Publications

Preprints

  • Dictionary learning - from local towards global and adaptive
    M.C. Pali and K. Schnass
    arXiv:1804.07101, 2021. [v1pdf] [v2pdf] [toolbox]

  • Submatrices with non-uniformly selected random supports and insights into sparse approximation
    S. Ruetz and K. Schnass
    accepted to SIAM Journal on Matrix Analysis and Applications (SIMAX), 2021. [pdf]

Journal

  • Adaptive sparsity level and dictionary size estimation for image reconstruction in accelerated 2D radial cine MRI
    M.C. Pali, T. Schaeffter, C. Kolbitsch and A. Kofler
    Journal of Medical Physics, 48(1):178-192, 2021. [pdf] [editor's choice] [toolbox]

  • Compressed dictionary learning
    K. Schnass and F. Teixeira
    Journal of Fourier Analysis and Applications 26, Art. Nr. 33, 2020. [pdf] [probox] [toybox]

  • Monotonicity of escape probabilities for branching random walks on Zd
    A. Tzioufas
    Statistics and Probability Letters 167, 2020. [pdf]

  • Compressive time-of-flight 3D imaging using block-structured sensing matrices
    S. Antholzer, C. Wolf, M. Sandbichler, M. Dielacher and M. Haltmeier
    Inverse Problems, 35(4), 2019. [pdf]

  • Online and stable learning of analysis operators
    M. Sandbichler and K. Schnass
    IEEE Transactions on Signal Processing, 67(1):41--53, 2019. [pdf] [toolbox]

  • Average performance of Orthogonal Matching Pursuit (OMP) for sparse approximation
    K. Schnass
    IEEE Signal Processing Letters (arXiv:1809.06684), 25(12):1865--1869, 2018. [pdf]

  • Fast dictionary learning from incomplete data
    V. Naumova and K. Schnass
    EURASIP Journal on Advances in Signal Processing, 2018. [pdf] [toolbox]

  • A sparsification and reconstruction strategy for compressed sensing photoacoustic tomography
    M. Haltmeier, M. Sandbichler, T. Berer, J. Bauer-Marschallinger, P. Burgholzer and L. Nguyen
    The Journal of the Acoustical Society of America, 143(6), 2018. [pdf]

  • Convergence radius and sample complexity of ITKM algorithms for dictionary learning
    K. Schnass
    Applied and Computational Harmonic Analysis, 45(1):22–58, 2018. [pdf] [toolbox]

Conference

  • The adaptive dictionary learning toolbox
    C. Rusu and K. Schnass
    SPARS19. [extended abstract]

  • Relaxed contractivity conditions for dictionary learning via Iterative Thresholding and K residual Means
    M.C. Pali, K. Schnass and A. Steinicke
    SPARS19. [extended abstract]

  • Dictionary learning from incomplete data for efficient image restoration
    V. Naumova and K. Schnass
    EUSIPCO17. [pdf] [toolbox]

  • Compressive time-of-flight imaging
    S. Antholzer, C. Wolf, M. Sandbichler, M. Dielacher and M. Haltmeier
    SampTA17. [link]

Book Chapter

  • Total variation minimization in compressed sensing
    F. Krahmer, C. Kruschel and M. Sandbichler
    In: Boche H., Caire G., Calderbank R., März M., Kutyniok G., Mathar R. (eds) Compressed Sensing and its Applications, Applied and Numerical Harmonic Analysis, pppp 333-358, Birkhäuser, Cham, 2017. [pdf]

Theses

  • Integrating low-rank components into weighted K-SVD for dictionary based inpainting
    M. Tiefenthaler
    BSc thesis, University of Innsbruck, 2018. [pdf]

  • Compressed sensing, sparsity and related topics
    M. Sandbichler
    PhD thesis, University of Innsbruck, 2018. [pdf]

  • Hard Thresholding Pursuit for Sparse Approximation
    E. Höck
    BSc thesis, University of Innsbruck, 2016. [pdf]

Copyright Blabla

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

 

Nach oben scrollen