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I. INTRODUCTION

Since Olshausen and Field, [1], MOD, [2] and K-SVD, [3] a lot of
research has been invested in the development of dictionary learning
algorithms. Most proposed algorithms naturally display modular
structure and have numerous parameters that need to be chosen
such as dictionary size and sparsity level. A popular technique for
dictionary learning is alternating optimization, which updates the
dictionary atoms and the sparse representations alternatively while
the other is fixed. Due to the complexity of the learning problem, over
time numerous dictionary update rules and, independently from the
dictionary learning problem, sparse approximation algorithms have
been developed without a clearly superior solution for all learning
scenarios. This leads to choice overload.

As such, it is becoming increasingly hard to decide which choices
are good, because in many instances researchers compare apples
and oranges, for example: different dictionary sizes (comparing to
a K-SVD dictionary with redundancy 4, as done in the original
paper, to a basis), not removing the mean of the data (which for
sure works better on some data), and replacing modules (mostly in
K-SVD) without regard to the trade-off between computational cost
and precision, e.g. from a numerical perspective, it is not always
clear where the computational bottleneck lies: for example, in
K-SVD, replacing the SVD update with a power iteration improves
the running time since SVDs are more expensive but it is actually
Orthogonal Matching Pursuit (OMP) that dominates the complexity
of the algorithm. On the other hand, replacing OMP with mixed
integer programming for increased precision is like dropping an
atomic bomb on a flea.

II. AN ADAPTIVE DICTIONARY LEARNING TOOLBOX

It is high time to provide a toolbox that makes everything compara-
ble, to see which parts of newly proposed dictionary learning methods
are faster, more accurate, etc. Our focus is on batch alternating
optimization algorithms (sparse coding step alternates with dictionary
update step) but it will be possible to integrate any algorithm into
the proposed framework. The main features of the toolbox are:

• A plug-and-play system for the dictionary update and sparse
approximation steps:

– sparse coding algorithms: OMP (with various stopping
criteria), thresholding, Hard Thresholding Pursuit (HTP),
Adaptive Pursuit (AP) a mix of OMP and HTP algorithms
designed for increased speed and without the need of the
sparsity level as input.

– classic dictionary update routines: Olshausen-Field, MAP,
MOD, SVD, ITKrM and structured dictionary update rules.

– several dictionary initialization techniques.
Therefore, the toolbox is able to reproduce the most popular
dictionary learning algorithms and allows programmers to easily
test new ideas to improve them.

• Inspired by [4], [5] we also provide the possibility to make
all the above algorithms dictionary size adaptive. To this
end, we include several routines to remove and train replace-
ment/additional atoms.

• For fixed-sized dictionaries, adaptive identification, and update
of atoms that perform badly.

• Adaptive sparsity for the whole dataset and for data item
separately (of course dependent on the algorithm used in the
sparse approximation step).

• Learning with coherence constraints on the dictionary.
• Synthetic dataset generation and recovery (to evaluate the re-

covery rate of a particular dictionary learning algorithm).
Some algorithms might have a sequential (or online) implementa-

tion (for example, ITKrM or power iteration K-SVD) since this is
a MATLAB toolbox, we decided against sequential implementations
and always use batch processing of the dataset.

The proposed toolbox addresses two communities:
1) The dictionary learning community for which we hope to

provide a framework where new ideas can be easily developed
and tested, with an eye towards reproducibility.

2) General researchers who want to use dictionary learning tech-
niques in their applications for which we hope to provide a
toolkit that includes advanced learning methods (beyond just
the alternating optimization steps) in a relatively simple way.

III. RESULTS AND CONCLUSIONS

We provide experimental results in the figures below, combining
several dictionary update rules and sparse approximation algorithms
together with adaptive sparsity and dictionary size selection.

For the future, we hope that other dictionary learning researchers
will contribute their ideas and source code to the toolbox and use it
to compare against previous approaches.

Our immediate goal is to also clone the toolbox for the python
programming language. All implementations are publicly available on
the GitHub page https://github.com/cristian-rusu-research/adl-toolbox
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Fig. 1. Learning dictionaries on synthetic data, consisting of 10000 signals
that are 6-sparse with respect to a dictionary of 192 randomly chosen atoms
from the DCT and Dirac bases in R128. Each algorithm runs for 50 iterations,
either not replacing atoms, replacing coherent atoms µ > 0.7 or additionally
atoms that are used less than 50 times. The sparse coding step uses either
thresholding or OMP, and the dictionary update step uses K SVDs or K
residual means. Replacement atoms are produced by learning a dictionary of
6 atoms with sparsity one via K-SVD/KRM on the residuals. An atom is
considered recovered if has inner product > 0.99 with a learned atom.
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Fig. 2. In a set-up similar to 1 but sparsity varying between 4 and 8 we learn
the dictionaries adaptively starting with initial size d and initial sparsity 1. The
sparse approximation routines are slightly modified versions of thresholding
and OMP. Coherent and unused atoms are pruned, and promising candidate
atoms added. All routines recover the correct dictionary and size.

Fig. 3. Atoms from learning dictionaries on image data, consisting of 62001
patches from the mandrill image that are 3-sparse with respect to a dictionary
of size 64. Training is done with four algorithms: KRM & thresholding (upper
left), KRM & OMP (upper right), SVD & thresholding (lower right) and SVD
& OMP (i.e., K-SVD in the lower left). All algorithms run for 50 iterations,
replacing coherent atoms µ > 0.7 and unused atoms.

Fig. 4. Analogous to Figure 3 but for the peppers image.

Fig. 5. Atoms from learning dictionaries on image data: mandrill (top) and
peppers (bottom). Two algorithms used are KRM + adaptive pursuit (left)
and K-SVD (right). Each algorithm runs for 60 iterations, replacing coherent
atoms µ > 0.7, using adaptive sparsity and dictionary size following ideas
from [4], [5]. Average sparsity is: 3.3 for mandrill with KRM & AP, 1.9 for
mandrill with K-SVD; 5.1 for peppers with KRM & AP, 3.2 for peppers with
K-SVD.
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Fig. 6. Atom scores for the first 30 atoms of each of the four dictionaries in
Figure 5, sorted decreasing. The scores are normalized squared sums of the
coefficients used by the atoms in the sparse representations.


