  kck  t}.
(1.34)

By (1.32), a(t) > 0 for every t � 1. Moreover, the function is decreasing since with
increasing t there are more possible values for the minimum of f(c). Let us state
two more characteristic properties of a:

Property 1: a is continuous.

At first, let us notice that the function f is continuous since the polynomials
p1, . . . , ps 2 R[x] (viewed as functions pi : Rn

! R) are continuous. The mini-
mum of a finite set of continuous functions remains continuous. Assume that there
exists t 2 [1,1) such that a is discontinuous at t. Since a is a decreasing function,
the point of discontinuity fulfills one of the following two properties:

lim
s!t�

a(s) > a(t) for t 2 (1,1) or lim
s!t+

a(s) < a(t) for t 2 [1,1)

Let us consider the first case: For all s 2 [1, t) it holds that

a(s) � lim
s!t�

a(s) > a(t)
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and hence

8c 2 Rn : (1  kck < t ) f(c) � a(kck) > a(t) = min{f(a) : 1  kak  t})

The latter implies that there exists b 2 Rn with kbk = t such that a(t) = f(b). Define
✏ := lims!t� a(s)� a(t). Then:

8c 2 Rn : (1  kck < kbk ) |f(c)� f(b)| � ✏),

which contradicts the continuity of f at b. Indeed, for every � > 0 there exists
c 2 B�(b) \ [1,1) such that |f(c)� f(b)| � ✏. The second case works similar.

Observation 2: a is semialgebraic.

Let p := x2
1 + . . . + x2

n
2 R[x] ✓ R[t, s, x]. If one is able to represent �(a) like in

PROPOSITION 0.3, it turns out that �(a) is semialgebraic. We have

�(a) = {(t, s) 2 R2 : 1  t < 1 ^ s = min{f(a) : 1  kak  t}}.

Let us separately take a look at the above conditions:

(i) 1  t < 1 corresponds to the following prime formula: t � 1 � 0 for
t� 1 2 R[t] ✓ R[t, s, x]

(ii) 1  kxk  t can be rewritten into 1  x2
1 + . . .+ x2

n
 t2 and described with

p(x)� 1| {z }
2R[t,s,x]

� 0 ^ t2 � p(x)| {z }
2R[t,s,x]

� 0.

With the help of the above formulas define the following R-formulas:

�1 : t� 1 � 0

�2 : 9x1 . . . 9xn : p(x)� 1 � 0 ^ t2 � p(x) � 0 ^ f(x) = s| {z }
(?)

�3 : 8x1 . . . 8xn : (p(x)� 1 � 0 ^ t2 � p(x) � 0 ! f(x) � s| {z }
(?)

)

One has to emphasize that the expressions "f(x) = s" and "f(x) � s" in (?) are
permitted in a first order formula since f is not a polynomial. But one can rewrite
the expressions with the help of new polynomials pi(x, s) = pi(x) + s 2 R[x, s] ✓



CHAPTER 1. POLYTOPES 37

R[t, s, x]:

f(x) = s , � min
1is

pi(x) = s , min
1is

pi(x) + s = 0 , min
1is

pi(x, s) = 0

, (p1(x, s) � 0 ^ . . . ^ ps(x, s) � 0) ^ (p1(x, s) = 0 _ . . . _ ps(x, s) = 0)

The new expression is a valid component in a first order formula. A similar argument
can be applied for "f(x) � s". Hence if one replaces "f(x) = s" (respectively
"f(x) � s") by the above expression, � = �1 ^ �2 ^ �3 turns out to be a first order
formula. With the help of this formula one can write

�(a) = {(t, a(t)) : 1  t < 1}

= {(t, s) 2 R2 : 1  t < 1 ^ s = min{f(a) : 1  kak  t}}

= {(t, s) 2 R2 : �(t, s) is true in R2
}.

Hence �(a) is a semialgebraic set.

Since a is decreasing and a(t) > 0 for t � 1, one has two possibilities for the
behavior of inf{a(t) : t � 1}:

Case 1: inf{a(t) : t � 1} > 0: Set M := 0 and ✏0 := 1
2 inf{a(t) : t � 1}. Now

choose c 2 W0,✏0 .

Assumption: kck � 1: Then:

a(kck) = min{f(y) : 1  kyk  kck}  f(c)
c2W0,✏0

 ✏0 (1.35)

Since the infimum of a set is its greatest lower bound, one has

2✏0 = inf{a(t) : t � 1}
kck�1

 a(kck) (1.36)

Putting (1.35) and (1.36) together, one gets

2✏0  a(kck)  ✏0.  

Hence 8c 2 W0,✏0 : kck < 1, which implies the boundedness of the set.
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Case 2: a(t) t!1
�! 0. Then one can define

b : [0, 1] ! R

t 7! b(t) :=

8
<

:
a
�
1
t

�
, 0 < t  1

0, t = 0

Note that a is a continuous function. Therefore, b is also continuous due to the fact
that limt!0+ a

�
1
t

�
= lims!1 a(s) = 0 by case 2. Moreover, a is semialgebraic and

hence also b. To see this, note that

c : [0, 1] ! R

t 7!

8
<

:

1
t
, 0 < t  1

0, t = 0

is semialgebraic. Indeed

�(c) =

⇢
(t, s) 2 R2 : 0 < t  1, s =

1

t

�
[ {(0, 0)}

=
�
(t, s) 2 R2 : t > 0, 1� t � 0, 1� st = 0

 
[ {(t, s) 2 R2 : t = 0, s = 0},

which is a semialgebraic set. b = a � c is semialgebraic as a composition of semial-
gebraic functions. Note that

b(t) = 0 ,

✓
t = 0 _

✓
0 < t  1 ^ a

✓
1

t

◆
= 0

◆◆
.

0 < t  1 implies 1
t
� 1 and, therefore, a

�
1
t

�
> 0. This shows that

{0} = {b = 0} \ [0, 1] = {t = 0} \ [0, 1] = {t2 = 0} \ [0, 1].

Hence one can use the Łojasiewicz-inequality :

9M 2 N, 9� � 0 : t2M  �b(t) 8t 2 [0, 1] (1.37)

The inequality is not true for � = 0, hence � > 0. After transforming the inequality
for t 2 (0, 1], one gets

t2M  �b(t)
t>0
)

1

�


✓
1

t

◆2M

b(t) =

✓
1

t

◆2M

a

✓
1

t

◆
.
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Substituting s = 1
t
, s � 1, leads to the inequality

1

�
 s2Ma(s). (1.38)

Now set s :=
p

1 + kck2 � 1 and assume that kck � 1. Applying (1.38) leads to

1

�
 (1 + kck2)Ma

⇣p
1 + kck2

⌘
=

= (1 + kck2)M min
n
f(y) : 1  kyk 

p
1 + kck2

o

(?)

 (1 + kck2)Mf(c)

(1.39)

(?) holds, since 1  kck 
p
1 + kck2. Therefore, f(c) 2

n
f(y) : 1  kyk 

p
1 + kck2

o
.

Clearly, f(c) is greater or equal than the minimum of the set.

Now choose M and � like in (1.37) and set ✏0 := 1
2� . Choose c 2 WM,✏0 .

Assumption: kck � 1: (1.39) together with the fact that (1+kck2)Mf(c)  ✏0 causes
a contradiction:

1

�
 (1 + kck2)Mf(c)

c2WM,✏0


1

2�
 

Again, one gets 8c 2 WM,✏0 : kck < 1 and hence WM,✏0 is bounded.

ad (ii): It follows from part (i) of the proof that WM,✏ is bounded for ✏ 2 (0, ✏0]. The
boundedness of these sets implies that dH(W ,WM,✏) is well-defined. Since one
has to compute a limit in R, let us pass to sequences. Let (cn)n2N 2 (0, ✏0]N be a
sequence such that cn

n!1
�! 0. For better readability, let us write Wn := WM,cn . One

has to show:

dH(Wn,W)
n!1
�! 0

Recall that dH(Wn,W) := max {maxan2Wn d(an,W),maxb2W d(b,Wn)} . Consider
the two cases separately:

(i) maxb2W d(b,Wn) ! 0

(ii) maxan2Wn d(an,W) ! 0

ad (i): Note that this case is trivial. Let b 2 W . Then it holds that

8i 2 {1, . . . , s} : pi(b) � 0 ) 8i 2 {1, . . . , s} : (1 + kbk2)M| {z }
�0

pi(b) � 0 � �cn
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Therefore, b 2 Wn and hence d(b,Wn) = 0. Since b 2 W was arbitrary,
maxb2W d(b,Wn) = 0 ! 0.

ad (ii): Note that

max
an2Wn

d(an,W) ! 0 , 8✏ > 09k 2 N : 8n � k : max
an2Wn

d(an,W) < ✏

, 8✏ > 09k 2 N : 8n � k : 8an 2 Wn : d(an,W) < ✏

Assume that the converse is true, namely maxan2Wn d(an,W ) 9 0. Hence

9✏ > 0 : 8k 2 N 9nk � k : 9ank
2 Wn : d(ank

,W) > ✏

, 9✏ > 0 9(ank
)k2N 2 W

N
nk

: d(ank
,W) > ✏,

(1.40)

where (nk)k2N is a strictly increasing sequence of natural numbers. Note that
S

k2N Wnk
is bounded by part (i) of the proof. Hence (ank

)k2N is a bounded se-
quence and therefore, using the Bolzano-Weierstrass theorem, one can extract a
further subsequence (ankl

)l2N converging to some a 2 Rn. In other words:

9N 2 N8l � N : kankl
� ak < ✏. (1.41)

To finish the proof, one has to show that a 2 W . Clearly,

(1 + kankl
k
2)Mpi(ankl

) � �cnkl
.

Since cnkl
! 0 for l ! 1, taking the limit on both sides yields

(1 + kak2)Mpi(a) � 0

and hence a 2 W . Now choose N like in (1.41). Then

8l � N : d(ankl
,W) = min

y2W
kankl

� yk
a2W
 kankl

� ak
(1.41)
< ✏,

which contradicts (1.40).

PROOF-INGREDIENT 2 (CONSTRUCTION OF g, q 2 R[x] FROM REMARK 1.27:)

LEMMA 1.35: ([Av08], Lemma 3.4)
Let ✏ > 0,M 2 N0 and let p1, . . . , ps be the polynomials from ASSUMPTION 1.26.
Moreover, choose � > 0 and k 2 N such that the following is satisfied:

� � max
1is

max
a2W

(1 + kak2)Mpi(a) (1.42)
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and

s 

✓
1 +

✏

�

◆2k

(1.43)

Define the polynomial

g := 1�
1

s

sX

i=1

✓
1�

1

�
(1 + kak2)Mpi(a)

◆2k

(1.44)

Then the following holds:

W ✓ W(g) ✓ WM,✏ (1.45)

PROOF:
The inclusion W ✓ W(g) can easily be shown: Let a 2 W . By (1.42) and the fact
that pi(a) � 0 for i 2 {1, . . . , s}:

8i 2 {1, . . . , s} : 0  (1 + kak2)Mpi(a)  �

Therefore, 0 
1
�
(1 + kak2)Mpi(a)  1 and hence 1 � 1

�
(1 + kak2)Mpi(a) 2 [0, 1].

This shows

g(a) = 1�
1

s

sX

i=1

✓
1�

1

�
(1 + kak2)Mpi(a)

◆2k

| {z }
2[0,1]

� 1�
1

s

sX

i=1

1 = 1� 1 = 0.
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It remains to show W(g) ✓ WM,✏. Let a 2 W(g):

g(a) � 0 )

sX

i=1

✓
1�

1

�
(1 + kak2)Mpi(a)

◆2k

 s

) max
1is

✓
1�

1

�
(1 + kak2)Mpi(a)

◆2k

 s
(1.43)



✓
1 +

✏

�

◆2k

) max
1is

✓
1�

1

�
(1 + kak2)Mpi(a)

◆

| {z }

=1+ 1
� (1+kak2)M

✓
� min

1is

pi(a)

◆

| {z }
=f(a)

 1 +
✏

�

) 1 +
1

�
(1 + kak2)Mf(a)  1 +

1

�
✏

) (1 + kak2)Mf(a)  ✏
(1.33)
) a 2 WM,✏

REMARK 1.36: Note that one can find � > 0 such that (1.42) is satisfied. This is
just due to the fact that W is bounded and hence maxa2W(1 + kak2)Mpi(a) will be
indeed achieved. Moreover, for given s 2 N the condition in (1.43) is always satisfied
if one chooses k 2 N big enough. Hence the conditions (1.42) and (1.43) are no
restrictions on the given basic closed semialgebraic set.

THEOREM 1.37: ([Av08], Theorem 3.5)
Let p1, . . . , ps 2 R[x] be the polynomials from ASSUMPTION 1.26 and W = W(p1, . . . , ps)

be the corresponding bounded basic closed semialgebraic set. Moreover, assume

d := max{|i 2 {1, . . . , s} : pi(a) = 0| : a 2 W} < s

and

A := |{a 2 W : |i 2 {1, . . . , s} : pi(a) = 0| = d}| < 1.

Let M 2 N0 and ✏ > 0. Then there exists a polynomial q 2 R[x] such that

W ✓ W(q) ✓ WM,2✏,

A ✓ V(q).
(1.46)
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The polynomial is given by

q = �s�d+1(p1, . . . , ps)

�

 
1

s

sX

i=1

✓
1�

1

�
(1 + kxk2)Mpi

◆2k
!l Y

v2A

✓
kx� vk

µ

◆2
!m (1.47)

for appropriate k, l,m 2 N, � > 0, µ > 0.

PROOF: Define

q1 := pl :=

0

BBBB@
1

s

sX

i=1

✓
1�

1

�
(1 + kxk2)Mpi

◆2k

| {z }
=p

1

CCCCA

l

(1.48)

and

q2 :=

 
Y

v2A

✓
kx� vk

µ

◆2
!m

(1.49)

W ✓ W(q): Let a 2 W . This just means that pi(a) � 0 for i 2 {1, . . . , s}, which
immediately implies �s�d+1(p1(a), . . . , ps(a)) � 0. If one chooses � and k like in
(1.42) and (1.43) (and that’s what Averkov did), it holds that p(a) 2 [0, 1] for p defined
in (1.48) (compare with the proof of LEMMA 1.35). It even holds that 0  p(a) < 1

since

1

�
(1 + kak2)Mpi(a) = 0 , pi(a) = 0.

Note that p(a) = 1 if and only if 8i 2 {1, . . . , s} : pi(a) = 0. In this case p(a)

simplifies to 1
s

P
s

i=1 1
2k = 1. But this must not happen since d < s. Hence for

every point in W there exists a polynomial which does not vanish at this point. This
means that there always exists a summand which is less than 1 and hence p(a) < 1.
Therefore,

max
a2P

p(a)  ↵ < 1 (1.50)
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for appropriate ↵ > 0. This implies that 8a 2 W9�a > 0 : p|B�a (a)
< 1. Choose

�1 :=
min{kv � wk : v, w 2 A}

3

� := min{�1, �v1 , . . . , �vm}

with A = {v1, . . . , vm}. The definition of �1 and � is reasonable since |A| < 1. Then
it holds that

[

v2A

B�(v) ✓ {a 2 Rn : p(a)  1} and 8v, w 2 A : B�(v) \ B�(w) = ;.

Now one has to consider the following two cases:

Case 1: Let a 2 W \
�S

v2A B�(v)
�
. Choose w 2 A with ka � wk  �. Moreover,

choose

µ � max{ka� bk : a, b 2 W}.

The idea is to apply the Łojasiewicz inequality to the following two semialgebraic
functions:

Function 1: �s�d+1(p1, . . . , ps) restricted to B�(w) \W . Note that

�s�d+1(p1(a), . . . , ps(a))|B�(w)\W = 0 , a = w.

This is due to the fact that w is the only point where exactly d polynomials vanish.
Hence every summand of �s�d+1(p1, . . . , ps) possesses at least one factor pi which
vanishes at w. This is not the case for a 6= w.

Function 2:
⇣

kx�wk
µ

⌘2

restricted to B�(w) \W . It also holds that

✓
kw � wk

µ

◆2

= 0.

Hence applying the Łojasiewicz inequality leads to

9m(w) 2 N9�(w) � 0 :

✓
ka� wk

µ

◆2m(w)

 �(w)�s�d+1(p1(a), . . . , ps(a))
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If one defines m := maxv2A m(v) and � := maxv2A �(v), it holds that

✓
ka� wk

µ

◆2m (?)



✓
ka� wk

µ

◆2m(w)

 �(w)|{z}
�

�s�d+1(p1(a), . . . , ps(a))

 ��s�d+1(p1(a), . . . , ps(a))

(1.51)

(?) holds since
⇣

ka�wk
µ

⌘
< 1. Therefore,

q1(a)q2(a) = p(a)lq2(a)
(1.50)

 ↵l

✓
ka� wk

µ

◆2m Y

v2A\{w}

✓
ka� vk

µ

◆2m

| {z }
1 (by definition of µ)

 ↵l

✓
ka� wk

µ

◆2m (1.51)

 �↵l�s�d+1(p1(a), . . . , ps(a)) = (?)

If one chooses l 2 N big enough, one can always achieve �↵l < 1 and hence
(?)  �s�d+1(p1(a), . . . , ps(a)), which proves q(a) � 0.

Case 2: a 2 W\
�S

v2A B�(v)
�
. If this was the case, one does not have to consider

those points where exactly d polynomials vanish. Hence for b 2
�
W\

S
v2A B�(v)

�

there exist at least s� d+ 1 polnomials which do not vanish on b. In other words:

min

(
�s�d+1(p1(b), . . . , ps(b)) : b 2

 
W\

[

v2A

B�(v)

!)
� � > 0

for appropriate � > 0. Therefore,

q1(a)q2(a) = p(a)lq2(a)  ↵l q2(a)| {z }
1 (by definition of µ)

 ↵l (1.52)

and

�  �s�d+1(p1(a), . . . , ps(a)). (1.53)

Again, if one chooses l 2 N sufficiently large, ↵l < � and hence, by (1.52) and
(1.53), it follows that q1(a)q2(a)  �s�d+1(p1(a), . . . , ps(a)), or equivalentely q(a) �

0.
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W(q) ✓ WM,2✏: Assume a /2 WM,2✏. In this case, using some appropriate estima-
tions, Averkov was able to show that

|�s�d+1(p1(a), . . . , ps(a))| 
1

2
q1(a)q2(a)

for suitable l 2 N (his estimations are not complicated, but highly technical; see
[Av08] for more details). Hence q(a) < 0.

A ✓ V(q): Note that for a 2 A it holds that q2(a) = 0 and, therefore, q(a) simplifies
to

q(a) = �s�d+1(p1(a), . . . , ps(a))

Every summand in �s�d+1(p1, . . . , ps) consists of a product of s � d + 1 different
pi(a). a 2 A implies that exactly d polynomials vanish on a. Hence there exist only
s � d polynomials which do not vanish on a. This shows that every summand of
�s�d+1(p1, . . . , ps) contains a factor pi(a) which equals 0. Therefore, q(a) = 0.

4.2. Proofs of THEOREM 1.19 and THEOREM 1.20. With all the preparations
from above we are finally able to prove the main theorems of the chapter.

PROOF OF THEOREM 1.19, ([Av08], P.12):
Let us start with the main idea of the proof: In PROPOSITION 1.24 it was shown that
elementary-symmetric functions possess a remarkable property. The proposition
states that y1, . . . , ys 2 R are greater or equal than 0 if and only if the elementary-

symmetric functions �1, . . . �s in the variables y1, . . . , ys have the same property. If
one converts this statement to a basic closed semialgebraic set W(p1, . . . , ps), it
leads to another basic closed description of W . For a 2 Rn it holds that

p1(a) � 0, . . . ps(a) � 0

,�1(p1(a), . . . , ps(a)) � 0, . . . �s(p1(a), . . . , ps(a)) � 0
(1.54)

This shows that one can also describe W by elementary-symmetric functions:

W = W(�1(p1, . . . , ps), . . . , �s(p1, . . . , ps)) (1.55)

As one can see, the representation (1.55) of W does not really provide benefits com-
pared with the primary representation W = W(p1, . . . , ps). It is just another basic
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closed description of W with as many polynomials as before. To overcome this prob-
lem, Averkov used the following beautiful trick. Instead of looking at all elementary-

symmetric functions, he just used some of them. With the chosen �i(p1, . . . , ps)

together with the polynomial g from above he defined a basic closed semialgebraic
set Wnew and verified W = Wnew. To achieve this aim, he just showed that the
remaining elementary-symmetric functions, which do not pertain to the basic closed
description of Wnew, also fulfill property (1.54). To be able to do this, one needs
some preparations.

Observation: We may assume d < s. If d � s, the statement of THEOREM 1.19
trivially holds. Note that d was the greatest possible number of polynomials which
vanish at a 2 W . Hence s� d is the smallest possible number of polynomials which
do not vanish at a 2 W . Let a 2 W and pa1, . . . , p

a

s�d
2 {p1, . . . , ps} such that

pa
j
(a) 6= 0 for j 2 {1, . . . , s � d}. Since a 2 W , it holds that pa

j
(a) > 0 and at least

pi(a) � 0 for i 2 {1, . . . , s}. Let 1  i  d� s. Then:

�i(p1(a), . . . , ps(a)) =
X

I✓{1,...,s}
|I|=i

I*{pa1 ,...,pas�d}

Y

i2I

pi(a)|{z}
�0

| {z }
�0

+
X

I✓{1,...,s}
|I|=i

I✓{pa1 ,...,pas�d}

Y

i2I

pa
i
(a)| {z }
>0

| {z }
>0

> 0 (1.56)

For better readability let us write �i := �i(p1, . . . , ps) for i 2 {1, . . . , s}. By (1.56)
�i(a) > 0 for i 2 {1, . . . , d� s}. Note that �i is continuous and therefore

9�a > 0 8i 2 {1, . . . , s� d} : �i|B�a (a)
> 0. (1.57)

Let us cover the set W with the following open sets:

W ✓

[

a2W

B �a
2
(a) (1.58)

Since W is bounded and (basic) closed by assumption, the set is compact. Hence
(1.58) has a finite subcover:

9a1, . . . , ak 2 W : W ✓

k[

i=1

B �ai
2

(ai) (1.59)

Define � := min{�a1 , . . . , �ak}. Choose M 2 N0 and ✏0 > 0 such that WM,✏0 is
bounded (compare with THEOREM 1.32). Moreover, choose ✏ 2 (0, ✏0] such that

dH(W ,WM,✏) <
�

2
. (1.60)
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This is also possible by THEOREM 1.32. Let y 2 WM,✏. Then, 9x 2 W : kx�yk < �

2 .
By (1.59):

x 2 B �ai
2

(ai) ^ kx� yk <
�

2
(1.61)

Hence

ky � aik = ky � x+ x� aik  ky � xk| {z }
 �

2 by (1.61)

+ kx� aik| {z }
 �ai

2 by (1.61)

 �ai (1.62)

The above computation shows that y 2 B�ai
(ai). From (1.57) it immediately follows

that �i(y) > 0 for i 2 {1, . . . , s� d}. Since y was arbitrary,

8i 2 {1, . . . , d� s} : �i|WM,✏ > 0. (1.63)

Now let us define the new set Wnew with the following polynomials:

qi := �s�d+i(p1, . . . , ps) for i = 1, . . . , d

qd+1 := g (from LEMMA 1.35 with M 2 N0 and ✏ > 0 chosen

above such that (1.63) holds)

Wnew = W(q1, . . . , qd+1)

To finish the proof, one has to show that W = Wnew indeed holds.

W ✓ Wnew: Let a 2 W . Then pi(a) � 0 for every i 2 {1, . . . , s}. Since qj(a),
j 2 {1, . . . , d}, is just defined as a sum of products of pi(a), i 2 {1, . . . , s}, with
pi(a) � 0, it trivially holds that qi(a) � 0 for all i 2 {1, . . . , d}.

Moreover, qd+1(x) � 0 due to the fact that W ✓ W(qd+1) (compare with LEMMA

1.35).

Wnew ✓ W : Let a 2 Wnew, thus

�s�d+1(p1(a), . . . , ps(a)) � 0, . . . , �s(p1(a), . . . , ps(a)) � 0, g(a) � 0 (1.64)

If one is able to show

�1(p1(a), . . . , ps(a)) � 0, . . . , �s�d(p1(a), . . . , ps(a)) � 0, (1.65)
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it follows by (1.54) that p1(a) � 0, . . . , ps(a) � 0, or equivalentely a 2 W . In the
above observation it was shown that �i|WM,✏ > 0 (compare with (1.63)). By (1.35)
W(g) ✓ WM,✏. Since a 2 Wnew, g(a) � 0 and therefore

a 2 W(g) ✓ WM,✏.

Hence Wnew ✓ WM,✏ and therefore �i|Wnew > 0. More precisely,

�i(a) := �i(p1(a), . . . , ps(a)) > 0 for i 2 {1, . . . , d� s}. (1.66)

Altogether, from (1.64) and (1.66) it follows that

�i(p1(a), . . . , ps(a)) � 0 8i 2 {1, . . . , s}

and by (1.54) this is equivalent to

p1(a) � 0, . . . , ps(a) � 0,

which shows a 2 W .

PROOF OF THEOREM (1.20): The idea of this proof is similar. Choose M 2 N0 and
✏0 > 0 such that WM,✏0 is bounded. Moreover, with the same idea as before, choose
✏ 2 (0, ✏02 ] such that

8i 2 {1, . . . , s� d} : �i(p1, . . . , ps)|WM,2✏ > 0. (1.67)

Let us again define a new basic closed semialgebraic set Wnew and verify W =

Wnew:

qi := �s�d+1+i(p1, . . . , ps) for i = 1, . . . , d� 1

qd := q (from THEOREM 1.37 with M 2 N0 and ✏ > 0 chosen

above such that (1.67) holds)

Wnew = W(q1, . . . , qd)

W ✓ Wnew: Let a 2 W . Again, qi(a) � 0 for i 2 {1, . . . , d � 1} trivially holds.
Further, by (1.46), W ✓ W(qd) and hence qd(a) � 0.
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Wnew ✓ W : Let a 2 Rn
\W . By contraposition one has to show that a 2 Rn

\Wnew.
Let us consider two cases:

Case 1: a 2 Rn
\WM,2✏. By (1.46), W(qd) ✓ WM,2✏ and, therefore, a 2 Rn

\W(qd).
Hence qd(a) < 0 which implies a /2 Wnew.

Case 2: a 2 WM,2✏\W . Since a /2 W , there exists i 2 {1, . . . , s} : pi(a) < 0. Using
the result for elementary-symmetric functions from PROPOSITION 1.24, it follows
that

9j 2 {1, . . . , s} : �j(a) := �j(p1(a), . . . , ps(a)) < 0. (1.68)

Let us restrict the j 2 {1, . . . , s} which possibly come into question for (1.68). Re-
member that a 2 WM,2✏. Hence by (1.67) �j(a) > 0 for j 2 {1, . . . , s � d}. This
shows that (1.68) is only possible if j 2 {s � d + 1, . . . , s}. Let us distinguish two
cases:

(i) Let j 2 {s�d+2, . . . , s}: Then �j(a) = qi(a) for appropriate i 2 {1, . . . , d�1}.
If

�j(a) = qj(a) < 0,

it immediately follows that a /2 Wnew.
(ii) Let j = s� d+ 1. Assume that �s�d+1(a) < 0. Then

qd(a) = �s�d+1(a)� q1q2(a),

where q1q2 is the subtrahend of the polynomial q defined in (1.47). Recall that
q1q2 is of the form

 
1

s

sX

i=1

✓
1�

1

�
(1 + kxk2)Mpi(x)

◆2k
!l Y

v2A

✓
kx� vk

µ

◆2m

.

Note that by definition q1q2(a) � 0. Hence

qd(a) := �s�d+1(a)| {z }
<0

�q1q2(a)| {z }
0

< 0.

This again implies a /2 Wnew and finishes the proof.
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4.3. Examples.

EXAMPLE 1.38: Let

P := conv

8
><

>:

0

B@
0

4

0

1

CA ,

0

B@
4

0

0

1

CA ,

0

B@
0

0

4

1

CA ,

0

B@
�4

0

0

1

CA ,

0

B@
0

�4

0

1

CA

9
>=

>;

be a polytope. If one defines

l1 := x+ y � z + 4 2 R[x, y, z],

l2 := x� y � z + 4 2 R[x, y, z],

l3 := �x� y � z + 4 2 R[x, y, z],

l4 := �x+ y � z + 4 2 R[x, y, z]

l5 := z 2 R[x, y, z],

the basic closed description of P with linear polynomials looks as follows:

P := {a 2 R3 : l1(a) � 0, . . . , l5(a) � 0} (1.69)

P has the following form:

FIGURE 1.11. Visualization of the polytope P



CHAPTER 1. POLYTOPES 52

The maximal number of polynomials which vanish on a point in P is 4. Moreover,
there is only one point a 2 P where exactly 4 polynomials vanish. This point is drawn
in green in the above graphic. To be able to distinguish it from the other vertices, it
is drawn in greater size. On every other vertex (drawn in blue) only 3 of the defining
polynomials vanish. The plotted plane should just represent the xy-plane.

Since d = 4, using THEOREM 1.20 one can find another basic closed description of
P given by 4 polynomials. Following the proof of the just mentioned theorem, the
first three polynomials are given by elementary-symmetric functions:

q1 := �s�d+1+1(l1, . . . , l5)
s=5,d=4
= �3(l1, . . . , l5)

q2 := �4(l1, . . . , l5)

q3 := �5(l1, . . . , l5)

The following graphic visualizes W(qi) for i 2 {1, 2, 3}. The polytope, which is of
course contained in the sets, is plotted in red.

FIGURE 1.12. W(q1) FIGURE 1.13. W(q2) FIGURE 1.14. W(q3)

As one can easily see, the vertex a = (0, 0, 4)t, which was emphasized by a huge
green dot in FIGURE 1.10, causes some problems. This is the only point a 2 P

where exactly 4 linear polynomials vanish. It is responsible for the necessity of q1 in
the sought-after new polynomial description of P . To see this, one can take a look
at W(q2, q3):
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FIGURE 1.15. Visualization of W(q2, q3)

If one just focuses on the vertices where only 3 defining polynomials vanish, it seems
that one can manage to control the surplus area arisen from W(q2, q3). Neverthe-
less, the fact that 4 linear polynomials vanish at a is responsible for the quite com-
plicated appearance of W(q2, q3). Hence one urgently needs the third polynomial q1
to get the surplus area under control:

FIGURE 1.16. Visualization of W(q1, q2, q3)
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Now the surplus area, which is drawn in yellow, can easily be cut off by a forth
polynomial. Therefore, one can use the polynomial q from the proof of THEOREM

1.20. Since the present example is relatively simple, one can also consider another
polynomial, namely

q4 := 16� x2
� y2 � z2,

which is a circle with center 0 and radius 4 passing through all vertices of the poly-
tope. This leads to another basic closed description of the polytope:

P = W(q1, q2, q3, q4).

⌥

REMARK 1.39: The above example should demonstrate the importance of
elementary-symmetric functions in search of a new basic closed description of a
polytope P . Therefore, the polynomial q4 from THEOREM 1.20 was replaced by a
polynomial which is easier to handle. Nevertheless, one has to emphasize that
q4 := 16� x2

� y2 � z2 is indeed a good choice and fulfills the required properties.
Therefore, let W = W(q1, q2, q3, q4). One has to show that P = W . Since q4 is
a strictly concave polynomial containing all vertices of P , the implication P ✓ W

easily follows. For the other direction, taking the main idea of the proof of THE-
OREM 1.20 into account, let us show that �1|W(q4) � 0 and �2|W(q4) � 0, where
�i := �i(l1, . . . , l5) for i 2 {1, 2}. Let us compute �1 and �2:

�1 = 16� 3z

�2 = 96� 2x2
� 2y2 � 32z + 2z2

Notice that �1 � 0 , z 
16
3 . Hence �1|W(q4) � 0. Moreover, note that W(q4)

is a compact set and �2 is a continuous function. Applying the MIN-MAX-Theorem,
�2|W(q4) attains a global minimum on W(q4). If we are able to show that
mina2W(q4) �2(a) � 0, it immediately follows that �2|W(q4) � 0. Hence let us compute
the gradient of �2:

r�2(x, y, z) =

2

64
�4x

�4y

�4z + 32

3

75
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It holds that �2(x, y, z) = 0 , (x, y, z) = (0, 0, 8). This point is not part of W(q4).
Moreover, by computing the Hessian matrix it turns out that (0, 0, 8) is not an ex-
tremum. Hence the minimum will be attained at the boundary of W(q4). This leads
to the constraint "q4 = 0". Applying the method of Lagrange multipliers leads to

r�2(x, y, z) + �rq4(x, y, z) = 0

or equivalently
2

64
�4x

�4y

�4z + 32

3

75+ �

2

64
�2x

�2y

�2z

3

75 = 0.

This is only possible if x = 0, y = 0 and z 6= 0. Since the minimum is attained at the
boundary of W(q4), the following points come into question: (0, 0, 4) and (0, 0,�4).
We have

�2(0, 0, 4) = 96� 32 · 4 + 2 · 42 = 0

�2(0, 0,�4) = 96� 32 · (�4) + 2 · (�4)2 = 256.

Hence mina2W(q4) �2(a) = 0 and maxa2W(q4) �2(a) = 256. This immediately implies
�2|W(q4) � 0. The following graphic shows W(�1) and W(�2). Both sets are drawn
in purple. Moreover, W(q4) is drawn in green. One can see that W(q4) ✓ W(�1)

respectively W(q4) ✓ W(�2).

FIGURE
1.17. W(q4) ✓ W(�1)

FIGURE
1.18. W(q4) ✓ W(�2)
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REMARK 1.40: With the help of THEOREM 1.20 it was possible to show that the poly-
tope from the above example possesses a basic closed description with 4 polyno-
mials. Compared with the primary description (1.69) the new polynomial description
does not really entail a great benefit. It just leads to a description with 4 instead of
5 polynomials. Hence the number of polynomials needed in the new basic closed
description of P is only improved by 1. Moreover, the new polynomials are not lin-
ear anymore. Hence it is debatable whether the new description leads to a better
representation of the polytope.

Moreover, as mentioned in the preliminaries of the present thesis, Averkov and
Bröcker proved the equality

m(P ) = n

for every n-dimensional polytope P ✓ Rn ([AvBr10]). Hence there exists another
basic closed description of the polytope P from EXAMPLE 1.38 with 3 polynomials.
Nevertheless, with the help of THEOREM 1.20 one can at least show that m(P ) = n

holds for simple n-dimensional polytopes.

DEFINITION 1.41: Let P = W(l1, . . . , ls) ✓ Rn
be a n-dimensional polytope given

by the facet-defining linear polynomials l1, . . . , ls 2 R[x]1. P is called simple

:, 8v 2 vert(P ) : |{i 2 {1, . . . , s} : li(v) = 0}| = n

In other words, every vertex of P arises as an intersection of exactly n facets.

REMARK 1.42: The polytope from EXAMPLE 1.38 is not simple. The vertex a =

(0, 0, 4) - which caused some troubles before - occurred from the intersection of
4 > 3 facets.

Now let P ✓ Rn be a simple polytope. Again, let

d := max{|i 2 {1, . . . , s} : pi(a) = 0| : a 2 W}

By the fact that P is simple, d = n. Moreover,

|{a 2 P : |i 2 {1, . . . , s} : pi(a) = 0| = n}| = |vert(P )| < 1.
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Hence one can apply THEOREM 1.20, which – together with the fact m(P ) � n from
OBSERVATION 1 – yields

m(P ) = n.

Let us emphasize this important fact:

OBSERVATION 3: Let ; 6= P ✓ Rn be a simple n-dimensional polytope.

Then the following holds:

m(P ) = n

Let us finish the section with another example:

EXAMPLE 1.43: We just modify EXAMPLE 1.38 a little bit. Let

P := conv

8
><

>:
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4

0

1

CA ,

0

B@
4

0

0

1

CA ,

0

B@
0

0

4

1

CA

9
>=

>;
.

With the help of the facet-defining linear polynomials one gets the following basic
closed description of P .

P = {x 2 R3 : l1(x) � 0, l2(x) � 0, l3(x) � 0, l4(x) � 0},

where

l1 := �x� y � z + 4 2 R[x, y, z],

l2 := �x+ y � z + 4 2 R[x, y, z],

l3 := x 2 R[x, y, z],

l4 := z 2 R[x, y, z].

The polytope is shown in the next graphic. As one can see, it is simple.
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Indeed, with the notations from THEOREM 1.20 d = n = 3 and

|{a 2 P :|i 2 {1, . . . , s} : pi(a) = 0| = n}| = |vert(P )|

=

�������

8
><

>:

0

B@
0

�4

0

1

CA ,

0

B@
0

4

0

1

CA ,

0

B@
4

0

0

1

CA ,

0

B@
0

0

4

1

CA

9
>=

>;

�������
= 4 < 1

By THEOREM 1.20 there exists another basic closed description of P given by the
polynomials (s = 4, d = 3)

q1 := �s�d+1+1(l1, . . . , l4) = �3(l1, . . . , l4)

q2 := �4(l1, . . . , l4)

q3 := 16� x2
� y2 � z2.

Again, since the present example is quite simple, one can choose q3 as above. To
be able to show that the above choice for q3 yields the desired result, one needs
further computations which won’t be carried out in detail.

Let us visualize the basic closed sets W(q1), W(q2) and W(q1, q2). Again, the poly-
tope P can also be seen in the graphic below (drawn in red).
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FIGURE 1.19. W(q1) FIGURE 1.20. W(q2) FIGURE 1.21. W(q1, q2)

Cutting off the surplus area arisen by W(q1, q2) with the help of the polynomial q3
leads to the desired result:

FIGURE 1.22. Cutting off the surplus area with W(q3)

⌥

5. Polytopes

For the sake of completeness let us again state the most important result concern-
ing minimal descriptions of polyhedra and polytopes. As mentioned before, it was
shown by Averkov and Bröcker and unfortunately is quite technical. Since it is not
needed for the next chapter, it won’t be proven in detail. Interested readers can find
the statement including its proof in [AvBr10]. Nevertheless, let us at least state the
main idea for finding minimal descriptions of polytopes. Therefore, one needs the
following definition:



CHAPTER 1. POLYTOPES 60

DEFINITION 1.44: For a n-dimensional polytope P define the set of k-extremal points

of P by

exkP :=
[

F2Fk(P )

F,

where Fk(P ) denotes the set of all k-dimensional faces of P . Since faces of poly-

topes are exposed, one can write F = {lF = 0} \ P with lF 2 R[x]1 such that

lF |P  0. With the help of this notation define the k-support of P by

Dk(P ) :=
\

F2Fk(P )

{lF  0}.

REMARK 1.45: Note that for k 2 {0, . . . , n� 1} it holds that Fk(P ) 6= ;. This follows
from the Theorem of Krein-Milman and PROPOSITION 1.8. Moreover, again using
the results from PROPOSITION 1.8, for every k-dimensional face of P there exists a
(k + 1)-dimensional face of P which contains the lower dimensional face. Hence

; = ex�1(P ) ✓ vert(P ) = ex0(P ) ✓ ex1(P ) ✓ . . . ✓ exn�1(P ).

More precisely,
[

F2Fk(P )

F ✓

[

F2Fk+1(P )

F.

Moreover, a similar statement for k-supports holds true:

P = Dn�1(P ) ✓ Dn�2(P ) ✓ . . . ✓ D0(P ) ✓ D�1(P ) = Rn (1.70)

EXAMPLE 1.46: Consider the polytope P = conv{v1, . . . , v5}, which can be seen in
the next graphic:
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FIGURE 1.23. Supports of P

It holds that D1(P ) = P . The corresponding hyperplanes {lF = 0} for F 2 F1(P )

are drawn in red. Moreover, possible choices for {l
F̃

= 0} with F̃ 2 F0(P ) are
drawn in green. It can be seen that D1(P ) ✓ D0(P ) ✓ R2. ⌥

PROPOSITION 1.47: ([AvBr10], p. 6-7)
For k = 0, . . . , n� 1 there exists a polynomial pk such that

(i) pk � 0 on P

(ii) pk  0 on Dk�1(P )\Dk(P )

(iii) {pk = 0} \ (Dk�1(P )\Dk(P )) ✓ P

PROOF: We refer to [AvBr10], p. 7-9.

With the help of this proposition it immediately follows that

OBSERVATION 4: Let ; 6= P ✓ Rn be a n-dimensional polytope.

Then the following holds:

m(P ) = n

PROOF: Define W := W(p0, . . . , pn�1) with pk from PROPOSITION 1.47. By the
above proposition it immediately follows that P ✓ W (compare with (i)). For the
other inclusion let a /2 P . It remains to show a /2 W . Since a /2 P , there exists
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k 2 {0, . . . , n� 1} such that

a 2 Dk�1(P )\Dk(P ).

This immediately follows from the fact

Dk�1(P )\Dk(P ) [Dk(P )\Dk+1(P ) = Dk�1(P )\Dk+1(P ),

and hence
[

k2{0,...,n�1}

Dk�1(P )\Dk(P ) = D�1(P )\D0(P ) [ . . . [Dn�2(P )\Dn�1(P )

= D�1(P )\Dn�1(P ) = Rn
\P.

Recall that

Dn�1(P ) =
\

F2Fn�1(P )

{lF  0} = P,

since the n� 1-dimensional faces of P are just the facets of P . From PROPOSITION

1.8 it follows that they provide a polyhedral description of P .

By PROPOSITION 1.47, part (ii), pk(a)  0. Since a /2 P it even holds that pk(a) < 0

by part (iii) of the proposition. This shows a /2 W .

REMARK 1.48: The similar result for polyhedra stated in THEOREM 0.5 can be found
in [AvBr10].

REMARK 1.49: It should be emphasized that the particular properties of (faces of)
polytopes are responsible for the validity of the above proof. On the contrary, THE-
OREM 1.19 and THEOREM 1.20 from Chapter 1.5 hold true for more general basic
closed semialgebraic sets. Therefore, for finding basic closed descriptions of spec-
trahedra with few polynomials, the present thesis uses an approach similar to the
one described in Chapter 1.5. In the following chapter it will be shown that bounded
smooth spectrahedra possess basic closed descriptions with two polynomials.
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Spectrahedra

The following pages can be seen as a short introduction concerning the most im-
portant properties of spectrahedra. The present pages are orientating on [NePl+].
For more detailed information about spectrahedra we also refer to this book.

Let k 2 N. During the whole chapter

Sym
k
(R) := {A 2 Rk⇥k : A = At

}

denotes the set of all symmetric k ⇥ k-matrices. Moreover

Sym+
k
(R) := {A 2 Sym

k
(R) : A < 0}

is the set of all positive semidefinite matrices, which are defined as follows:

DEFINITION 2.1: A matrix A 2 Sym
k
(R) is called positive semidefinite

:, A < 0 :, 8v 2 Rk : vtAv � 0.

A is called positive definite

:, A � 0 :, 8v 2 Rk
\{0} : vtAv > 0.

There are different possibilities to characterize positive semidefinite matrices. Since
they are very useful for the following considerations, some of them are stated in the
next lemma:

LEMMA 2.2: Let A 2 Sym
k
(R). The following are equivalent:

(i) A < 0

(ii) 8� 2 Spec(A) : � � 0, where Spec(A) denotes the set of all eigenvalues of A.
(iii) The principal minors of A are greater or equal than 0.

63
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PROOF: The statement can easily be proven by using some well-known results from
linear algebra.

With all the preparations from above one is able to define a spectrahedron in Rn.

DEFINITION 2.3: Let k 2 N and A0, . . . , An 2 Sym
k
(R). The set

S(A0, . . . , An) := {a 2 Rn : A0 + a1A1 + . . .+ anAn < 0} (2.1)

is called a spectrahedron in Rn
. It represents the set of solutions of a linear matrix

inequality. The polynomial

A := A0 + x1A1 + . . .+ xnAn

is called a linear matrix polynomial. It differs from a classical polynomial since its

coefficients are symmetric matrices.

EXAMPLE 2.4: Let k = n = 2. Define

A0 :=

 
1 0

0 1

!
, A1 :=

 
1 0

0 �1

!
, A2 :=

 
0 1

1 0

!

The set

S(A0, A1, A2) =

(
(a1, a2) 2 R2 :

 
1 0

0 1

!
+ a1

 
1 0

0 �1

!
+ a2

 
0 1

1 0

!
< 0

)

=

(
(a1, a2) 2 R2 :

 
1 + a1 a2
a2 1� a1

!
< 0

)

is a spectrahedron. One can use LEMMA 2.2 to further specify S(A0, A1, A2). A
matrix is positive semidefinite if its principal minors are greater or equal than 0.
Therefore,

S(A0, A1, A2) =
�
(a1, a2) 2 R2 : 1 + a1 � 0, 1� a1 � 0, 1� a21 � a22 � 0

 
.

S(A0, A1, A2) describes the unit circle in R2, which is shown in the graphic below.
One can see that the two inequalities 1 � a1 � 0 and 1 + a1 � 0 are redundant
since they do not change the set {(a1, a2) 2 R2 : 1 � a21 � a22 � 0}. Hence the
spectrahedron from the present example is a basic closed semialgebraic set given
by just one polynomial inequality. More precisely, S(A0, A1, A2) = W(1� x2

� y2).



CHAPTER 2. SPECTRAHEDRA 65

FIGURE 2.1. S(A0, A1, A2) is the unit circle in R2

⌥

EXAMPLE 2.5: Since the main objective of the first chapter was to find minimal basic
closed descriptions of polytopes, it should be emphasized that spectrahedra can
be seen as a generalization of polyhedra. In other words, every polyhedron is a
spectrahedron. To see this, for i 2 {1, . . . ,m} let

li := a(i)0 + a(i)1 x1 + . . .+ a(i)
n
xn 2 R[x]1

and P := W(l1, . . . , lm) be a polyhedron. Define

A0 :=

0

B@
a(1)0 0

. . .
0 a(m)

0

1

CA , . . . , An :=

0

B@
a(1)n 0

. . .
0 a(m)

n

1

CA .

Then

A0 + x1A1 + . . .+ xnAn =

0

B@
l1 0

. . .
0 lm

1

CA .

Note that a diagonal matrix is positive semidefinite iff the entries in the diagonal are
greater or equal than 0. This is due to the fact that these entries coincide with the
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eigenvalues of the matrix. Hence

S(A0, . . . , An) =

8
><

>:
a 2 Rn :

0

B@
l1(a) 0

. . .
0 lm(a)

1

CA < 0

9
>=

>;

= {a 2 Rn : l1(a) � 0, . . . , lm(a) � 0} = W(l1, . . . , lm) = P,

which shows that P is a spectrahedron. ⌥

1. Some basic properties

In the present section the most important properties of spectrahedra will be stated.
Since this master’s thesis deals with basic closed semialgebraic sets, let us start
with the following proposition:

PROPOSITION 2.6: Let k 2 R and A0, . . . , An 2 Sym
k
(R). S(A0, . . . , An) is a basic

closed semialgebraic set.

PROOF:
Option 1: Let a 2 Rn. Then

a 2 S(A0, . . . , An) , A0 + a1A1 + . . .+ anAn < 0

, the principal minors of A0 + a1A1 + . . .+ anAn are � 0.
(2.2)

Set A := A0 + x1A1 + . . .+ xnAn. The entry Aij looks as follows:

Aij = (A0)ij| {z }
2R

+x1 (A1)ij| {z }
2R

+ . . .+ xn (An)ij| {z }
2R

=: lij 2 R[x]

This shows that the entries of the matrix A are just linear polynomials: A = (lij)i,j .
The computation of the principal minors of A – which are just determinants of special
submatrices – just leads to other polynomials in R[x] (which are in general not linear
anymore). A (k ⇥ k)-matrix possesses 2k � 1 principal minors. Let us denote the
polynomials arisen from the computation of all principal minors by

p1, . . . , p2k�1 2 R[x].

From (2.2) it finally follows

S(A0, . . . , An) = {a 2 Rn : p1(a) � 0, . . . p2k�1(a) � 0},
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which is a basic closed description of S(A0, . . . , An).

Option 2: Again, let a 2 Rn. Let us use another characterization of positive semidef-
initeness:

a 2 S(A0, . . . , An) , 8� 2 Spec(A0 + a1A1 + . . .+ anAn) : � � 0

8� 2 R : (det(�Ik � A0 � a1A1 � . . .� anAn) = 0 ) � � 0)
(2.3)

Let us again define A := A0 + x1A1 + . . . + xnAn 2 Sym
k
(R) and A(a) := A0 +

a1A1 + . . . + anAn. Condition (2.3) requires that the zero set of the characteristic
polynomial det(tIk � A(a)) 2 R[t] is a subset of R�0. Let ↵1, . . . ,↵s 2 R be the
roots of det(tIk � A(a)). The condition A 2 Sym

k
(R) guarantees that the roots are

real. Using the same trick like in LEMMA 1.25,

↵1 � 0, . . . ,↵s � 0 , the polynomial det(tIk � A(a)) has alternating coefficients.
(2.4)

Expanding the polynomial det(tIk � A(a)) leads to

det(tIk � A(a)) = tk + p1(a)t
k�1 + . . .+ pk�1(a)t

1 + pk(a),

where pj, j = 1, . . . , k, are polynomials in R[x]. By (2.4)

↵1 � 0, . . . ,↵s � , 8i 2 {1, . . . , k} : (�1)ipi(a) � 0

This leads to the following basic closed description of S(A0, . . . , An):

S(A0, . . . , An) = {a 2 Rn : 8i 2 {1, . . . , k} : (�1)ipi(a) � 0}.

EXAMPLE 2.7: Let us demonstrate the second approach with EXAMPLE 2.4. Define
A := A0 + xA1 + yA2 with A0, A1, A2 from the above example. The characteristic
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polynomial det(tI2 � A) is given by

det(tI2 � A) = det

 
t

 
1 0

0 1

!
�

 
1 + x y

y 1� x

!!

= det

 
t� 1� x �y

�y t� 1 + x

!

= (t� 1� x)(t� 1 + x)� y2 = (t� 1)2 � x2
� y2

= t2 �2|{z}
=:p1

t+ 1� x2
� y2| {z }

=:p2

.

This leads to the following basic closed description of the spectrahedron:

S(A0, A1, A2) = {(a1, a2) 2 R2 : 2 � 0, 1� a21 � a22 � 0}

Since 2 � 0 trivially holds, the present approach leads to same basic closed de-
scription of S(A0, A1, A2) like before. ⌥

REMARK 2.8: Following the proof of PROPOSITION 2.6 one can find a first upper
bound for the number of polynomials which are necessary in a basic closed de-
scription of a spectrahedron. If A0, . . . , An 2 Sym

k
(R) and S := S(A0, . . . , An),

one can estimate m(S) from above:

m(S)  k (2.5)

In EXAMPLE 2.7 it was shown that this bound is quite pessimistic. Moreover, the
bound is not very useful since k does not depend on the space dimension n. For
example, with the help of some matrices A0, A1, A2 2 Sym100(R) one can define a
spectrahedron in R2:

S(A0, A1, A2) := {(a1, a2) 2 R2 : A0 + a1A1 + a2A2| {z }
2Sym100(R)

< 0}

In this case S(A0, A1, A2) can be represented by at most 100 polynomials. Recall
that Bröcker and Scheiderer were able to show that

m(S) 
n(n+ 1)

2
n=2
=

2 · 3

2
= 3.

This bound is independent of the complexity of S. Hence the estimation from (2.5)
turns out to be a terrible upper bound.
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Just to anticipate one thing: One can find much better bounds than demonstrated in
the above remark. This will be the main purpose of the present chapter. To be able
to find such bounds, one needs some more preparations.

Let us close this chapter with another useful property of spectrahedra, which will be
needed at a later time.

DEFINITION 2.9: A linear matrix polynomial A0+x1A1+ . . .+xnAn with coefficients

in Sym
k
(R) is called monic if A0 = Ik.

PROPOSITION 2.10: Let A be a monic linear matrix polynomial. Then the following
holds:

int(S(A)) = {a 2 Rn : A(a) � 0}

Moreover, if 0 2 int(S(A)), there exists a monic linear matrix polynomial B such
that

S(A) = S(B).

PROOF: For a proof of this statement we refer to [NePl+].

2. Basic closed descriptions of smooth spectrahedra with two polynomials

The main aim of the present section is to find basic closed descriptions of smooth
spectrahedra with two polynomials. There exists a class of polynomials which will
play an important role for the following considerations:

DEFINITION 2.11: (Real zero polynomial)

A polynomial p 2 R[x] is called a real zero polynomial if p(0) > 0 and

8a 2 Rn
\{0} : pa := p(ta) 2 R[t] has only real roots.

It is a common practice to use the abbreviation RZ-polynomial when talking about

real zero polynomials.

REMARK 2.12: If a set S(A) defines a spectrahedron, there exists a RZ-polynomial
which can be characterized with the help of the defining linear matrix polynomial A.
This polynomial will play an important role in search of new basic closed descriptions
of spectrahedra. To be more specific, the following proposition holds:
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PROPOSITION 2.13: Let k 2 N, A1, . . . , An 2 Sym
k
(R). Moreover, let A0 := Ik and

A := Ik + x1A1 + . . .+ xnAn. Define

p := det(A) 2 R[x]k.

Then p is a RZ-polynomial.

PROOF: At first notice that

p(0) = det(Ik) = 1 > 0. (2.6)

Let a 2 Rn
\{0}. One has to show that p(ta) has only real roots.

p(ta) = det(A(ta)) = det(Ik + ta1A1 + . . .+ tanAn)

(?)
= tk det

✓
1

t
Ik + a1A1 + . . .+ anAn

◆

= tkcharpol(�a1A1�...�anAn)

✓
1

t

◆
(2.7)

The equality (?) holds since det(cM) = ck det(M) for a matrix M 2 Rk⇥k and c 2 R.
By (2.6) � = 0 is not a root of pa. Hence the roots of pa satisfy � 6= 0. Let � be a
root of pa. (2.7) and the fact that � 6= 0 lead to the condition

charpol(�a1A1�...�anAn)

✓
1

�

◆
!
= 0. (2.8)

By (2.8) and the fact that � 6= 0, � is a root of p if and only if 1
�

is an eigenvalue of
�a1A1� . . .�anAn. Since A1, . . . , An 2 Sym

k
(R), the matrix �a1A1� . . .�anAn is

symmetric too and hence one can immediately conclude that 1
�

is real. This implies
� 2 R and hence p is a RZ-polynomial.

REMARK 2.14: The assumption A0 = Ik from the above proposition does not really
restrict the set of spectrahedra we are looking at. Without loss of generality one
can always assume that a spectrahedron is given by a monic linear matrix poly-
nomial. Indeed, as stated in PROPOSITION 2.10, it is possible to show that every
spectrahedron S ✓ Rn with 0 2 int(S) can be represented by a monic linear matrix
polynomial. The condition 0 2 int(S) can easily be satisfied. If int(S) = ;, one
can pass to relint(S) and replace Rn by a↵(S). Additionally, after applying a linear
transformation, one can always assume 0 2 int(S).
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EXAMPLE 2.15: Consider the following famous example of a spectrahedron (see
also [NePlSc09]), which is given by

A0 :=

0

B@
2 0 1

0 1 0

1 0 1

1

CA , A1 :=

0

B@
�2 0 �1

0 �1 0

�1 0 0

1

CA , A2 :=

0

B@
0 1 0

1 0 0

0 0 0

1

CA .

As mentioned before, even though A0 is not the identity matrix, one can find a monic
linear matrix polynomial B such that S(A) = S(B). Using the eigenvalue criterion
(the characteristic polynomial has alternating coefficients) one can show that

S(A0, A1, A2) := {(a1, a2) 2 R2 : a31 � a21 � a1 � a22 + 1 � 0,

a21 � 5a1 � a22 + 4 � 0, 4� 3a1 � 0}.

S(A0, A1, A2) has the following form:

-2 -1 0 1 2
-2

-1

0

1

2

FIGURE 2.2. Visualization of S(A0, A1, A2)

Computing det(A) leads to the RZ-polynomial

p := det(A) = x3
� x2

� x� y2 + 1.

In the following graphic the zero set of p is drawn in red. To illustrate that p is indeed
RZ, there is also a blue line in the graphic. It is a line passing through 0 = (0, 0)t

and a = (2, 1)t. There are three real intersection points. The fact that the degree of
p is three shows that pa has only real zeros with multiplicity 1.
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-2 -1 0 1 2
-2

-1

0

1

2

FIGURE 2.3. Visualization of V(p).

⌥

REMARK 2.16: Let us take a close look at the above graphics. As one can suggest,
it is possible to describe the spectrahedron shown in FIGURE 2.2 with the help of
its corresponding RZ-polynomial (which is shown in FIGURE 2.3). Take a point
a = (a1, a2) 2 R2. To check if the point lies in the spectrahedron, one can do the
following: Restrict p to the connecting line [0, a]. Check if

V(p|[0,a]) ✓ {a}.

If V(p|[0,a]) = ;, the RZ-polynomial p does not have any roots restricted to the set
[0, a]. In other words, one can move from 0 along the line in direction a and will
not pass a (real) root of p. This implies that a 2 int(S) as one might think taking
a look at the above pictures. If V(p|[0,a]) = {a}, the point a is the first root of the
polynomial p if one moves from 0 along the line in direction a. If this is the case, one
can show a 2 bd(S). Let us precisely formulate these observations in the following
proposition:

PROPOSITION 2.17: Let k 2 N, A0 = Ik, A1, . . . An 2 Sym
k
(R), A := Ik + x1A1 +

. . .+xnAn be a monic linear matrix polynomial and S(A) ✓ Rn be a spectrahedron.
Moreover, let p := det(A) be the corresponding RZ-polynomial and pa := p(ta) for
any a 2 Rn

\{0}. Then the following holds:

a 2 S(A) , V(p|[0,a)) = ; , V(pa) \ [0, 1) = ; (2.9)
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In addition, we have the following characterization of the interior and the boundary
of S(A):

a 2 int(S(A)) , V(pa) \ [0, 1] = ;

a 2 bd(S(A)) , V(pa) \ [0, 1] = {1}
(2.10)

PROOF: Let a 2 Rn. Note that a = 0 always lies in S(A) since A(0) = Ik and the
identity matrix is positive definite. Moreover, p0 ⌘ det(Ik) = 1 6= 0 and hence one
does not have to consider the case a = 0. Therefore, let a 2 Rn

\{0}.

a 2 S(A) , all eigenvalues of Ik + a1A1 + . . .+ anAn are � 0

, all eigenvalues of � a1A1 � . . .� anAn are  1

, all roots of det(tI + a1A1 + . . .+ anAn)| {z }
=tkpa( 1

t )

are  1

, all roots of pa

✓
1

t

◆
are  1

, all roots of pa are � 1

, V(pa) \ [0, 1) = ;

Moreover, by LEMMA 2.10, a 2 int(S) if and only if A(a) > 0. Hence the above
computations can be executed by using the strict inequality sign. This shows that
V(pa) \ [0, 1] = ;. On the other hand, if a 2 bd(S), 0 is an eigenvalue of A(a).
Hence 1 is a root of pa, which implies V(pa) \ [0, 1] = {1}.

EXAMPLE 2.18: Let us again consider EXAMPLE 2.15. Let

a1 :=

 
1

1

!
, a2 :=

 
�1

0

!
, a3 :=

 
�

1
2

1
2

!
.

In the following graphic V(p) is drawn in red. The blue lines represent the lines
passing through 0 and either a1, a2 or a3. The green dots represent the points a1, a2
and a3. With the help of the above proposition one can test if the three points lie
in the spectrahedron. Since V(pa1) \ [0, 1) 6= ;, it immediately follows that a1 /2 S.
Moreover, a2 2 bd(S) due to the fact that V(pa2) \ [0, 1] = {1}. The point a2 lies in
the interior of the spectrahedron since V(pa3) \ [0, 1] = ;.



CHAPTER 2. SPECTRAHEDRA 74

a1

a2

a3

0

-2 -1 0 1 2
-2

-1

0

1

2

FIGURE 2.4. a1 /2 S, a2 2 bd(S), a3 2 int(S)

⌥

REMARK 2.19: Let S ✓ Rn be a given subset of Rn. If one wants to solve an
optimization problem over this set, it could be an interesting question to check if
S is a spectrahedron. This is due to the fact that spectrahedra serve as feasible
regions of semidefinite programs. Indeed, there exist efficient algorithms to solve
optimization problems over spectrahedra. In general, it is not that easy to verify if a
set is a spectrahedron. How might the corresponding symmetric matrices look like?
It seems almost impossible to reconstruct the matrices which serve as coefficients
of the linear matrix polynomial if one does not have more information about the set
S.

To overcome this problem, people tried to characterize spectrahedra with the help
of real zero polynomials. As shown above, the determinant of the matrix polynomial
of a spectrahedron is RZ and the following holds:

S(A) = {a 2 Rn : p = det(A) does not have any root in [0, a)} =: R(p)

The set on the right hand side is called a rigidly convex set. Now let us try to apply
our considerations the other way round. Let p 2 R[x] be a RZ-polynomial. Does it
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hold that there exists a linear matrix polynomial A such that

R(p)
?
= S(A).

Unfortunately, this conjecture, which is called Generalized Lax-Conjecture, has not
yet been proven. Helton and Vinnikov were able to show that the conjecture indeed
holds for n = 2 (compare with [NePl+] for more details). Not much more is known
about this problem.

Nevertheless, let us come back to the initial problem. If the conjecture was true, one
could try to find a RZ-polynomial which at the first time vanishes on the boundary
of S. It seems to be easier to find such a polynomial than searching for some
symmetric matrices describing the spectrahedron.

3. The Main Theorem

As the above propositions and examples have shown, one is able to precisely de-
scribe spectrahedra with the help of RZ-polynomials. Hence it could be a good idea
to use these polynomials in search of a useful basic closed description of spectra-
hedra. Therefore, again let S(A) be a spectrahedron given by a monic linear matrix
polynomial A with coefficients in Sym

k
(R) and let p = det(A) be the corresponding

RZ-polynomial. Let us start with the first (very naive) attempt:

S
?
= W(p) (2.11)

One can easily convince oneself that the above equation is only true for very special
kinds of spectrahedra. For instance, if we consider EXAMPLE 2.4, the above equa-
tion turns out to be true. But in general, the appearance of W(p) heavily depends
on the RZ-polynomial and can be quite complicated. Nevertheless, since 0 2 S(A)

and p(0) = 1 > 0, one can at least guarantee that the following inclusion holds true:

S ✓ W(p) (2.12)

Indeed, let a 2 S(A). Assume that p(a) < 0. If one restricts to the univariate
polynomial pa 2 R[t], one has

pa(0) > 0, pa(1) < 0.

Hence by the intermediate value theorem there exists b 2 (0, 1) such that pa(b) = 0.
This contradicts V(pa) \ [0, 1) = ;. Hence the inclusion (2.12) holds.
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If one wants to find a handy basic closed description of S, one could use the same
approach like in the first chapter. Indeed, if one is able to find a polynomial g 2 R[x]
such that W(g) "cuts away" the surplus area W(p)\S(A), this approach leads to
another basic closed description of S(A):

S(A) = W(p, g)

In the following, we will try to find such a polynomial for special kinds of spectrahe-
dra:

DEFINITION 2.20: Let S(A) be a spectrahedron defined by a monic linear matrix

polynomial A with coefficients in Sym
k
(R). Moreover, let a 2 bd(S(A)), p := det(A)

and pa := p(ta) 2 R[t]. As shown above, 1 is a root of pa. Hence one can talk about

the multiplicity of the root 1. Let us define the multiplicity of a point a 2 bd(S(A)) as

follows:

mult(a) := multiplicity of 1 as a root of pa.

We call the spectrahedron S(A) a smooth spectrahedron

:, 8a 2 bd(S(A)) : mult(a) = 1.

EXAMPLE 2.21: The spectrahedron from EXAMPLE 2.15 is not smooth. The multi-
plicity of a = (1, 0)t is 2. On the other hand, for every n 2 N, the unit circle in Rn is
a smooth spectrahedron. ⌥

THEOREM 2.22: (Main Theorem)
Let S(A) be a spectrahedron defined by a monic linear matrix polynomial A with
coefficients in Sym

k
(R). Let p := det(A) be the corresponding RZ-polynomial.

Moreover, assume that S(A) is bounded and smooth. Then there exists another
polynomial g 2 R[x] such that

S(A) = W(p, g).

Hence every smooth spectrahedron possesses a basic closed description with two
polynomials.

PROOF:
Step 1: Let a 2 bd(S(A)). By the fact that mult(a) = 1 one can find some ✏a > 0
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such that

B✏(a) \ S(A) = B✏(a) \W(p). (2.13)

In other words, the spectrahedron is locally defined by the condition p � 0. This
is due to the fact that mult(a) = 1 implies rp(a) 6= 0. Hence a change of sign
takes place. Let us illustrate this fact with the following draft. The red area of the
following set defines a spectrahedron S(A) (compare with EXAMPLE 2.24). At the
boundary of S(A) it holds that p = det(A) = 0. Nevertheless, the zero set of p
looks more complicated. It is represented by the blue curves. The fact mult(a) = 1

for a 2 bd(S(A)) allows the following conclusion: One can find a ball with radius ✏a
(drawn in green) such that

p � 0 on B✏a(a) \ S(A) and p < 0 on B✏a(a)\S(A).

-4 -2 0 2 4
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0

2

4

FIGURE 2.5. W(p) defines S(A) locally

Let us cover the boundary of S(A) by

bd(S(A)) ✓
[

a2bd(S(A))

B ✏a
2
(a) (2.14)
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Since S(A) is compact, the same holds true for its closed subset bd(S(A)) and
hence one can find a finite subcover of (2.14). More precisely, let a1, . . . , as 2

bd(S(A)) such that

bd(S(A)) ✓
[

i=1,...,s

B ✏ai
2
(ai). (2.15)

Now define � := min{✏a1 , . . . , ✏as}.

Step 2: By assumption, S(A) is bounded and non-empty. We have already proven
that S(A) is basic closed semialgebraic. Let W(p1, . . . , pk) = S(A) be the ba-
sic closed description arisen from the coefficients of the characteristic polynomial
det(tIk � A). Moreover, let � > 0 be defined as above. With the help of THEOREM

1.32 choose M 2 N and ✏ > 0 such that

dH(S(A),WM,✏) <
�

2
, (2.16)

where dH(·, ·) denotes the Hausdorff-distance. Moreover, with the same numbers
M 2 N and ✏ > 0 and the polynomials p1, . . . , pk 2 R[x] define the polynomial g
from LEMMA 1.35, which fulfills the following property:

S(A) ✓ W(g) ✓ WM,✏ (2.17)

Now choose a 2 WM,✏\S(A). By (2.16) there exists a y 2 bd(S(A)) such that

ky � ak <
�

2
.

Since bd(S(A)) is covered by (2.15), there exists i 2 {1, . . . , s} such that

ky � aik <
✏ai
2

This implies

ka� aik = ka� y + y � aik  ka� yk+ ky � aik <
�

2|{z}
 ✏ai

2

+
✏ai
2

 ✏ai

Hence one can cover W(g) ✓ WM,✏ by

W(g) ✓ WM,✏ ✓

[

i=1,...,s

B✏ai
(ai) [ S(A) (2.18)
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It is important to emphasize that

S(A) \
[

i=1,...,s

B✏ai
(ai) = W(p) \

[

i=1,...,s

B✏ai
(ai)

by (2.13). Notice that

W(p) \

 
[

i=1,...,s

B✏ai
(ai) [ S(A)

!
=

 
W(p) \

[

i=1,...,s

B✏ai
(ai)

!
[

0

B@ W(p) \ S(A)| {z }
=S(A)=S(A)\S(A)

1

CA

=

 
S(A) \

[

i=1,...,s

B✏ai
(ai)

!
[ (S(A) \ S(A)) = S(A) \

 
[

i=1,...,s

B✏ai
(ai) [ S(A)

!

Clearly, the equality holds also true if one restricts to a smaller set (using (2.18)):

S(A) \W(g) = W(p) \W(g) (2.19)

By (2.17),

S(A) \W(g) = S(A).

Moreover,

W(p) \W(g) = W(p, g)

Hence (2.19) leads to the desired result:

S(A) = W(p, g)

REMARK 2.23: The statement of the above theorem seems to be quite surprising.
It holds for every smooth and bounded spectrahedron – independent of the space
dimension and the size of the corresponding matrices. As one can guess taking
a look at the first chapter, finding minimal descriptions of polytopes is hard work.
This is due to the fact that the vertices of polytopes cause lots of problems. If one
takes a look at smooth spectrahedra, it is easy to overcome this problems. Never-
theless, let us emphasize that the idea of the above proof is very similar to Bernig’s

and Averkov’s approach. The product of all facet-defining linear polynomials of a
polytope was an important ingredient for the sought-after basic closed descriptions
of polytopes with less polynomials.
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It should be clear that the RZ-polynomial det(A) of a spectrahedron S(A) is closely
related to the just mentioned polynomial. Recall that polytopes are special forms of
spectrahedra which arise from a diagonal linear matrix polynomial. Hence the de-
terminant of this polynomial is just the product of all diagonal entries. The polytope
P = {a 2 Rn : l1(a) � 0, . . . , lm(a) � 0} can be rewritten into a spectrahedron
S(A) represented by the linear matrix polynomial

A =

0

B@
l1 0

. . .
0 lm

1

CA .

This shows that det(A) = l1 · . . . · lm leads to the same polynomial as in the first
chapter.

Nevertheless, it is easier to deal with RZ-polynomials of smooth spectrahedra than
with the product of the facet-defining linear polynomials of a polytope. In this case,
the surplus area arisen from W(p), which does not belong to the spectrahedron,
can be easily cut off by another polynomial.

EXAMPLE 2.24: Let

A0 :=

0

BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCCA
, A1 :=

0

BBB@

2 �1 0 0

�1 0 0 0

0 0 1 0

0 0 0 1

1

CCCA
, A3 :=

0

BBB@

1 0 0 0

0 1 3 0

0 3 1 0

0 0 0 1

1

CCCA

and S(A) := S(A0 + xA1 + yA2) ✓ R2 be spectrahedron. Using the eigenvalue
criterion, one can show that there exists a (rather complicated) basic closed de-
scription of S(A) given by 4 polynomials. Let us take a look at the corresponding
RZ-polynomial:

p = det(A) = 1+4x+4x2
�x4+4y+12xy+8x2y�3y2�15xy2�14x2y2�14y3�23xy3�8y4

In the following graphic one can see the spectrahedron (drawn in red) and V(p)

(drawn in blue).
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FIGURE 2.6. Visualization of S(A) and V(p)

The fact that the present spectrahedron is smooth shows that one can find another
basic closed description of S(A) with two polynomials. Let us outline the approach
how to find such a description without going into too much detail. At first, one has
to find ✏ > 0 and M 2 N such that WM,✏ cuts off the surplus area arisen from the
basic closed set W(p) of the RZ-polynomial. Afterwards, by choosing � and k in
an appropriate way (compare with LEMMA 1.35), one can find another polynomial g
with W(g) ✓ WM,✏. W(p, g) is another basic closed description of S(A).
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FIGURE 2.7. A possi-
ble choice of WM,✏

(green)
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0.0
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1.0

FIGURE
2.8. Construction
of W(g) (yellow)

⌥



Conclusion

The main intention of the present master’s thesis was to find polynomial descriptions
of important classes of basic closed semialgebraic sets with few polynomials. The
thesis was orientating on an approach developed by Averkov. Given a basic closed
semialgebraic set of a very special form, he was able to find a polynomial such
that the basic closed set defined by this polynomial approximates the original set
sufficiently well. This polynomial has played an important role in search of another
basic closed description of the set with less polynomials. By applying his idea to
smooth spectrahedra, it was possible to find basic closed descriptions of these sets
with only two polynomials.

The search for minimal descriptions of special kinds of basic closed semialgebraic
sets seems to be a never ending story, which does not lose its fascination for math-
ematicians who deal with this topic. Hence, one can look forward to new polynomial
descriptions of basic closed sets, which will be certainly discovered in the near fu-
ture.

82



Bibliography

[AnBrRu96] C. ANDRADAS, L. BRÖCKER AND J. M. RUIZ, Constructible Sets in Real Geometry,
Springer-Verlag, Berlin Heidelberg 1996.

[Av08] G. AVERKOV, Representing Elementary Semi-Algebraic Sets by a Few Polynomial Inequali-

ties: A Constructive Approach. arXiv e-prints, art. arXiv:0804.2134, Apr 2008.

[AvBr10] G. AVERKOV AND L. BRÖCKER, Minimal polynomial descriptions of polyhedra and special

semialgebraic sets. arXiv e-prints, art. arXiv:1002.0921, Feb 2010.

[AvHe07] G. AVERKOV AND M. HENK, Representing simple d-dimensional polytopes by d polynomi-

als. arXiv e-prints, art. arXiv:0709.2099, Sep 2007.

[Be97] A. BERNIG, Constructions for the theorem of Bröcker and Scheiderer. Rapport de stage,
Universities Rennes and Dortmund, 1997.

[CoLiO’Sh92] D. COX, J. LITTLE AND D. O’SHEA, Ideals, Varieties and Algorithms, Springer-Verlag,
New York 1992.

[GrHe03] M. GRÖTSCHEL AND M. HENK, The representation of polyhedra by polynomial inequali-

ties. Discrete Comput. Geom. 29, no.4, p. 485-504, 2003.

[He07] M. HENK, Polynomdarstellungen von Polyedern. Jber. Deutsch. Math.-Verein. 109, no.2, p.
51-69, 2007.

[NePl+] T. NETZER, D. PLAUMANN, Geometry of Linear Matrix Inequalities. unpublished.

[NePlSc09] T. NETZER, D. PLAUMANN AND M. SCHWEIGHOFER, Exposed faces of semidefinitely

representable sets. arXiv e-prints, art. arXiv: 0902.3345, Feb 2009.

[Pla11] D. PLAUMANN, Konvexität. Skript zur Vorlesung an der Universität Konstanz im WiSe
2011/12.

83



CHAPTER 2. BIBLIOGRAPHY 84

[PrDe01] A. PRESTEL, C.N. DELZELL, Positive Polynomials. From Hilbert’s 17th Problem to Real

Algebra. Springer-Verlag, Berlin Heidelberg 2001.

[Sh07] S. SHORES, Applied Linear Algebra and Matrix Analysis. Springer-Verlag, Berlin Heidelberg
2007.

[Web94] R. WEBSTER, Convexity. Oxford University Press, New York 1994.

[Wer05] D. WERNER, Funktionalanalysis. Springer-Verlag, Berlin Heidelberg 52005.

[Zie07] G. M. ZIEGLER, Lectures on Polytopes. Springer-Verlag, Berlin Heidelberg 72007.


	Introduction
	Preliminaries
	Definitions and Notations
	Main Results

	Chapter 1. Polytopes
	1. Some basic properties
	2. Faces of Polytopes
	3. Bernig's construction
	4. Simple Polytopes
	5. Polytopes

	Chapter 2. Spectrahedra
	1. Some basic properties
	2. Basic closed descriptions of smooth spectrahedra with two polynomials
	3. The Main Theorem

	Conclusion
	Bibliography

