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Abstract

In this paper we derive tail bounds on the norms of random submatrices with non-uniformly
distributed supports. We apply these results to sparse approximation and conduct an analy-
sis of the average case performance of thresholding, Orthogonal Matching Pursuit and Basis
Pursuit. As an application of these results we characterise sensing dictionaries to improve
average performance in the non-uniform case and test their performance numerically.

Keywords: random submatrices, non-uniform sampling, matrix Chernoff, sparse approx-
imation

1. Introduction

Motivation: In sparse approximation, the goal is to find a sparse solution to an underde-
termined system of linear equations. A signal y ∈ Rd is assumed to be a linear combination
of a small number S � d of elements φi, called atoms, out of a larger set, called the dic-
tionary. Denoting the dictionary by Φ = (φ1, . . . , φK) ∈ Rd×K and by ΦI the restriction to
the columns indexed by the set I, called the support, one assumes that

y ≈
∑
k∈I

φkxk = ΦIxI s.t. |I| = S.

The sparse approximation problem amounts to finding the vector x and its support I
given the dictionary Φ and signal y. In general, this is a NP-hard optimisation problem,
hence sparse approximation algorithms such as thresholding, Orthogonal Matching Pursuit
(OMP) and Basis Pursuit (BP) were proposed. It turns out that in order to prove support
recovery guarantees for these algorithms, information about the extreme singular values of
ΦI is needed.
Let ‖ · ‖2,2 denote the operator norm and I the identity matrix. Deterministic methods to
bound ‖Φ∗IΦI − I‖2,2 for arbitrary supports I are of limited use since the restrictions on the
dictionary Φ are too stringent. This started the study of random collections of columns of
the dictionary Φ. In [22] it was first shown that under rather mild conditions on the dictio-
nary Φ, most subdictionaries ΦI are close to an isometry - i.e. ‖Φ∗IΦI− I‖2,2 ≤ ϑ0 < 1, with
later improvements in [8]. So far, all available results on the conditioning of random subdic-
tionaries rely on the supports I to be drawn from the uniform distribution. Unfortunately
this assumption is rarely satisfied for practically relevant signal classes, where some atoms
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of the underlying dictionary are usually more likely to appear in a sparse representation
than others.
To demonstrate this non-homogeneity, we conduct the following small experiment. We
take the 2D Haar-Wavelet decomposition of all normalised 64 × 64 patches from the im-
age Peppers and apply a threshold1 of

√
log(d)/d/6 for d = 642 to the coefficients to get

sparse approximations. We then count how often each atom has a non-zero coefficient to
get a proxy for its inclusion probability in a sparse support I. Figure 1 shows the rela-
tive frequency of each element of the 2D Haar-Wavelet basis. It comes as no surprise that
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Figure 1: (a) Original image from which the patches are extracted. (b) Relative frequency
of wavelet coefficients above threshold (blue) - average frequency (red) on a log
scale. (c) Locations of non-zeros coefficients in the 2D Haar-Wavelet basis - the
higher the row or column index the smaller the corresponding wavelet

low frequency (large) wavelets are much more likely to appear in the sparse supports than
high frequency (small) wavelets. So the supports of the sparse signals exhibit a non-uniform
structure which previous results on the conditioning of random subdictionaries do not cover.
We try to close this gap by defining two non-uniform support distributions and deriving
tail bounds on the norms of the resulting random submatrices. This allows us to derive
recovery guarantees of the sparse supports for a larger class of practically relevant signals.
Prior work: As mentioned above, Tropp [22] and Chrétien and Darses [8] derived concen-
tration inequalities for the operator norm of random submatrices with uniformly distributed
supports. These results were applied to BP showing that BP recovers the correct support
and coefficients under rather mild conditions on the dictionary [23]. For OMP, similar re-
sults were developed in [18], whereas for thresholding average case results appeared in [19].
In [15] the dictionary D is assumed to be a concatenation of two dictionaries φ and ψ, i.e.
D = (φ, ψ). There a concentration inequality on the extreme singular values of submatrices
that consist of a fixed set of columns with cardinality na of the first dictionary and a ran-
dom set of columns nb of the second dictionary are derived. This allows to model signals
where some atoms are known to be in the support while some others are picked uniformly
at random.

1. The threshold is inspired by the expected size of the largest inner product of a wavelet with noise drawn
uniformly at random from the unit sphere.
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The idea of using the structure of sparse signals to improve recovery of the sparse coeffi-
cients can also be found in the field of compressed sensing. The aim in compressed sensing
is to recover a sparse signal y ∈ Rd from an incomplete set of linear measurements z = Ay,
where A ∈ Rm×d and m� d, [6, 10]. The signal y is assumed to be sparse or compressible
in some (orthonormal) basis or frame Φ, i.e. y = Φx for a sparse coefficient vector x.
From a theoretical point of view the best measurement matrices A, achieving the small-
est m for a given sparsity level S, are random matrices. Unfortunately in many practical
applications it is not possible or efficient to use random matrices, since they cannot be
realised by the underlying physical measurement process, such as in compressed magnet
resonance imaging (MRI). Instead one is given an (often orthonormal) measurement matrix
Ψ ∈ Rd×d and has to find a subsampling pattern Ω ⊆ {1, ...,K} which selects m rows of Ψ,
so that for A = PΩΨ the signal y resp. the coefficients x can be reliably reconstructed from
z = Ay = AΦx = Āx.
As in sparse approximation, rather strong assumptions on the matrix AΦ = Ā are needed
in order to guarantee recovery for all sparse x. In [5] the elements of Ω were assumed
to be chosen uniformly at random in order to employ probabilistic arguments to derive
sufficient conditions for recovery for relatively small m. Over the years, various different
subsampling strategies - most of them highly non-uniform - were proposed (see for example
[3, 7, 16, 1, 14]). Underlying the success of these variable density sampling strategies is
the highly non-uniform structure of the sparse supports. So it was shown that previous
lower bounds on the size of m are too pessimistic and performance can be improved if the
subsampling pattern takes the support structure of the sparse signals into account [1, 14].
Contribution: We derive tail bounds on the operator norm of non-uniformly chosen sub-
matrices. The supports are assumed to follow either a Poisson sampling model or a rejective
sampling model thus allowing us to model a large class of non-uniform distributions. Our
results rely on a generalisation of a Theorem by Chrétien and Darses [8]. The main tool
to handle non-uniformly distributed S-sparse supports is a kind of Poissonisation argu-
ment where we provide a generalised version of Lemma 4.1 of [12]. We apply these results
to derive sufficient conditions for sparse approximation to work with high probability for
thresholding, OMP and BP. In the CS setup this analysis provides a criterion to decide
between two possible measurement matrices A1 and A2 depending on the frequency of the
basis elements. Further, if there is no design freedom for the dictionary or CS matrix, we
show how to incorporate this prior information about the coefficient distribution into the
algorithms using the ideas of preconditioning and sensing dictionaries.
Organisation: Section 2 collects our notations and defines the setting we work in. In
Section 3 we state our results on norms of non-uniformly distributed random submatrices
and apply those concentration inequalities to sparse approximation in Section 4. Finally
we incorporate this knowledge in the construction of special sensing dictionaries in Section
5 and show how they improve performance.

2. Notation and setting

A quick note on the notation used throughout this text. Let A ∈ Rd×K and B ∈ RK×m.
By Ak and Ak we denote the k-th column and k-th row of A respectively and by A∗ the
transpose of the matrix A. For 1 ≤ p, q, r ≤ ∞ we set ‖A‖p,q := max‖x‖q=1 ‖Ax‖p. Recall
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that ‖AB‖p,q ≤ ‖A‖q,r‖B‖r,p and ‖Ax‖q ≤ ‖A‖q,p‖x‖p. Frequently encountered quantities
are

‖A‖∞,2 = max
k∈{1,...,d}

‖Ak‖2 and ‖A‖2,1 = max
k∈{1,...,K}

‖Ak‖2,

denoting the maximum `2-norm of a row and the maximum `2-norm of a column of A
respectively. Note that ‖A‖∞,2 = ‖A∗‖2,1. Further note that ‖A‖∞,1 simply is the maximum
absolute entry of the matrix A. For ease of notation we sometimes write ‖A‖ = ‖A‖2,2 for
the operator norm which corresponds to the largest absolute singular value of A. For
a vector v ∈ Rd, we denote by ‖v‖min := mini |vi| the smallest absolute value of v and
‖v‖max := ‖v‖∞ the maximal absolute value of v. For a subset I ⊆ K := {1, . . . ,K}, called
the support, we denote by AI ∈ Rd×S the submatrix with columns indexed by I and by
AI,I ∈ RS×S the submatrix with columns and rows indexed by I. We denote by A†I the

Moore-Penrose pseudo inverse of the matrix AI and by P (AJ) := AJA
†
J the projection

onto the column span of AJ . As was noted in the introduction we want the supports to
follow a non-uniform distribution, allowing some columns, called atoms, to be picked more
frequently than others. We are going to use the following two sampling models which define
two probability measures on P(K) that allow us to model non-uniform distributions for our
supports.

Definition 1 (Poisson sampling) Let δj denote a sequence of K independent Bernoulli

0-1 random variables with expectation pj such that
∑K

j=1 pj = S. We say the supports I
follow the Poisson sampling model, if

I := {i | δi = 1} .

Each support I ⊆ K is chosen with probability

P(I) =
∏
i∈I

pi
∏
j /∈I

(1− pj). (1)

Supports following a Poisson sampling model have (by definition of the Bernoulli r.v.)
cardinality S on average. This comes with the big advantage that the probability of one
atom appearing in the support is independent of the others, allowing us to make use of
concentration inequalities for sums of independent random matrices later on. The drawback
of this model is that the supports are not exactly S sparse. This can be achieved by keeping
only those supports that have cardinality S and throwing away the rest. This amounts to
simply conditioning the above Poisson sampling model on the event that exactly S of the
Bernoulli r.v. are equal to 1, leading to our second support distribution model.

Definition 2 (Rejective sampling) Let δj denote a sequence of K independent Bernoulli

0-1 random variables with expectation pj such that
∑K

j=1 pj = S and denote by P the prob-
ability measure of the corresponding Poisson sampling model. We say our supports follow
the rejective sampling model, if each support I ⊆ K is chosen with probability

PS(I) := P(I | |I| = S) =

{
c
∏
i∈I pi

∏
j /∈I(1− pj) if |I| = S

0 else
, (2)

where c is a constant to ensure that PS is a probability measure.
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The distributions of the supports in the above two sampling models are uniquely defined
by the expectations of the Bernoulli random variables. For more information on Poisson
and rejective sampling, we refer the interested reader to [12]. We call the square diagonal
matrix W := diag((

√
pk)k) the weight matrix. Let R be the square diagonal selector matrix

whose diagonal entries are the δj , i.e. R = diag((δk)k) and denote by R′ an independent

copy of R. Further let ~Ajk = Ajkej ⊗ ek be the matrix with only non-zero entry Ajk. This
allows us to write

RAR =
∑
i,j

δiδj ~Aij .

Note that by properties of the operator norm, the two random variables ‖AI‖ and ‖AR‖
have the same distribution.

3. Main results

We now present our main results on submatrices whose support is sampled from a non-
uniform distribution. We begin by stating the concentration inequality for the operator
norm of non-uniformly picked random submatrices, before turning to some special cases
arising in sparse approximation. Then we state a concentration inequality for the maximal
row norm of random column-submatrices. Lastly we state and proof a kind of Poissonisation
argument - of independent interest - which is key for our proofs. Note that we state our
results only for the rejective sampling model, but they hold for the Poisson sampling model
as well - see Remark 8.

3.1 Operator norm of random submatrices

The aim is to get a tail bound for the random variable ‖HI,I‖2,2, where I is distributed
according to the models introduced above and H is a matrix with zero diagonal. As ex-
pected, the result shows how the more frequently picked entries have a higher impact on
the operator norm than less important ones.

Theorem 3 Let H ∈ RK×K be a matrix with zero diagonal and assume I ⊆ K is chosen
according to the rejective sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S.

Further let W denote the corresponding weight matrix. Then, for all r ≥ 2e2‖WHW‖2,2

PS
(
‖HI,I‖2,2 ≥ r

)
≤ 216K exp

(
−min

{
r2

4e2‖HW‖2∞,2
,

r2

4e2‖WH‖22,1
,

r

2‖H‖∞,1

})
.

Proof [Outline] We follow the proof that appeared in Chrétien and Darses [8] with some
minor changes to account for the non-uniformly distributed supports and the extension to
non-symmetric matrices. Their proof consists of roughly three steps. First they bound the
failure probability of the rejective sampling model by the independent Poisson sampling
model

PS (‖RHR‖2,2 ≥ r) ≤ 2P (‖RHR‖2,2 ≥ r) .

Then they use a decoupling argument to make the selection of rows and columns indepen-
dent, i.e.

P (‖RHR‖2,2 ≥ r) ≤ 72P
(
‖RHR′‖2,2 ≥ r/2

)
,
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where R′ is an independent copy of R. Then they apply the matrix Chernoff inequality
three times to finish the proof. Our proof in the non-uniform, non-symmetric case follows
the above outline very closely. The main difficulty lies in bounding the rejective model by
the Poisson model, which is why we had to provide Lemma 7. The second and third steps
are straightforward extensions of their argument. For the sake of completeness we provide
a detailed proof in the appendix.

3.1.1 Special cases - hollow (cross)-Gram matrices

In this subsection we look at the special case H = Φ∗Φ − I that appears naturally in the
sparse approximation framework. Previous results showed that success of recovery depends
on the coherence µ := maxi 6=j |〈φi, φj〉| and the conditioning of the subdictionary ΦI , i.e.

ϑI := ‖Φ∗IΦI − I‖2,2 = max
{
λ2

max(ΦI)− 1, 1− λ2
min(ΦI)

}
.

Here λ2
max and λ2

min denote the biggest and smallest eigenvalue of Φ∗IΦI respectively. In
this setting, the matrix H := Φ∗Φ − I is called the hollow Gram matrix and we call µ :=
maxi 6=j |〈φi, φj〉| = ‖H‖∞,1 the coherence. Applying Theorem 3 to this matrix, we get the
following bound on ϑI .

Corollary 4 Let Φ ∈ Rd×K be a dictionary with unit norm columns and assume I ⊆ K
is chosen according to the rejective sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S. Further let W denote the corresponding weight matrix. Then, for all r ≥
2e2‖WHW‖2,2

PS
(
‖Φ∗IΦI − I‖2,2 ≥ r

)
≤ 216K exp

(
−min

{
r2

4e2‖HW‖2∞,2
,
r

2µ

})
.

In this setting H is symmetric, hence H∗W = HW . The result can be used to bound

PS
(
‖ΦI‖2,2 ≷

√
1± r

)
and PS

(
‖(Φ∗IΦI)

−1‖2,2 ≥
1

1− r

)
.

This comes in handy when trying to prove recovery guarantees of sparse approximation
algorithms later in this text.
Another frequently arising quantity is the cross-Gram matrix H := Ψ∗Φ − diag(Ψ∗IΦI),
where Φ and Ψ are dictionaries. In this setting, we call µ̂ := maxi 6=j |〈φi, ψj〉| the cross-
coherence. Applying Theorem 3 yields

Corollary 5 Let Ψ,Φ ∈ Rd×K be dictionaries and assume I ⊆ K is chosen according to
the rejective sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further

let W denote the corresponding weight matrix. Then, for all r ≥ 2e2‖WHW‖2,2

PS
(
‖Ψ∗IΦI − diag(Ψ∗IΦI)‖ ≥ r

)
≤ 216K exp

(
−min

{
r2

4e2‖HW‖2∞,2
,

r2

4e2‖WH‖22,1
,
r

2µ̂

})
.

6



Note that in contrast to Corollary 3.1.1 the matrix H is not symmetric any more, hence
we need to control both ‖HW‖∞,2 and ‖WH‖2,1. In contrast to previous works the above
results are in terms of the maximal row norm of the weighted Gram matrix. By using the
bounds

‖HW‖∞,2 ≤ ‖Ψ∗ΦW‖∞,2 ≤ ‖Ψ∗‖∞,2‖ΦW‖2,2 = ‖ΦW‖2,2,
‖WH‖2,1 = ‖H∗W‖∞,2 ≤ ‖Φ∗‖∞,2‖ΨW‖2,2 = ‖ΨW‖2,2,
‖WHW‖2,2 ≤ 2‖ΨW‖2,2‖ΦW‖2,2

one would get bounds similar in spirit to the results of Chrétien and Darses [8] and
Tropp [22].
We stick to the quantities ‖HW‖2∞,2 and ‖WH‖22,1 to see how the weights of the distri-
bution interact with the structure of H. Intuitively the above results state that the more
frequently an atom is picked, the less coherent it should be to all the other atoms in order
for a random submatrix to be well-conditioned.
The generality of this result allows for pi ∈ [0, 1], which thus includes models where some
atoms are already known to be in the support and some to not appear at all. This allows for
models where a dictionary D is a concatenation of two dictionaries φ and ψ, i.e. D = (φ, ψ)
and the submatrix of interest consists of a fixed set of columns with cardinality na of the
first dictionary and a random set of columns nb of the second dictionary. Such a scenario
can easily be modeled by setting the pi and the weight matrix W accordingly and would
yield similar results to [15].

3.2 Maximum row norm of a random restriction

Another frequently encountered random variable in sparse approximation is the maximal
row norm ‖HI‖∞,2. Given a weight matrix W , the following Lemma states that one can
expect this quantity to be approximately of size ‖HW‖∞,2. This can be significantly smaller
than the worst case maxi,j |Hi,j |

√
S for |I| ≤ S, depending on the structure of H and W .

Plugging in H = Ψ∗Φ − diag(Ψ∗Φ) we again see that the more frequently picked atoms
should have smaller coherences in order for ‖HW‖∞,2 to be small. This result is an integral
part of the proof of Theorem 3 and hence we defer its proof to the appendix.

Lemma 6 Let H ∈ Rd×K be some matrix. Assume I ⊆ K is chosen according to the
rejective sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further let W

denote the corresponding weight matrix. Then, for all v > 0

PS (‖HI‖∞,2 ≥ v) ≤ 2K

(
e
‖HW‖2∞,2

v2

) v2

µ2

.

3.3 Poissonisation argument in the non-uniform case

As already mentioned, we have to bound the failure probability under the rejective sampling
model by the failure probability under the Poisson sampling model in order to apply con-
centration inequalities for sums of independent random variables. In the uniform case the
following lemma is not needed, as one can argue that the supports can also be sampled by
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drawing one atom after the other to get a uniform support distribution - see Claim (3.29)
p. 2173 in [4]. For the non-uniform case it is not that easy. Lemma 4.1 of [12] almost
provides the result that we need, but has too restrictive assumptions on the expectations
pi. Therefore we prove2 the following result which does not have any constraints on the
expectations pi.

Lemma 7 (Poissonisation) Denote by P the probability measure corresponding to the
Poisson sampling model (1) and by PS the probability measure corresponding to the rejective
sampling model (2) - both with the same weight matrix W . Let f : P(K) 7→ {0, 1} be such
that for all I, J ∈ P(K)

f(I) ≤ f(J) if I ⊆ J.

Then for all I ⊆ K

PS (f(I) = 1) ≤ 2 P (f(I) = 1) .

Proof Note that the conditions on f imply that if f(J) = 0 for some J , then f(I) = 0 for
all I ⊂ J . We start by showing that for 0 ≤ T ≤ K − 1 we have

P
(
f(I) = 1

∣∣ |I| = T
)
≤ P

(
f(I) = 1

∣∣ |I| = T + 1
)
.

Expanding the conditional probability we get∑
I:|I|=T f(I)P(I)∑
I:|I|=T P(I)

≤
∑

J :|J |=T+1 f(J)P(J)∑
J :|J |=T+1 P(J)

,

which is equivalent to∑
I:|I|=T

f(I)P(I)
∑

J :|J |=T+1

P(J) ≤
∑

J :|J |=T+1

f(J)P(J)
∑

I:|I|=T

P(I). (3)

By combining the sums on both sides and subtracting∑
J :|J |=T+1

∑
I:|I|=T

P(J)P(I)f(I)f(J)

on both sides we see that (3) is equivalent to∑
J :|J |=T+1

∑
I:|I|=T

P(J)P(I)f(I)[1− f(J)] ≤
∑

J :|J |=T+1

∑
I:|I|=T

P(J)P(I)f(J)[1− f(I)] (4)

Now the crucial step is to see that we can partition these sums in a very special way. For
a pair (I, J), by definition of the Poisson sampling model, we can write P(I)P(J) in the
following way

P(I)P(J) =
∏
i∈I

pi
∏
j /∈I

(1− pj)
∏
i∈J

pi
∏
j /∈J

(1− pj) =
∏
i∈I∩J

p2
i

∏
i∈I4J

pi(1− pi)
∏
j /∈I∪J

(1− pj)2.

2. The result might be known but extremely well hidden, thus forcing us to prove it.
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This implies that for two pairs (I, J), (I ′, J ′) with

I ∩ J = I ′ ∩ J ′ and I4J = I ′4J ′ we have P(I)P(J) = P(I ′)P(J ′).

This allows us to define natural partitions on the set of pairs (I, J) such that the probability
P(I)P(J) is constant on each partition: Let k ∈ T, A ⊆ K with |A| = k and B ⊆ K\A with
|B| = 2(T − k) + 1. A will be the intersection and B will model the symmetric difference of
the sets I and J respectively. For such a combination of A,B we define

QA,B := {(I, J) : I, J ⊆ K, |I| = T, |J | = T + 1, I ∩ J = A, I4J = B} .

Note that each pair (I, J) with |I| = T , |J | = T + 1 can be uniquely assigned to one QA,B.
So if ∑

(I,J)∈QA,B

f(I)[1− f(J)] ≤
∑

(I,J)∈QA,B

f(J)[1− f(I)] (5)

for all possible choices of A,B then (4) follows and we are done.
We start with the special case |A| = 0 and fix B ⊆ K with |B| = 2T + 1. With slight abuse
of notation we write Ic := B \ I for the complement in B. With this notation (5) becomes

∑
I⊆B
|I|=T

f(I)(1− f(Ic)) ≤
∑
J⊆B
|J |=T+1

f(J)(1− f(Jc)).

Remembering that f(I) ≤ f(I ∪ {i}) and f(J) ≥ f(J \ {i}) we get

∑
I⊆B
|I|=T

f(I)(1− f(Ic)) =
∑
I⊆B
|I|=T

f(I)(1− f(Ic))
1

T + 1

∑
i∈Ic

1

=
1

T + 1

∑
I⊆B
|I|=T

f(I)(1− f(Ic))
∑
i∈Ic

f(I ∪ {i})(1− f(Ic \ {i}))

≤ 1

T + 1

∑
I⊆B
|I|=T

∑
i∈Ic

f(I ∪ {i})(1− f(Ic \ {i}))

=
1

T + 1
(T + 1)

∑
J⊆B
|J |=T+1

f(J)(1− f(Jc)).

If |A| > 0 then the same argument as above replacing f(·) with f(A∪ ·) and T with T −|A|
yields (5) for all possible choices of A and B. Thus we get

P
(
f(I) = 1

∣∣ |I| = T
)
≤ P

(
f(I) = 1

∣∣ |I| = T + 1
)
.
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Now we are finally in a position to prove our result. Note that

P (f(I) = 1) =
K∑
k=1

P (f(I) = 1 | |I| = k)P (|I| = k)

≥ P (f(I) = 1 | |I| = S)
K∑
k=S

P (|I| = k)

≥ PS (f(I) = 1) · 1

2
,

where the last inequality follows from Theorem 3.2 of [13] which says that if the mean
number of successes of K independent trials is an integer S, the median is also S.

Remark 8 Applying the above result on the functions f1(I) := 1{‖HI,I‖2,2≥t} and f2(I) :=

1{‖HI‖∞,2≥t} we get
PS (‖HI,I‖2,2 ≥ r) ≤ 2P (‖HI,I‖2,2 ≥ r)

and
PS (‖HI‖∞,2 ≥ v) ≤ 2P (‖HI‖∞,2 ≥ v) .

Even though we stated our results only for the rejective sampling model, all of our proofs
consist of first bounding the failure probability under the rejective sampling model by the
failure probability under Poisson sampling model. Hence all of our results hold for the
Poisson sampling model as well, with the failure bound actually improved by a factor 1/2.

4. Application to sparse approximation

In this section we apply the derived result to sparse approximation. The starting point
of sparse approximation is an underdetermined system of linear equations for which one
tries to find the sparsest solution. Assuming that the signal y is a linear combination of S
columns of a dictionary Φ, we show under which conditions sparse approximation algorithms
are successful. To that end we define the following statistical model of our signals.

Definition 9 (Signal model) We model our signals as

y = ΦIxI =

S∑
k=1

φikxik , xik = ckσk, ∀k ∈ {1, . . . , S},

where Φ ∈ Rd×K is a dictionary of K normalised atoms, I = {i1, . . . iS} is the random sup-
port and c = {c1, . . . cS} is an arbitrary sequence of strictly positive coefficients. We assume
I ⊆ K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such
that

∑K
i=1 pi = S and denote by W the corresponding weight matrix. Further we assume that

the signs σi form an independent Rademacher sequence, i.e. σi = ±1 with equal probability.

This definition allows us to use probabilistic arguments to show that in the majority of cases,
sparse approximation algorithms are able to recover the support under mild conditions on
the dictionary Φ and on the coefficients x. We denote by Py := Pσ,S the product measure
of the signs and the support and by µ := maxi 6=j |〈φi, φj〉| the coherence of the dictionary
Φ.
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4.1 Thresholding

We start by considering the fastest and conceptually easiest sparse approximation algorithm.
Thresholding works by finding the indices corresponding to the S largest values of |〈y, φi〉|,
i.e.

find J = argmax|I|=S ‖Φ∗Iy‖1 and

reconstruct xJ = P (ΦJ)y.

In slight abuse of notation, let ‖c‖min := mini |ci|. In [19], average case results for thresh-
olding were derived for the uniform case. There, a sufficient condition for thresholding
to work with high probability was Sµ2 log(K) . ‖c‖2min/‖c‖2max. We extend these results
to the non-uniform case and show how the structure of the dictionary interacts with the
distribution of coefficients.

Theorem 10 (Thresholding) Assume that the signals follow the model in (9), where
the support I ⊆ K is chosen according to the rejective sampling model with probabilities
p1, . . . , pK such that

∑K
i=1 pi = S. Further let W denote the corresponding weight matrix

and denote by H = Φ∗Φ− I the hollow Gram-matrix. If

µ2 ≤ ‖c‖2min

8‖c‖2max log(4K/ε)
, and ‖HW‖2∞,2 ≤

‖c‖2min

8e2‖c‖2max log(4K/ε)
,

then thresholding recovers the support with probability at least 1− ε.

Proof By definition of the algorithm, thresholding recovers the full support if

‖Φ∗Icy‖max < ‖Φ∗Iy‖min.

Note that the signals have two sources of randomness, σ and I. Plugging in the definition
of y we derive a bound on the failure probability

Py(‖Φ∗Iy‖min < ‖Φ∗Icy‖∞) = Py (‖Φ∗IΦIxI‖min < ‖Φ∗IcΦIxI‖∞)

≤ Py (‖c‖min − ‖(Φ∗IΦI − I)xI‖∞ < ‖Φ∗IcΦIxI‖∞)

≤ Py (‖c‖min < 2‖HIxI‖∞) .

Where we used that xik = σkck, where σ ∈ RS is an independent Rademacher sequence.
Now as the signs σ are independent from the support I, we can apply Hoeffding’s inequality
to each entry of HIσ (Lemma 23) and use Lemma 6 to get

Py(‖Φ∗Iy‖min < ‖Φ∗Ixy‖max) ≤ Py
(
‖HIxI‖∞ ≥

‖c‖min

2

∣∣∣∣ ‖HI‖∞,2 < γ

)
+ PS

(
‖HI‖∞,2 ≥ γ

)

≤ 2K exp

(
− ‖c‖2min

8‖c‖2maxγ
2

)
+ 2K

(
e
‖HW‖2∞,2

γ2

) γ2

µ2

.

Setting γ2 =
‖c‖2min

8‖c‖2max log(4K/ε)
we see that the conditions of the Theorem imply that the

failure probability does not exceed ε.

11



4.2 OMP

One of the most popular sparse approximation algorithms is the Orthogonal Matching
Pursuit (OMP). This greedy algorithm finds the support iteratively, adding one index at a
time to the current support. In every step, it picks the index of the atom which has the
largest absolute inner product with the residual and then updates the residual. Initialising
r0 = y and J0 = ∅, it

finds j = argmaxk |〈φk, ri〉| and

updates Ji+1 = Ji ∪ {j} resp. rJi+1 = y − P (ΦJi+1)y,

until a stopping criterion is met. Hence to prove that OMP recovers the correct support,
one needs to ensure that it picks an atom from the support in each step. So assume OMP
has successfully found J ⊆ I in the i-th step, it will find another correct atom if

‖Φ∗IcrJ‖∞ < ‖Φ∗LrJ‖∞,

where L := I \ J . Based on this observation we prove the following Theorem.

Theorem 11 (OMP) Assume that the signals follow the model in (9), where the support
I ⊆ K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such
that

∑K
i=1 pi = S. Further let W denote the corresponding weight matrix. Assume that the

hollow Gram-matrix H = Φ∗Φ− I satisfies ‖WHW‖2,2 ≤ 1
4e2

. If

‖HW‖2∞,2 ≤ min

{
min

L⊆{1,...,S}

‖cL‖2∞
16e2‖cL‖22

,
1

16e2 log(216K/ε)

}
and

µ ≤ min

{
min

L⊆{1,...,S}

‖cL‖∞
4‖cL‖2

√
log(218K/ε)

,
1

4 log(218K/ε)

}
,

then OMP recovers the correct support with probability at least 1− ε.

Proof Set ‖Φ∗IΦI − I‖2,2 =: ϑI and assume that ϑI < 1/2. We start by expanding the
residual in step i

rJ = y − P (ΦJ)y = ΦIxI − P (ΦJ)ΦIxI = ΦI\JxI\J − ΦJ(Φ∗JΦJ)−1Φ∗JΦI\JxI\J

Set L := I \ J . By definition, OMP finds another correct atom in the next step if

‖Φ∗Ic(ΦLxL − ΦJ(Φ∗JΦJ)−1Φ∗JΦLxL)‖∞ < ‖Φ∗L(ΦLxL − ΦJ(Φ∗JΦJ)−1Φ∗JΦLxL)‖∞, (6)

i.e. the inner products with the residual of the remaining atoms in the support are bigger
than the inner products with the residual of atoms outside the support. Writing this
differently, we get the sufficient condition

‖Φ∗IcΦLxL‖∞ + ‖Φ∗IcΦJ(Φ∗JΦJ)−1Φ∗JΦLxL‖∞
< ‖xL‖∞ − ‖(Φ∗LΦL − I)xL‖∞ − ‖Φ∗LΦJ(Φ∗JΦJ)−1Φ∗JΦLxL‖∞,

12



Note that

max {‖Φ∗IcΦL‖∞,2, ‖Φ∗IcΦJ‖∞,2, ‖Φ∗LΦL − I‖∞,2, ‖Φ∗LΦJ‖∞,2} ≤ ‖HI‖∞,2.

So OMP works if

2‖HI‖∞,2‖xL‖2 + 2‖HI‖∞,2‖(Φ∗JΦJ)−1‖2,2‖Φ∗JΦL‖2,2‖xL‖2 < ‖xL‖∞, (7)

By properties of the operator norm we have ‖Φ∗JΦL‖2,2 ≤ ϑI and ‖(Φ∗JΦJ)−1‖2,2 ≤ 1
1−ϑI .

Plugging this into (7) we see that OMP will pick a correct atom in the next step, if

‖HI‖∞,2
(

2 + 2
ϑI

1− ϑI

)
<
‖xL‖∞
‖xL‖2

.

So on the set {ϑI < 1/2} the columns of ΦI are linearly independent and we need to have

‖HI‖∞,2 < min
L⊆{1,...,S}

‖cL‖∞
4‖cL‖2

=: γ for OMP to find the correct support. So by Corollary 4

and Lemma 6 we get

PS(‖Φ∗IcrJ‖∞ ≥ ‖Φ∗LrJ‖∞) ≤ PS(ϑI ≥ 1/2) + PS(‖HI‖∞,2 ≥ γ)

≤ 216K exp

(
−min

{
1

16e2‖HW‖2∞,2
,

1

4µ

})
+ 2K

(
e
‖HW‖2∞,2

γ2

) γ2

µ2

.

Owing to the conditions on µ and ‖HW‖∞,2 in the theorem, the right hand side does not
exceed ε.

Remark 12 Note that for coefficients ck ∼ αk we can always lower bound ‖cL‖∞/‖cL‖2 >√
1− α2. So in the case of uniformly distributed supports (pi = S/K) and a very incoherent

dictionary the conditions above reduce to

Sµ2 . 1− α2 and Sµ2 logK . 1,

which are essentially the same conditions recently derived in [18] for exactly sparse signals.
This is quite surprising, since this new proof is not only shorter but more importantly does
not assume random signs of the coefficients but only a random support.

4.3 BP

A very popular alternative to the above algorithms is the Basis Pursuit principle. Instead
of tackling the NP-hard problem of finding the sparsest solution with greedy methods, it
instead aims to solve the convex relaxation

x̂ = argmin ‖x‖1 s.t. y = Φx. (8)

The average case performance in the uniform case of this optimisation problem has been
extensively studied [22, 17, 4]. We give a short proof how these results can be transferred
to the non-uniform case.
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Theorem 13 Assume that the signals follow the model in (9), where the support I ⊆ K
is chosen according to the rejective sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S. Further let W denote the corresponding weight matrix. Assume that the
hollow Gram-matrix H = Φ∗Φ− I satisfies ‖WHW‖2,2 ≤ 1

4e2
. If

µ ≤ 1

4 log(220K/ε)
, and ‖HW‖2∞,2 ≤

1

16e2 log(220K/ε)
,

then BP recovers the correct coefficients with probability at least 1− ε.

Proof We use results for fixed supports such that `1 minimisation yields the exact solution
[21, 11]. Then we show that under the assumptions of the theorem these conditions are
satisfied with high probability.

Proposition 14 ([21, 11]) Assume y =
∑

i∈I φiciσi, for some I ⊂ {1, ..,K} with |I| = S.
If

‖Φ∗IcΦI(Φ
∗
IΦI)

−1σI‖∞ < 1,

then x is the unique solution to the l1-minimisation problem (8).

Now set M := Φ∗IcΦI(Φ
∗
IΦI)

−1 and ϑI := ‖Φ∗IΦI − I‖. As usual we note that

‖M‖∞,2 = ‖Φ∗IcΦI(Φ
∗
IΦI)

−1‖∞,2 ≤ ‖Φ∗IcΦI‖∞,2‖(Φ∗IΦI)
−1‖2,2 ≤ ‖HI‖∞,2

1

1− ϑI
.

Now Corollary 4 together with applying Hoeffding’s inequality to each entry ofMσ (Lemma 23)
and Lemma 6 yield

Py (‖Mσ‖∞ ≥ 1) ≤ Py (‖Mσ‖∞ ≥ 1 | ‖M‖∞,2 ≤ 2γ) + PS (ϑI ≥ 1/2) + PS(‖HI‖∞,2 ≥ γ)

≤ 2K exp

(
− 1

8γ2

)
+ 216K exp

(
−min

{
1

16e2‖HW‖2∞,2
,

1

4µ

})

+ 2K

(
e
‖HW‖2∞,2

γ2

) γ2

µ2

.

Setting γ2 = 1
8 log(220K/ε) we see that under the conditions of the Theorem, the failure

probability is bounded by ε.

To illustrate our results we conduct the following small experiment. We take the 2D Haar-
Wavelet decomposition of 1000 randomly chosen normalised patches yn of size 64× 64 from
the image Peppers before applying a threshold of

√
log(d)/d/6 for d = 642 on the coefficients

to get a sparse approximation. Counting how often each atom is used we get a proxy for
the probability of any atom being in the sparse support I Figure 2 (c-d). We denote by W
the corresponding weight matrix and by D the vectorised 2D Haar-Wavelet basis. Now we
are given two measurement matrices derived from subsampled vectorised 2D-DCT matrices
which we denote by A1 ∈ Rm×d and A2 ∈ Rm×d. The subsampling pattern is generated
by two different subsampling strategies - see Figure 2 (a-b). For our experiment we set
m = 512. We are tasked with solving the minimisation problem

x̂ = argmin ‖x‖1 s.t. Aiy = AiDx (9)
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Figure 2: (a) The K-space {(k1, k2) : −
√
K/2 + 1 ≤ k1, k2 ≤

√
K/2} with the frequencies

used for the measurement matrix A1 (a) and the measurement matrix A2 (b). (c)
Expectation of each atom to be in the support (blue) and average expectations for
comparison (red) on a log scale. (d) Locations of non-zero coefficients of patches
in the 2D-Haar Wavelet Basis.

and are given the choice between the two measurement matrices A1 and A2. Our re-
sults tell us that as long as the sparse supports of our signals follow the distribution
described by the weight matrix W , we should pick the sensing dictionary Ai that min-
imises the quantities µ, ‖HW‖∞,2 and ‖WHW‖2,2 (where H is the hollow Gram matrix
AiDD

∗A∗i − diag(AiDD
∗A∗i )). Looking at Table 1 columns 1-3 we see that for signals fol-

lowing the distribution specified by W , our results suggest A2 yields better performance.
To test the actual performance, we used BP to recover the coefficients xn from the set of

µ ‖HW‖∞,2 ‖WHW‖2,2 MSE

A1 0.89 3.80 2.80 0.18
A2 0.98 0.84 0.87 0.06

Table 1: The first line corresponds to the uniform subsampling strategy, the second line to
the variable density subsampling strategy.

incomplete measurements Aiyn = AiDxn. Note that the coefficients xn are not sparse, but
compressible. Looking at the mean squared error (MSE) 1

N

∑N
n=1 ‖yn −Dx̂n‖22 in Table 1,

we see that even though strictly speaking our theory does not apply here (as these signals
are not perfectly sparse) the quantities ‖HW‖∞,2 and ‖WHW‖2,2 seem to be good predic-
tors of average performance for signals where the sparse support (in this case of the biggest
entries) follows a distribution specified by a weight matrix W .

5. Sensing dictionaries and preconditioning

As an application of our results we construct a sensing dictionary to improve the average
performance of a dictionary for thresholding and OMP, given that we know the distribution
of supports. We then extend these ideas to BP via preconditioning.
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In the most general sense a sensing dictionary3 Ψ for a given dictionary Φ is a matrix of the
same size as Φ, whose columns satisfy 〈ψk, φk〉 = 1 for all k ∈ K. It can be used in greedy
algorithms to replace the original dictionary in the atom selection step. Sensing dictionaries
improving the worst case performance of OMP and thresholding were first characterised and
constructed in [20]. In [19] those ideas were generalised to construct sensing dictionaries that
improve the average performance. We extend these average case results to non-uniformly
distributed supports to see how the distribution interacts with the structure of the sensing
dictionary.
The main idea in thresholding and OMP is to determine which atoms to include in the
support by looking at the absolute inner products between the signal and the atoms. Using
a sensing dictionary changes this step in the thresholding algorithm to

find J = argmax|I|=S ‖Ψ∗Iy‖1 and

reconstruct xJ = P (ΦJ)y.

For OMP, similarly, the sensing dictionary comes into play when choosing the next atom to
add to the support while the residual update step stays the same. Initialising r0 = y and
J0 = ∅, for OMP with sensing dictionary Ψ one has to

find j = argmaxk |〈ψk, ri〉| and

update Ji+1 = Ji ∪ j resp. rJi+1 = y − P (ΦJi+1)y,

until a stopping criterion is met. Now we will show how to construct a sensing dictionary
given knowledge about the distribution of the supports.
Assuming that the distribution of our supports follows a Poisson or rejective sampling
model with known weight matrix W , Theorems 24 and 25 in the appendix show that a
sensing dictionary with good average case performance should ideally minimise ‖(Ψ∗Φ −
I)W‖∞,2. We now try to find Ψ such that this quantity is minimised under the constraint
that diag(Ψ∗Φ) = I. First note that the quantity ‖(Ψ∗Φ− I)W‖2∞,2 is bounded from above

by ‖(Ψ∗Φ− I)W‖2F . Minimising the Frobenius norm instead of the maximum row norm has
the big advantage that there exists an easy to find analytic solution. For ease of notation
let P := W 2. Following [19] we use Lagrangian multipliers and derive both the objective
and the constraint function along ψj to get

d

dψj
‖Ψ∗ΦW‖2F =

∑
i

2〈φi, ψj〉φipi = 2ΦPΦ∗ψj

d

dψj
〈φj , ψj〉 = φj .

So we see that for thresholding and OMP, the sensing dictionary should be set to

Ψ := (ΦPΦ∗)−1ΦD,

where D is a diagonal matrix s.t. 〈φi, ψi〉 = 1 for all i ∈ K. This compares nicely to the
result in [19], where they arrived at Ψ = (ΦΦ∗)−1ΦD for the special case pi = S/K. This

3. Note that strictly speaking Ψ 6= Φ is not actually a dictionary, as the columns are not normalised.
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shows how the distribution of coefficients changes the optimal sensing dictionary via the
diagonal matrix P . Figures 2 and 3 show how the performance of thresholding and OMP
improves when using sensing dictionaries for various dictionaries and distributions.
For BP it is not that simple to use a different sensing dictionary. Instead we use precondi-
tioning, multiplying the original dictionary by an invertible matrix from the left and by a
diagonal matrix from the right. Inspired by the heuristic argument above, we set

Ψ = (ΦPΦ∗)−1/2ΦD1/2,

where D is a diagonal matrix s.t. 〈ψi, ψi〉 = 1 for all i ∈ {1, . . . ,K}. We then change the
BP minimisation problem to

min ‖z‖1 such that ỹ = Ψz,

where ỹ = (ΦPΦ∗)−1/2y. This is equivalent to the original optimisation problem, as D is a
diagonal matrix with positive entries on its diagonal and (ΦPΦ∗)−1/2 is invertible.
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Figure 3: (a) Expectations of the Bernoulli random variables employed in our distribution
models. (b) The same plot with the relative frequency of the wavelet coefficients
from Figure 1 for comparison.

5.1 Numerical results

To test the performance of our sensing dictionaries and preconditioning, we conduct the
following experiment. We build 2 dictionaries, each with 256 atoms of dimension 128. The
columns of the first dictionary are drawn uniformly at random from the unit sphere and
the second dictionary is a uniformly subsampled Discrete Cosine Basis with subsequent
normalisation. We consider three different distribution models: quadratic, linear and step
- see Figure 3. For each distribution model and each support size between 1 and 80 we
construct 1000 signals by choosing the support according to the rejective sampling model
specified in Section 2. The sparse coefficients of x have absolute value one with random
signs, i.e. xi = ±1 with equal probability. We then compare how often thresholding,
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OMP and BP can recover the full support when using the original dictionary, the uniform
average case sensing dictionary (P = I SK ), and the distribution specific average case sensing
dictionary (or the preconditioned matrix for BP). The results for thresholding and OMP
are displayed in Table 2 and Table 3 respectively. Table 4 shows how the preconditioning
changes the recovery rates for BP. As can be seen, incorporating prior knowledge about the
distribution of supports into the algorithms improves performance quite significantly for all
3 algorithms.
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Table 2: The recovery rates for thresholding with different sensing dictionaries are plotted
on the y-axis and the size of sparse supports on the x-axis. Blue corresponds to no
sensing dictionary, red to the uniform average case sensing dictionary and orange
to the distribution specific average case sensing dictionary.

6. Discussion

In this paper we have derived concentration inequalities for norms of random subdictionaries
with non-uniformly distributed supports. This has allowed us to derive sufficient conditions
for sparse approximation algorithms to recover the correct support given that the support
of coefficients follows a rejective sampling or Poisson sampling model. We have shown that
recovery of signals depends on the structure of the cross-Gram matrix and the distribution
of supports, proving that more frequently used atoms should be more incoherent than less
frequently used ones. The generalisation from uniformly to non-uniformly distributed sup-
ports gives valuable insight into how, in a compressed sensing setup, measurement matrices
should be chosen or constructed. For both thresholding and OMP it was shown that using
sensing dictionaries that take the distribution of supports into account improves perfor-
mance. Using precondition to extend this argument to BP, it was also shown that prior
knowledge about the distribution leads to improved performance for BP as well.
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Our next goal is to use these results to prove convergence of dictionary learning algorithms
for signals where the atoms of the generating dictionary are not equally used - as seems to
happen in practice. Not only should this show that the more frequently used atoms con-
verge faster, but it should also give insights how to best estimate the size of the generating
dictionary.
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Table 3: The recovery rates for OMP with different sensing dictionaries are plotted on the
y-axis and the size of sparse supports on the x-axis. Blue corresponds to no sensing
dictionary, red to the uniform average case sensing dictionary and orange to the
distribution specific average case sensing dictionary.
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Table 4: The recovery rates for BP with different preconditioning strategies are plotted
on the y-axis and the size of sparse supports on the x-axis. Blue corresponds to
the original `1 minimisation problem, red corresponds to preconditioning in the
uniform case and orange corresponds to preconditioning with the correct weights.

Appendix A. Proof of Theorem 3

The proof follows the one that appeared in Chrétien and Darses [8] with some minor changes
to account for the non-uniformly distributed supports and the extension to non-symmetric
matrices. We start with an argument that lets us decouple the random variables selecting
the rows and columns. This is crucial for the application of concentration inequalities for
sums of independent random matrices later in the proof.

Proposition 15 Let H ∈ RK×K be some matrix. Assume I ⊆ K is chosen according to
the Poisson sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further let

W denote the corresponding weight matrix. Then, for all r ≥ 0

P (‖RHR‖ ≥ r) ≤ 36 P
(
‖RHR′‖ ≥ r/2

)
,

where R′ is an independent copy of R.

Proof Let ηi for 1 ≤ i ≤ K be a series of i.i.d. Rademacher random variables. We follow
the approach of Chrétien/Darses [8] and Tropp [23] who refer to Bourgain/Tzafriri [2] and
de la Peña/Giné [9]. We define

Z = Z(η, δ) :=
∑
i 6=j

(1− ηiηj)δiδj ~Hij .

Setting Y =
∑

i 6=j δiδj
~Hijηiηj , we can write

Z = RHR− Y.
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Recall the Hahn-Banach Theorem.

Theorem 16 (Hahn-Banach) Let X be a real vector space and p a sublinear functional
on X. Let f be a linear functional defined on a subspace A ⊂ X, and satisfying f(a) ≤ p(a)
for all a ∈ A. Then there exists a linear functional f̃ on X satisfying

f̃(a) = f(a) for all a ∈ A and

f̃(x) ≤ p(x) for all x ∈ X.

From now on we work conditional on a choice of I (i.e. we fix our sequence δi, therefore
the support set I and the entries of R are fixed as well). Denote by A = {λRHR | λ ∈ R}
the subspace generated by RHR and define a linear form f(λRHR) = λ‖RHR‖ on this
subspace. By definition we have f(a) ≤ ‖a‖ =: p(a) for all a ∈ A, where the properties of
the operator norm imply that p is a sublinear functional. Thus the Hahn-Banach Theorem
gives us the existence of a linear functional f̃ satisfying

f̃(RHR) = f(RHR) = ‖RHR‖

and
f̃(Z) ≤ ‖Z‖.

Using the linearity of f̃ and that Y is symmetric around 0 we get

Pη (‖Z‖ ≥ ‖RHR‖) = Pη
(
‖Z‖ ≥ f̃(RHR)

)
≥ Pη

(
f̃(Z) ≥ f̃(RHR)

)
= Pη

(
f̃(−Y ) + f̃(RHR) ≥ f̃(RHR)

)
= Pη

(
f̃(Y ) ≥ 0

)
,

where again by linearity of f̃ we have

f̃(Y ) =
∑
i 6=j
i,j∈I

f̃( ~Hij)ηiηj =
∑
i>j
i,j∈I

[
f̃( ~Hij) + f̃( ~Hji)

]
ηiηj .

So we see that f̃(Y ) is a homogeneous Rademacher chaos of order 2. For ease of notation
write ξ := f̃(Y ). As ξ is a centered real random variable we can write E[|ξ|] = 2E[ξIξ>0]
and a simple application of Hölders inequality yields

E[|ξ|]2 = 4E[ξIξ>0]2 ≤ 4P (ξ > 0)E[ξ2].

Write E[ξ2] = E[ξ2/3ξ4/3] and apply Hölders inequality again with p = 3
2 and q = 3 to get

E[ξ2] ≤ E[|ξ|]
2
3E[ξ4]

1
3 .

Putting the above together we arrive at

P(ξ > 0) ≥ 1

4

E[|ξ|]2

E[ξ2]
≥ 1

4

E[ξ2]2

E[ξ4]
.
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Since ξ is a homogeneous Rademacher chaos of order 2 we can apply Lemma 2.1 of Chrétien
and Darses [8], which states

E[ξ2]2

E[ξ4]
≥ 1

9
.

So

Pη (‖Z‖ ≥ ‖RHR‖) ≥ 1

36
.

Multiplying both sides with I{‖RHR‖≥r} and taking the expectation w.r.t. to I we get

P(‖RHR‖ ≥ r) ≤ 36 P(‖Z‖ ≥ r).

Now by the same argument as in Tropp [23], Proposition 2.1 there exists a η̄ ∈ {−1, 1}K
s.t.

P (‖Z‖ ≥ r) = E
[
E
(
I{‖Z(η,δ)‖≥r}

∣∣ η)] ≤ E
(
I{‖Z(η̄,δ)‖≥r}

)
= P (‖Z(η̄, δ)‖ ≥ r) .

Setting T = {i : η̄i = 1}, we see by the definition of Z

Z(η̄, δ) = 2
∑

j∈T,k∈T c
δjδk ~Hjk + 2

∑
j∈T c,k∈T

δjδk ~Hjk = 2
∑

j∈T,k∈T c
δjδk( ~Hjk + ~Hkj).

Now we can do the decoupling. As δi for i ∈ T are independent from δj for j ∈ T c we can
replace δj for j ∈ T c with δ′ which is an independent copy of δ. Thus

P (‖Z‖ ≥ r) ≤ P

‖ ∑
j∈T,k∈T c

δjδ
′
k(
~Hjk + ~Hkj)‖ ≥ r/2

 ,

Note that (after reordering) this matrix is of the form

(
0 A
B 0

)
, where A corresponds

to
∑

j∈T,k∈T c δjδ
′
k
~Hjk and B to

∑
j∈T,k∈T c δjδ

′
k
~Hkj . The operator norm of this reordered

matrix satisfies ∥∥∥∥( 0 A
B 0

)∥∥∥∥2

=

∥∥∥∥(B∗B 0
0 A∗A

)∥∥∥∥ = max{‖A‖2, ‖B‖2}.

As the spectral norm of a submatrix is always less than or equal to the spectral norm of
the whole matrix we get by reintroducing the missing entries

P(‖Z‖ ≥ r) ≤ P(‖RHR′‖ ≥ r/2).

Putting everything together yields the desired result.

Now we are in a position to apply concentration inequalities for sums of independent random
matrices. For that recall the Matrix Chernoff inequality, which can be found in [24].
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Theorem 17 (Matrix Chernoff inequality [24]) Let X1, ..., XK be independent, sym-
metric and positive semi-definite random matrices taking values in Rd×d. Now let B,m > 0
and assume that for all 1 ≤ k ≤ K

‖Xk‖ ≤ B and ‖
K∑
k=1

EXk‖ ≤ m.

Then, for all t > 0

P

(
‖

K∑
k=1

Xk‖ ≥ t

)
≤ d

(em
t

)t/B
.

Now we are going to derive a bound on P (‖RHR′‖ ≥ r) by applying the Matrix Chernoff
inequality 3 times. We first use the randomness of R′ while holding R fixed, then we bound
the two resulting terms involving R. This leads to the following result

Lemma 18 Let H ∈ RK×K be some matrix. Assume I, I ′ ⊆ K - leading to the selec-
tor matrices R,R′ - are chosen according to the Poisson sampling model with probabilities
p1, . . . , pK such that

∑K
i=1 pi = S. Further let W denote the corresponding weight matrix.

Then, for all r > 0

P
(
‖RHR′‖ ≥ r

)
≤ K

(
e
u2

r2

) r2

v2

+K

(
e
‖WHW‖2

u2

) u2

‖HW‖2∞,2
+K

(
e
‖WH‖22,1

v2

) v2

µ2

. (10)

We begin by bounding P (‖RHR′‖ ≥ r).

Lemma 19 Let H ∈ RK×K be some matrix. Assume I ′ ⊆ K - leading to the selector
matrix R′ - is chosen according to the Poisson sampling model with probabilities p1, . . . , pK
such that

∑K
i=1 pi = S. Further let W denote the corresponding weight matrix. Then, for

all r > 0

P
(
‖RHR′‖ ≥ r

)
≤ K

(
e
‖RHW‖2

r2

) r2

‖RH‖22,1
.

Proof Using that for any matrix A, ‖AA∗‖ = ‖A∗A‖ = ‖A‖2 we see

P
(
‖RHR′‖ > r

)
= P

(
‖RHR′‖2 > r2

)
= P

(
‖RHR′H∗R‖ > r2

)
.

Denoting by Zj the j-th column of RH, we get

RHR′H∗R =

K∑
j=1

δ′jZjZ
∗
j . (11)

Then we have ‖ZjZ∗j ‖ = ‖Zj‖22 ≤ ‖RH‖22,1 and

‖
K∑
j=1

E[δ′jZjZ
∗
j ]‖ = ‖

K∑
j=1

pjZjZ
∗
j ‖ = ‖RHWWH∗R‖ = ‖RHW‖2.
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As the right hand side of (11) is a sum of independent random variables, an application of
the Matrix Chernoff inequality yields the result.

Now we turn to bounding the two quantities ‖RHW‖ and ‖RH‖2,1 by the same argument
as above.

Lemma 20 Let H ∈ RK×K be some matrix. Assume I ⊆ K is chosen according to the
Poisson sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further let W

denote the corresponding weight matrix. Then, for all u > 0

P (‖RHW‖ > u) ≤ K
(
e
‖WHW‖2

u2

) u2

‖HW‖2∞,2
.

Proof Again using that for any matrix A, ‖AA∗‖ = ‖A∗A‖ = ‖A‖2 we see

P (‖RHW‖ > u) = P
(
‖RHW‖2 > u2

)
= P

(
‖WH∗RHW‖ > u2

)
.

Now denote by Yj the j-th row of HW then we get

WH∗RHW =

K∑
j=1

δjY
∗
j Yj . (12)

We have ‖Y ∗j Yj‖ = ‖Yj‖22 ≤ ‖HW‖2∞,2 and

‖
K∑
j=1

E[δjY
∗
j Yj ]‖ = ‖

K∑
j=1

pjY
∗
j Yj‖ = ‖WH∗ diag((pk)k)HW‖ = ‖WHW‖2.

As the right hand side of (12) is a sum of independent random variables, an application of
the Matrix Chernoff inequality yields the result.

We now restate and prove Lemma 6 for the Poisson sampling model. Note that by definition
‖RH∗‖2,1 = ‖HR‖∞,2 = ‖HI‖∞,2. Recall that by Lemma 7

PS (‖HI‖∞,2 ≥ v) ≤ 2 P (‖HI‖∞,2 ≥ v) ,

so this result translates immediately to the rejective sampling model.

Lemma 21 Let H ∈ Rd×K be some matrix. Assume I ⊆ K is chosen according to the
Poisson sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further let W

denote the corresponding weight matrix. Then, for all v > 0

P (‖HI‖∞,2 ≥ v) ≤ d

(
e
‖HW‖2∞,2

v2

) v2

µ2

.

Proof We begin by writing ‖HI‖ as the maximum of a sum of independent random
variables

‖HI‖2∞,2 = max
i∈{1,...,d}

K∑
j=1

δjH
2
ij .
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Now we fix i ∈ {1, .., d} and apply the standard Chernoff inequality

P

 K∑
j=1

δjH
2
ji ≥ v2

 ≤ (e‖HW‖2∞,2
v2

) v2

µ2

.

Taking a union bound yields the result.

Finally we can put everything together and prove our main result. The main difficulty lies
in picking v and u such as to minimise the probability bound in (10).

Proof [Theorem 3] Set

α := min

{
r2

4e2‖WH‖22,1
,

r2

4e2‖HW‖2∞,2
,
r

2µ

}
v2 :=

r2

4α
u2 :=

r2

4e2
.

Now these definitions and the assumption r2 ≥ 4e4‖WHW‖2 imply the following 6 inequal-
ities

u2

‖HW‖2∞,2
=

r2

4e2‖HW‖2∞,2
≥ α e

‖WHW‖2

u2
=

4e3‖WHW‖2

r2
≤ e−1

v2

µ2
=

r2

4αµ2
≥ α e

‖WH‖22,1
v2

=
4e‖WH‖22,1α

r2
≤ e−1

r2

4v2
=

4r2α

4r2
= α e

4u2

r2
=

4er2

4e2r2
= e−1.

So

PS (‖RHR‖ ≥ r) ≤ 2P (‖RHR‖ ≥ r) ≤ 72P
(
‖RHR′‖ ≥ r/2

)
,

together with

P
(
‖RHR′‖ ≥ r

)
≤K

(e4u2

r2

) r2

4v2

+

(
e
‖WHW‖2

u2

) u2

‖HW‖2∞,2
+

(
e
‖WH‖22,1

v2

) v2

µ2


shows that

PS (‖RHR‖ ≥ r) ≤ 216Ke−α.

Remark 22 In the published version of Chrétien and Darses [8] there is a tiny bug in the
proof of Proposition 4.2 in the way the variables u and v are balanced. In particular, for
very small µ, inequality 4.17 may be violated. v2 should instead be defined via an equality
in 4.15, whereas 4.14 should be an inequality.

For convenience we restate an easy consequence of Hoeffding’s inequality.
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Lemma 23 (Hoeffding) Let M ∈ RK×S be a matrix and x ∈ RS such that sign(x) ∈ RS
is an independent Rademacher sequence. Then, for all t ≥ 0

P (‖Mx‖∞ ≥ t) ≤ 2K exp

(
− t2

2‖M‖2∞,2‖x‖2∞

)
.

Proof We apply Hoeffding’s inequality to the k-th entry of Mx, which yields

P
(
|
∑

jMkjxj | ≥ t
)
≤ 2 exp

(
− t2

2
∑

jM
2
kjx

2
j

)
≤ 2 exp

(
− t2

2‖x‖2∞‖Mk‖22

)
.

The statement follows using a union bound and the identity ‖M‖∞,2 = maxk ‖Mk‖2.

Appendix B. Sensing matrices

Lemma 24 (Thresholding with sensing matrix) Assume that the signals follow the
model in (9), where the support I ⊆ K is chosen according to the rejective sampling model
with probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further let W denote the corresponding

weight matrix and denote by H := Ψ∗Φ− I the hollow cross-Gram matrix. If

‖H‖2∞,1 ≤
‖c‖2min

8‖c‖2max log(4K/ε)
, and ‖HW‖2∞,2 ≤

‖c‖2min

8e2‖c‖2max log(4K/ε)
,

then thresholding with sensing dictionary Ψ recovers the support with probability at least
1− ε.

Proof Now by definition of the algorithm, thresholding recovers the full support if

‖Ψ∗Icy‖max < ‖Ψ∗Iy‖min.

Repeating the steps from the proof of Theorem 10 with the obvious changes we obtain the
result.

Lemma 25 (OMP with sensing matrix) Assume that the signals follow the model in
(9), where the support I ⊆ K is chosen according to the rejective sampling model with
probabilities p1, . . . , pK such that

∑K
i=1 pi = S. Further let W denote the corresponding

weight matrix. Let Ψ be a sensing matrix and assume the hollow Gram-matrix H = Φ∗Φ− I
satisfies ‖WHW‖2,2 ≤ 1

4e2
. If

‖HW‖2∞,2 ≤
1

16e2 log(216K/ε)

‖H‖∞,1 ≤
1

4 log(218K/ε)

‖(Ψ∗Φ− I)W‖2∞,2 ≤ min
L⊆{1,...,S}

‖cL‖2∞
16e2‖cL‖22

‖Ψ∗Φ− I‖∞,1 ≤ min
L⊆{1,...,S}

‖cL‖∞
4‖cL‖2

√
log(218K/ε)

,
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then OMP with sensing matrix Ψ recovers the correct support with probability at least 1− ε.

Proof Set L := I \ J . By definition, OMP finds another correct atom in the next step if

‖Ψ∗Ic(ΦLxL − ΦJ(Φ∗JΦJ)−1Φ∗JΦLxL)‖∞ < ‖Ψ∗L(ΦLxL − ΦJ(Φ∗JΦJ)−1Φ∗JΦLxL)‖∞.

Repeating the steps from the proof of Theorem 11 with the obvious changes we obtain the
result.
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