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Abstract

One of the key findings on which many signal processing tasks are built is that even
high-dimensional signals admit some kind of sparse representation in a suitable gener-
ator system. This means, given such a system, called a dictionary, a given signal can
be approximated by a linear combination of only a few of these dictionary elements.
In this thesis we have a closer look at algorithms for learning dictionaries from data,
algorithms for the sparse approximation of signals as well as their use in real-world
applications.
In the first part of this thesis we study the contractive behaviour of dictionary learning
via the Iterative Thresholding and K residual Means (ITKrM) algorithm. In partic-
ular, we show that ITKrM is a contraction under much more relaxed conditions than
previously thought necessary and further analyse situations in which ITKrM does not
recover the signal generating dictionary. Based on the insights gained, we develop a
replacement strategy that allows ITKrM to escape from spurious fixed points towards
the generating dictionary. Further, we introduce a strategy to learn dictionaries with-
out the knowledge of the sparsity level and the dictionary size, leading to an adaptive
version of ITKrM.
In the second part of this thesis we present an application where we use dictionary
learning and sparse approximation algorithms for the reconstruction of highly under-
sampled MR images. In several experiments we show the competitiveness and advan-
tages of the adaptive version of ITKrM compared to other well-established methods.
We also conduct experiments to show the importance of the adaptive choice of the
sparsity level and the dictionary size.
The last part of this thesis is devoted to the question how sparse approximation algo-
rithms perform in situations where the given dictionary is not the same as the signal
generating dictionary but a perturbed version of it. This occurs for example when
they are used within dictionary learning algorithms. For that, we provide average
case results for one specific sparse approximation algorithm - Orthogonal Matching
Pursuit (OMP) - in the presence of perturbations of the generating dictionary and
compare them with results obtained for thresholding, a computationally much lighter
and simpler sparse approximation algorithm.
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Chapter 1

Introduction

The title of this thesis is Dictionary Learning & Sparse Modelling and therefore we
want to start with a short explanation what dictionaries and sparsity are, why they are
useful and the difficulties which may arise. In dictionary learning and sparse modelling
we always work with signals, this means, vectors in some d-dimensional vector space.
The concept which lays the foundation for dictionary learning and sparse modelling
is sparsity. A vector or a matrix is called sparse if most of its entries are zero, and
approximately sparse if most of its entries are very small. Sparse vectors (or matrices)
are very important as they are easy to store and to compute with. For example, if we
want to store a vector y ∈ Rd or a matrix M ∈ Rm×n, we normally have to remember
d resp. mn numbers. However, if they are sparse with S � d, (mn) non-zero entries,
we only have to remember the non-zero components and their location, meaning 2S
numbers. Similarly if we want to calculate with sparse vectors or matrices, we only
have to perform operations between the non-zero components of the one with the
other. This significantly reduces the number of calculations.
From this we see that sparsity is a great property. However, it seems to be too re-
strictive to be useful. Vectors or matrices are in general not sparse or can be sparsely
represented (or approximated) in some orthonormal basis, meaning, can be written
as a linear combination of only few of these basis elements. Even if we remove the
requirements for orthogonality and consider any kind of basis, the concept of sparsity
still seems to be too restrictive as there are not many classes of signals which are
(approximately) sparse in such a basis. An example are images, which can be sparsely
approximated in a wavelet basis. This means, if we want to store a lot of images yn,
knowing their sparse representation in such a basis Φ, we only have to store the non-
zero coefficients and Φ. If the images are needed, they can be quickly reconstructed
by multiplying the sparse coefficient vectors xn with Φ, meaning yn = Φxn. This is
for example used in the jpeg data compression standard.
However, for many classes of signals we in general do not have a basis in which they
are sparse or approximately sparse. For that, we need something more general which
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2 CHAPTER 1. INTRODUCTION

is then called a dictionary. In case of having a class of d-dimensional signals which
we want to sparsely approximate, a dictionary corresponds to a d×K matrix Φ with
normalised columns, also referred to as atoms, and K ≥ d (or at least K ≥ rank(Φ)).
Following the rule - the sparser the better - we often have K � d since very sparse
representations become more likely if we have more elements to build a signal. Such
dictionaries are in general called overcomplete dictionaries, but since in this thesis we
are mainly interested in the overcomplete case with K > d, we refer to them simply
as dictionaries. The advantage of being able to better sparsely approximate signals
however, comes with the drawback that these representations are not unique. This
means, for each signal there exists more than one sparse representation in the dictio-
nary and among these we want to find the sparsest one. Solving such problems is very
difficult, even in the case where the dictionary forms a basis. For that, a lot of sparse
approximation algorithms have been introduced as for example (O)MP ((Orthogo-
nal) Matching Pursuit), BP (Basis Pursuit) or HTP (Hard Thresholding Pursuit), to
name just a few. An assumption that all these algorithms have in common is that
the sparsity providing dictionary is given. Such dictionaries can either be obtained
by a careful analysis of the given data class, or even more efficiently, they can also
be learned from data. The latter approach is called dictionary learning. Also for this
problem there exist a lot of algorithms to choose from, as for example K-SVD (K
Singular Value Decomposition), MOD (Method of Orthogonal Directions) or ITKrM
(Iterative Thresholding and K residual Means).
Much research has been done in the direction of algorithmic development and also
theoretical results have started to accumulate. Theoretical identification results are
very important as they are needed to quantify the conditions on the dictionary, the
coefficient model that generates the sparse signals and also the number of training sig-
nals needed for these algorithms to be successful. In this thesis, in Chapter 3, we will
extend some existing recovery results for ITKrM and show that it behaves well under
much more relaxed conditions than previously thought. Based on the insights gained
there, in Chapter 4 we will introduce a strategy to further improve the convergence
behaviour of ITKrM and to automatically choose the sparsity level and the dictionary
size, which are needed to be given as input parameter to the algorithm.
Beside developing algorithms and analysing their theoretical performance, a lot of re-
search has been done in the direction of how sparsity can be exploited for efficient
data processing. For example, it has been shown that sparse signals are very robust to
noise or corruption. Thus, by modelling signals as sparse linear combinations of some
dictionary elements they can be easily denoised or restored from incomplete informa-
tion. In Chapter 5 we will show an application where we use dictionary learning and
sparse approximation algorithms for the reconstruction of MR (Magnetic Resonance)
images from highly undersampled data.
Sparse approximation algorithms have not only been shown to work very well in prac-
tice but there exists also a substantial amount of theory concerning the analysis of
their worst case or average case performance. The only drawback of most of these
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results is that they are based on the assumption that the signal generating dictionary
is given. However, this may not hold true in all applications. For instance, sparse
approximation algorithms are used within dictionary learning algorithms where (espe-
cially in the first iterations) the learned dictionary can be completely different from the
signal generating dictionary. In particular, in Chapter 5 we will see that K-SVD and
ITKrM produce comparable results. However, this seems quite surprising as K-SVD
uses the more sophisticated sparse approximation algorithm OMP whereas ITKrM
uses only simple thresholding. Therefore, in Chapter 6, we will analyse the average
performance of OMP in case where we do not have the signal generating dictionary
but only a perturbed version of it. We will also compare the results obtained for OMP
with those obtained for thresholding.

1.1 Outline

This thesis is structured as follows. In Chapter 2 we describe the concepts of dictionary
learning, sparse representations and approximations in more detail. We also introduce
the main algorithms which are used in this thesis, meaning, ITKrM, K-SVD, OMP as
well as the thresholding algorithm and discuss some related problems.

Chapter 3 studies the contractive behaviour of the ITKrM algorithm. After intro-
ducing and discussing some existing results, we provide a refined contraction theorem.
In particular, we show that one iteration of ITKrM is a contraction under much more
relaxed conditions than previously thought necessary.

In Chapter 4 we analyse situations in which ITKrM does not recover the generat-
ing dictionary. This will show us that there seem to exist stable fixed points which
are not equivalent to the generating dictionary and have some very special structure.
Based on an analysis of the residuals at these spurious fixed points, we develop a re-
placement strategy that allows ITKrM to escape towards the generating dictionary.
With the help of the candidate atoms used for replacement we further introduce a
strategy for the automatic choice of the sparsity level S and the dictionary size K,
meaning, where S and K are adaptively chosen dependent on the data under consid-
eration.

In Chapter 5 we present an application of dictionary learning and sparse approximation
algorithms for the reconstruction of highly undersampled MR images. For dictionary
learning we use the adaptive version of the ITKrM algorithm and propose an adap-
tive version of OMP, which we use for sparse coding. In various experiments we show
their competitiveness and advantages against K-SVD+OMP as well as ITKrM+OMP.
Compared to these methods, we show that the adaptive algorithms are significantly
faster and at the same time highly facilitate the application in the clinical routine.
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In Chapter 6 we analyse the average case performance of OMP in presence of per-
turbations of the generating dictionary. In particular, we provide conditions ensuring
(partial-) support recovery for noiseless as well as noisy signals in case where the given
input dictionary is not the signal generating dictionary itself but a perturbed version
of it. We also compare the results obtained for OMP with those obtained for simple
thresholding. The theoretical bounds are then illustrated by various numerical exper-
iments.

In Chapter 7 we summarise and discuss the results of this thesis and point out further
directions of research.

1.2 Notations

Before we start, we have to introduce some notations and definitions. In the following,
usually subscripted letters will denote vectors with the exception of ε, α, ω, γ, λ, where
they are numbers. For instance xn ∈ RK vs. εk ∈ R, however, it should always be
clear from the context what we are dealing with. For a vector v ∈ Rd and 1 ≤ p <∞,
we denote its p-norm by

‖v‖p =
( d∑
i=1

|vi|p
) 1
p

and for its maximum norm we write ‖v‖∞ = maxi=1,...,d |vi|. Similarly, for a matrix
M = (mij)i,j ∈ Rd×n we define the maximum p-norm of a column of M as

‖M‖1,p = max
j=1,...,n

( d∑
i=1

|mij|p
) 1
p

as well as for p =∞, ‖M‖1,∞ = maxi,j |mij|. We denote its operator norm by ‖M‖2,2 =
max‖x‖2=1 ‖Mx‖2 and its Frobenius norm by ‖M‖F = tr(M?M)1/2. Remember that
we have ‖M‖2,2 ≤ ‖M‖F . For the matrix M we denote its (conjugate) transpose by
M? and its Moore-Penrose pseudo-inverse by M †.
We consider a dictionary Φ, a collection of K unit norm vectors φk ∈ Rd, ‖φk‖2 = 1.
By abuse of notation we will also refer to the d × K matrix collecting the atoms as
its columns as the dictionary, that is, Φ = (φ1, . . . φK). The maximal absolute inner
product between two different atoms is called the coherence µ(Φ) of a dictionary,
µ(Φ) = maxk 6=j |〈φk, φj〉|.
By ΦI we denote the restriction of the dictionary to the atoms indexed by I, that is,
ΦI = (φi1 , . . . , φiS), ij ∈ I, and by P (ΦI) the orthogonal projection onto the span of

the atoms indexed by I, that is, P (ΦI) = ΦIΦ
†
I . Note that in case the atoms indexed

by I are linearly independent we have Φ†I = (Φ?
IΦI)

−1Φ?
I . We also define Q(ΦI) to be
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the orthogonal projection onto the orthogonal complement of the span of ΦI , that is,
Q(ΦI) = Id − P (ΦI), where Id is the identity operator (matrix) in Rd.
(Ab)using the language of compressed sensing we define δI(Φ) as the smallest number
such that all eigenvalues of Φ?

IΦI are included in [1−δI(Φ), 1+δI(Φ)] and the isometry
constant δS(Φ) of the dictionary as δS(Φ) := max|I|≤S δI(Φ). When clear from the
context we will usually omit the reference to the dictionary. For more details on
isometry constants see for instance [11].
For a (sparse) signal y =

∑
k φkxk we will refer to the indices of the S coefficients with

largest absolute magnitude as the S-support of y. Again, we will omit the reference
to the sparsity level S if clear from the context.
To keep the sub(sub)scripts under control we denote the indicator function of a
set V by χ(V , ·), that is χ(V , v) is one if v ∈ V and zero else. The set of the first S
integers we abbreviate by S = {1, . . . , S}.
We define the distance of a dictionary Ψ to a dictionary Φ as

d(Φ,Ψ) := max
k

min
`
‖φk ± ψ`‖2 = max

k
min
`

√
2− 2|〈φk, ψ`〉|. (1.1)

Note that this distance is not a metric since it is not symmetric. For example, if Φ
is the canonical basis and Ψ is defined by ψi = φi for i ≥ 3, ψ1 = (e1 + e2)/

√
2, and

ψ2 =
∑

i φ1/
√
d then we have d(Φ,Ψ) = 1/

√
2 while d(Ψ,Φ) =

√
2− 2/

√
d. The

advantage is that this distance is well defined also for dictionaries of different sizes. A
symmetric distance between two dictionaries Φ,Ψ of the same size could be defined
as the maximal distance between two corresponding atoms, that is,

ds(Φ,Ψ) := min
p∈P

max
k
‖φk ± ψp(k)‖2, (1.2)

where P is the set of permutations of {1, . . . , K}. The distances are equivalent when-
ever there exists a permutation p such that after rearrangement, the cross-Gram ma-
trix Φ?Ψ is diagonally dominant, that is, mink |〈φk, ψk〉| > maxk 6=j |〈φk, ψj〉|. Since
the main assumption for our results will be such a diagonal dominance we will state
them in terms of the easier to calculate asymmetric distance and assume that Ψ is
already signed and rearranged in a way that d(Φ,Ψ) = maxk ‖φk − ψk‖2. We then
use the abbreviations αmin = mink |〈φk, ψk〉| and αmax = maxk |〈φk, ψk〉|. The maxi-
mal absolute inner product between two non-corresponding atoms will be called the
cross-coherence µ(Φ,Ψ) of the two dictionaries, µ(Φ,Ψ) = maxk 6=j |〈φk, ψj〉|.
We will also use the following decomposition of a dictionary Ψ into a given dictionary
Φ and a perturbation dictionary Z. If d(Ψ,Φ) = ε we set ‖ψk − φk‖2 = εk, where by
definition maxk εk = ε. We can then find unit vectors zk with 〈φk, zk〉 = 0 such that

ψk = αkφk + ωkzk, for αk := 1− ε2
k/2 and ωk := (ε2

k − ε4
k/4)

1
2 . (1.3)

Note that if the cross-Gram matrix Φ?Ψ is diagonally dominant we have αmin =
mink αk, αmax = maxk αk and d(Ψ,Φ) =

√
2− 2αmin.





Chapter 2

Dictionaries and Sparsity

In this chapter we describe the concepts of dictionary learning, sparse signal represen-
tations and approximations in more detail. We also give a brief introduction to the
main algorithms used in this thesis.

As already mentioned in the introduction, one way to handle high-dimensional data is
by using the concept of sparsity. In particular, having a sparse representation of the
signals of interest can be immensely practical as this significantly reduces the dimen-
sionality of the signals. This not only reduces the number of values to be stored and
calculations to be performed but also allows us to extract important features. A lot of
signal processing tasks such as denoising [19], or data reconstruction from incomplete
information [42, 47], can be efficiently performed when having a sparse representation
or approximation of the signals of interest.
In concrete terms this means, given a dictionary Φ = (φ1, . . . , φK) ∈ Rd×K with nor-
malised columns, ‖φk‖2 = 1, a signal y ∈ Rd has a S-sparse representation in Φ, or is
called S-sparse in Φ, if there exists some index set I with |I| = S � d, such that we
can write

y =
∑
i∈I

φixi = ΦIxI . (2.1)

The signal y has a S-sparse approximation in Φ, or is called approximately S-sparse
in Φ, if there exists I with |I| = S � d, and ε small, ‖ε‖2 � ‖y‖2, such that we can
write

y =
∑
i∈I

φixi + ε ≈ ΦIxI . (2.2)

In classical sparsity research there are now two types of problems. The first one
is concerned with how to find sparse approximations/representations given a sparsity

7



8 CHAPTER 2. DICTIONARIES AND SPARSITY

inducing dictionary and the second one with how to exploit sparsity for efficient data
processing. In this thesis we take a closer look at both types of these problems.
In particular, in Chapter 5 we present an application where we reconstruct images
from highly undersampled data by exploiting that images have an intrinsically low
complexity. In Chapter 6 we then analyse the theoretical performance of two specific
sparse approximation algorithms in a more general setting compared to existing results.
For that, in the following, we describe the sparse approximation problem in more detail
and introduce the main algorithms which we are going to use.

2.1 Sparse Approximation

In sparse approximation we want to approximate a given signal y ∈ Rd by a linear
combination of only a small number S � d of elements φi ∈ Rd out of some given
dictionary Φ = (φ1, . . . , φK). This means, we want to find

y =
∑
i∈I

φixi + ε = ΦIxI + ε such that |I| = S � d and ε small. (2.3)

The problem of finding the best S-sparse approximation of y in Φ, meaning the best
S-support I and coefficient vector x, however is combinatorial. In particular, finding
the smallest error for the problem in (2.3) formulates an optimisation problem which
is generally NP-hard unless the dictionary forms an orthonormal system. Therefore, in
order to solve such problems, suboptimal routines have to be used. By now there ex-
ists a large number of such sparse approximation algorithms, where the most popular
ones are for example Thresholding, (Orthogonal) Matching Pursuit ((O)MP) [44, 50],
Basis Pursuit (BP) [18], or Hard Thresholding Pursuit (HTP) [22]. There exists also
detailed theory describing under which conditions they can find the sparse support for
ε = 0 or most of the support if ε is small, see e.g. [62, 65, 60, 24, 66]. However, most
of these results are only valid under the assumption that we have the signal generating
dictionary Φ. Indeed, such assumptions may not always hold, as for instance in the
special situation within dictionary learning we are interested in. For that, in Chap-
ter 6 we provide recovery conditions for OMP in situations where we do not have the
signal generating dictionary but only a perturbed version of it. We also compare the
theoretical and practical performance of OMP with that of the computationally much
lighter thresholding algorithm. The insights gained there will also enable us to better
understand the practical performance of other methods.

But first, let us give a short reminder of the algorithms we are going to use.

Thresholding. Given a fixed sparsity level S and a dictionary Φ, thresholding finds
the S atoms out of the dictionary which are most correlated with the signal and
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projects it onto their span. In particular, for a given signal y, we

find J = arg max
I:|I|=S

‖Φ?
Iy‖1 and

calculate xJ = Φ†Jy as well as ỹ = ΦJxJ .

Orthogonal Matching Pursuit (OMP). In each iteration, OMP adds the index
corresponding to the atom out of some given dictionary Φ which yields the largest
inner product with the current residual. Projecting the signal onto the span of already
selected atoms and calculating the new residual, this procedure is repeated until a
stopping criterion is met. In particular, initialising with rJ0 = y and J0 = ∅, we

find j = arg max
k
|〈φk, rJi〉| and

update Ji+1 = Ji ∪ {j} resp. rJi+1
= y − P (ΦJi+1

)y.

For many signal classes there exist good predefined dictionaries in which they
are sparse, as for example wavelets [15], curvelets [10], or the DCT dictionary which
consists of the elements of the discrete cosine transform. However, as such predefined
dictionaries do not exist for all signal classes, research has been started into the di-
rection of automatically learning dictionaries providing sparse representations [53, 59].
Further, signal processing tasks as mentioned above can be even more efficiently per-
formed if we have dictionaries yielding very sparse representations with S � d. This
however strongly depends on the good fit between the class of signals and the dictio-
nary. For that, in the following, we describe the concept of dictionary learning in more
detail.

2.2 Dictionary Learning

Given a class of signals yn ∈ Rd which are stored in a matrix Y = (y1, . . . , yN) ∈ Rd×K ,
we want to find a dictionary matrix Φ = (φ1, . . . , φK) ∈ Rd×K , where each column
is normalised, ‖φk‖2 = 1, and a sparse coefficient matrix X = (x1, . . . , xN) ∈ RK×N ,
such that

Y ≈ ΦX with X sparse. (2.4)

One way to concretise the abstract formulation in (2.4) is to formulate it as an opti-
misation problem. For example, given a sparsity level S and a dictionary size K and
defining XS as the set of all columnwise S-sparse coefficient matrices and DK as the
set of all dictionaries with K atoms, for some p ≥ 1, we want to find

argmin
Ψ∈DK ,X∈XS

∑
n

‖yn −Ψxn‖p2. (2.5)
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Problems like this are however highly non-convex and hence, very difficult to solve.
In order to solve them approximately, one can choose from a wide range of dictionary
learning algorithms, e.g. [3, 21, 33, 36, 43, 55]. The dictionary learning algorithms
most used in practice belong to the class of alternating optimisation algorithms. This
means that they alternate between (trying to) find the best dictionary Ψ while fixing
the coefficients X, and the best coefficients X based on the current dictionary Ψ.
For example, randomly initialised alternating projection algorithms like K-SVD (K
Singular Value Decomposition) for p = 2, [3], and ITKrM (Iterative Thresholding
and K residual Means) for p = 1, [61], tend to be very successful on synthetic data
and to provide useful dictionaries on image data. While being computationally very
efficient, for these algorithms there exists almost no (K-SVD) or only comparatively
weak (ITKrM) theoretical results ensuring dictionary recovery [57, 61]. This is in sharp
contrast to more involved graph clustering algorithms and tensor methods which have
global recovery guarantees but due to their computational complexity can at best be
used in small toy examples, [5, 2, 6]. However, similar results have not yet been shown
for learning overcomplete dictionaries via alternating projection algorithms.
Another difficulty which comes along with all dictionary learning algorithms is how
to choose the sparsity level S and the dictionary size K. This is quite challenging as
their choice can have a large impact on the obtained results and computation time.
In general, they are chosen empirically or experimentally as for example in image
restoration one will usually find d ≤ K ≤ 4d and S =

√
d. However, this will probably

not always be the best choice.
In this thesis we aim to address some of these problems. In particular, in Chapter 3
we show that ITKrM contracts towards the generating dictionary under much more
relaxed conditions compared to those in [61]. Based on an analysis of the convergence
behaviour of ITKrM outside the areas where it is a contraction, in Chapter 4, we
develop a replacement strategy which finally leads us to a version of ITKrM that
adapts both the sparsity level S and the dictionary size K in each iteration. In
Chapter 5 we investigate the application of this algorithm to the reconstruction of MR
images and compare the results obtained with those of K-SVD and ITKrM. For that
purpose, we briefly introduce the latter two in the following.

2.2.1 ITKrM and K-SVD

The ITKrM algorithm was introduced in [61] as a modification of its much simpler
predecessor ITKsM (Iterative Thresholding and K signal Means), which uses signal
means instead of residual means. From the summary in Algorithm 2.2.1 we can see
that ITKrM alternates between updating the sparse support based on the current ver-
sion of the dictionary using thresholding, and updating the dictionary based on the
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Algorithm 2.2.1: ITKrM (one iteration)

Input: Ψ, Y, S ; // dictionary, signals, sparsity

Initialise: Ψ̄ = 0 ;

foreach n do

Itn = arg maxI:|I|=S ‖Ψ?
Iyn‖1 ; // thresholding

an = yn − P (ΨItn
)yn ; // residual

foreach k ∈ Itn do
ψ̄k ← ψ̄k +

[
an + P (ψk)yn

]
· sign(〈ψk, yn〉) ; // atom update

end

end

Ψ←
(
ψ̄1/‖ψ̄1‖2, . . . , ψ̄K/‖ψ̄K‖2

)
; // atom normalisation

Output: Ψ

current support by summing up residuals1. Moreover, the signals can be processed
sequentially, thus making the algorithm suitable for an online version and parallelisa-
tion. Compared to other dictionary learning algorithms, ITKrM exhibits a relatively
low computational complexity. Concretely, the determining factors are the matrix
vector products Ψ?yn between the current estimate of the dictionary Ψ and the sig-
nals, O(dKN), and the projections P (ΨItn)yn. If computed with maximal numerical
stability these would have an overall cost O(S2dN), corresponding to the QR decom-
positions of ΨItn .

One of the probably most popular and widely used dictionary learning algorithms
is K-SVD, which was introduced in [3] as a generalisation of the K-means clustering
process. From the summary in Algorithm 2.2.2 we can see that in contrast to ITKrM,
K-SVD alternates between updating the sparse support using any sparse approxima-
tion algorithm such as OMP, and updating the dictionary by calculating K singular
value decompositions instead of calculating K residual means. Compared to ITKrM,
K-SVD is computationally more expensive. While K-SVD requires the calculation
of K singular value decompositions, its higher computational complexity is also due
to the sparse approximation step. K-SVD usually uses OMP to update the sparse
support whereas ITKrM uses only simple thresholding.
However, we will not go into further detail here but discuss their performance in Chap-
ter 5. In the next chapter, we will analyse situations in which ITKrM does resp. does
not recover the generating dictionary.

1In case of ITKsM the atom update rule in Algorithm 2.2.1 is replaced by ψ̄k ← ψ̄k + yn ·
sign(〈ψk, yn〉).
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Algorithm 2.2.2: K-SVD (one iteration)

Input: Ψ, Y, S ; // dictionary, signals, sparsity

Initialise: R = 0 ;

foreach n do

In = arg maxI:|I|=S ‖ΨIΨ
†
Iyn‖2 ; // via OMP

xn(In) = Ψ†Inyn
foreach k ∈ In do

Rk ← Rk +
[
yn − P (ΨIn)yn + ψkxn(k)

][
yn − P (ΨIn)yn + ψkxn(k)

]?
end

end

foreach k do
ψ̄k = arg max‖v‖2=1 ‖Rkv‖2 ; // via SVD

ψk ← ψ̄k ; // atom update

end

Output: Ψ



Chapter 3

Contraction Conditions for ITKrM

In this chapter we investigate the contractive behaviour of the Iterative Thresholding
and K residual Means (ITKrM) algorithm. After introducing and discussing some
existing results, we provide conditions ensuring that one iteration of ITKrM is a con-
traction under much more relaxed conditions than established previously. The results
presented in this chapter are part of some larger work [49].

13
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3.1 Existing Results

We start with a short discussion of some existing results and their shortcomings. In
Section 2.2, the ITKrM algorithm was introduced as a modification of its much sim-
pler predecessor ITKsM. One of the main advantages of both algorithms is that they
exhibit a relatively low computational complexity. For both algorithms there exists
also theory ensuring that they converge locally to a generating dictionary. In par-
ticular, for ITKrM it has been shown that if the data is homogeneously S-sparse in
a dictionary Φ, where S . µ−2, and we initialise with a dictionary Ψ within radius
O(1/

√
S), d(Ψ,Φ) . 1/

√
S, then ITKrM using N = O(K logK) samples in each iter-

ation will converge to the generating dictionary, [61]. For ITKsM a similar result has
been proven however, for an even larger convergence radius of size O(1/

√
logK).

Comparing the theoretical results for ITKrM with its practical performance, in sim-
ulations on synthetic data it shows even better convergence behaviour. Concretely,
if the atoms of the generating dictionary are perturbed with vectors zk chosen uni-
formly at random from the sphere, ψk = αkφk +ωkzk, ITKrM converges also for ratios
αk : ωk = 1 : 4. For completely random initialisations, ψk = zk, it finds between 90%
and 100% of the atoms - depending on the noise and sparsity level. Also on image
data ITKrM produces dictionaries of the same quality as K-SVD in a fraction of the
time, [47]. For ITKsM on the other hand it has been shown that in case of the 1 : 4
initialisations, its recovery rate deteriorates quite drastically as the sparsity level S
increases. In case of random initialisations, the recovery rates of ITKsM are at best
around 70% however only for noiseless signals and very small sparsity levels. In the
noisy setting this recovery rate further decreases down to around 35% for increasing
S, [61].

Considering the good practical performance of ITKrM, it is especially frustrating that
we only get a convergence radius of size O(1/

√
S), while for its simpler predecessor

ITKsM, which when initialised randomly performs much worse both on synthetic and
image data, one can prove a convergence radius of size O(1/

√
logK). For that, in the

following, we will take a closer look at the two algorithms and the differences in the
convergence proofs. This will allow us to show that ITKrM behaves well on a much
larger area.

Differences in convergence proofs

To better understand the idea behind the convergence proofs we first rewrite the atom
update formula before normalisation, which for one iteration of ITKrM becomes

ψ̄k =
∑
n:k∈Itn

[
Id − P (ΨItn) + P (ψk)

]
yn · sign(〈ψk, yn〉),
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while for ITKsM we can take the formula above and simply ignore the operators in
the square brackets. Adding and replacing some terms, we expand the sum as

ψ̄k =
∑
n:k∈Itn

[
Id − P (ΨItn) + P (ψk)

]
yn · sign(〈ψk, yn〉)

−
∑
n:k∈In

[
Id − P (ΨIn) + P (ψk)

]
yn · σn(k)

S1

+
∑
n:k∈In

[
Id − P (ΨIn) + P (ψk)

]
yn · σn(k)

−
∑
n:k∈In

[
Id − P (ΦIn) + P (φk)

]
yn · σn(k)

S2

+
∑
n:k∈In

[
yn − P (ΦIn)yn + P (φk)yn

]
· σn(k).

}
S3

The term S1 captures the errors which thresholding makes in estimating the supports
In and signs σn(k) = sign(〈φk, yn〉) when using the current estimate Ψ. We know that
it is (sufficiently) small as long d(Φ,Ψ) . 1/

√
logK. The second term S2 captures

the difference between the residual using the current estimate and the true dictionary,
respectively, which is small as long as d(Φ,Ψ) . 1/

√
S. In expectation the last term

is simply a multiple of the true atom φk. Hence, as long as the number of signals N
is large enough, it will concentrate arbitrarily close to φk.
From this we can see that the main constraint on the convergence radius for ITKrM
stems from the second term S2, which simply vanishes in case of ITKsM. The problem
is that we need to invert the S×S matrix Ψ?

In
ΨIn , which is a perturbed version of the

matrix Φ?
In

ΦIn . If the difference between the dictionaries scales as d(Φ,Ψ) ≈ 1/
√
S,

then there exist perturbations such that Ψ?
In

ΨIn is ill conditioned even if Φ?
In

ΦIn is not.
However, from [66, 14] we know that if the current dictionary estimate Ψ itself is a
well-conditioned and incoherent matrix, for most possible supports In, Ψ?

In
ΨIn will be

close to the identity as long as S . d/ logK. This means that the term S2 should be
small as long as the current estimate Ψ is well-conditioned and incoherent, a property
which can be verified after each iteration.
Therefore, the next question is if also the first term S1 can be controlled for a larger
class of dictionaries Ψ. In previous estimates this error was bounded for each atom
by the probability of thresholding failing multiplied with the norm bound on the dif-
ference of the projections. While this strategy is simple, it is quite crude as it assigns
any error of thresholding to all atoms. However, an atom ψ̄k is only affected by a
thresholding error if either k is in the original support or if k is not in the original
support but is included in the thresholded support. Further, we can take into account
that by perturbing an atom φk, meaning ψk = αkφk +ωkzk, its coherence to one other
atom φ` may increase dramatically - to the point of it being a better approximant
than ψ`, that is, if zk ≈ φ` we get 〈φk, φ`〉 � 〈ψk, φ`〉 ≈ 〈ψ`, φ`〉. However, if the orig-
inal Φ itself is well-conditioned, ψk cannot become coherent to all (many) other atoms.



16 CHAPTER 3. CONTRACTION CONDITIONS FOR ITKRM

Indeed, using both of these ideas we get a refined result characterising the contractive
areas of ITKrM. Before presenting our result in the next section, in the following, we
introduce the signal model on which all our theoretical findings are based.

3.1.1 Sparse signal model

As basis for our results we use the following signal model, already used in [57, 58, 61].
Given a d×K dictionary Φ, we assume that the signals are generated as

y =
Φx+ r√
1 + ‖r‖2

2

, (3.1)

where x ∈ RK is a sparse coefficient sequence and r ∈ Rd is some noise. We assume
that r is a centered sub-Gaussian vector with parameter ρ, that is, E(r) = 0 and for
all vectors v the marginals 〈v, r〉 are sub-Gaussian with parameter ρ, meaning they
satisfy E(et〈v,r〉) ≤ et

2ρ2/2 for all t > 0.
To model the coefficient sequences x we first assume that there is a measure νc on a
subset C of the positive, non increasing sequences with unit norm, meaning for c ∈ C we
have c(1) ≥ c(2) . . . ≥ c(K) ≥ 0 and ‖c‖2 = 1. A coefficient sequence x is created by
drawing a sequence c according to νc, and both a permutation p and a sign sequence σ
uniformly at random and setting x = xc,p,σ, where xc,p,σ(k) = σ(k)c(p(k)). The signal
model then takes the form

y =
Φxc,p,σ + r√

1 + ‖r‖2
2

. (3.2)

Using this model it is quite simple to incorporate sparsity via the measure νc. To model
approximately S-sparse signals we require that the S largest absolute coefficients,
meaning those inside the support I = p−1(S), are well balanced and much larger than
the remaining ones outside the support. Further, we need that the expected energy of
the coefficients outside the support is relatively small and that the sparse coefficients
are well separated from the noise. Concretely we require that almost νc-surely we have

c(1)

c(S)
≤ γdyn,

c(S + 1)

c(S)
≤ γgap,

‖c(Sc)‖2

c(1)
≤ γapp and

ρ

c(S)
≤ γρ. (3.3)

We will refer to the worst case ratio between coefficients inside the support, γdyn, as
dynamic (sparse) range and to the worst case ratio between coefficients outside the
support to those inside the support, γgap, as the (sparse) gap. Since for a noise free
signal the expected squared sparse approximation error is

E(‖
∑
k/∈I

σkc(p(k))φk‖2
2) = ‖c(Sc)‖2

2,
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we will call γapp the relative (sparse) approximation error. Finally, γρ is called the
noise to (sparse) coefficient ratio.
Apart from these worst case bounds we will also use three other signal statistics,

γ1,S := Ec (‖c(S)‖1)) , γ2,S := Ec
(
‖c(S)‖2

2

)
, Cr := Er

(
1√

1 + ‖r‖2
2

)
. (3.4)

The constant γ1,S helps to characterise the average size of the sparse coefficients, γ1,S =
E(|xi| : i ∈ I) · S ≤

√
S, while γ2,S characterises the average sparse approximation

quality, γ2,S = E(‖ΦIxI‖2
2) ≤ 1. The noise constant can be bounded by

Cr ≥
1− e−d√
1 + 5dρ2

, (3.5)

and for large ρ approaches the signal to noise ratio, C2
r ≈ 1

dρ2 ≈ E(‖Φx‖22)

E(‖r‖22)
, see [58] for

details.
To get a better feeling for all the involved constants, we will calculate them for the
case of perfectly sparse signals where c(i) = 1/

√
S for i ≤ S and c(i) = 0 else. We

then have γdyn = 1, γgap = 0 and γapp = 0 as well as γ1,S =
√
S and γ2,S = 1. In the

case of noiseless signals we have Cr = 1 and γρ = 0. In the case of Gaussian noise the
noise to coefficient ratio is related to the signal to noise ratio via SNR = S/(γ2

ρd).

3.2 Contraction Theorem

Here we state and prove our refined contraction theorem. Note that, we only consider
distances d(Ψ,Φ) ≥ 1

32
√
S

. The result for the case d(Ψ,Φ) ≤ 1
32
√
S

can be found in [61].

Theorem 3.1. Assume that the signals yn follow model (3.2) for a dictionary Φ with
‖Φ‖2

2,2 ≤ K
98S

and for coefficients with gap c(S+1)/c(S) ≤ γgap, dynamic sparse range
c(1)/c(S) ≤ γdyn, noise to coefficient ratio ρ/c(S) ≤ γρ and relative approximation
error ‖c(Sc)‖2/c(1) ≤ γapp ≤ 12

7

√
logK. Further, assume that the coherence and

operator norm of the current dictionary estimate Ψ satisfy,

µ(Ψ) ≤ 1

20 logK
and ‖Ψ‖2

2,2 ≤
K

134e2S logK
− 1. (3.6)

If d(Ψ,Φ) ≥ 1
32
√
S

but the cross-Gram matrix Φ?Ψ is diagonally dominant in the sense
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that

min
k
|〈ψk, φk〉| ≥max

{
8 γgap ·max

k
|〈ψk, φk〉| ,

40 γρ ·
√

logK,

48 γdyn · logK · µ(Φ,Ψ),

14 γdyn ·
√
‖Φ‖2

2,2S logK/(K−S)

}
, (3.7)

then one iteration of ITKrM using N training signals will reduce the distance by at
least a factor κ ≤ 0.95, meaning d(Ψ̄,Φ) ≤ 0.95 · d(Ψ,Φ), except with probability

3K exp

(
−

NC2
rγ

2
1,S · ε

768K max{S, ‖Φ‖2
2,2+1} 3

2

)

+ 4K exp

(
−

NC2
rγ

2
1,S · ε2

512K max{S, ‖Φ‖2
2,2+1} (1 + dρ2)

)
.

Before we prove the theorem we would like to say a few words about the result.
The conditions in (3.6) simply say that we have to exclude dictionaries Ψ which are
coherent or have large operator norm. From [61] we know that ITKrM succeeds if the
input dictionary is within a ball of radius 1/(32

√
S) around the generating dictionary

Φ. If we are in an area outside this ball, Theorem 3.1 says that ITKrM is a contraction
towards Φ whenever the additional condition in (3.7) is satisfied. Taking a closer look
at the condition on the cross-Gram matrix, the determining factors are

48 γdyn · logK · µ(Φ,Ψ) and 14 γdyn · ‖Φ‖2,2

√
S logK/(K−S).

In particular, the fact that the diagonal entries have to be larger than 14 γdyn ·
‖Φ‖2,2

√
S logK/(K−S) puts a constraint on the admissible distance d(Φ,Ψ) via the

relation d(Φ,Ψ)2 = 2−2 mink |〈φk, ψk〉|. For example, for a well-conditioned dictionary
satisfying ‖Φ‖2

2,2 ≈ K/d, this means that

d(Φ,Ψ) .

(
2− 2

√
S logK

d

)1/2

. (3.8)

Considering that the maximal distance between two dictionaries is
√

2, this is a large
improvement over the admissible distance 1/(32

√
S) in previous results. However, the

additional price to pay is that also the intrinsic condition on the cross-Gram matrix
needs to be satisfied, meaning,

min
k
|〈ψk, φk〉| ≥ 48 γdyn · logK ·max

j 6=k
|〈φk, ψj〉|. (3.9)
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This condition captures our intuition that two estimated atoms should not point to
the same generating atom and provides a bound for sufficient separation.
Note that Theorem 3.1 does not guarantee convergence of ITKrM since it is only valid
for one iteration. In order to prove convergence we would additionally have to prove
that Ψ̄ inherits from Ψ the properties that are required for being a contraction, which,
however, is part of our future goals. Nevertheless, the result contributes significantly
to explaining the good convergence behaviour of ITKrM.
For example, it allows us to briefly sketch why the algorithm always converges in
experiments where the initial dictionary is a large but random perturbation of a well-
behaved generating dictionary Φ with coherence µ(Φ) ≈ 1/

√
d and operatornorm

‖Φ‖2
2,2 ≈ K/d. For ψk = αkφk + ωkzk, where the perturbation vectors zk are drawn

uniformly at random from the unit sphere orthogonal to φk, with high probability, we
have for all j 6= k

|〈φk, zj〉| .
√

logK/d and |〈zk, zj〉| .
√

logK/d, (3.10)

and consequently for all possible αk

µ(Ψ) .
√

4 logK/d and µ(Φ,Ψ) .
√

2 logK/d. (3.11)

Also with high probability the operator norm of the matrix Z = (z1, . . . zK) is bounded
by ‖Z‖2,2 .

√
logK, [64], so that for Ψ we get ‖Ψ‖2,2 .

√
K/d +

√
logK, again

independent of αk. Comparing these estimates with the requirements of the theorem
we see that for moderate sparsity levels, S ≥ logK, we get a contraction whenever

αmin &

√
S(logK)2

d
⇔ d(Φ,Ψ) .

(
2− 2

√
S(logK)2

d

)1/2

. (3.12)

In the following, we state the proof of Theorem 3.1.

Proof. We follow the outline of the proof for Theorem 4.2 in [61]. However, to extend
the convergence radius we need to introduce new ideas. First for bounding the proba-
bility of thresholding with Ψ not recovering the generating support or preserving the
generating sign, replacing Lemma B.3/4 of [61], and second for bounding the difference
between the oracle residuals based on Ψ and Φ, replacing Lemma B.8 of [61]. In order
to make the ideas precise let us introduce the following definitions. We denote the
thresholding residual based on Ψ by

Rt(Ψ, yn, k) :=
[
yn − P (ΨItΨ,n

)yn + P (ψk)yn
]
· sign(〈ψk, yn〉) · χ(I tΨ,n, k), (3.13)

and the oracle residual based on the generating support In = p−1
n (S), the generating

signs σn and Ψ, by

Ro(Ψ, yn, k) :=
[
yn − P (ΨIn)yn + P (ψk)yn

]
· σn(k) · χ(In, k). (3.14)
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Hence, we can write

ψ̄k =
1

N

∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

]
+

1

N

∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]

+
1

N

∑
n

Ro(Φ, yn, k)

=
1

N

∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

]
+

1

N

∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]

+
1

N

∑
n

[
yn − P (ΦIn)yn

]
· σn(k) · χ(In, k)

+

(
1

N

∑
n

〈yn, φk〉 · σn(k) · χ(In, k)

)
φk. (3.15)

Using the abbreviation sk = 1
N

∑
n〈yn, φk〉 · σn(k) · χ(In, k), we obtain

‖ψ̄k − skφk‖2 ≤
1

N

∥∥∥∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2

+
1

N

∥∥∥∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]
∥∥∥

2

+
1

N

∥∥∥∑
n

[
yn − P (ΦIn)yn

]
· σn(k) · χ(In, k)

∥∥∥
2
. (3.16)

The first norm term gives the error originating from thresholding failing to recover the
generating support In and/or preserving the generating sign σn. Assuming that the
generating support In is recovered, the second norm term gives the difference of the
residuals using Φ and Ψ, respectively. The last norm term covers the residual energy
when projecting onto the orthogonal complement of ΦIn , meaning, the signal energy
that remains when projecting onto the subspace spanned by the atoms indexed by
i ∈ In.

In the following we show that these terms are small with high probability and hence,
that one iteration of ITKrM reduces the error by at least a factor κ < 1. In particular,
setting B = ‖Φ‖2

2,2 and ε = d(Ψ,Φ), for the first norm term on the right hand side of
(3.16), by Lemma 3.5 in Subsection 3.2.1, we have

P

(
1

N

∥∥∥∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2
>

18(S+1)
√
B+1

K3
+
Crγ1,S

K
t1ε

)

≤ 2 exp

(
−

NC2
rγ

2
1,St

2
1ε

2

108(S+1)(B+1)
K

+ 3t1εCrγ1,SK
√
B+1

)
. (3.17)
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For the second norm term, by Lemma 3.7 in Subsection 3.2.2, we have that for 0 ≤
t2 ≤ 1/8 and S ≤ min

{
K

98B
, 1

98ρ2

}
,

P

(
1

N

∥∥∥∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]
∥∥∥

2
≥ Crγ1,S

K
(0.308ε+ t2ε)

)

≤ exp

(
−

NC2
rγ

2
1,S · t22ε

12K max{S,B} 3
2

+
1

4

)
. (3.18)

For the remaining terms we will use the bounds already derived in [61]. In particular,
by Lemma B.6 from [61], we have

P

(∣∣∣ 1

N

∑
n

χ(In, k)σn(k)〈yn, φk〉
∣∣∣ ≤ (1− t0)

Crγ1,S

K

)

≤ exp

(
−

NC2
rγ

2
1,S · t20

2K(1 + SB
K

+ Sρ2 + t0Crγ1,S

√
B+1/3)

)
, (3.19)

and by Lemma B.7 from [61], we have that

P

(∥∥∥ 1

N

∑
n

[
yn − P (ΦIn)yn

]
· σn(k) · χ(In, k)

∥∥∥
2
≥ Crγ1,S

K
t3ε

)

≤ exp

(
−

NC2
rγ

2
1,S · t3ε

8K max{S,B+1}
·min

{
t3ε

(1− γ2,S + dρ2)
, 1

}
+

1

4

)
. (3.20)

Putting all these pieces together, with high probability, we have sk ≥ (1 − t0)
Crγ1,S

K

and ∥∥ψ̄k − skφk∥∥2
≤ Crγ1,S

K

(
18(S+1)

√
B+1

K2Crγ1,Sε
+ t1 + 0.308 + t2 + t3

)
ε. (3.21)

Note that we only need to take into account distances ε ≥ 1
32
√
S

, so we will use
some crude bounds on Crγ1,S to show that the fraction with ε in the denominator
above is small. The requirement that ‖c(Sc)‖2/c(1) ≤ γapp ≤ 12

7

√
logK ensures that

γ1,S ≥ (1 + 3 logK)−1/2 and we trivially have γ1,S ≥ Sc(S). In particular, we have
that

γ1,S = Ec(‖c(S)‖1) = Ec(c(1) + · · ·+ c(S)) ≥ Sc(S),

and as the coefficient sequences c are normalised, we have

‖c(S)‖2
2 ≥ 1− ‖c(Sc)‖2

2 ≥ 1− c(1)23 logK,
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which in turn means

‖c(S)‖1 ≥ ‖c(S)‖2 ≥
1√

1 + 3 logK
.

Combining this with the bound on Cr in (3.5),

Cr ≥
1− e−d√
1 + 5dρ2

,

we get

1

Crγ1,S

≤
√

1 + 5dρ2

(1− e−d)γ1,S

≤
√

1 + 3 logK

(1− e−d)
+

ρ

c(S)

√
5d

S(1− e−d)
. (3.22)

The conditions in (3.7) imply that K ≥ 142SB logK, which in turn means that
logK > 7, as well as ρ/c(S) ≤ γρ ≤ 1/(40

√
logK). Assuming additionally that

K ≥
√
d, meaning the dictionary is not too undercomplete, this leads to

18 · (S + 1)
√
B + 1

K2Crγ1,Sε
≤

18 · 32 · (S + 1)
√
S(B + 1)

K2Crγ1,S

≤
18 · 32 · (S + 1)

√
S(B + 1)

K2

(√
1 + 3 logK

1− e−d
+

ρ

c(S)

√
5d

S(1− e−d)

)

≤
18 · 32 · (S + 1)

√
S(B + 1)

K2

(√
1 + 3 logK

1− e−d
+

√
5d

40S
√

logK(1− e−d)

)

≤
8 · 18 · 32 · (S + 1)

√
S(B + 1)

5K2

(√
1 + 3 logK +

√
5d

40S
√

logK

)

≤ 8 · 18 · 32

5

(
(S + 1)

√
S(B + 1)

√
1 + 3 logK

144S2B2 log2K
+

(S + 1)
√
S(B + 1)

√
5

40 · 142S2B logK
√

logK

)

≤ 8 · 18 · 32

5

(
3

145 ·
√

2
+

3 ·
√

5

40 · 143 ·
√

7

)
≤ 0.025,

for B ≥ 1 and S ≥ 2. Setting t0 = t1 = 1/20 and t2 = t3 = 1/8 we get

max
k

∥∥ψ̄k − skφk∥∥2
≤ 0.633 · Crγ1,S

K
ε and min

k
sk ≥ 0.95 · Crγ1,S

K
, (3.23)

which by Lemma B.10 from [61] implies that

d(Ψ̄,Φ)2 = max
k

∥∥∥∥ ψ̄k
‖ψ̄k‖2

− φk
∥∥∥∥2

2

≤ 2

(
1−

√
1− 0.6332ε2

0.952

)

≤ 2 · 0.6332ε2

0.952
≤ 0.89ε2, (3.24)
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except with probability

K exp

(
−

NC2
rγ

2
1,S

K(801 + 14Crγ1,S

√
B+1)

)
+ 2K exp

(
−

NC2
rγ

2
1,S · ε2

K( 1
10

+ 60εCrγ1,S

√
B+1)

)
+ e

1
4K exp

(
−

NC2
rγ

2
1,S · ε

768K max{S,B} 3
2

)

+ e
1
4K exp

(
−

NC2
rγ

2
1,S · ε2

512K max{S,B+1} (1 + dρ2)

)
.

The final probability bound follows from the observations that Crγ1,S ≤
√
S, B+1 ≥ 2

and ε ≤
√

2.

In the following two subsections we derive the two lemmata characterising the
difference between the thresholding and the oracle residual (Lemma 3.5) resp. the
difference between the oracle residuals based on the generating dictionary and a per-
turbation (Lemma 3.7).

3.2.1 Difference between thresholding and oracle residual

In order to prove Lemma 3.5 we will make use of the scalar version of Bernstein’s
inequality [8] and Hoeffding’s inequality [29]. We will also need Proposition 3.4 to
deal with sums of dependent random variables. The proof of Proposition 3.4 can be
found in Appendix A.1.

Theorem 3.2 (Scalar Bernstein, [8]). Let vn ∈ R, n = 1 . . . N , be a finite sequence
of independent random variables with zero mean. If E(v2

n) ≤ m and E(|vn|k) ≤
1
2
k!mMk−2 for all k > 2, then for all t > 0 we have

P

(∑
n

vn ≥ t

)
≤ exp

(
− t2

2(Nm+Mt)

)
.

Theorem 3.3 (Hoeffding, [29]). Let X1, . . . , Xn be independent random variables and
ai ≤ Xi ≤ bi for all i. Then for all t > 0 we have

P

(
1

n

∣∣ n∑
i=1

(Xi − E(Xi))
∣∣ ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Proposition 3.4. Let v ∈ RK be a vector, I = (i1, . . . , iS) be a sequence of length
S obtained by sampling from K = {1, . . . , K} without replacement, ε with values in
{−1, 1}S a Rademacher vector independent from I and c ∈ RS a scaling vector. Then
for any t ≥ 0,

P

(∣∣ S∑
k=1

ckεkvik
∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
(
‖c‖∞‖v‖∞t+ ‖c‖2

2‖v‖2
2/(K − S)

)) . (3.25)



24 CHAPTER 3. CONTRACTION CONDITIONS FOR ITKRM

Being equipped with the right tools, we are now ready to prove the lemma esti-
mating the error originating from thresholding failing to recover the generating support
and signs.

Lemma 3.5. Assume that the signals yn follow model (3.2) for coefficients with gap
c(S+1)/c(S) ≤ γgap, dynamic sparse range c(1)/c(S) ≤ γdyn, noise to coefficient ratio
ρ/c(S) ≤ γρ and relative approximation error ‖c(Sc)‖2/c(1) ≤ γapp ≤ 12

7

√
logK. If the

cross-Gram matrix Φ?Ψ is diagonally dominant in the sense that

min
k
|〈ψk, φk〉| ≥max

{
8 γgap ·max

k
|〈ψk, φk〉| ,

40 γρ ·
√

logK,

48 γdyn · logK · µ(Φ,Ψ),

14 γdyn ·
√
‖Φ‖2

2,2S logK/(K−S)

}
, (3.26)

then

P

 1

N

∥∥∥∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2
>

18(S+1)
√
‖Φ‖2

2,2+1

K3
+
Crγ1,S

K
tε


≤ 2 exp

− NC2
rγ

2
1,St

2ε2

108(S+1)(‖Φ‖22,2+1)

K
+ 3tεCrγ1,SK

√
‖Φ‖2

2,2+1

 . (3.27)

Proof. Throughout the proof we use the abbreviations B = ‖Φ‖2
2,2 and µ̂ = µ(Φ,Ψ).

To estimate the difference between the oracle and the thresholding residuals, we have
to distinguish between four different cases, based on whether k is in the oracle support
or not and whether thresholding recovers the oracle support and sign, so we set

F = {n : k ∈ In ∧
(
I tn 6= In ∨ sign(〈ψk, yn〉) 6= σn(k)

)
},

G = {n : k /∈ In ∧ k ∈ I tn}.

Whenever a signal is not in one of the sets above, the residuals coincide, yielding

∆ =
∥∥∥∑

n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2

=
∥∥∥ ∑
n∈F∪G

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2
. (3.28)

Further, observing that operators of the form Id − P (ΨJ) + P (ψk) with k ∈ J are
orthogonal projections, and that our signals are bounded, ‖yn‖2 ≤

√
B + 1, as well as

Ro(Ψ, yn, k) = 0 for n ∈ G, leads to

∆ ≤
∑

n∈F∪G

(
‖Rt(Ψ, yn, k)‖2 + ‖Ro(Ψ, yn, k)‖

)
≤ (2|F|+ |G|)

√
B + 1. (3.29)
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To upper bound the size of the set F , we apply Bernstein’s inequality to the sum of
N i.i.d copies of the centered random variable 1F − P(F ), where

F =
{
y : k ∈ I ∧

(
I t 6= I ∨ sign(〈ψk, y〉) 6= σ(k)

)}
, (3.30)

which leads to

P(|F| ≥ NP(F ) +Nt) ≤ exp

(
− t2N

2P(F ) + t

)
. (3.31)

Similarly defining G = {y : k /∈ I ∧ k ∈ I t}, we get

P(|G| ≥ NP(G) +Nt) ≤ exp

(
− t2N

2P(G) + t

)
. (3.32)

So what remains to calculate is the probability of the events F and G, that is of
thresholding failing to recover the oracle support and sign when k is in the support
and of accidentally recovering k when it is not in the support.

Step 1 - Failure probability of the recovery of I or the correct sign σ(k)

Here we show that with high probability for a signal y following the model in (3.2)
with k ∈ I, we have I t = I = p−1(S) and sign(〈ψk, y〉) = σ(k).

To ensure that I t = I, this means the recovery of all i ∈ I, we need to have

min
i∈I
|〈ψi, y〉| > max

i/∈I
|〈ψi, y〉|. (3.33)

Expanding the inner product of a rescaled signal y with an atom ψi of the perturbed
dictionary Ψ yields

|〈ψi,Φxc,p,σ + r〉| = |
∑
j

σ(j)c(p(j))〈ψi, φj〉+ 〈ψi, r〉|

= |c(p(i))〈ψi, φi〉+ σ(i)
∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉+ σ(i)〈ψi, r〉|.

Depending on the index i under consideration, we obtain the following bounds from
below resp. above,

i ∈ I : |〈ψi,Φxc,p,σ + r〉| ≥ c(S)αmin −
∣∣∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣− |〈ψi, r〉|,

i /∈ I : |〈ψi,Φxc,p,σ + r〉| ≤ c(S + 1)αmax +
∣∣∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣+ |〈ψi, r〉|.
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This means that a sufficient condition for the recovery of I is that for all i∣∣∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ < θ1 · c(S)αmin and |〈ψi, r〉| < θ2 · c(S)αmin, (3.34)

where θ1 and θ2 ensure that

c(S)αmin−θ1c(S)αmin − θ2c(S)αmin

!

≥ c(S+1)αmax + θ1c(S)αmin + θ2c(S)αmin. (3.35)

Since the conditions above also guarantee the recovery of the correct sign σ(i) for all
i ∈ I, so in particular the recovery of σ(k), we can bound the probability of the event
that thresholding fails while k is in the generating support I as

P
([
I t 6= I ∨ sign(〈ψk, y〉) 6= σ(k)

]
∧ k ∈ I

)
≤ P

(
∃i : |

∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉| ≥ θ1 · c(S)αmin ∧ k ∈ I
)

+ P
(
∃i : |〈ψi, r〉| ≥ θ2 · c(S)αmin ∧ k ∈ I

)
≤
∑
i

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin ∧ k ∈ I

)
+
∑
i

P
(
|〈ψi, r〉| ≥ θ2c(S)αmin ∧ k ∈ I

)
≤
∑
i

∑
`∈S

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)
· P(p(k) = `)

+
∑
i

∑
`∈S

P
(
|〈ψi, r〉| ≥ θ2c(S)αmin

∣∣p(k) = `
)
· P(p(k) = `).

Since every permutation is equally likely, each index is equally likely to be mapped
to `, meaning P(p(k) = `) = 1/K. Using the independence of the noise from the
remaining signal parameters and its sub-Gaussian property further leads to

P
([
I t 6= I ∨ sign(〈ψk, y〉) 6= σ(k)

]
∧ k ∈ I

)
≤ 1

K

∑
i

∑
`∈S

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)

+
S

K

∑
i

P
(
|〈ψi, r〉| ≥ θ2c(S)αmin

)
≤ 1

K

∑
i

∑
`∈S

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)

+ 2S exp

(
−(θ2c(S)αmin)2

2ρ2

)
. (3.36)
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To estimate the terms P
(∣∣∑

j 6=i σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)
, we split

the sum into two parts, one over j ∈ I\{i, k}, that captures most of the energy, and
the other over j ∈ (Ic ∪ {k})\{i}. For m1 ∈ (0, 1) and m2 = 1−m1, we have

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)

≤ P
(∣∣ ∑

j∈I\{i,k}

σ(j)c(p(j))〈ψi, φj〉
∣∣

+
∣∣σ(k)c(p(k))〈ψi, φk〉+

∑
j∈Ic\{i}

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1 · c(S)αmin

∣∣p(k) = l
)

≤ P
(∣∣ ∑

j∈I\{i,k}

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ m1θ1c(S)αmin

∣∣p(k) = `
)

+ P
(∣∣ ∑

j∈(Ic∪{k})\{i}

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ m2θ1c(S)αmin

∣∣p(k) = `
)
.

The first term on the right hand side we estimate using Proposition 3.4 and the second
term using Hoeffding’s inequality. Depending on the the index i under consideration,
we get the following bounds. If i = k we have

P
(∣∣∑

j 6=k

σ(j)c(p(j))〈ψk, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)

≤ P
(∣∣ ∑

j∈I\{k}

σ(j)c(p(j))〈ψk, φj〉
∣∣ ≥ m1θ1c(S)αmin

∣∣p(k) = `
)

+ P
(∣∣∑

j∈Ic
σ(j)c(p(j))〈ψk, φj〉

∣∣ ≥ m2θ1c(S)αmin

∣∣p(k) = `
)

≤ 2 exp

(
−(m1θ1c(S)αmin)2

2(c(1)µ̂ ·m1θ1c(S)αmin + ‖c(S)‖2
2

B
K−S )

)
+ 2 exp

(
−(m2θ1c(S)αmin)2

2µ̂2‖c(Sc)‖2
2

)
,

where we used that
∑

j∈Ic c(p(j))
2 |〈ψk, φj〉|2 ≤ µ̂2‖c(Sc)‖2

2. Note that the sign se-
quence σ is independent of the permutation p and hence, we can apply Hoeffding’s
inequality also to the conditional probability. More precisely, the expectation used
in the above inequality is only over σ, independent from p. Note also, the residual
energy ‖c(Sc)‖2

2 is zero for perfectly S-sparse signals and can be assumed small other-
wise. In case of ‖c(Sc)‖2

2 = 0, the sum over Ic is zero and hence, the last term vanishes.
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Similarly, if i 6= k we get

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)

≤ 2 exp

(
−(m1θ1c(S)αmin)2

2(c(1)µ̂ ·m1θ1c(S)αmin + ‖c(S)‖2
2

B
K−S )

)

+ 2 exp

(
−(m2θ1c(S)αmin)2

2µ̂2(c(`)2 + ‖c(Sc)‖2
2)

)
.

Hence, with some small simplifications we get for all i, including k,

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1c(S)αmin

∣∣p(k) = `
)

≤ 2 exp

(
−(m1θ1c(S)αmin)2

2(c(1)µ̂ ·m1θ1c(S)αmin + ‖c(S)‖2
2

B
K−S )

)

+ 2 exp

(
−(m2θ1c(S)αmin)2

2µ̂2(c(`)2 + ‖c(Sc)‖2
2)

)
≤ 2 exp

(
−1

4
min

{
c(S)m1θ1αmin

c(1)µ̂
,
(K − S)(m1θ1c(S)αmin)2

B‖c(S)‖2
2

})
+ 2 exp

(
−1

4
min

{
(c(S)m2θ1αmin)2

c(1)2µ̂2
,
(c(S)m2θ1αmin)2

µ̂2‖c(Sc)‖2
2

})
.

Substituting the expression above into (3.36), we get

P
([
I t 6= I ∨ sign(〈ψk, y〉) 6= σ(k)

]
∧ k ∈ I

)
≤ 2S exp

(
−1

4
min

{
c(S)m1θ1αmin

c(1)µ̂
,
(K − S)(m1θ1c(S)αmin)2

B‖c(S)‖2
2

})
+ 2S exp

(
−1

4
min

{
(c(S)m2θ1αmin)2

c(1)2µ̂2
,
(c(S)m2θ1αmin)2

µ̂2‖c(Sc)‖2
2

})
+ 2S exp

(
−(θ2c(S)αmin)2

2ρ2

)
,

where θ1 and θ2 have to ensure (3.35) and m1 +m2 = 1. From this, whenever

αmin ≥ max

{
1

1− 2θ1 − 2θ2

c(S+1)

c(S)
αmax,

4n

m1θ1

c(1)

c(S)
µ̂ logK,

2
√
n

m1θ1

‖c(S)‖2

c(S)

√
B logK

K − S
,

2
√
n

(1−m1)θ1

c(1)

c(S)
µ̂
√

logK,

2
√
n

(1−m1)θ1

‖c(Sc)‖2

c(S)
µ̂
√

logK,

√
2n

θ2

ρ

c(S)

√
logK

}
,
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we get that

P
([
I t 6= I ∨ sign(〈ψk, y〉) 6= σ(k)

]
∧ k ∈ I

)
≤ 6S ·K−n.

Setting θ1 = 6
16

, θ2 = 1
16

, m1 = 2
3
, n = 3, the probability that thresholding fails to

recover I and/or the corresponding signs, restricted to the signals for which we have
k ∈ I, is bounded by 6S ·K−3, whenever

αmin ≥ max

{
8
c(S+1)

c(S)
αmax, 48

c(1)

c(S)
µ̂ logK, 14

c(1)

c(S)

√
SB logK

K − S
, 40

ρ

c(S)

√
logK

}
,

and ‖c(Sc)‖2
c(1)

≤ 12
7

√
logK, where we have used that ‖c(S)‖2 ≤

√
Sc(1).

Step 2 - Probability of wrongly recovering k for k /∈ I - P(k ∈ I t|k /∈ I)

As a second step we bound the probability of wrongly recovering an atom ψk when
it is not in the generating support, meaning k /∈ I. A sufficient condition for not
recovering k is that

min
i∈I
|〈ψi, y〉| > |〈ψk, y〉|. (3.37)

Using the bounds from step 1,

i ∈ I : |〈ψi,Φxc,p,σ + r〉| ≥ c(S)αmin −
∣∣∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣− |〈ψi, r〉|,

k /∈ I : |〈ψk,Φxc,p,σ + r〉| ≤ c(S+1)αk +
∣∣∑
j 6=k

σ(j)c(p(j))〈ψk, φj〉
∣∣+ |〈ψk, r〉|,

we get as sufficient condition for not recovering k, that for all i ∈ I ∪ {k}∣∣∑
j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ < θ1 · c(S)αmin and |〈ψi, r〉| < θ2 · c(S)αmin,

where θ1 and θ2 again ensure that

c(S)αmin − θ1c(S)αmin − θ2c(S)αmin

!

≥ c(S+1)αk + θ1c(S)αmin + θ2c(S)αmin.

We now bound the probability of thresholding recovering k when it is not in the
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generating support I as

P(k ∈ I t ∧ k /∈ I)

=
∑
`>S

P(k ∈ I t
∣∣p(k) = `) · P(p(k) = `)

≤ 1

K

∑
`>S

∑
i∈I∪{k}

P
(∣∣∑

j 6=i

σ(j)c(p(j))〈ψi, φj〉
∣∣ ≥ θ1 · c(S)αmin

∣∣p(k) = `
)

+
1

K

∑
`>S

∑
i∈I∪{k}

P
(
|〈ψi, r〉| ≥ θ2 · c(S)αmin

∣∣p(k) = `
)
.

Using the same splitting technique as in step 1 and the sub-Gaussian property of r,
we get

P(k ∈ I t ∧ k /∈ I)

≤ 2(S + 1) exp

(
−1

4
min

{
c(S)m1θ1αmin

c(1)µ̂
,
(K − S)(m1θ1c(S)αmin)2

B‖c(S)‖2
2

})
+ 2(S + 1) exp

(
−(m2θ1c(S)αmin)2

2µ̂2‖c(Sc)‖2
2

)
+ 2(S + 1) exp

(
−(θ2c(S)αmin)2

2ρ2

)
.

In order to have this probability sufficiently small, we need to have

αmin ≥max

{
1

1− 2θ1 − 2θ2

c(S+1)

c(S)
αk,

4n

m1θ1

c(1)

c(S)
µ̂ logK,

2
√
n

m1θ1

‖c(S)‖2

c(S)

√
B logK

K − S
,

√
2n

(1−m1)θ1

‖c(Sc)‖2

c(S)
µ̂
√

logK,

√
2n

θ2

ρ

c(S)

√
logK

}
.

Choosing the same values as before, θ1 = 6
16

, θ2 = 1
16

, m1 = 2
3
, n = 3, we arrive at the

bound

P(k ∈ I t ∧ k /∈ I) ≤ 6(S + 1) ·K−3,

whenever ‖c(S
c)‖2

c(1)
≤ 12

5

√
logK and

αmin ≥ max

{
8
c(S+1)

c(S)
αk, 48

c(1)

c(S)
µ̂ logK, 14

c(1)

c(S)

√
SB logK

K − S
, 40

ρ

c(S)

√
logK

}
.

Using all these estimates, we are now ready to bound the error originating from the
difference between the thresholding and the oracle residual.
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Step 3 - Putting it all together

Using all previous estimates, what remains to do is to estimate the size of F and G
and finally put all pieces together. Inserting our probability estimates into (3.31) and
(3.32), we get

P
(
|F| ≥ N

(
6S

K3
+

Crγ1,S

3K
√
B + 1

tε

))
≤ exp

(
−

NC2
rγ

2
1,St

2ε2

108S(B+1)
K

+ 3tεCrγ1,SK
√
B + 1

)
and

P
(
|G| ≥ N

(
6(S + 1)

K3
+

Crγ1,S

3K
√
B + 1

tε

))
≤ exp

(
−

NC2
rγ

2
1,St

2ε2

108(S+1)(B+1)
K

+ 3tεCrγ1,SK
√
B + 1

)
,

respectively. As we have∥∥∥∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2
≤ (2|F|+ |G|)

√
B + 1,

in summary, we get

P

(
1

N

∥∥∥∑
n

[
Rt(Ψ, yn, k)−Ro(Ψ, yn, k)

] ∥∥∥
2
>

18(S + 1)
√
B + 1

K3
+
Crγ1,S

K
tε

)

≤ 2 exp

(
−

NC2
rγ

2
1,St

2ε2

108(S+1)(B+1)
K

+ 3tεCrγ1,SK
√
B + 1

)
.

Next we will prove the lemma yielding a bound for the error originating from
the difference between the oracle residuals based on the generating dictionary and a
perturbation of it. For our estimates we will use some results of [61], adapted to our
problem and with some slight modifications.

3.2.2 Difference between oracle residuals

For the proof of Lemma 3.7 we will use the vector version of Bernstein’s inequality.

Theorem 3.6 (Vector Bernstein, [34, 25, 35]). Let (vn)n ∈ Rd be a finite sequence
of independent random vectors. If ‖vn‖2 ≤ M almost surely, ‖E(vn)‖2 ≤ m1 and∑

n E(‖vn‖2
2) ≤ m2, then for all 0 ≤ t ≤ m2/(M +m1), we have

P

(∥∥∥∑
n

vn −
∑
n

E(vn)
∥∥∥

2
≥ t

)
≤ exp

(
− t2

8m2

+
1

4

)
, (3.38)
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and, in general,

P

(∥∥∥∑
n

vn −
∑
n

E(vn)
∥∥∥

2
≥ t

)
≤ exp

(
− t

8
·min

{
t

m2

,
1

M +m1

}
+

1

4

)
. (3.39)

Note that the general statement is simply a consequence of the first part, since
for t ≥ m2/(M +m1) we can choose m2 = t(M +m1).

In the following we prove that, assuming incoherence and good conditioning of
the perturbed dictionary, the oracle residuals based on the perturbed dictionary Ψ
and the generating dictionary Φ are close to each other.

Lemma 3.7. Assume that the signals yn follow the random model in (3.2). Further,

assume that S ≤ min
{

K
98‖Φ‖22,2

, 1
98ρ2

}
and that the current estimate of the dictionary

Ψ has distance d(Φ,Ψ) = ε ≥ 1
32
√
S

but is incoherent and well conditioned, meaning

its coherence µ(Ψ) and its operator norm ‖Ψ‖2,2 satisfy

µ(Ψ) ≤ 1

20 logK
and ‖Ψ‖2

2,2 ≤
K

134e2S logK
− 1. (3.40)

Then for all 0 ≤ t ≤ 1/8 we have

P

(
1

N

∥∥∥∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]
∥∥∥

2
≥ Crγ1,S

K
(0.308ε+ tε)

)

≤ exp

(
−

NC2
rγ

2
1,St

2ε

12K max{S, ‖Φ‖2
2,2}

3
2

+
1

4

)
.

Proof. Throughout the proof we use the abbreviations B = ‖Φ‖2
2,2, B̄ = ‖Ψ‖2

2,2,
µ = µ(Φ) and µ̄ = µ(Ψ). As in [61], we apply Theorem 3.6 to vn = Ro(Ψ, yn, k) −
Ro(Φ, yn, k), and drop the index n for conciseness. From Lemma B.8 in [61] we have
that v = T (I, k)y · σ(k) · χ(I, k), where T (I, k) := P (ΦI) − P (ΨI) − P (φk) + P (ψk),
and for its expectation,

E(v) =
Crγ1,S

K

(
K−1

S−1

)−1 ∑
|I|=S,k∈I

[
P (ψk)− P (ΨI)

]
φk. (3.41)

Using the orthogonal decomposition φk = [P (ψk) +Q(ψk)]φk, where P (ψk)Q(ψk) = 0,
we get

E(v) =
Crγ1,S

K

(
K−1

S−1

)−1 ∑
|I|=S,k∈I

−P (ΨI)Q(ψk)φk. (3.42)
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Since the perturbed dictionary Ψ is well-conditioned and incoherent, for most I the
subdictionary ΨI will be a quasi isometry and ‖ΨIΨ

?
I − P (ΨI)‖2,2 ≤ δ(ΨI) ≤ δ0. We

therefore expand the expectation above, using the abbreviation pK,S =
(
K−1
S−1

)−1
, as

K

Crγ1,S

E(v) = pK,S

 ∑
|I|=S,k∈I

[
ΨIΨ

?
I − P (ΨI)]Q(ψk)φk −

∑
|I|=S,k∈I

ΨI\kΨ
?
I\kQ(ψk)φk


= pK,S

 ∑
|I|=S,k∈I

[
ΨIΨ

?
I − P (ΨI)]Q(ψk)φk −

(
K−2

S−2

)∑
j 6=k

ψjψ
?
jQ(ψk)φk


= pK,S

∑
|I|=S,k∈I

[
ΨIΨ

?
I − P (ΨI)]Q(ψk)φk −

S−1

K−1
(ΨΨ? − ψkψ?k)Q(ψk)φk

= pK,S
∑

|I|=S,k∈I
δ(ΨI )≤δ0

[
ΨIΨ

?
I − P (ΨI)]Q(ψk)φk

+ pK,S
∑

|I|=S,k∈I
δ(ΨI )>δ0

[
ΨIΨ

?
I − P (ΨI)]Q(ψk)φk −

S−1

K−1
ΨΨ?Q(ψk)φk.

Since for ψk = αkφk + ωkzk, we have ‖Q(ψk)φk‖2 = ωk ≤ ε, we can bound the norm
of the expectation above as

‖E(v)‖2 ≤
Crγ1,S

K

[
δ0 + P

(
δ(ΨI) > δ0

∣∣|I| = S, k ∈ I
)
· (B̄+1) +

(S−1)B̄

K−1

]
ε. (3.43)

In order to estimate the probability of a subdictionary being ill-conditioned we use
Chretien and Darses’s result on the conditioning of random subdictionaries, which
is slightly cleaner and thus easier to handle than the original result by Tropp, [66].
Hence, using Theorem 3.1 of [14], reformulated for our purposes, we get

P
(
δ(ΨI) > δ0

∣∣|I| = S
)
≤ 216K · exp

(
−min

{
δ0

2µ̄
,
δ2

0K

4e2SB̄

})
≤ 216K ·max{K−n1 , K−n2},

whenever,

µ̄ ≤ δ0

2n1 logK
and B̄ ≤ δ2

0K

4n2e2S logK
.
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Together with the union bound,

P(δ(ΨI) > δ0

∣∣|I| = S, k ∈ I) =

(
K − 1

S − 1

)−1

| {I : δ(ΨI) > δ0, |I| = S, k ∈ I} |

≤
(
K − 1

S − 1

)−1

| {I : δ(ΨI) > δ0, |I| = S} |

=
K

S
· P
(
δ(ΨI) > δ0

∣∣|I| = S
)
,

this leads to

P(δ(ΨI) > δ0

∣∣|I| = S, k ∈ I) ≤ 216
K2

S
·max{K−n1 , K−n2}.

Substituting this bound into (3.43), we obtain

‖E(v)‖2 ≤
Crγ1,S

K

[
δ0 + 216

K2(B̄ + 1)

S
·max{K−n1 , K−n2}+

SB̄

K

]
ε.

Choosing δ0 = 3/10, n1 = n2 = 3, as long as B̄ ≤ K
134e2S logK

− 1 and µ(Ψ) ≤ 1
20 logK

,
we have

‖E(v)‖2 ≤
Crγ1,S

K

[
3

10
+

216

134e2S2 logK
+

1

134e2 logK

]
ε

≤ 0.308 · Crγ1,S

K
ε, (3.44)

where we used that S ≥ 2 and logK ≥ 7.

The second quantity we need to bound is the expected energy of v = T (I, k)y · σ(k) ·
χ(I, k). Combining Eqs. (115-118) from Lemma B.8 in [61], we get

E(‖v‖2
2) ≤ Ep

(
χ(I, k)

[
4γ2,Sε

2 +

(
B(1− γ2,S)

K−S
+ ρ2

)
‖T (I, k)‖2

F

])
. (3.45)

From this we see, what remains to do is to bound the norm term ‖T (I, k)‖2
F . As

we only consider the case where we have ε ≥ 1
32
√
S

, we will use a crude but painless
estimate and in turn accept an additional factor S in the final sample complexity.
Concretely, as T (I, k) is the difference of two orthogonal projections onto subspaces
of dimension S−1, namely P (ΦI)− P (φk) and P (ΨI)− P (ψk), we get

‖T (I, k)‖2
F = ‖P (ΦI)− P (φk)− [P (ΨI)− P (ψk)] ‖2

F ≤ 2(S − 1),
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and therefore,

E
(
‖v‖2

2

)
≤ S

K

(
4γ2,Sε

2 + 2(S − 1)

(
B(1− γ2,S)

K − S
+ ρ2

))
≤ S

K

(
4γ2,Sε

2 +
2SB(1− γ2,S)

K − S
+ 2Sρ2

)
≤ S

K

(
4ε2 +

1

24

)
,

where for the last inequality we have used the assumption S ≤ min{ K
98B

, 1
98ρ2}.

Combining the estimates for ‖E(v)‖2 and E(‖v‖2
2) with the norm bound

‖v‖2 = ‖ [P (ΦI)− P (ΨI)− P (φk) + P (ψk)] y‖2 ≤ 2‖y‖2 ≤ 2
√
B+1,

we get for the case where ε ≥ 1
32
√
S

and 0 ≤ t ≤ 1/8,

P

(∥∥∥∑
n

[vn − E(vn)]
∥∥∥

2
≥ Crγ1,S

K
tε

)

≤ exp

(
−Crγ1,Stε

8K
·min

{
Crγ1,Stε

S(4ε2 + 1/24)
,

1

ε+ 2
√
B+1

}
+

1

4

)
≤ exp

(
−
C2
rγ

2
1,St

2ε

8K
·min

{
1

S(4ε+ (24ε)−1)
,

1

3tγ1,S

√
B+1

}
+

1

4

)
≤ exp

(
−

C2
rγ

2
1,St

2ε

8K max{S,B}
·min

{
1

4ε+ (24ε)−1
,

1

3t
√

2

}
+

1

4

)
≤ exp

(
−

C2
rγ

2
1,St

2ε

12K max{S,B} 3
2

+
1

4

)
,

where we have used that Cr ≤ 1, γ1,S ≤
√
S, ε ≤

√
2 and B + 1 ≥ 2. Using that we

have

1

N

∥∥∥∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]
∥∥∥

2
=

1

N

∥∥∥∑
n

[vn − E(vn) + E(vn)]
∥∥∥

2

≤ 1

N

∥∥∥∑
n

[vn − E(vn)]
∥∥∥

2
+ ‖E(vn)‖2,

we finally get for ε ≥ 1
32
√
S

and 0 ≤ t ≤ 1/8,

P

(
1

N

∥∥∥∑
n

[Ro(Ψ, yn, k)−Ro(Φ, yn, k)]
∥∥∥

2
≥ Crγ1,S

K
(0.308ε+ tε)

)

≤ exp

(
−

NC2
rγ

2
1,St

2ε

12K max{S,B} 3
2

+
1

4

)
.
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In the next chapter we will analyse situations in which ITKrM does not recover
the generating dictionary. For that, we will first run some numerical experiments show-
ing that in such situations ITKrM produces a dictionary without the cross-coherence
property from Theorem 3.1. Further, we will also analyse why it is hard to escape from
such dictionaries. This will finally lead us to some interesting observations that open
the road to further improve the convergence behaviour of ITKrM and the automatic
choice of the sparsity level S and the dictionary size K.



Chapter 4

Beyond the Contractive Areas -
Replacement and Adaptivity

In this chapter, we analyse the behaviour of ITKrM outside the areas where it is a
contraction. This will show us that there seem to exist stable fixed points which are
not equivalent to the generating dictionary and can be characterised as very coherent.
Based on a closer inspection of the residuals at these spurious fixed points we develop
a replacement strategy and a strategy to find good replacement candidates that allow
ITKrM to escape from such bad dictionaries. These replacement candidates are then
further used to introduce a strategy for the automatic choice of the sparsity level S
and the dictionary size K. Most of the material presented in this chapter and more
can be found in [49].

37
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4.1 Spurious Fixed Points

We now have a closer look at what happens when ITKrM does not find all atoms
using a random initialisation. From [61] we know that ITKrM is most likely to not
recover the full dictionary from a random initialisation when the signals are very sparse
(S small) and the noiselevel is small. Since we want to closely inspect the resulting
dictionaries, we only run a small experiment in R32, where we try to recover a very
incoherent dictionary from 2-sparse vectors. The dictionary, containing 48 atoms,
consists of the Dirac basis and the first half of the vectors from the Hadamard basis,
and as such has coherence µ = 1/

√
32 ≈ 0.18. The signals follow the model in (3.2),

where the coefficient sequences c are constructed by choosing b ∈ [0.9, 1] uniformly at
random and setting c1 = 1/

√
1 + b2; c2 = bc1 and cj = 0 for j ≥ 3. The noise is chosen

to be Gaussian with variance ρ2 = 1/(16d), corresponding to SNR = 16. Running
ITKrM with 20000 new signals per iteration for 25 iterations and 10 different random
initialisations we recover 4 times 46 atoms and 6 times 44 atoms.

Figure 4.1: Cross-Gram matrices Ψ?Φ for recovered dictionaries with 2 (left) and 4
(right) missing atoms.

An immediate observation is that we always miss an even number of atoms. Tak-
ing a look at the recovered dictionaries - examples for recovery of 44 and 46 atoms are
shown in Figure 4.1 - we see that this is due to their special structure. In case of 2n
missing atoms, we always observe that n atoms of the generating dictionary are recov-
ered twice and that n atoms in the learned dictionary are a 1:1 linear combinations of
2 missing atoms from the generating dictionary, respectively.
This shows that in the most simple case of 2 missing atoms (after rearranging and sign
flipping the atoms in Φ) the recovered (and rearranged) dictionary Ψ has the form

Ψ = (φ1, φ1, φ3, . . . , φK−1, ψK) with ψK =
φ2 + φK√

2 + 2〈φ2, φK〉
. (4.1)

Such a dictionary, or a slightly perturbed version of it, clearly cannot have the neces-
sary cross-coherence property in Theorem 3.1 with any reasonably incoherent dictio-
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nary Φ. In particular, we have that mink |〈ψk, φk〉| ≤ µ(Φ) � γdyn · logK · µ(Φ,Ψ),
which is quite contrary to (3.7).
To further see why ITKrM has problems to escape from such dictionaries, in the follow-
ing, we have an even closer look at the special case of 2 missing atoms. In particular,
we show that in case where the current dictionary estimate contains configurations as
described above it is very likely that they are stable. For this, we first have to take a
closer look at the individual components of ITKrM, meaning, thresholding as well as
the residuals used for updating the dictionary atoms.

Thresholded support and approximate residual in case of 2 missing atoms

In case of 2 missing atoms, we now analyse which support thresholding will recover
depending on whether the generating support contains the indices of the double or
missing atoms, how the residuals a = y − P (ΨIt)y for the current dictionary estimate
Ψ will look like, as well as their corresponding probability.

We consider noiseless signals that are perfectly S-sparse in some dictionary Φ, y =
ΦIxI = ΦIcIσI . For simplicity, let us assume that the non-zero coefficients ci are equal
to 1 and hence, y = ΦIσI . For the dictionary Ψ = (ψ1, ψ2, . . . , ψK) obtained from
ITKrM we assume that we have ψ1 = ψ2 = φ1, ψi = φi for all i ∈ {3, . . . , K − 1} and
ψK = (φ2 +h ·φK)/

√
2 + 2hθ with h = 1 if θ = 〈φ2, φK〉 ≥ 0 and h = −1 else. For our

analysis we assume that w.l.o.g. 〈φ2, φK〉 ≥ 0 and hence, h = 1. Further, we assume
that each atom is equally likely to be picked.
For conciseness and in order to better deal with the recovered support sets we de-
fine for an index set I where the index i ∈ I has been replaced by an index j /∈ I,
Ii↔j := (I \ {i}) ∪ {j}. To estimate the probabilities of the residuals, we have to
estimate the probability of the corresponding support I. In particular, to estimate the
probability of a support I containing any S − ` indices from the set {3, . . . , K − 1}
and ` specific indices i ∈ {1, 2, K}, we always use the formula

(
K−3
S−`

)(
K
S

)−1
. For exam-

ple, the probability that I ⊆ {3, . . . , K−1}, meaning ` = 0, is
(
K−3
S

)(
K
S

)−1 ≈
(
1− S

K

)3
.

In the following we estimate the thresholded supports, the residuals and their
probability for all cases of generating supports I ⊆ {1, . . . , K} with |I| = S. The
results are then summarised in Table 4.1.

1,2,K /∈ I : In this case, we have I ⊆ {3, 4, . . . , K−1} with probability
(
K−3
S

)(
K
S

)−1 ≈(
1− S

K

)3
and ψi = φi for all i ∈ I. For the inner products with the signal y, we
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have

i ∈ I : |〈ψi,ΦIσI〉| = |〈φi, φi〉σi + 〈φi,ΦI\{i}σI\{i}〉|
≥ 1− (S − 1)µ ≥ 1− Sµ,

i ∈ Ic \ {2, K} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≤ Sµ,

i = 2 : |〈ψ2,ΦIσI〉| = |〈φ1,ΦIσI〉| ≤ Sµ,

i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/
√

2 + 2θ,ΦIσI〉| ≤
√

2Sµ.

Hence, I t = I and

a = ΦIσI − P (ΨIt)ΦIσI = ΦIσI − P (ΦI)ΦIσI = 0,

with probability approximately
(
1− S

K

)3
.

1 ∈ I; 2,K /∈ I : For this case, for the probability of the support I we have
(
K−3
S−1

)(
K
S

)−1 ≈
S
K

(
1− S

K

)2
. For the inner products with y, we get

i = 1 : |〈ψ1,ΦIσI〉| = |〈φ1,ΦIσI〉| ≥ 1− Sµ,
i = 2 : |〈ψ2,ΦIσI〉| = |〈φ1,ΦIσI〉| ≥ 1− Sµ,

i ∈ I \ {1} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≥ 1− Sµ,
i ∈ Ic \ {2, K} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≤ Sµ,

i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/
√

2 + 2θ,ΦIσI〉| ≤
√

2Sµ,

and hence, I t ⊆ I ∪ {2}. Using that for i ∈ I \ {1} we have span(Ψ(I\{i})∪{2}) =
span(ΦI\{i}), for the residual of I t = Ii↔2, we get

a = ΦIσI − P (ΨIt)ΦIσI = ΦIσI − P (ΦI\{i})ΦIσI ≈ φiσi.

In case I t = I or I t = I1↔2 the residual is zero. Hence, the thresholded support
and the residual take one of the following forms:

I t = Ii↔2 for i ∈ I \ {1} with a ≈ φiσi,

I t = I with a = 0,

I t = I1↔2 with a = 0.

In order to estimate the probability of having the residual φiσi, in addition to the
probability of the support I, we have to take into account that with probability
S−1
K−1

we have i ∈ I \ {1}. Hence, at worst with probability ≈ S2

K2

(
1− S

K

)2
, we

have a ≈ φiσi. Note that, on average this probability reduces to ≈ S
K2

(
1− S

K

)2

as with probability 1
S

the inner product with ψi is the smallest.
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2 ∈ I; 1,K /∈ I : In this situation, we again have I with probability
(
K−3
S−1

)(
K
S

)−1 ≈
S
K

(
1− S

K

)2
. Bounding the inner products with the signal, we obtain

i = 2 : |〈ψ2,ΦIσI〉| = |〈φ1,ΦIσI〉| ≤ Sµ,

i ∈ I \ {2} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≥ 1− Sµ,
i = Ic \ {K} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≤ Sµ

i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/
√

2 + 2θ,ΦIσI〉| ≥ (1− 2Sµ)/
√

2.

Therefore, I t = I2↔K and for the corresponding residual, we get

a = ΦIσI − P (ΨIt)ΦIσI = φ2σ2 − P (ΨIt)φ2σ2

= [I− P (ΨIt)] (Q(ψK) + P (ψK))φ2σ2

= [I− P (ΨIt)]Q(ψK)φ2σ2 ≈ (φ2 − φK)σ2/2,

with probability ≈ S
K

(
1− S

K

)2
.

K ∈ I; 1,2 /∈ I : From the estimates of the inner products within the latter case, we
see that we get I t = I and hence, for the residual

a = ΦIσI − P (ΨIt)ΦIσI ≈ (φK − P (ψK)φK)σK ≈ (φK − φ2)σK/2,

with probability
(
K−3
S−1

)(
K
S

)−1 ≈ S
K

(
1− S

K

)2
.

1,2 ∈ I; K /∈ I : In this case, for the probability of the support I, we have
(
K−3
S−2

)(
K
S

)−1 ≈
S2

K2

(
1− S

K

)
. For the inner products with y, we get

i = 1, 2 : |〈ψi,ΦIσI〉| = |〈φ1,ΦIσI〉| ≥ 1− Sµ,
i ∈ I \ {1, 2} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≥ 1− Sµ,
i ∈ Ic \ {K} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≤ Sµ,

i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/
√

2 + 2θ,ΦIσI〉| ≥ (1− 2Sµ)/
√

2,

hence, I t = I and with probability ≈ S2

K2

(
1− S

K

)
,

a = ΦIσI − P (ΨIt)ΦIσI = ΦIσI − P (ΦI\{2})ΦIσI ≈ φ2σ2.

1,K ∈ I; 2 /∈ I : Similar to the latter case, for the inner products we have

i ∈ I \ {K} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≥ 1− Sµ,
i ∈ Ic \ {2} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≤ Sµ,

i = 2 : |〈ψ2,ΦIσI〉| = |〈φ1,ΦIσI〉| ≥ 1− Sµ,
i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/

√
2 + 2θ,ΦIσI〉| ≥ (1− 2Sµ)/

√
2.
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Therefore, I t = IK↔2 and

a = ΦIσI − P (ΨIt)ΦIσI = ΦIσI − P (ΦI\{K})ΦIσI ≈ φKσK ,

with probability
(
K−3
S−2

)(
K
S

)−1 ≈ S2

K2

(
1− S

K

)
.

2,K ∈ I; 1 /∈ I : In this situation, we again have I with probability
(
K−3
S−2

)(
K
S

)−1 ≈
S2

K2

(
1− S

K

)
and for the inner products with the signals, we get

i = 2 : |〈ψ2,ΦIσI〉| = |〈φ1,ΦIσI〉| ≤ Sµ,

i ∈ I \ {2, K} : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≥ 1− Sµ,
i ∈ Ic : |〈ψi,ΦIσI〉| = |〈φi,ΦIσI〉| ≤ Sµ,

i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/
√

2 + 2θ,ΦIσI〉|
= |〈(φ2 + φK)/

√
2 + 2θ, φ2σ2 + φKσK〉

+ 〈(φ2 + φK)/
√

2 + 2θ,ΦI\{2,K}σI\{2,K}〉|.

In order to get a bound for the inner product with ψK we have to distinguish
whether the signal coefficients have the same sign σ2, σK or not. If σ2 = σK , we
have |〈ψK ,ΦIσI〉| ≥

√
2(1− Sµ), thus K ∈ I t and for I t = I \ {2} we get

a = ΦIσI − P (ΨIt)ΦIσI = (Id − P (ψK))(φ2 + φK)σ2 = 0.

To have |I t| = S, we have to add another index j ∈ Ic ∪ {2}, hence yielding
I t = I or I t = I2↔j.
Conversely, if σ2 6= σK , the contribution of φ2 and φK to the signal is orthogonal
to ψK and hence, |〈ψK ,ΦIσI〉| ≤

√
2(S − 2)µ. From this we see that for small

sparsity levels (S ≤ 6) it is very unlikely that K will be contained in I t and
instead two indices j, k ∈ Ic ∪{2} have to be added, likely those which are most
correlated with the residual

a = ΦIσI − P (ΨIt)ΦIσI ≈ ΦIσI − P (ΦI\{2,K})ΦIσI ≈ ±(φ2 − φK).

Hence, in case 2, K ∈ I and 1 /∈ I, the thresholded support and the residuals
take one of the following forms:

I t = I2↔j for j ∈ Ic ∪ {2} with a = 0,

I t = I{2,K}↔{j,k} for j, k ∈ Ic ∪ {2} with a ≈ ±(φ2 − φK).

In order to estimate the probability of the residuals, in addition to the probability
of the support I, we have to take into account that with probability 1

2
we have

σ2 = σK resp. σ2 6= σK .
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1,2,K ∈ I : For the probability of the support I, we have
(
K−3
S−3

)(
K
S

)−1 ≈ S3

K3 . This case
works analogue to the latter one, taking into account that 2 ∈ I t. In particular,
for the inner products we have

i ∈ I \ {K} : |〈ψi,ΦIσI〉| ≥ 1− Sµ,
i ∈ Ic : |〈ψi,ΦIσI〉| ≤ Sµ,

i = K : |〈ψK ,ΦIσI〉| = |〈(φ2 + φK)/
√

2 + 2θ,ΦIσI〉|.

For the inner product with ψK , we again have to distinguish whether the signs
σ2 and σK are the same or not. Hence, we get

I t = I with a = 0 or

I t = IK↔j for j ∈ Ic with a ≈ ±(φ2 − φK).

The estimates obtained for the various cases are summarised in Table 4.1.

support I with |I| = S thresholded support approximate approx. prob.
residual of residual

{1,2,K} ∩ I = ∅ It = I 0
(
1− S

K

)3
1 ∈ I, {2,K} ∩ I = ∅ It = Ii↔2, i ∈ I \ {1} ±φi . S2

K2

(
1− S

K

)2
It = I 0 . S

2K

(
1− S

K

)2
It = I1↔2 0 . S

2K

(
1− S

K

)2
2 ∈ I, {1,K} ∩ I = ∅ It = I2↔K ±(φ2 − φK)/2 S

K

(
1− S

K

)2
K ∈ I, {1,2} ∩ I = ∅ It = I ±(φ2 − φK)/2 S

K

(
1− S

K

)2
{1,2} ⊆ I,K /∈ I It = I ±φ2

S2

K2

(
1− S

K

)
{1,K} ⊆ I,2 /∈ I It = IK↔2 ±φK S2

K2

(
1− S

K

)
{2,K} ⊆ I,1 /∈ I It = I2↔j , j ∈ Ic ∪ {2} 0 S2

2K2

(
1− S

K

)
It = I{2,K}↔{i,j}, i, j ∈ Ic ∪ {2} ±(φ2 − φK) S2

2K2

(
1− S

K

)
{1,2,K} ⊆ I It = I 0 S3

2K3

It = IK↔j , j ∈ Ic ±(φ2 − φK) S3

2K3

Table 4.1: Thresholded support with corresponding approximate residual and the
probability of having this residual, for various signal generating supports I.

From Table 4.1, we see that thresholding will correctly identify all supports which
do not contain 1, 2 or K. This means that all atoms ψ3, . . . , ψK−1 will hardly be
affected by the error originating from the failure of thresholding and hence, stay close
to φ3, . . . , φK−1. For supports containing 1 and not 2 we have that they are rather
unlikely to be identified correctly. In this case we will usually recover 1 and 2 and miss
some other atom φi with i ∈ I \{1}. Considering the residuals and their corresponding
probability, this however will only rarely affect the atom update and hence, ψ1 and ψ2

will remain close to φ1. From all the other cases where thresholding has failed we see
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that the most likely non-zero residual is given by ±(φ2−φK), whereas the probability
of having ±φ2 or ±φK is much lower. In consequence, when updating ψ2 and ψK , we
quite rarely (ψ2) or even never (ψK) have residuals which are purely the desired ones,
i.e. φ2 and φK , respectively, and hence, it is very unlikely that they will be drawn
into the direction we want to have. As the 1 : 1 combination ψK is the best possible
approximation to both φ2 and φK , we have that ψK will stay where it is. This means,
in case of dictionaries Ψ with one double atom and one atom which corresponds to a
1 : 1 combination as described above, one iteration of ITKrM will stay close to Ψ.

From the estimates above we can see that with probability
(
1− S

K

)2
the residual

is zero (or close to zero in case of noise), with probability at most S2

K2

(
1− S

K

)
it is close

to φi for some i, and with probability at least 2S
K

(
1− S

K

)2
it is close to ±(φ2 − φK).

Hence, the most likely non-zero residual is a linear combination of the two missing
atoms φ2 and φK , or to be more precise, the residuals are very likely to be 1-sparse in
the complementary 1 : 1 combinations ±(φ2− φK). In order to get an idea of how the
residuals look like in case of more than 2 missing atoms, in the following, we briefly
discuss the general case.

Approximate residual and its probability in case of 2n missing atoms

In case of 2n missing atoms, we now analyse how the residuals a = y − P (ΨIt)y will
look like, for which kind of generating support this can happen, as well as the proba-
bility of their occurrence.

Similar to the previous results we consider noiseless signals that are perfectly S-sparse
in some dictionary Φ, y = ΦIxI = ΦIcIσI . For simplicity, we again assume that the
non-zero coefficients ci are equal to 1 and hence, y = ΦIσI . Further, we assume that
each atom is equally likely to be picked.
For the dictionary Ψ = (ψ1, ψ2, . . . , ψK) obtained from ITKrM, we assume that we have
ψvi = ψv̄i = φvi , ψwi = (φv̄i + hi · φwi)/

√
2 + 2hiθi, with hi = 1 if θi = 〈φv̄i , φwi〉 ≥ 0

and hi = −1 else, for all i ∈ {1, . . . , n} and ψui = φui for all i ∈ {1, . . . , K − 3n}.
W.l.o.g. we assume that for all i we have 〈φv̄i , φwi〉 ≥ 0 and therefore hi = 1. Further,
let us define the sets V = (v1, . . . , vn) and V̄ = (v̄1, . . . , v̄n) containing the indices of
the double atoms, W = (w1, . . . , wn) the set consisting of the indices corresponding to
the 1 : 1 combinations and U = {1, . . . , K} \ (V ∪ V̄ ∪W ) = (u1, . . . , uK−3n) the set
of indices of the single atoms.
In order to estimate the probability of the residuals we again have to estimate the
probability of the corresponding support I. Let ` = `V + `V̄ + `W denote the num-
ber of special atoms in I, meaning the ones with indices in V ∪ V̄ ∪ W such that
|I ∩ V | = `V , |I ∩ V̄ | = `V̄ and |I ∩W | = `W . To estimate the probability of supports
containing any `V indices from V , any `V̄ indices from V̄ , any `W indices from W and
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any S − ` indices from U , we always use the formula(
n

`V

)(
n

`V̄

)(
n

`W

)(
K − 3n

S − `

)(
K

S

)−1

.

On the other hand, to estimate the probability of supports I containing `V specific
indices vi ∈ V and any `V̄ indices from V̄ , any `W indices fom W and any S− ` indices
from U , we use (

n

`V̄

)(
n

`W

)(
K − 3n

S − `

)(
K

S

)−1

.

Similarly, if we estimate the probability of supports I containing `V̄ specific indices
from V̄ or `W specific indices from W and any other indices from the remaining sets. To
estimate the probability of supports I containing `U specific indices and any S−`U−`
indices from U together with any `V , `V̄ and `W indices from V , V̄ and W , respectively,
we use the formula (

n

`V

)(
n

`V̄

)(
n

`W

)(
K − `U − 3n

S − `U − `

)(
K

S

)−1

.

For example, for the probability of I ⊆ U and hence `V = `V̄ = `W = 0, we have(
K−3n
S

)(
K
S

)−1 ≈
(
1− S

K

)3n
.

The following table lists the estimates for the most common cases, with q :=
(
1− S

K

)
.

support I with |I| = S approximate residual approx. prob.
of residual

I ⊆ U 0
(
1− S

K

)
· q3n−1

|I ∩ U | = S − 1, |I ∩ V | = 1 and uk ∈ I ∩ U 0 nS
K · q

3n−1

±φuk
. nS2

K2 · q3n−1

|I ∩ U | = S − 1 and I ∩ V̄ = v̄i ±(φv̄i − φwi
)/2 S

K · q
3n−1

|I ∩ U | = S − 1 and I ∩W = wi ±(φv̄i − φwi)/2
S
K · q

3n−1

|I ∩ U | = S − 2, |I ∩ V | = 1 and I ∩ V̄ = v̄i ±φv̄i nS2

K2 · q3n−2

|I ∩ U | = S − 2, |I ∩ V | = 1 and I ∩W = wi ±φwi

nS2

K2 · q3n−2

|I ∩ U | = S − 2, |I ∩ V | = 2 and uk, u` ∈ I ∩ U 0 n2S2

K2 · q3n−2

±φuk
. n2S3

K3 · q3n−2

±(φuk
± φu`

) . n2S4

K4 · q3n−2

Table 4.2: Approximate residual and the probability of having this residual in case of
2n missing atoms, for various signal generating supports I.

From the results in Table 4.2 we see that the most likely non-zero residuals are
linear combinations of 2 missing atoms. In particular, they are complements of the
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1 : 1 combinations. We also see that the probability of having residuals which are
purely the missing ones is much lower but increases with the number of double atoms.
Similarly, the average occurrence of a residual ±φuk increases with n to nS

K2 , which is
still quite rare. In summary this shows that also in case of 2n missing atoms, the
residuals tend to be 1-sparse in the complements of the 1 : 1 combinations ψwi . The
estimates of the residuals in Table 4.2 were obtained using similar considerations as
in the previous results.

Summarising the results found so far, in the previous chapter we have seen that
ITKrM may not be a contraction if the current dictionary estimate is too coherent,
has large operator norm or if two estimated atoms are close to one generating atom. In
this section, we have also seen that whenever ITKrM does not recover the generating
dictionary it produces a dictionary without the necessary cross-coherence property
from Theorem 3.1. In particular, the resulting dictionaries most likely contain atoms
of some special structure which clearly cannot satisfy this condition. Moreover, in
cases where the current dictionary estimate contains such configurations of generating
atoms, they are also very likely to be stable. To overcome this problem and therefore
help ITKrM to escape from such bad dictionaries, we have to introduce some new
ideas. For that, in the next section, we develop a replacement strategy where we use
the information that these stable fixed points contain several double atoms (coherent
atoms) and that the residuals contain information about the missing atoms (they are
1-sparse in the complements of the 1 : 1 combinations of the missing atoms).

4.2 Replacement

In the previous section we have seen that whenever ITKrM does not recover the gener-
ating dictionary it produces a dictionary which can be characterised as very coherent.
Replacement of coherent atoms with new, randomly drawn atoms is a simple clean-up
step that most dictionary learning algorithms based on alternating minimisation, e.g.
K-SVD, employ additionally in each iteration. While randomly drawing a replace-
ment candidate is cost-efficient and democratic, the drawback is that the new atom
converges only very slowly or not at all to the missing generating atom.
To see why a randomly drawn replacement atom is not the best idea, let us again
consider the case where the current dictionary estimate Ψ contains one double atom
ψ1 = ψ2 = φ1 and one 1 : 1 atom ψK ∝ φ2 + φK .

For a replacement atom ψnew drawn uniformly at random from the d-dimensional
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unit sphere, we have for any fixed vector v, ‖v‖2 = 1,

P(|〈v, ψnew〉| ≥ t) ≤ 2 exp

(
−t

2d

2

)
,

and hence, for any atom φk, |〈φk, ψnew〉| .
√

2 log(2K)/d. This means, replacing ψ2

with ψnew, with high probability ψnew will be quite incoherent to all atoms φk, meaning
|〈φk, ψnew〉| � |〈φk, ψk〉| for k 6= 2 and |〈φ2, ψnew〉| � |〈φ2, ψK〉|, and so never be picked.
Hence, we would replace a coherent atom with an unused atom. In particular, going
back to the thresholding analysis in Section 4.1, we see that the only time it has a
chance to be picked is if I ∩ {1, 2, K} = {2, K}. Here we distinguished between two
cases, σ2 = σK and σ2 = −σK . In case σ2 = σK the residual is zero and so even if
ψnew is picked it will not be drawn into a useful direction. This means, the only useful
case where ψnew has a chance to be picked is if I ∩ {1, 2, K} = {2, K} and the signal
contains the rare constellation φ2 − φK . Unfortunately, with high probability, ψnew

is also incoherent to this linear combination and so might actually never be picked.
However, looking on the bright side, we also see that once it is picked, the updated
atom ψ̄2 will be very close to φ2 − φK since we have y − P (ΨIt)y ≈ (φ2 − φK) and
|〈y, ψnew〉| .

√
2 log(2K)/d. Thus, in the next iteration, the updated atom ψ̄2 ≈

(φ2 − φK)/
√

2− 2θ will be serious competition for ψ̄K ≈ (φ2 + φK)/
√

2 + 2θ in the
thresholding of all signals containing either φ2 or φK . This iteration will then create
a first imbalance of the ratio between φ2 and φK within one or both of the estimated
atoms, making one the more likely choice for φ2 and the other the more likely choice
for φK in the subsequent iteration. There the imbalance will be further increased until
a few iterations later we finally have ψ2 ≈ φ2 and ψK ≈ φK or the other way around.
However, from this we can see that the chances of becoming correlated to φ2−φK are
very low. Thus the natural next question is whether we can do better than a random
replacement. To find a smarter strategy we use the insights gained in Section 4.1.

4.2.1 Learning from bad dictionaries

Looking back to the thresholding analysis in Section 4.1, we have seen that in case
of 2n missing atoms the most likely non-zero residuals are linear combinations of the
missing atoms. To be more precise, the residuals tend to be 1-sparse in the 1 : 1 com-
plements (φv̄i − hiφwi) of the 1 : 1 combinations. The idea is now that we learn these
1 : 1 complements and in each iteration of ITKrM additionally employ a clean-up step
where we replace coherent atoms with these learned atoms. As we have argued above,
these will be serious competition for the 1:1 combinations and quickly rotate into the
correct configuration.
Knowing that the residuals are very likely to be 1-sparse in the complements of the
1 : 1 combinations, (φv̄i − hiφwi), they can be simply obtained by running ITKrM,
which for S = 1 reduces to ITKsM, on the residuals. Concretely, we choose the number
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L � K of candidate atoms, meaning the maximal number of atoms we can replace
after each iteration, initialise a d × L dictionary Γ = (γ1 . . . γL) of candidates and
in each iteration of ITKrM add the following clean-up steps. For all signals we find
in = arg max` |〈γ`, an〉|, where an = yn−P (ΨItn)yn and update the candidate atoms as
γ̄` =

∑
n:in=` an · sign(〈γ`, an〉) with subsequent normalisation.

We can also immediately see the advantages of this strategy over other residual based
replacement strategies, such as using the largest principal components or the largest
residuals, [55, 30]. In the case of noise or outliers, the largest residuals are most likely
to be outliers or pure noise, meaning that this strategy effectively corresponds to ran-
dom replacement. The largest principal components of the residuals on the other
hand, will be a balanced linear combinations of several correlated 1:1 complementary
atoms, and as such less serious competition for the original 1:1 combinations during
thresholding.
After learning enough from bad dictionaries to inspire a promising replacement strat-
egy, the next subsection will deal with its practical implementation.

4.2.2 Replacement in detail

Now that we have laid out the basic strategy, it remains to deal with all the details.
For instance, if we have used all replacement candidates after one iteration, after the
next iteration the replacement candidates might not have converged yet.

Efficient learning of replacement atoms

To solve the above mentioned problem, observe that the number of replacement can-
didates will be much smaller than the dictionary size, L� K. Therefore, we need less
training signals per iteration to learn the candidates or equivalently we can update Γ
more frequently, meaning, we renormalise after each batch of NΓ < N signals and set
Γ = Γ̄. Like this, every augmented iteration of ITKrM will produce L replacement
candidates.

Combining coherent atoms

The next questions concern the actual replacement procedure. Assume we have
fixed a threshold µmax for the maximal coherence. If our estimate Ψ contains two
atoms whose mutual coherence is above the threshold, |〈ψk, ψk′〉| > µmax, which atom
should be replaced? One strategy that has been employed for instance in the con-
text of analysis operator learning, [17], is to average the two atoms, that is, to set
ψnew
k = ψk + sign(〈ψk, ψk′〉)ψk′ . The reasoning is that if both atoms are good ap-
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proximations to the generating atom φk, then their average will be an even better
approximation. However, if one atom ψk is already a very good approximation to the
generating atom ψk ≈ φk while ψk′ is still as far away as indicated by µmax, that is
ψk′ ≈ µmaxφk +

√
1− µ2

maxzk, then the averaged atom will be a worse approximation
than ψk and it would be preferable to simply keep ψk.
To determine which of two coherent atoms is the better approximation, we note that
the better approximation to φk should be more likely to be selected during threshold-
ing. This means that we can simply count how often each atom is contained in the
thresholded supports I tn, v(k) = ]{n : k ∈ I tn}, and in case of two coherent atoms keep
the more frequently used one. Based on the value function v we can also employ a
weighted merging strategy and set ψnew

k = v(k)ψk + sign(〈ψk, ψk′〉)v(k′)ψk′ . If both
atoms are equally good approximations, then their value functions should be simi-
lar and the balanced combination will be a better approximation. If one atom is a
much better approximation it will be used much more often and the merged atom will
correspond to this better atom.

Selecting a candidate atom

Having chosen how to combine two coherent atoms, we next need to decide which of our
L replacement candidates we are going to use. To keep the dictionary incoherent, we
first discard all candidates γ`, whose maximal coherence with the remaining dictionary
atoms is larger than our threshold, that is, maxk |〈γ`, φk〉| ≥ µmax.
To decide which remaining candidate is likely to be the most valuable, we use a counter
similar to the one for the dictionary atoms. However, we have to be more careful
here since every residual is added to one candidate. If the residual contains only
noise, which happens in most cases, and the candidates are reasonably incoherent
to each other, then each candidate is equally likely to have its counter increased.
This means that the candidate atom that actually encodes the missing atom (or 1:1
complement) will only be slightly more often used than the other candidates. So
to better distinguish between good and bad candidates, we additionally employ a
threshold τ and set vΓ(`) = ]{n : ` = in, |〈γ`, an〉| ≥ τ‖an‖}. To determine the size of
the threshold, observe that for a residual consisting only of Gaussian noise, a = r, we
have for any γ` the bound

P(|〈γ`, r〉| ≥ τ‖r‖2) ≤ 2 exp

(
−dτ

2

2

)
, (4.2)

which for τ =
√

2 log(2K)/d becomes 1/K. This means that the contribution to vΓ(`)
from all the pure noise residuals is at best N/K. On the other hand, with probability
S/K, the residual will encode the missing atom or 1:1 complement a ≈ (φi−φj)·|xi|/2.
For reasonable sparsity levels, S . d

4 log(2K)
, and signal to noise ratios, the candidate

γ` closest to the missing atom will be picked and should have inner product of the
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size |〈γ`, a〉| ≈ |xi|/2 ≈ 1
2
√
S
& τ‖a‖2. This means that for a good candidate the value

function will be closer to NS/K.

Dealing with unused atoms

If an atom has never been updated, or more generally, if the norm of the new estimator
is too small, we simply do not update this atom but set the associated value function
to zero. After replacing all coherent atoms we then proceed to replace these unused
atoms.

The combination of all these considerations leads to an augmented version of the
ITKrM algorithm. More details, a summary of the algorithm as well as numerical
experiments testing its performance on synthetic data can be found in the original
paper [49]. Here we next address the question of how to learn dictionaries without the
knowledge of the correct sparsity level S and dictionary size K, leading to an adaptive
algorithm whose performance on real data we investigate in Chapter 5.

4.3 Adaptive Dictionary Learning

While a replacement strategy as described above improves the global convergence be-
haviour of ITKrM, its performance also strongly depends on the choice of the sparsity
level S and the dictionary size K which are needed to be given as input parameter. In
this section, we discuss the difficulties which arise when choosing S and K and develop
a strategy for their adaptive choice.
We first investigate how to adaptively choose the sparsity level S for a dictionary of
fixed size K.

4.3.1 Adapting the sparsity level

The choice of the sparsity level S is very difficult as (like K) it influences both the
convergence speed and the final precision of the learned dictionary. In the following,
let S denote the correct sparsity level, meaning, the sparsity level of the signals, and Se
the sparsity level given to the algorithm. We first have a closer look at the advantages
and drawbacks of both under- and overestimating the sparsity level.
When underestimating the sparsity level, meaning providing Se < S instead of S,
we know from the numerical experiments in [49] that the algorithm tends to recover
the generating dictionary in less iterations than with the true sparsity level. To be
more precise, the computational complexity of an iteration increases with Se, so a
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smaller sparsity level leads to faster convergence not only in terms of iterations but
also reduces the computation time per iteration. The advantage of overestimating
the sparsity level, Se > S on the other hand, is the potentially higher precision, so
the final error between the recovered and the generating dictionary (atoms), can be
smaller than for the true sparsity level S. Intuitively, this is due to the fact that
for Se > S, thresholding with the generating dictionary is more likely to recover the
correct support, in the sense that I ⊂ I t. For a clean signal, y = ΦIxI this means that
the residual is zero and hence, the estimate of every atom φi with i ∈ I t, even if i /∈ I, is
simply reinforced by itself 〈φi, y〉φi. However, in a noisy situation, y = ΦIxI +r, where
the residual has the shape a = Q(ΦIt)r, the estimate of the additional atom i ∈ I t/I
is not only reinforced but also disturbed by adding noise in form of the residual once
more than necessary.
To further see why both under- and overestimating the sparsity level comes with
risks, assume that we allow S + 1 instead of the true sparsity level S, for perfectly
sparse and clean signals. In this case, any dictionary derived from the generating
dictionary by replacing a pair of atoms (φi, φj) by (φ̃i, φ̃j) = A(φi, φj) for an invertible
(well conditioned) matrix A, will provide perfectly S+ 1-sparse representations to the
signals and be a fixed point of ITKrM. On the other hand, providing S − 1 instead
of S can have even more dire consequences since we can replace any generating atom
with a random vector and again have a fixed point of ITKrM. If the original dictionary
is an orthonormal basis and the sparse coefficients have equal size in absolute value,
any such disturbed estimator even gives the same approximation quality. However,
in more realistic scenarios, where we have coherence, noise or imbalanced coefficients
and therefore the missing atom has the same probability as the others to be among
the S − 1 atoms most contributing to a signal, the generating dictionary should still
provide the smallest average approximation error.

Adaptive choice of the sparsity level S

The above considerations show that the choice of the sparsity level S is accompanied
by many difficulties. The idea is now that whenever we have coherence, noise or
imbalanced coefficients, the signals can be interpreted as being 1-sparse (with enormous
error and miniscule gap c(1)/c(2)) in the generating dictionary. This means, learning
with Se = 1 should lead to a reasonable first estimate of most atoms. Of course if the
signals are not actually 1-sparse this estimate will be somewhere between rough, for
small S, and unrecognisable, for larger S, and the question is how to decide whether
we should increase Se. If we already had the generating dictionary, the simplest way
would be to look at the residuals and see how much we can decrease their energy by
adding another atom to the support. A lower bound for the decrease of a residual a
can be simply estimated by calculating maxk(〈φk, a〉)2.
If we have the correct sparsity level and thresholding recovers the correct support
I t = I, the residual consists only of noise, a = Q(ΦI)(ΦIxI + r) = Q(ΦI)r ≈ r. For a
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Gaussian noise vector r and a given threshold θ · ‖r‖2, we now estimate how many of
the remaining K−S atoms can be expected to have inner products larger than θ · ‖r‖2

as

E
(
]{k : |〈r, φk〉|2 > θ2 · ‖r‖2

2}
)

=
∑
k

P
(
|〈r, φk〉|2 > θ2 · ‖r‖2

2

)
< 2(K − S) exp

(
−dθ

2

2

)
. (4.3)

In particular, setting θ = θK :=
√

2 log(4K)/d the expectation above is smaller than
1
2
. This means that if we take the empirical estimator of the expectation above, using

the approximation rn ≈ an, we should get

1

N

∑
n

]{k : |〈an, φk〉|2 > θ2
K · ‖an‖2

2} .
1

2
, (4.4)

which rounds to zero, indicating that we have the correct sparsity level.
Conversely, if we underestimate the correct sparsity level, Se = S−m for m > 0, then
thresholding can necessarily only recover part of the correct support, I t ⊂ I. Denote
the set of missing atoms by Im = I/I t. The residual has the shape

a = Q(ΦIt)(ΦIxI + r) = Q(ΦIt)(ΦImxIm + r) ≈ ΦImxIm + r

For all missing atoms i ∈ Im the squared inner products are approximately

|〈a, φi〉|2 ≈ (xi + 〈r, φi〉)2.

Assuming well-balanced coefficients, where |xi| ≈ 1/
√
S and therefore ‖ΦImxIm‖2

2 ≈
m/S, a sparsity level S . d

2 log(4K)
and reasonable noiselevels, this means that with

probability at least 1
2
, we have for all i ∈ Im

|〈a, φi〉|2 & |xi|2 &
1

2m
(‖ΦImxIm‖2

2 + ‖r‖2
2) & θ2

K‖a‖2
2,

and in consequence

1

N

∑
n

]{k : |〈an, φk〉|2 > θ2
K · ‖an‖2

2} &
m

2
. (4.5)

This rounds to at least 1, indicating that we should increase the sparsity level.

Based on the two estimates above and starting with sparsity level Se = 1, we should
be able to arrive at the correct sparsity level S. Unfortunately, the indicated update
rule for the sparsity level is too simplistic in practice as it relies on thresholding always
finding the correct support, given the correct sparsity level.
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Assume that Se = S but thresholding fails to recover for instance one atom, I t = Ii↔j.
Then we still have a = Q(ΦIt)(xiφi + r) ≈ xiφi + r and |〈φi, a〉|2 & θ2

K‖a‖2. If thresh-
olding constantly misses one atom in the support, for instance because the current
dictionary estimate is quite coherent, µ � 1/

√
d, or not yet very accurate, this will

lead to an increase Se = S + 1. However, as we have discussed above, while increas-
ing the sparsity level increases the chances for full recovery by thresholding, it also
increases the atom estimation error, which decreases the chances for full recovery. De-
pending on which effect dominates, this could lead to a vicious circle of increasing the
sparsity level, which decreases the accuracy leading to more failure of thresholding and
increasing the sparsity level. In order to avoid this risk, we should take into account
that thresholding might fail to recover the full support and be able to identify such
failure. Further, we should be prepared to also decrease the sparsity level.

The key to these three goals is to also look at the coefficients of the signal approx-
imation. Assume that we are given the correct sparsity level Se = S but recovered
I t = Ii↔j. Defining Ii→ = I \ {i}, the corresponding coefficients x̃It have the shape,

x̃It = Φ†It(ΦIxI + r) = Φ†It(ΦIi→xIi→ + φixi + r)

= (xIi→ , 0) + (Φ?
ItΦIt)

−1Φ?
It(φixi + r), (4.6)

meaning |x̃It(j)|2 ≤ (µ2|xi|2+|〈φj, r〉|2)/(1−µS)2 or even |x̃It(j)|2 . µ2|xi|2+|〈φj, r〉|2.
Since the residual is again approximately a ≈ φixi + r, this means that for incoherent
dictionaries, the coefficient of the wrongly chosen atom is likely to be below the thresh-
old θ2

K‖a‖2, while the one of the missing atom will be above the threshold, so we are
likely to keep the sparsity level the same. Similarly, if we overestimate the sparsity level
Se = S + 1 and recover an extra atom I t = I←j := I ∪ {j}, we have a = Q(ΦIt)r ≈ r
while the coefficient of the extra atom will be of size |x̃It(j)|2 ≈ |〈φj, r〉|2 < θ2

K‖a‖2
2.

All in all our estimates suggest that we get a more stable estimate of the sparsity
level by averaging the number of coefficients x̃It = Φ†Ity and residual inner products
(〈φi, a〉)i/∈It that have squared value larger than θ2

K times the residual energy. However,
the last detail we need to include in our considerations is the reason for thresholding
failing to recover the full support given the correct sparsity level in first place. Assume
for instance, that the signal does not contain noise, y = ΦIxI , but that the sparse co-
efficients vary quite a lot in size. In Subsection 3.2.1 we have seen that in case of i.i.d.
random coefficient signs, P(sign(xi) = 1) = 1/2, the inner products of the atoms inside
resp. outside the support concentrate around,

i ∈ I |〈φi,ΦIxI〉| ≈ |xi| ±
(∑

k 6=ix
2
k|〈φi, φk〉|2

)1/2 ≈ |xi| ± µ‖y‖2

i /∈ I |〈φi,ΦIxI〉| ≈
(∑

kx
2
k|〈φi, φk〉|2

)1/2 ≈ µ‖y‖2.

This means that thresholding will only recover the atoms corresponding to the Sr-
largest coefficients for Sr < S, that is, Ir = {i ∈ I : |xi| & µ‖y‖2}. The good news
is that these will capture most of the signal energy, ‖P (ΦIt)y‖2

2 ≈ ‖ΦIrxIr‖2
2 ≈ ‖y‖2

2,
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meaning that in some sense the signal is only Sr sparse. It also means that for µ2 ≈ 1/d,
we can estimate the recoverable sparsity level of a given signal as the number of squared
coefficients/residual inner products that are larger than

1

d
‖P (ΦIt)y‖2

2 +
2 log(4K)

d
‖Q(ΦIt)y‖2

2. (4.7)

If Sn is the estimated recoverable sparsity level of signal yn, a good estimate of the
overall sparsity level S will be the rounded average sparsity level S̄ = b 1

N

∑
n Sne. The

corresponding update rule then is to increase Se by one if S̄ > Se, keep it the same if
S̄ = Se and decrease it by one if S̄ < Se, formally

Snewe = Se + sign(S̄ − Se). (4.8)

In the next subsection, we address the big question of how to adaptively select
the dictionary size K.

4.3.2 Adapting the dictionary size

The choice of the dictionary size K might be motivated by a budget, such as being
able to store K atoms and S values per signal, or application specific, that is, the
expected number of sources in sparse source separation. In applications such as image
restoration K (like S) is either chosen ad hoc or experimentally with an eye towards
computational complexity, and one will usually find d ≤ K ≤ 4d, and S =

√
d. If

algorithms include some sort of adaptivity of the dictionary size, this is usually in the
form of not updating unused atoms, a rare occurrence in noisy situations, and deleting
them at the end. Also this strategy can only help if K was chosen too large but not
if it was chosen too small.
Underestimating the size of a dictionary obviously prevents recovery of the generating
dictionary. For instance, if we provide K − 1 instead of K, the best we can hope for
is a dictionary containing K − 2 generating atoms and a 1 : 1 combination of the two
missing atoms. The good news is that if we are using a replacement strategy, one of
the candidates will encode the 1 : 1 complement, similar to the situation discussed in
the last section where we are given the correct dictionary size but had a double atom.
Overestimating the dictionary size does not prevent recovering the dictionary per se,
but can decrease the recovery precision, meaning that a bigger dictionary might not
actually provide a smaller approximation error. To get an intuition what happens in
this case, assume that we are given a budget of K + 1 instead of K atoms and the
true sparsity level S. The most useful way to spend the extra budget is to add a 1 : 1
combination of two atoms, which frequently occur together, meaning φ0 ∝ φi + hφj
for h = sign(〈φi, φj〉). The advantage of the augmented dictionary Ψ = (φ0,Φ) is that
some signals are now S − 1 sparse. The disadvantage is that Ψ is less stable since
the extra atom φ0 will prevent φi or φj to be selected by thresholding whenever they
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are contained in the support in a 1 : h ratio. This disturbs the averaging process and
reduces the final accuracy of both φi and φj.
The good news is that the extra atom φ0 is actually quite coherent with the dictionary,∣∣〈φ0, φi(j)〉

∣∣ ≥ 1/
√

2, so if we have activated a replacement threshold of µmax ≤ 1/
√

2,
the atom φ0 will be soon replaced, necessarily with another useless atom.
This suggests as strategy for adaptively choosing the dictionary size to decouple our re-
placement scheme into pruning and adding, which allows to both increase and decrease
the dictionary size. We will first have a closer look at pruning.

Pruning atoms

From the replacement strategy we can derive two easy rules for pruning: 1) if two atoms
are too coherent, delete the less often used one or merge them, 2) if an atom is not used,
delete it. Unfortunately, the second rule is too naive for real world signals, containing
among other imperfections noise, which means also purely random atoms are likely to
be used at least once by mistake. To see how we need to refine the second rule assume
again that our sparse signals are affected by Gaussian noise (of a known level), that
is, y = ΦIxI + r with E(‖r‖2

2) = ρ2 and that our current dictionary estimate has the
form Ψ = (φ0,Φ), where φ0 is some vector with admissible coherence to Φ. Whenever
φ0 is selected this means that thresholding has failed. From the last subsection we
also know that we have a good chance of identifying the failure of thresholding by
looking at the coefficients Φ†It(ΦIxI + r). The squared coefficient corresponding to
the incorrectly chosen atom φ0 is likely to be smaller than . ‖ΦIxI‖2

2/d + |〈φ0, r〉|2
while the squared coefficient of a correctly chosen atom i ∈ I ∩ I t will be larger than
|xi|2 + |〈ψi, r〉|2 & ‖ΦIxI‖2

2/S+ |〈φi, r〉|2, at least half of the time. The size of the inner
product of any atom with Gaussian noise can be estimated as

P (|〈φk, r〉| > τ‖r‖2) ≤ 2 exp

(
−dτ

2

2

)
. (4.9)

Taking again ‖P (ΦIt)y‖2 as estimate for ‖ΦIxI‖2 and ‖a‖2 = ‖Q(ΦIt)y‖2 as estimate
for ‖r‖2, we can define the refined value function ṽ(k) as the number of times an atom
φk has been selected and the corresponding coefficient has squared value larger than
‖P (ΦIt)y‖2

2/d+ τ 2‖an‖2
2. Based on the bound above we can then estimate that for N

noisy signals the value function of the unnecessary or random atom φ0 is bounded by

ṽ(0) . 2N exp
(
−dτ2

2

)
=: M , leading to a natural criterion for deleting unused atoms.

Setting for instance τ = θK =
√

2 log(4K)/d, we get M = N/(2d). Alternatively, we
can say that in order to accurately estimate an atom, we need M reliable observations
and accordingly set the threshold to τ =

√
2 log(2N/M)/d.

The advantage of a relatively high threshold τ ≈
√

2 log(4K)/d is that in low noise
scenarios, we can also find atoms that are rarely used. The disadvantage is that for high
τ the quantities ṽ(·) we have to estimate are relatively small and therefore susceptible
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to random fluctuations. In other words, the number of training signals N needs to
be large enough to have sufficient concentration such that for unnecessary atoms the
value function ṽ(·) is actually smaller than M . Another consideration is that at the
beginning, when the dictionary estimate is not yet very accurate, also the approximate
versions of frequently used atoms will not be above the threshold often enough. This
risk is further increased if we also have to estimate the sparsity level. If Se is still
small compared to the true level S we will overestimate the noise, and even perfectly
balanced coefficients 1/

√
S will not yet be above the threshold. Therefore, pruning of

the dictionary should only start after an embargo period of several iterations to get a
good estimate of the sparsity level and most dictionary atoms.
In the replacement section we have also seen that if a double atom is replaced by the
1:1 complement φi − φj of a 1:1 atom φi + φj, it will take a few iterations for the pair
(φi±φj) to rotate into the correct configuration (φi, φj), where they are recovered most
of the time. In the case of decoupled pruning and adding, we run the risk of deleting
a missing atom or a 1 : 1 complement one iteration after adding it simply because
it has not been used often enough. Therefore, every freshly added atom should not
be checked for its usefulness until after a similar embargo period of several iterations,
which leads right to the next question when to add an atom.

Adding atoms

To see when we should add a candidate atom to the dictionary, we have a look back
at the derivation of the replacement strategy. There we have seen that the residuals
are likely to be either 1-sparse in the missing atoms (or 1:1 complements of the atoms
doing the job of two generating atoms), meaning, a ≈ |xi|/2(φi − φj) or in a more
realistic situation a ≈ |xi|/2(φi − φj) + r, or zero, which again in the case of noise
means a ≈ r. To identify a good candidate atom we observe again that if the residual
consists only of (Gaussian) noise, we have for any vector/atom γk

P (|〈γk, r〉| > τΓ‖r‖2) ≤ 2 exp

(
−dτ

2
Γ

2

)
. (4.10)

If on the other hand the residual consists of a missing complement, the corresponding
candidate γ` ≈ (φi−φj)/

√
2 should have |〈a, γ`〉| ≈ |xi|/

√
2 & τΓ‖a‖2. This means that

we can use a similar strategy as for the dictionary atoms to distinguish between useful
and useless candidates. In the last candidate iteration, using NΓ residuals, we count
for each candidate atom γk how often it is selected and satisfies |〈γk, a〉| > τΓ‖a‖2. Fol-
lowing the dictionary update and pruning, we then add all candidates to the dictionary

whose value function is higher than MΓ = 2NΓ exp
(
−dτ2

Γ

2

)
and which are incoherent

enough to atoms already in the dictionary.
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Now that we have covered all aspects that are necessary for making ITKrM adap-
tive, in the next chapter we will test its performance in a real-world application. More
specifically, we will use this adaptive version of ITKrM for the reconstruction of cardiac
cine MR images from highly undersampled data. For the ones interested in numerical
experiments testing its performance on synthetic data and small image data we refer
to the original paper [49].





Chapter 5

Adaptive Dictionary Learning for
MR Image Reconstruction

In this chapter we present an application of the adaptive version of the ITKrM algo-
rithm (aITKrM) to the reconstruction of cardiac MR images. In particular, for our
results we use aITKrM for learning the dictionary and introduce an adaptive version
of OMP (aOMP) which we use for sparse coding. We conduct several experiments
to show the competitiveness and advantages of these adaptive algorithms compared
to non-adaptive methods. The results obtained also show the difficulty of choosing
the correct sparsity level S and dictionary size K, and thus the importance of their
adaptive choice. The material presented in this chapter has been published in [48].

59
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5.1 Introduction to MRI

Magnetic Resonance Imaging (MRI) has become nowadays an indispensable imaging
modality which is widely used in daily clinical routine to image the interior of a patient.
For example, cardiac cine MRI can be used for the assessment of the cardiac function.
For that, a slice of the patient’s heart is scanned over multiple cardiac cycles and a
sequence of 2D (2 dimensional) images showing the heart movement can be obtained.
However, a major issue of MRI is the slow data-acquisition process due to physical
limits imposed by the scanner. In particular, typical cardiac MR-scans are performed
during a breathhold to avoid respiratory motion artefacts. Therefore the breathhold
duration limits the spatial and temporal resolution of MR-scans, which represents a
problem for ill patients with limited breathhold capabilities. The data-acquisition in
MRI takes place in the so-called k-space, i.e. the Fourier space. Since the acquisition
is often slow, undersampling in k-space is used to shorten scan times. This leads to
undersampling artefacts due to the violation of the Nyquist sampling limit. Parallel
imaging and regularised iterative reconstruction methods have been proposed to min-
imise undersampling artefacts, e.g. [77]. Regularisation approaches using transforms
learned from data, meaning, dictionary learning and sparse coding (the sparse approxi-
mation of the data) have been considered in the past [13, 52, 39, 72, 70, 9, 74, 7, 73, 63].
In dictionary learning-based regularisation, the model assumption is patch-wise spar-
sity and therefore, the idea is to patch-wise impose the regularisation on the image to
be reconstructed.
The rationale behind the regularisation based on learned dictionaries is that patches of
an image have an inherently low-dimensional representation and therefore, noise-like
components of an image can be removed by sparsely approximating the image-patches
with respect to a learned dictionary, see e.g. [70]. The regularisation of the solution
is achieved by the fact that, given the incoherent undersampling scheme applied in
k-space, the artefacts resulting from the direct reconstruction of an image are high-
dimensional and thus suppressed by the low-dimensional representation, which suffices
to capture the important features.
In [13], for example, a pre-trained dictionary is used to regularise the images. In
[71], regularisation using a pre-trained dictionary across multichannels is used for
calibration-free parallel MR imaging. Further, approaches in which the dictionary is
learned from the current image estimate during the reconstruction have been proposed
[52, 39] and successfully applied to cine MR image reconstruction [9, 74]. However,
regardless of the excellent image quality which can be achieved by the latter mentioned
methods, there still remain a few issues. First, the sparsity level S used for dictionary
learning and sparse coding as well as the number of atoms in the dictionary K need
to be chosen a-priori and are typically determined by repeating the experiments for
different choices of S and K. However, the parameters are clearly data-dependent and
there is no guaranty on the achievable performance of the reconstruction algorithms on
different datasets. Second, performing an S-sparse approximation of all image patches
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is computationally quite expensive, especially when S is chosen relatively high. These
two issues make the method prohibitive for the application in the clinical routine where
standardised reconstruction protocols have to be used.
To overcome the problem given by the computational complexity of the dictionary
learning- and sparse coding-stage as well as the need for choosing S and K, we will
use adaptive versions of dictionary learning and sparse approximation algorithms. In
particular, for learning the dictionary we use the adaptive version of the ITKrM al-
gorithm which we discussed in Chaper 4, and show its competitiveness against the
well-known K-SVD algorithm. For sparse coding we introduce an adaptive version of
OMP which is based on the selection of the atoms using thresholding, similar to [16]
and [20]. However, while [16] and [20] require the careful tuning of a hyper-parameter,
our choice of the threshold is inspired by the considerations in Chapter 4 and hence,
selected based on the dictionary size K.

This chapter is structured as follows. In Section 5.2 we formulate the reconstruc-
tion problem using dictionary learning and introduce an adaptive version of OMP. In
Section 5.3 we describe different experiments, where the obtained results are presented
in Section 5.4 and discussed in Section 5.5.

5.2 Problem Formulation and Dictionary Learning-

based Regularisation Approaches

Mathematically, the process of undersampling can be formulated as applying a binary
mask SU to the measured Fourier data. Let y ∈ CNF denote the vector representation
of the unknown cine MR image with NF = Nx ·Ny ·Nt, where Nx×Ny is the shape of
a single 2D image and Nt corresponds to the number of cardiac phases. Let F denote
the encoding operator and U ⊂ J = {1, . . . , NF} the set of Fourier coefficients which
are needed to properly reconstruct the image y. The inverse problem one aims to solve
is of the form

ỹU = FUy + η, (5.1)

where FU := SU ◦ F and η denotes random noise. Images directly reconstructed from
undersampled k-space by applying the adjoint operator FH

U contain severe artefacts
which limit the diagnostic quality. Since by discarding non-measured data the problem
(5.1) becomes underdetermined, i.e. there is an infinite number of solutions. In Parallel
Imaging, where multiple receiver coils are used, the system can be overdetermined
but the reconstruction problem becomes poorly conditioned. Therefore, in order to
constrain the space of solutions of interest, regularisation techniques must be used.
When dictionary learning and sparse coding are used as a regularisation method,
possible formulations of the image reconstruction problem are the ones of the joint
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minimisation problems, for a fixed dictionary Ψ

min
y,{xj}j

‖FUy − ỹU‖2
2 +

λ

2

∑
j

(
‖Rjy −Ψxj‖2

2 + ‖xj‖0

)
, (P1)

see e.g. [13], or with minimisation also over the dictionary

min
y,Ψ,{xj}j

‖FUy − ỹU‖2
2 +

λ

2

∑
j

(
‖Rjy −Ψxj‖2

2 + ‖xj‖0

)
, (P2)

see e.g. [9] and [74]. Here, y denotes the unknown solution, ỹU the measured under-
sampled acquired k-space data, λ a regularisation parameter, and ‖xj‖0 counts the
number of non-zero coefficients in xj. The operator Rj extracts the j-th 3D patch
from the image y, Ψ denotes the dictionary and xj the sparse coefficient vector of the
patch Rjy with respect to Ψ. The difference between (P1) and (P2) is that in (P1),
one assumes to have a pre-trained dictionary Ψ, while in (P2), the dictionary Ψ is
learned during the reconstruction based on the current image estimates. Note that in
[74] and [9], a Total Variation (TV) term is further added to the minimisation problem
(P2). However, since we want to focus on the dictionary learning component of the
reconstruction, we neglect the additional TV-regularisation term. Problems (P1) and
(P2) can be solved by the alternating direction method of multipliers (ADMM) which
alternates between the minimisation with respect to y, the dictionary Ψ and the set
of vectors {xj}j. Usually, the starting point for the iterative reconstruction algorithm
is given by the direct reconstruction from the measured data, that is yU = FH

U ỹU .

Dictionary and Sparse Code Update

Assuming a fixed y, the minimisation of (P1) and (P2) is achieved by solving the
problems

min
{xj}j

∑
j

(
‖Rjy −Ψxj‖2

2 + ‖xj‖0

)
(5.2)

and
min

Ψ,{xj}j

∑
j

(
‖Rjy −Ψxj‖2

2 + ‖xj‖0

)
, (5.3)

respectively. Problem (5.2) is solved (approximately) with any sparse approximation
algorithm, while (5.3) is typically solved using first dictionary learning to learn Ψ
and then sparse coding. Note that, if the dictionary is learned using an alternating
minimisation algorithm, which alternates between dictionary learning to obtain Ψ and
sparse coding to obtain the vectors xj, the sparse coding after dictionary learning could
be skipped. However, usually we have to use different sparsity levels in the dictionary
learning- and sparse coding-stage or different sparse approximation algorithms in and
after dictionary learning are used.
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Reconstruction Update

Assuming a fixed dictionary Ψ and a fixed set of sparse coefficient vectors {xj}j, one
can easily see that minimising (P1) or (P2) with respect to y is equivalent to solving
the system of linear equations

Hy = b, (5.4)

where the operator H is given by

H = FH
UFU + λ

∑
j

RT
j Rj, (5.5)

and the right-hand-side b is given by a linear combination of the initial reconstruction
yU and an image which corresponds to a properly averaged combination of all patches
Ψxj, i.e.

b = FH
U ỹU + λ

∑
j

RT
j Ψxj. (5.6)

Since in general, the inversion of the operator H is computationally not feasible, prob-
lem (5.4) is solved using an iterative method. Given that H is symmetric, a common
choice for the solver is the pre-conditioned conjugate gradient (PCG) method [28].

5.2.1 Adaptive dictionary learning and sparse coding algo-
rithms

In applications such as image restoration, the sparsity level S and the dictionary size
K are typically chosen empirically or experimentally. As already mentioned in the pre-
vious chapter, for d-dimensional signals, typical values are d ≤ K ≤ 4d and S =

√
d,

but depending on the situation they can highly vary and, as we will show later, they
might have a significant impact on the reconstruction quality as well as the required
computational time.
To circumvent this issue and in order to investigate its performance in practical ap-
plications, we use the adaptive version of ITKrM (aITKrM). Inspired by some of the
ideas which we used for adapting the sparsity level S in Chapter 4, we now further
introduce adaptivity in the sparse coding stage after dictionary learning. In particular,
in the following, we present an adaptive version of OMP where not only the sparsity
level S is chosen adaptively but which will also turn out to significantly accelerate the
sparse coding procedure. As we will demonstrate later, the sparsity level of an image
can vary from position to position, meaning, depending on the texture of each image
patch, we have higher or lower S, hence, suggesting to introduce an adaptive choice
of S also in the sparse coding step.
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Adaptive OMP

In order to incorporate adaptivity into OMP, we replace the condition of stopping after
adding at most S atoms by a bound for the maximal inner product between any atom
and the current residual. More precisely, in each iteration, we check if there exists an
atom ψk for which the absolute value of the residual inner product |〈ψk, an〉| is larger
than some threshold times the norm of the residual. The index corresponding to the
atom yielding the largest inner product is then selected. Projecting the signal onto
the span of already selected atoms and calculating the new residual, this procedure is
repeated until the stopping condition is met. A suitable threshold is obtained using
concentration of measure. More precisely, we want aOMP to stop if the residual
consists only of noise. For that, assume our current residual is of the form an = r,
where r denotes a Gaussian noise vector, and for the current support |In| = S. The
expected number of remaining atoms for which the residual inner product is larger
than τ‖r‖2 can be calculated as

E
(
]{k /∈ In : |〈ψk, r〉| > τ‖r‖2}

)
=
∑
k/∈In

P
(
|〈ψk, r〉| > τ‖r‖2

)
< 2(K − S) exp

(
−dτ

2

2

)
. (5.7)

Setting τ =
√

2 log(4K)/d, the expectation above is smaller than 1
2
. This means, if the

residuals consist only of noise, using τ =
√

2 log(4K)/d within the stopping condition
of aOMP, on average half an atom per signal has a residual inner product larger than
τ‖r‖2. This expectation can be further decreased for an even higher choice of the
threshold τ . Inequality (5.7) is the main ingredient of the algorithm as it provides a
threshold τ that prevents aOMP from overfitting the considered patches and removes
noise.
To further accelerate aOMP, we introduce a preliminary step where we select the
strongest part of the support using a slightly higher threshold than τ . In particular,
before always adding the next best fitting atom (one at a time) we will choose part of
the support (several atoms at a time) by thresholding with τ1 =

√
2 log(8K)/d. This

partial support is subsequently refined/expanded by proceeding aOMP until one of
the stopping conditions is met. A summary of the proposed algorithm can be found
in Algorithm 5.2.1.

Note that we suggest to use OMP for the sparse coding stage of the iterative
reconstruction however, not to replace thresholding by OMP within aITKrM. This
choice is motivated by two reasons. First, thresholding is computational much cheaper
than OMP and hence, suitable for accelerating the regularisation stage of the iterative
reconstruction. Second, although OMP is known to yield better results than thresh-
olding for sparse approximation, it is unstable under perturbations. More precisely,
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Algorithm 5.2.1: Adaptive Orthogonal Matching Pursuit (aOMP)

Input: Ψ, Y ; // dictionary, signals

Initialise: X = 0 ; // d×N matrix

τ1 =
√

2 log(8K)/d ; // thresholds

τ2 =
√

2 log(4K)/d

foreach n do

Itn = arg where
(
|〈ψk, yn〉| > τ1 · ‖yn‖2

)
an = yn − P (ΨItn

)yn

while maxk |〈ψk, an〉| > τ2 · ‖an‖2 do

Itn = Itn ∪ arg maxk |〈ψk, an〉|
an = yn − P (ΨItn

)yn
end

X[Itn, n] = Ψ†Itn
yn

end

Output: X ; // sparse coefficient matrix

using an appropriate dictionary Ψ for the sparse approximation of a class of signals,
OMP is known to yield much better results than simple thresholding. However, in
the presence of perturbations of the dictionary, which is the case during learning the
dictionary, OMP performs worse. In order to verify this claim, in Chapter 6 we inves-
tigate the performance of OMP in case where the input dictionary is only a perturbed
version of the generating dictionary.

5.3 In-Vivo Experiments

Here, we describe the experiments which we conducted in order to study the behaviour
of aITKrM and aOMP when they are used for the reconstruction of 2D cine MR im-
ages from undersampled k-space data.
In particular, in order to get an assessment of the quality of the obtained reconstruc-
tions for various combinations of dictionary learning and sparse approximation algo-
rithms and to highlight some aspects of the adaptive dictionary learning and sparse
approximation algorithms, we performed the following experiments.

1. Adaptive vs. non-adaptive dictionary learning and sparse coding: Here, we quan-
titatively compared the performance of the reconstruction algorithms used to
solve problems (P1) and (P2) using three different combinations of dictionary
learning and sparse approximation algorithms: K-SVD + OMP, ITKrM + OMP
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and aITKrM + aOMP. For these experiments, images obtained by kt-SENSE [67]
were used as ground-truth images. From these images, the k-space data was ret-
rospectively generated and corrupted by Gaussian noise in order to simulate an
acceleration factor of 9. We repeated the experiments for different choices of
the sparsity level S. More precisely, to demonstrate the impact of the choice
of potentially too low/too high S, we used S = 4, S = 8 and S = 16 for the
non-adaptive dictionary learning and sparse approximation algorithms.

2. Convergence behaviour: We investigated the convergence behaviour of the differ-
ent combinations of dictionary learning and sparse coding methods by tracking
the average of the chosen image measures during the reconstruction.

3. Computational time: We compared the different combinations K-SVD + OMP
/ ITKrM + OMP / aITKrM + aOMP in terms of computational time.

4. Sensitivity with respect to µmax and M : Since for aITKrM the maximal allowed
coherence of the dictionary µmax and the minimal number of observations M
have to be chosen, we have compared the obtained results for different choices
of M and µmax to demonstrate the stability with respect to them.

5. Experiments using real k-space data: Here, we reconstructed images from the
k-space data obtained from the scanner with the three different combinations of
dictionary learning and sparse coding.

For all experiments, we used the publicly available Python-implementations of
K-SVD and OMP in the scikit-learn library [51] which are based on an efficient
implementation of K-SVD using batch OMP [54]. The forward and the adjoint op-
erators FU and FH

U were implemented using the libraries ODL [1] and PyNUFFT [38].
The PCG method used to solve system (5.4) was provided by ODL. Our Python-
implementations of ITKrM, aITKrM and aOMP as well as of the forward and adjoint
operators FU and FH

U using the library Torch KB-NUFFT [46], [45], are available at
https://github.com/koflera/AdaptiveDLMRI.

5.3.1 Dataset

Our dataset consisted of n = 15 2D cine MR image series from patients as well as
healthy volunteers and represents a subset of particularly interesting cases selected
from [31]. Further, 10 different images were used to pre-train dictionaries for solving
(P1). The images were obtained using a bSSFP sequence on a 1.5 T MR scanner
(Achieva, Philips Healthcare, Best, The Netherlands) within a single breathhold of
10 s (TR/TE = 3.0/1.5 ms, FA 60◦). The images have a shape of Nx × Ny × Nt =
320× 320× 30, where Nx ×Ny is the number of in-plane pixels and Nt is the number
of cardiac phases which were acquired during the scan. The in-plane resolution of the
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images is 2 mm and the slice thickness is 8 mm. The acquired k-space data corresponds
to the Fourier-data sampled along Nθ = 3400 radial trajectories which were chosen
according to [76]. From these images, we retrospectively generated the undersampled
k-space data ỹU by solely using Nθ = 1130 radial spokes. Using only Nθ = 1130
spokes corresponds to an undersampling factor of approximately ∼ 9 and reduces the
scan time to approximately 3 seconds. Further, the k-space data was corrupted by a
normally distributed random noise vector η with a standard deviation of 0.05.

5.3.2 Experiment set-up

The patch-size used for all experiments was 4 × 4 × 4, which we chose according to
other published methods, e.g. [9, 74]. Our signals, which correspond to the vectorised
patches extracted from the images, therefore have dimension d = 64. As in [9], we
approximated the real and imaginary part of the complex-valued images separately
but used the same real-valued dictionary Ψ. For the non-adaptive combinations of
dictionary learning and sparse approximation algorithms, we fixed the number of atoms
of the dictionary Ψ to be K = 128. Note that the empirical choice of K is typically
in the range d ≤ K ≤ 4d while using a sparsity level of S =

√
d, which, for a fixed

size of patches 4 × 4 × 4, results in 64 ≤ K ≤ 256 and S = 8. In fact, this choice is
well-established in the literature. For example, in [74], the parameters are empirically
set to K = 256 and S = 15. In [9], the number of atoms is set even higher, varying
from K = 300 to K = 600, dependent on the experiments. However, due to the
fact that our forward model is given by a radial encoding operator using multiple
coils, the artefacts contained in the initial reconstruction yU which is obtained using
the non-uniform fast Fourier transform (NUFFT) are inherently different from the
ones obtained by a zero-filled reconstruction as in [9] or [74]. Since the artefacts can
be expected to have a more high-frequency type of texture, we decided to only use
K = 128 for varying S. As already mentioned, the experiments were repeated for a
relatively low choice of S = 4, a typical choice S =

√
d = 8 and a relatively high

choice of S = 16. Further, for S = 8, the number of atoms K is also varied in other
experiments. The sparsity level S was chosen to be the same for both dictionary
learning and sparse coding. Note that, this choice is known to be sub-optimal, e.g. for
the combination ITKrM + OMP, where usually a smaller S for learning the dictionary
and a larger S for sparse coding is required. However, for the ease of comparison they
were chosen to be the same. In any case our point is that a global choice of the sparsity
level can never be optimal. Since the k-space data ỹU was contaminated by random
noise, the regularisation parameter λ was set to λ = 1 in order to achieve a relatively
strong contribution of the regularisation imposed by dictionary learning and sparse
coding and therefore being able to highlight the impact of the different dictionary
learning and sparse approximation algorithms. The number of PCG iterations used
to update the reconstruction by solving (5.4) and the number of overall iterations for
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ADMM were set to nPCG = 4 and T = 12, respectively.
For solving (P1), the dictionaries were pre-trained on patches extracted from the
images of 10 different subjects. The dictionaries were initialised by K = 128 randomly
selected patches and learned by randomly extracting 150 000 patches of the real and
imaginary part of the images at each dictionary learning iteration. The maximal
number of iterations for the respective dictionary learning algorithm was set to nDL =
200. For the combination aITKrM + aOMP, we used µmax = 0.7 and for the number
of minimal observations we used M = d with corresponding coefficient threshold τ =√

2 log(2N/M)/d. During every iteration of aITKrM we learned L = blog de = 4
replacement candidates using m = blog de = 4 iterations each with NΓ = bN/mc
signals. Also for the number of protected runs for newly added atoms we chose m =
blog de = 4. Promising replacement candidates were added to the dictionary after
every iteration starting with the m-th iteration. In the last 3m iterations no more
atoms were added. Coherent atoms were merged after every iteration and unused
atoms were pruned after every iteration starting with iteration 2m. The resulting size
of the dictionary learned with aITKrM was K = 151.
For solving (P2), the dictionaries were learned by randomly extracting N = 10 000
patches of the real and imaginary part of the current image estimate yk for each
dictionary learning iteration. The maximal number of iterations of the respective
dictionary learning algorithm within one ADMM iteration was set to nDL = 20. The
dictionaries were initialised as for solving (P1) and continuously updated during the
reconstruction. For each subsequent ADMM iteration, the dictionary Ψ was initialised
with the one learned during the previous ADMM iteration. The set-up for the adaptive
part was the same as for solving (P1). For sparse approximation we used strides of
2 in Nx-, Ny- and Nt-direction, which reduces the number of patches to be sparsely
approximated by a factor of 8. Note that we did not learn the constant atom since
the patches were centered before learning the dictionaries.

5.3.3 Quantitative measures

For evaluating the performance of the different reconstruction algorithms, we report
the peak signal-to-noise ratio (PSNR) and the normalised root mean squared error
(NRMSE) as error-based image metrics and the structural similarity index measure
[75] (SSIM) as similarity-based image metric. The hyper-parameters needed by SSIM
are the ones published in the respective work. In order to focus on the regions of the
images with diagnostic content, the metrics were calculated on the images which were
previously cropped to N ′x ×N ′y = 220× 220.
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5.4 Results

In this section we present the results which we obtained from the various experiments
described above.

5.4.1 Reconstruction results

Here, we reconstructed all 15 cine MR image series using the different combinations of
dictionary learning and sparse approximation algorithms. Figure 5.1 shows an example
of images reconstructed with the three different combinations of dictionary learning
and sparse approximation algorithms. For K-SVD and ITKrM, the combination of S
and K is the one which led to the best quantitative results for the respective methods.
Concretely, when the dictionary is pre-trained the best choice for K-SVD was S = 8
and K = 128, and for ITKrM S = 8 and K = 64. As can be seen from the point-wise
error images, all non-adaptive and the adaptive dictionary learning and sparse coding
combinations led to visually comparable results. Table 5.1 lists the average PSNR,
NRMSE and SSIM for the different reconstructions. When the dictionary Ψ is learned
during the reconstruction, we see that for both non-adaptive combinations K-SVD +
OMP and ITKrM + OMP, setting S = 16 yielded the worst results compared to S = 8
and S = 4. In particular, the gap between them was larger for larger S, which can be
attributed to issues during the dictionary learning and is a well known issue of ITKrM
for overestimated sparsity levels [61]. The adaptive combination aITKrM + aOMP
achieved similar reconstruction quality as K-SVD + OMP with the best reported
choices of the sparsity level S and dictionary size K by further slightly improving
SSIM.
The second part of Table 5.1 lists the results obtained by using a pre-trained dictionary.
For this case, we have that the adaptive combination aITKrM + aOMP achieved
the best results with respect to all reported measures when compared to the non-
adaptive combinations also for the best choices of S and K. Note that, pre-training the
dictionaries was carried out on the kt-SENSE reconstructions obtained from Nθ = 3400
radial spokes which do not contain severe artefacts. Further, for pre-training, we used a
higher number of image patches and dictionary learning iterations than for learning the
dictionary during the reconstruction. Therefore, by increasing the number of patches
and iterations used to learn the dictionary online, one can most probably also expect
an improvement of these results. In particular, because (as we will see in Subsection
5.4.3) aITKrM is approximately 10 times faster than K-SVD, allowing aITKrM to take
the same amount of time as K-SVD, it is possible to surpass K-SVD + OMP also in
terms of PSNR and to obtain the same NRMSE, for the case where the dictionary is
learned during the reconstruction, see Table 5.3.
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K-SVD + OMP
K = 128, S = 8
Nθ = 1130

ITKrM + OMP
K = 64, S = 8
Nθ = 1130

aITKRM + aOMP
Nθ = 1130

Figure 5.1: Results obtained by the best combinations of S and K for different dictio-
nary learning and sparse approximation algorithms and their corresponding point-wise
error-images. First row: K-SVD + OMP for K = 128, S = 8, second row: ITKrM +
OMP for K = 64, S = 8, third row: aITKrM + aOMP, fourth row: initial NUFFT-
reconstruction from Nθ = 1130 radial spokes (left) and the kt-SENSE reconstruction
using Nθ = 3400 radial spokes which served as ground truth for the retrospective
k-space data-generation (right). While the noise-level is similar for all combinations
of dictionary learning and sparse approximation algorithms, using aITKrM + aOMP
does not require the tuning of S and K.
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Table 5.1: Comparison of the performance of different algorithms for dictionary learn-
ing and sparse coding used in the reconstruction. Using aITKrM + aOMP yields
similar or better results compared to the ones obtained with the best combinations of
S and K for the non-adaptive algorithms K-SVD + OMP and ITKrM + OMP.

Ψ Learned during Reconstruction

Non-Adaptive Adaptive

DL K-SVD ITKrM aITKrM

SC OMP OMP aOMP

K 64 128 128 128 256 64 128 128 128 256 ad.

S 8 16 8 4 8 8 16 8 4 8 ad.

PSNR 43.845 43.870 44.538 44.354 42.998 42.595 40.825 43.017 43.628 42.497 44.491

NRMSE 0.0681 0.068 0.062 0.064 0.075 0.079 0.096 0.074 0.069 0.079 0.063

SSIM 0.687 0.671 0.692 0.710 0.656 0.663 0.604 0.657 0.698 0.65 0.734

Pre-Trained Ψ

Non-Adaptive Adaptive

DL K-SVD ITKrM aITKrM

SC OMP OMP aOMP

K 64 128 128 128 256 64 128 128 128 256 ad.

S 8 16 8 4 8 8 16 8 4 8 ad.

PSNR 45.062 44.856 45.205 44.594 44.936 44.667 43.117 44.483 44.009 43.996 45.314

NRMSE 0.059 0.060 0.058 0.062 0.060 0.062 0.073 0.063 0.066 0.067 0.057

SSIM 0.703 0.684 0.699 0.714 0.691 0.696 0.645 0.687 0.709 0.675 0.738

5.4.2 Convergence behaviour

For assessing the convergence speed of the reconstruction algorithms, we tracked the
different measures used for the evaluation of the performance of the reconstruction
algorithms during the iterative reconstruction. Figure 5.2 shows the mean PSNR,
NRMSE and SSIM averaged over the different images. Quite consistently, it can be
observed that the reconstruction using the adaptive combinations aITKrM + aOMP
surpassed the non-adaptive dictionary learning and sparse coding combinations at
early iterates with respect to all measures and tended to let the curves flatten out
earlier than the non-adaptive counterparts. This could be particularly well observed
for the case of NRMSE and PSNR and held true for all scenarios with different S.
ITKrM + OMP with S = 16 revealed a semi-convergent type of behaviour which
can be attributed to the fact that S = 16 is too high for ITKrM in the presence of
noise in k-space. This also shows that the choice of S can have a high impact on the
reconstruction.
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Figure 5.2: Convergence behaviour of the reconstruction scheme for solving (P1) (first
row) and for solving (P2) (second row) using different combinations of dictionary
learning and sparse approximation algorithms. The combination of aITKrM + aOMP
yields better or equally good results compared to the non-adaptive combinations with
respect to all measures, for solving (P1) and (P2). The images show the respective
average measure over the iterations.

5.4.3 Reconstruction times

Here, we report the times for the different components of the dictionary learning-based
reconstruction algorithms. The components which significantly contributed to the rela-
tively high reconstruction times were the dictionary learning and sparse approximation
algorithms and the PCG method which is needed to obtain an approximate solution
of (5.4). Obviously, the latter was constant for the three different combinations of
dictionary learning and sparse coding. Table 5.2 lists the average time needed for dic-
tionary learning and sparse coding for each ADMM iteration. Therefore, the overall
time needed for a specific component can be obtained by multiplying the respective
time by the number of ADMM iterations T .
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Table 5.2: Comparison of dictionary learning (DL) and sparse coding (SC) in terms
of computational times in seconds for one ADMM iteration for solving problem (P2).
We see that for the combination aITKrM + aOMP, the required computational time
is the lowest for dictionary learning as well as for sparse coding. In each iteration the
dictionary was learned on N = 20 000 patches, for nDL = 10 iterations of the respective
dictionary learning algorithm.

DL and SC Sparsity Level DL / SC Time

K-SVD + OMP S = 16 71 / 849

S = 8 69 / 415

S = 4 69 / 206

ITKrM + OMP S = 16 9 / 824

S = 8 8 / 412

S = 4 8 / 205

aITKrM + aOMP adaptive 7 / 149

We see that K-SVD was the slowest dictionary learning algorithm and took ap-
proximately 69-71 seconds for one single ADMM iteration. ITKrM was considerably
faster and took only between 8-9 seconds whereas its adaptive version was the fastest
and took only around 7 seconds (including also the time which was needed to estimate
the sparsity level and replacing coherent and unused atoms). For sparse coding, we
see that for OMP the chosen sparsity level obviously had an impact on the required
computational time and took 824-849 seconds for S = 16, 412-415 seconds for S = 8
and 205-206 seconds for S = 4. Our adaptive version aOMP was even faster as OMP
for the lowest choice of S = 4 and required about 149 seconds.
Figure 5.3 shows a diagram representing the overall time for the respective compo-
nent of the reconstruction algorithm. From the bars we can see the time which each
component took relative to the total reconstruction time. First, we see that for the
non-adaptive experiments, the time needed for the sparse approximation of all patches
constitutes the computational bottleneck of the method when S is chosen too high,
i.e. S = 16. Second, we see that, as expected, ITKrM was able to substantially reduce
the computational time compared to K-SVD. However, the gain in terms of accelera-
tion was negligible when putting it in relation to the overall time because OMP still
remains the computational overhead for S = 16. The last bar of the graph shows that
first, by employing aITKrM, the time needed to learn the dictionary still amounted
to approximately the same as for ITKrM, and second, in this configuration, the time
needed for sparse coding was clearly reduced and approximately corresponds to the
one for OMP with S = 4.
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Figure 5.3: Reconstruction times grouped by components for different combinations
of dictionary learning and sparse approximation algorithms for solving problem (P2)
with K = 128. When solving (P1), the times needed for PCG and sparse coding
remain similar, while the time for learning the dictionary Ψ can be neglected since it
is assumed to be given a-priori.

5.4.4 Sensitivity with respect to µmax and M

For aITKrM we have to choose two input parameters: the maximal allowed coherence
of the dictionary µmax and the minimal number of observations M . Here, we tested
the stability of the reconstruction with respect to a variation of µmax and M . For this,
we reconstructed all n = 15 cine MR image sequences with different combinations
of them, namely for µmax = 0.5, 0.7 and 0.9 and for M = d, 2d and 2d log d. These
experiments were carried out when solving problem (P2), i.e. where the dictionary Ψ is
learned during the reconstruction. In order to ensure a better convergence behaviour of
aITKrM during each learning stage, during the reconstruction, the number of iterations
was set to nDL = 100 and the number of patches used for learning Ψ was set to
N = 40 000. Note that by doing so, the total computational time required by aITKrM
is less than for K-SVD, amounting to approximately 200 seconds for each learning
stage. The obtained results can be found in Table 5.3. From the results we see that
they are relatively stable with respect to the different choices of µmax and M .

5.4.5 Experiments using real k-space data

In the following, we tested the reconstruction algorithm with the different combinations
of dictionary learning and sparse approximation algorithms by using the real k-space
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Table 5.3: Variation of the pre-defined maximal allowed coherence µmax of the dictio-
nary and the minimal number of observations M . For the experiments, the dictionary
Ψ was learned during the reconstruction. For each iteration the dictionary was learned
on N = 40 000 patches using aITKrM with nDL = 100. We see that the results are
relatively stable with respect to different choices of µmax and M .

µmax 0.5 0.5 0.5 0.7 0.7 0.7 0.9 0.9 0.9

M d d log d 2d log d d d log d 2d log d d d log d 2d log d

PSNR 44.030 44.026 44.288 44.682 44.117 43.010 44.669 44.664 44.459

NRMSE 0.067 0.067 0.065 0.062 0.066 0.076 0.062 0.062 0.063

SSIM 0.732 0.732 0.733 0.734 0.731 0.723 0.734 0.733 0.732

data acquired along Nθ = 1130 radial trajectories obtained from the scanner and
compared it to kt-SENSE using Nθ = 3400 radial trajectories. Note that sampling
k-space along Nθ = 3400 spokes already corresponds to an undersampling factor of
∼ 3 which is needed to perform the scan in a single breathhold. Further, the kt-
SENSE reconstruction algorithm itself imposes prior information to regularise the
inverse problem and therefore, the kt-SENSE reconstructions obtained from the Nθ =
3400 radial spokes cannot be considered as ground truth images for this experiment.
Therefore, we abstain from reporting quantitative measures as well as point-wise error
images. A rigorous quality assessment would need to be performed with respect to
predefined clinical features and a clinical application. However, since this is beyond
the scope of this work, we only show an example of the reconstruction for the sake
of completeness and to demonstrate the applicability of aITKrM and aOMP for real
k-space data. Figure 5.4 shows an example of images reconstructed with the three
different combinations of dictionary learning and sparse approximation algorithms.
The first row in Figure 5.4 shows the results obtained with K-SVD + OMP and
the second row with ITKrM + OMP for different sparsity levels S, respectively. In
the third row, we have the initial NUFFT-reconstruction, the result obtained with
aITKrM + aOMP as well as the kt-SENSE reconstruction using Nθ = 3400 radial
spokes. Visually, all methods performed similarly well, and K-SVD + OMP and
ITKrM + OMP show a slightly higher noise level compared to aITKrM + aOMP,
which is consistent with the results presented in Subsection 5.4.1. However, note
again that the times needed to obtain the reconstructed images are substantially lower
for aITKrM + aOMP and no a-priori choice of the hyper-parameters S and K was
required.
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Figure 5.4: Results obtained from real k-space data obtained from the scanner mea-
surements. Top row: K-SVD + OMP with S = 16 , S = 8 and S = 4, mid row:
ITKrM + OMP with S = 16, S = 8 and S = 4, third row: NUFFT-reconstruction
using Nθ = 1130 radial spokes, aITKrM + aOMP and kt-SENSE using Nθ = 3400
radial spokes.

5.5 Discussion

We have seen that the adaptive versions of dictionary learning and sparse approx-
imation algorithms given by aITKrM and aOMP provide valid alternatives to the
well-established K-SVD algorithm and the non-adaptive sparse approximation algo-
rithm OMP. In the following we discuss the advantages and limitations of the described
algorithms in more detail.
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5.5.1 Adaptive estimation of S and K

The major advantage of the combination aITKrM + aOMP is clearly that it is no
longer necessary to choose the sparsity level S and the number of atoms K. This is
important not only to make such algorithms more eligible for practical applications
but also because a wrong choice of S and K can have a large impact on the com-
putation time and the reconstruction quality. Intuitively speaking, within the sparse
coding stage a too small choice of S leads to too smooth results with probably missing
details while a too high choice of S results in a preservation of undersampling artefacts
which we are trying to remove. Also, as the structure of an image varies from location
to location, S should vary dependent on the considered image patch as well. Within
the dictionary learning stage, in noisy situations a too high choice of S can cause the
atoms to be disturbed by adding noise.
Moreover, the optimal number of atoms K is also data-dependent. In particular, for
dictionaries learned on images containing more structure, a larger K is needed than
for fairly smooth ones. Further, the optimal size of the dictionary was also shown to
be dependent on the noise level of a corrupted image, i.e. the more noise, the smaller
K should be chosen, [49]. These observations suggest that a global choice of S and
K cannot be optimal, disregarding the fact that they are not known and can only
be guessed. Using aITKrM and aOMP, S and K are adaptively chosen based on the
texture of the current image estimate during the learning of the dictionary as well as
during the sparse approximation step. Intuitively, at early iterations of the iterative
reconstruction, a stronger regularisation of the image estimate is required in order to
reduce the artefacts. At later iterations, where the current image estimate contains
less noise and artefacts, a higher S and K are required to be able to represent fine
anatomic details.

In order to illustrate how the dictionary size K as well as the sparsity level of an
image varies during the iterative reconstruction, we conducted some additional ex-
periments. For that, while solving problem (P2), meaning when the dictionary Ψ is
learned during the reconstruction, we tracked the average dictionary size K estimated
by aITKrM during the dictionary learning stage as well as the estimated sparsity level
of each patch during the subsequent sparse coding stage using aOMP. As previously,
the number of patches used to learn the dictionary was set to N = 40 000 and the
number of iterations was set to nDL = 100. The maximal allowed coherence of the dic-
tionary and the minimal number observations were set to µmax = 0.7 and M = d log d,
respectively. The results are shown in Figure 5.5 and Figure 5.6.
Figure 5.5 shows the average dictionary size K estimated by aITKrM during the re-
construction. We see that using aITKrM, the estimated number of atoms K needed to
optimally represent the patches of the current image estimate tends to first decrease
and then increase over the iterations.
In Figure 5.6 (a1) and (b1), the real and imaginary part of the NUFFT-reconstruction
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Figure 5.5: Average dictionary size K estimated by aITKrM during the iterative
reconstruction.

yU are displayed. In (c1) and (d1), we can see the corresponding patch-wise approxi-
mated images using aOMP and a dictionary learned by aITKrM. Figure 5.6 (e1) and
(f1) show the estimated sparsity levels at various locations in the image. The second
panel of Figure 5.6 shows the same images at the penultimate iteration T = 11 of the
reconstruction. As we can see in (e2) and (f2), the average estimated sparsity level
S is significantly higher than for the NUFFT-reconstruction, especially in the regions
of the image which contain the patient’s anatomy. In contrast, regions not containing
the patient’s anatomy but only background are sparsely approximated using a lower
S.
This demonstrates that for the specific task of iterative image reconstruction, the op-
timal sparsity level S of a patch first of all depends on the needed complexity to rep-
resent relevant features and second, might change during the reconstruction. Further,
in Subsection 5.4.3, we have observed that choosing S too high clearly has significant
impact on the computational time and at the same time does not necessarily increase
the reconstruction quality.
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Figure 5.6: Estimated sparsity level at different stages during the iterative reconstruc-
tion for solving (P2), where Ψ is learned during the reconstruction. Left panel: (a1)
and (b1) - real and imaginary part of the initial NUFFT-reconstruction yU , (c1) and
(d1) - the correspondent patch-wise sparse approximations using aITKrM + aOMP,
(e1) and (f1) - the estimated sparsity levels of the image-patches at various locations.
Right panel: (a2) and (b2) - real and imaginary part of the twelfth iterate obtained
by using aITKrM + aOMP, (c2) and (d2) - the correspondent patch-wise sparse ap-
proximations using aITKrM + aOMP, (e2) and (f2) - the estimated sparsity levels of
the image-patches at various locations. The average sparsity level S is therefore lower
at early iterates in the reconstruction and higher at later iterates.

In Figure 5.7 we see an example of eight atoms out of the dictionaries learned
by the respective dictionary learning algorithms. The atoms of the dictionaries shown
in the figure were learned on a set of patches extracted from the initial NUFFT-
reconstruction yU (first row) and from the penultimate image estimate of the recon-
struction (second row). We can see that the dictionaries learned by the non-adaptive
dictionary learning algorithms with S = 16 tend to inherently contain quite a large
portion of noise in the atoms which, on the other hand, is almost not present in the
atoms learned by aITKrM. This observation is consistent with the theory discussed in
Subsection 4.3.1, for the case where the sparsity level S is overestimated and suggests
that S = 16 is a far too high choice. The fact that S and K no longer need to be chosen
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a-priori could highly facilitate a possible application of the reconstruction algorithm in
the clinical routine, where standardised acquisition and reconstruction protocols have
to be used. Further, as we have seen in the examples shown in Subsection 5.3, the
S- and K-adaptivity achieves competitive results compared to K-SVD + OMP and
additionally reduces the required reconstruction times.

K-SVD ITKrM aITKrM

Figure 5.7: Examples of eight three-dimensional atoms (un-stacked along the time di-
mension) of the dictionaries learned by K-SVD (left), ITKrM (mid) and aITKrM
(right). The dictionaries were learned on 3D patches extracted from the initial
NUFFT-reconstruction yU (first row) and the penultimate image estimate (second
row). For K-SVD and ITKrM, the sparsity level was S = 16. Since S = 16 is rela-
tively high, some of the atoms obtained by K-SVD and ITKrM contain a relatively
large portion of noise (especially the ones marked in red). For aITKRM, the atoms
seem to be considerably more stable, in particular at the penultimate iteration (second
row). Note that the constant atom is not shown in the images.

5.5.2 Limitations

A possible limitation is that the thresholds chosen for the algorithms underlie the the-
oretical consideration of Gaussian and sub-Gaussian noise which might not be true in
general. However, sampling along radial trajectories is known to represent an inco-
herent sampling pattern with noise-like properties and similar or even better results
could be probably obtained by using Compressed-Sensing Cartesian schemes [40].
As all iterative reconstruction methods which employ a-priori knowledge expressed
as a penalty term, the dictionary learning-based regularisation method requires to
choose the regularisation parameter λ. However, quite some work has been dedicated
on how to adaptively choose the parameter λ as well, see e.g. [12, 37], which might be
incorporated in the reconstruction algorithm using aITKrM + aOMP.
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5.5.3 Dictionary learning vs. deep learning

Especially with the emergence of deep learning-based methods for the regularisation of
inverse problems in medical image reconstruction, see for example [56], [26], [69], [68],
[27], [31], one can ask whether dictionary learning-based regularisation has nowadays
become an obsolete regularisation method. Nevertheless, without a doubt, the black-
box character of deep learning remains an open issue which still needs to be properly
addressed, in particular when used for medical imaging applications [41]. In fact, deep
learning-based methods for image reconstruction have recently been reported to be
affected by instabilities [4].
In contrast, dictionary learning has a longer tradition and stands on a more solid
mathematical foundation with well-understood theory. Therefore, opting for dictio-
nary learning and sparse coding as regularisation methods offers the possibility to
employ Machine Learning-based methods with a more profound theoretical under-
standing. Further, note that often a reason why deep learning-based methods are also
favoured over other regularisation methods is their fast application using appropriate
libraries and GPUs. However, for large-scale problems (as the one considered in this
work), even if obtaining a regularised image with a neural network is fast, in order to
increase data-consistency of the solution, an appropriate functional should be subse-
quently minimised, see e.g. [32]. Therefore, the overall required computational time
for this type of approaches is mainly dependent on the implementation of the iterative
solver, i.e. on the implementation of the forward/adjoint models. Note that in our
proposed method, the time needed for dictionary learning and sparse coding amounts
to approximately the same as the time needed for PCG. Thus, the longer computa-
tional time compared to deep learning-based methods seems to be an acceptable price
to pay for being able to use a theoretically well-founded regularisation method which
also does not require the a-priori choice of the hyper-parameters S and K.

5.5.4 Reconstruction quality

The achieved image quality using aITKrM + aOMP is comparable with the one
achieved using the standard combination K-SVD + OMP with the best reported
choices of the sparsity level as can be seen in Figure 5.1 and Table 5.1. The performed
experiments reveal that for K-SVD, choosing S too high impairs image quality com-
pared to a lower choice of S. This effect is even clearer for ITKrM, where a too high
S is known to disturb atoms in the dictionary, especially in the presence of noise.
Moreover, in Figure 5.3 we have seen that overestimating S leads to a substantial
increase of computational time. From these experiments we can further conclude that
the choice of S is non-trivial. Also, relying on the choice of hyper-parameters sug-
gested in the literature might not be optimal, as the reported parameters are always
data- and problem dependent and usually adapted to a specific task. This observation
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makes the S- and K-adaptivity a particularly interesting feature of the combination
aITKrM + aOMP from a practical point of view. First of all, it is possible to reduce
the computation time and second, it is possible further improve the reconstruction
quality. Although aITKrM requires the choice of the maximal allowed coherence µmax

of the dictionary and the minimal number of observations M , we have seen that the
combination of aITKrM and aOMP was relatively robust with respect to the latter.
Note that, while S and K depend on the type of signals, M only depends on the
number of available training signals per iteration.

5.5.5 Reconstruction times

Learning a dictionary with aITKrM instead of K-SVD leads to an acceleration fac-
tor of approximately 10 which is useful when the dictionary is learned during the
reconstruction. The reason is that the computationally most expensive component
of K-SVD is OMP, where aITKrM in contrast only requires the faster thresholding.
More importantly, using aOMP has the potential of highly reducing the time needed
for the sparse approximation of all patches since, instead of using a (as we have seen,
potentially too high) global sparsity level S, it is adaptively chosen according to the
considered patch-example.

Summarising this chapter, we have investigated the application of aITKrM and
aOMP for the task of cine MR image reconstruction. We have shown their competitive-
ness and advantages compared to the well-established K-SVD and OMP algorithms.
While most methods employing dictionary learning and sparse coding for the regular-
isation of image reconstruction in MR use a global sparsity level S for learning the
dictionary as well as for sparsely approximating the image patches, we have seen that
this can never be optimal. Further, S and the number of atoms K to be used are
usually determined by computationally expensive hyper-parameter searches. Using
aITKrM and aOMP, S and K are adaptively chosen dependent on the texture of the
currently considered image estimates. As we have seen, aOMP provides appropriate
estimates of S for the sparse approximation of the patches and by this, a more effi-
cient regularisation is achieved. This also results in a significant acceleration of the
regularisation step, especially when compared to the case for standard a-priori choices
of S and K.

From the comparison of the reconstruction times we have seen that aITKrM and
ITKrM were significantly faster than K-SVD. In particular, as thresholding has a
much lower computational complexity than OMP, we were able to substantially accel-
erate the dictionary learning stage of the iterative reconstruction. The computational
lightness of thresholding however comes at the price of a much weaker performance
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compared to OMP. Interestingly, although K-SVD uses the much better sparse ap-
proximation algorithm OMP, all algorithms yielded similar results. Further, also in
[61] it was shown that K-SVD and ITKrM perform equally well. To see if we can
get some theoretical insights which shed light on the question whether in dictionary
learning the performance of OMP is worth its cost, in the next chapter we will analyse
the performance of OMP for input dictionaries that are affected by some perturbation
and hence do not coincide with the signal generating dictionary.





Chapter 6

Orthogonal Matching Pursuit
(OMP) with Perturbations

In this chapter we have a closer look at sparse approximation algorithms. In particu-
lar, we present average case results for OMP in case where we do not have the signal
generating dictionary but only a perturbed version of it. We provide recovery condi-
tions for noiseless as well as noisy signals and further compare them with conditions
obtained for thresholding. Finally we conduct various numerical experiments in order
to illustrate our theoretical findings.

85
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6.1 Limitations of Existing Results

In the previous chapter we have seen how well sparse approximation algorithms are
suited for real-world applications. Besides their good practical performance, there ex-
ists also detailed theory that analyses their worst case or average case performance, see
e.g. [62, 65, 60, 24, 66]. However, these results are usually based on the assumption
that the signal generating dictionary is given. This means, the dictionary used in the
signal model is also assumed to be given as input parameter for the corresponding
sparse approximation algorithm. Indeed, such assumptions may not hold true in all
situations. In practical applications we in general have at best a good approximation
of this dictionary. Moreover, sparse approximation algorithms are also used within
dictionary learning algorithms where the learned dictionary can be completely differ-
ent from the generating dictionary, especially in the first iterations. In this chapter
we want to bridge the gap between theory and practice and provide recovery condi-
tions for OMP for the case where we do not have the signal generating dictionary. In
particular, we provide average case results for OMP where the given input dictionary
is only a perturbed version of the generating dictionary, for noiseless as well as noisy
signals. Comparing the theoretical guarantees for OMP and thresholding, we will see
that in presence of perturbations both conditions contain a term that limits the range
of parameters for which they perform well. In the perturbation-free case, on the other
hand, this term only occurs in the recovery conditions of thresholding.

This chapter is organised as follows. After introducing the signal model and the
dictionaries on which our results are based, in Section 6.2 we derive recovery conditions
for OMP in case of noiseless signals. The results concerning the noisy case are presented
in Section 6.3. In Section 6.4 we provide recovery conditions for thresholding and
compare them with the ones of OMP. In order to illustrate the obtained results we
conduct various numerical experiments in Section 6.5 and conclude the chapter in
Section 6.6.

6.1.1 Signal model and dictionaries

Before we start, we have to introduce the signal model on which our results are based
and explain how we generate a perturbation on our dictionary. Note that, this is
essentially the same as in Subsection 3.1.1 and Section 1.2 but to simplify the proofs
we use a slightly different notation.
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Signal model

Given a d×K dictionary Φ, we assume that our signals are generated as

y = Φp(I)xI :=
∑
i∈I

φp(i)xi with xi = σici, (6.1)

where I = {1, . . . S}, (σi)i forms a Rademacher sequence, the coefficients ci are non-
increasing, meaning, we have that c1 ≥ c2 ≥ · · · ≥ cS ≥ 0 and p is some permutation
of {1, . . . K} chosen uniformly at random among all permutations. For convenience
we write for any index set J , J̄ = p(J) and hence, Φp(I)xI = ΦĪxI .

In order to prove success of OMP we use similar ideas as already used in [60]. In
particular, in order to get useful average case results, we need coefficients exhibiting
some decay. In this case, we get a natural order in which atoms are more likely to be
picked, atoms corresponding to larger coefficients, before other atoms corresponding
to smaller coefficients.
For our analysis we group the indices of the S non-zero coefficients into s slots de-
pending on the coefficient size. We take β ∈ (0, 1) and define the map

b : {1, . . . , S} → {1, . . . , s} (6.2)

b(i) = j ⇔ ci ∈ (c1β
j, c1β

j−1] (6.3)

and the slots Uj via

Uj = b−1({j}). (6.4)

To assign every non-zero coefficient index to a slot Uj the number of slots needs to

satisfy c1β
s < cS ≤ c1β

s−1, meaning s = d log(cS/c1)
log β

e+ 1. Note that at most S of these
slots are non-empty.

Let i be the smallest still missing index, meaning the index of the largest still missing
coefficient. Based on i we define the following disjoint sets,

Ai :=

b(i)−1⋃
`=1

U` with A1 = ∅,

Mi := Ub(i),

Ni := Ub(i)+1,

Ri := Sc ∪
s⋃

`=b(i)+1

U`.

This means, Ai contains all indices corresponding to coefficients which are larger than
the largest still missing coefficient ci. The setMi contains i and all indices of coefficients
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which are in the same slot as ci, meaning, which are approximately of the size of ci.
The set Ni comprises all indices of coefficients in the subsequent slot, which are large
enough to be picked but certainly smaller than the largest missing one. Ri contains
the indices of all remaining coefficients, which are small and hence, very unlikely to
be picked before the ones in Mi.

Dictionaries

Given the generating dictionary Φ = (φ1, . . . , φK), we use the same decomposition
as in Section 1.2 to model a perturbation of it, Ψ = (ψ1, . . . , ψK), but with some
additional notation. Remember that the distance between Φ and Ψ is defined as
d(Φ,Ψ) = maxk ‖φk − ψk‖2 = maxk εk = ε. So we can find unit vectors zk with
〈zk, φk〉 = 0 such that

ψk = αkφk − ωkzk for αk := 1− ε2
k

2
and ωk :=

(
ε2
k −

ε4
k

4

) 1
2

. (6.5)

Conversely we can also decompose the generating atoms as

φk = γkψk + λkzk for γk := α−1
k =

2

2− ε2
k

and λk :=
ωk
αk

= γkωk. (6.6)

Let Z = (z1, . . . , zK) denote the perturbation dictionary, collecting the perturbation
vectors zk as its columns, and define the diagonal matrices A = diag((αk)k), W =
diag((ωk)k), Γ = diag((γk)k) and Λ = diag((λk)k), with the corresponding constants
on their diagonal. Hence, the perturbed dictionary Ψ is given by

Ψ = ΦA− ZW, (6.7)

and the generating dictionary by

Φ = ΨA−1 + ZWA−1 =: ΨΓ + ZΛ. (6.8)

We also define γ = maxk γk, γmin = mink γk, εmin = mink ‖φk − ψk‖2 and νZ =
maxi,j |〈ψi, zj〉|.

Using these definitions, in the following sections we provide recovery conditions
for OMP in the case where we do not have the generating dictionary Φ but only a
perturbed version of it, Ψ, for noiseless perfectly S-sparse signals as well as signals
which are contaminated with noise.
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6.2 Recovery Conditions for Noiseless Signals

We start with deriving recovery conditions for OMP for the simple case of noiseless
signals. In particular, assuming that the signals follow the model in (6.1), we provide
conditions ensuring that with high probability, OMP recovers the generating support.

Theorem 6.1. Assume that the signals follow the model in (6.1) with coefficients
grouped by their magnitude into s slots U` as defined in (6.4). Let t denote the maximal
number of elements within a slot and Ψ some perturbation of the generating dictionary
Φ as defined in (6.7) with ε ≤ 1. Further, assume that

µ(Ψ) ≤ 1

4m logK
and S ≤ K

16me2‖Ψ‖2
2,2 logK

.

Then OMP will recover the full support, except with probability K(2sK−2n + 3K−n +
216K−m), as long as

1− γ

γmin

β ≥ 4 ε · γ

γmin

√
n logK ·max

{
2νZ
βs

√
n logK,

‖cI‖2

c1βs

√
‖Z‖2

2,2

K − S

}
· ξ

+ 4µ(Ψ) · γ

γmin

(
t+
√
nt logK ·

(
β2

1− β2

) 1
2

)
· ξ, (6.9)

(a) with ξ = 1 + 4µ(Ψ)
√

2Sn logK for S‖Ψ‖2
2,2/K ≤ 4µ(Ψ)2n logK,

(b) and ξ = 1 + 2S ·
√

2‖Ψ‖22,2
K

for S‖Ψ‖2
2,2/K ≥ 4µ(Ψ)2n logK,

where ε = maxk ‖φk − ψk‖2, γ = 2
2−ε2 , γmin = 2

2−ε2min
with εmin = mink ‖φk − ψk‖2 and

νZ = maxi,j |〈ψi, zj〉|.

Before we prove the theorem we would like to say a few words about the result.
The theorem consists of two parts, however, as in general 4µ(Ψ)2n logK ≤ S‖Ψ‖2

2,2/K,
we restrict our discussion to this case. The other case follows directly by inserting the
corresponding bounds.
The condition on the coherence of the perturbed dictionary µ(Ψ) and the sparsity
level S ensures that for a randomly chosen subset Ī (permutation p) we have δĪ(Ψ) ≤ 1

2

except with probability 216K1−m. For ε ≤ 1, the constant γ
γmin

= 2−εmin

2−ε is bounded
by 1 ≤ γ

γmin
≤ 2 and hence, at worst we have an additional factor 2 on the right

hand side. In order to get also a feeling for the remaining constants, assume that the
generating dictionary Φ is well-behaved with coherence µ(Φ) ≈ 1√

d
and operator norm

‖Φ‖2
2,2 ≈ K

d
. For perturbed atoms ψk following the definition in (6.5) with perturbation
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vectors zk drawn uniformly at random from the unit sphere, with high probability, for
all j 6= k, we have

|〈φk, zj〉| .
√

logK/d and |〈zk, zj〉| .
√

logK/d,

and therefore, µ(Ψ) .
√

4 logK/d. For the operator norm of the perturbation dic-
tionary Z we have that with high probability ‖Z‖2,2 .

√
logK, [64], and hence,

‖Ψ‖2,2 .
√
K/d +

√
logK. For νZ = maxi,j |〈ψi, zj〉|, we have νZ .

√
logK/d for

i 6= j and νZ . ε for i = j. Considering the special case where all atoms are equally
perturbed, meaning εmin ≈ ε, the condition ensuring support recovery, except with
probability K(2sK−2n + 3K−n + 216K−m), is given by

1− β
4

& ε
n logK

βs
·max

{
2ε,

√
4 logK

d
,
‖cI‖2

c1

√
K

}(
1 +

4S√
d

)

+

√
4 logK

d

(
t+
√
nt logK ·

(
β2

1− β2

) 1
2

)(
1 +

4S√
d

)
. (6.10)

Considering the condition in (6.10), we immediately observe that while a strong decay
of the signal coefficients (and hence β small) is beneficial to have the left hand side
large as well as the second term on the right hand side small, the opposite holds true
for the first term on the right hand side. In particular, for β small, 1/βs grows very
fast. Especially for larger distances between the generating and the perturbed dictio-
nary, meaning larger ε, this term is becoming increasingly dominant, thus decreasing
the success rate of OMP. To confirm these observations, we conduct several numerical
experiments with signals where the signal coefficients form a geometric sequence in
Section 6.5.

Going back to theory, in case where we have the generating dictionary Φ, meaning
ε = 0, Theorem 6.1 (b) states that OMP recovers the full support, except with prob-
ability K(2sK−2n + 2K−n + 216K−m), as long as(

t+
√
nt logK ·

(
β2

1− β2

) 1
2

)µ(Φ) + 2Sµ(Φ) ·

√
2‖Φ‖2

2,2

K

 ≤ 1− β
4

. (6.11)

In order to get a feeling for this result, let us compare it with some existing re-
sults and note that in general we have ‖Φ‖2,2/

√
K < µ(Φ). From the worst-case

analysis in [65] we have that OMP succeeds as long as 2Sµ(Φ) ≤ 1. In this case,
the condition above holds trivially true. If conversely 2Sµ(Φ) ≥ 1, we have that
µ(Φ) + 2Sµ(Φ)2 ≤ 4Sµ(Φ)2, and the condition in (6.11) says that OMP will re-
cover the full support with high probability, as long as Stµ(Φ)2 . (1 − β) and√
nt logK · Sµ(Φ)2 . 1−β

β

√
1− β2.

Considering the special case of coefficients forming a geometric sequence with decay
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factor α < 1, and choosing β = αk for k ≥ 1, we have t = k. In this case, we need
to have

√
n logK · Sµ(Φ)2 . 1−αk

αk

√
(1− α2k)/k and Sµ(Φ)2 . (1− αk)/k. Choosing

t = 1, we have β = α and the condition ensuring support recovery essentially says
that we need to have

√
n logK · Sµ(Φ)2 . 1−α

α

√
1− α2 and Sµ(Φ)2 . 1− α, which is

consistent with the result in [60].

In order to prove Theorem 6.1 we use a similar strategy to the one already used
in [60]. In particular, in order to show that OMP adds only correct atoms within each
iteration, for all possible sub-supports J̄ ⊆ Ī = p(I) and rJ̄ = Q(ΨJ̄)y, we need to
have

max
i∈I

∣∣〈ψp(i), rJ̄〉∣∣ !
> max

k/∈I

∣∣〈ψp(k), rJ̄〉
∣∣ . (6.12)

Since there are 2S possible sub-supports one has to control, the idea in [60] to get useful
average case results was to reduce this number of sub-supports by utilising the decay
of the coefficients. This means, if we have decaying coefficients it is more likely that
OMP picks atoms corresponding to larger coefficients before the ones corresponding to
smaller coefficients, hence reducing the number of possible sub-supports. In particular,
using the definition of the slots introduced in Section 6.1.1, for i the index of the
largest still missing coefficient and for an appropriate choice of β, we always have
p(Ai) ⊆ J̄ ⊆ p(Ai ∪Mi ∪Ni).
In the following we show that OMP picks an index p(j) with j ∈ Mi ∪ Ni rather
than p(k) with k ∈ Ri. This means, another correct atom is added and our support
is again of the form J̄ = p(J) with J = Ainew ∪ Gnew ⊆ Ainew ∪Minew ∪ Ninew ⊆ I,
for inew the index of the new largest still missing coefficient. Iterating this process, a
sufficient condition for OMP to fully recover the support Ī is that for all sub-supports
J̄ = p(Ai ∪G) ⊆ Ī with G ⊆Mi ∪Ni, we have∣∣〈ψp(i), rJ̄〉∣∣ > max

k∈Ri

∣∣〈ψp(k), rJ̄〉
∣∣ , (6.13)

where i denotes the index of the largest still missing coefficient.

The following proposition concerns the norm of a random subvector and is used
to prove Theorem 6.1. Its proof can be found in Appendix A.2. We will also use
Proposition 3.4 from Section 3.2 which we repeat for convenience.

Proposition 6.2. Let v ∈ RK be a vector, I a subset chosen uniformly at random
among all subsets of size S, and vI the restriction of v to the subset I, then for any
t ≥ 0,

P
(
‖vI‖2

2 ≥ S
K
‖v‖2

2 + t
)
≤ exp

(
− t2

2
(
‖v‖2

∞t+ S
K
‖v‖4

4

)) . (6.14)
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Proposition 3.4. Let v ∈ RK be a vector, I = (i1, . . . , iS) be a sequence of length
S obtained by sampling from K = {1, . . . , K} without replacement, ε with values in
{−1, 1}S a Rademacher vector independent from I and c ∈ RS a scaling vector. Then
for any t ≥ 0,

P

(∣∣ S∑
k=1

ckεkvik
∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
(
‖c‖∞‖v‖∞t+ ‖c‖2

2‖v‖2
2/(K − S)

)) .

Proof of Theorem 6.1. Throughout the proof of Theorem 6.1 we use the abbreviations
B̄ := ‖Ψ‖2

2,2 and µ̄ := maxi 6=j |〈ψi, ψj〉|. We also use the short hands already used in
previous chapters, Q(ΨJ) = Id − P (ΨJ) and rJ = Q(ΨJ)y for the residual based on
some index set J .

Using the definition of the slots introduced in Section 6.1.1 with i the index of the
largest still missing coefficient, for our analysis we assume that our current support is
of the form J̄ = p(J) with J = Ai ∪ G and G = C ∪ D with C ⊆ Mi and D ⊆ Ni.
Further, we define Cc = Mi \C, Dc = Ni \D and Gc = Cc ∪Dc. For convenience, we
again write C̄c = p(Cc), D̄c = p(Dc) and Ḡc = C̄c ∪ D̄c. To keep the indices under
control we write R instead of Ri and hence, R̄ := p(R) := p(Ri). Note that, for i the
index corresponding to the largest still missing coefficient, we have i ∈ Cc ⊆ Gc.

Assuming our current support is of the form J̄ = p(Ai ∪ G) ⊆ Ī = p(I), a sufficient
condition ensuring that OMP picks another j ∈ Gc and therefore, another correct
(sub-) support, is given by ∣∣〈ψp(i), rJ̄〉∣∣ > max

k∈R

∣∣〈ψp(k), rJ̄〉
∣∣ . (6.15)

In order to show that the residual inner product with the atom indexed by p(i) is larger
than the one with atoms indexed by p(k) ∈ R̄, we use the following decomposition of
our signals, where J̄ c = Ḡc ∪ R̄,

y = ΦĪxI = (ΨΓ)ĪxI + (Φ−ΨΓ)ĪxI = (ΨΓ)J̄xJ + (ΨΓ)J̄cxJc + (ZΛ)ĪxI . (6.16)

Hence, the residual is of the form

rJ̄ = Q(ΨJ̄)y = Q(ΨJ̄)((ΨΓ)J̄cxJc + (ZΛ)ĪxI), (6.17)

and for the residual inner product with ψp(i), we get∣∣〈ψp(i), rJ̄〉∣∣ = |〈ψp(i), Q(ΨJ̄)(ΨΓ)J̄cxJc〉+ 〈ψp(i), Q(ΨJ̄)(ZΛ)ĪxI〉|
≥ |〈ψp(i), Q(ΨJ̄)(ΨΓ)J̄cxJc〉| − |〈ψp(i), Q(ΨJ̄)(ZΛ)ĪxI〉|, (6.18)
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and for any atom ψp(k) with k ∈ R,∣∣〈ψp(k), rJ̄〉
∣∣ = |〈ψp(k), Q(ΨJ̄)(ΨΓ)J̄cxJc〉+ 〈ψp(k), Q(ΨJ̄)(ZΛ)ĪxI〉
≤ |〈ψp(k), Q(ΨJ̄)(ΨΓ)J̄cxJc〉|+ |〈ψp(k), Q(ΨJ̄)(ZΛ)ĪxI〉|. (6.19)

In the following, we derive bounds for the terms involved. In order to maintain a
good overview we divide the proof into three steps. In the first, we derive lower and
upper bounds for the first terms in (6.18) and (6.19), respectively. As a second step
we bound the inner products with the perturbation dictionary Z and as a third step,
put all these pieces together.

Step 1 - bounds for inner products with Ψ

For J̄ c = Ḡc ∪ R̄, for the first term in (6.18) and (6.19), we can write for any k

|〈ψp(k), Q(ΨJ̄)(ΨΓ)J̄cxJc〉| = |〈ψp(k), Q(ΨJ̄)(ΨΓ)ḠcxGc〉+ 〈ψp(k), Q(ΨJ̄)(ΨΓ)R̄xR〉|.

For any index `, we define Gc
` = Gc \ {`}, R` = R \ {`} and Ḡc

` = p(Gc
`), R̄` = p(R`).

Note that, for ` /∈ Gc we have Gc
` = Gc and similarly for ` /∈ R we have R` = R. Using

these definitions, we get for i

|〈ψp(i), Q(ΨJ̄)(ΨΓ)J̄cxJc〉|
= |〈ψp(i), Q(ΨJ̄)ψp(i)〉γp(i)xi + 〈ψp(i), Q(ΨJ̄)(ΨΓ)ḠcixG

c
i
〉

+ 〈ψp(i), (ΨΓ)R̄xR〉 − 〈ψp(i), P (ΨJ̄)(ΨΓ)R̄xR〉|
≥ γp(i)ci‖Q(ΨJ̄)ψp(i)‖2

2 − |〈ψp(i), Q(ΨJ̄)(ΨΓ)ḠcixG
c
i
〉|

− |〈ψp(i), (ΨΓ)R̄xR〉| − |〈ψp(i), P (ΨJ̄)(ΨΓ)R̄xR〉|. (6.20)

Similarly, we have for any k ∈ R

|〈ψp(k), Q(ΨJ̄)(ΨΓ)J̄cxJc〉|
= |〈ψp(k), Q(ΨJ̄)(ΨΓ)ḠcxGc〉+ γp(k)xk

+ 〈ψp(k), (ΨΓ)R̄kxRk〉 − 〈ψp(k), P (ΨJ̄)(ΨΓ)R̄xR〉|
≤ γp(k)ck + |〈ψp(k), Q(ΨJ̄)(ΨΓ)ḠcxGc〉|

+ |〈ψp(k), (ΨΓ)R̄kxRk〉|+ |〈ψp(k), P (ΨJ̄)(ΨΓ)R̄xR〉|. (6.21)

We now bound all the terms in (6.20) and (6.21).

For the first norm term on the right-hand side of (6.20), we get

‖Q(ΨJ̄)ψp(i)‖2
2 = 1− ‖P (ΨJ̄)ψp(i)‖2

2

= 1− 〈ψp(i),ΨJ̄(Ψ?
J̄ΨJ̄)−1Ψ?

J̄ψp(i)〉
= 1− 〈Ψ?

J̄ψp(i), (Ψ
?
J̄ΨJ̄)−1Ψ?

J̄ψp(i)〉
≥ 1− ‖Ψ?

J̄ψp(i)‖2 · ‖(Ψ?
J̄ΨJ̄)−1‖2,2 · ‖Ψ?

J̄ψp(i)‖2. (6.22)
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Defining δJ̄ := δJ̄(Ψ) = ‖Ψ?
J̄
ΨJ̄ − I‖2,2, we have by Lemma 6.2 in [24]

‖(Ψ?
J̄ΨJ̄)−1‖2,2 ≤

1

1− δJ̄
, (6.23)

and therefore,

‖Q(ΨJ̄)ψp(i)‖2
2 ≥ 1− 1

1− δJ̄
‖Ψ?

J̄ψp(i)‖
2
2. (6.24)

In order to bound the remaining norm term in (6.24), we use some probabilistic bound.
Note that, for J̄ ⊆ Ī and any p(j) /∈ J̄ , we have

‖Ψ?
J̄ψp(j)‖

2
2 =

∑
k∈J̄

∣∣〈ψk, ψp(j)〉∣∣2 ≤ max
p(j)

∑
k∈J̄
k 6=p(j)

∣∣〈ψk, ψp(j)〉∣∣2
≤ max

p(j)

∑
k∈Ī

k 6=p(j)

∣∣〈ψk, ψp(j)〉∣∣2 = ‖(Ψ?Ψ− I)Ī‖2
1,2. (6.25)

Using Proposition 6.2 we now show that with high probability this term is small. In
particular, for j fixed we choose v = (Ψ?Ψ− I)j = Ψ?ψj − ej and use the bounds

‖v‖2
∞ ≤ µ̄2 and ‖v‖4

4 ≤ ‖v‖2
∞ · ‖v‖2

2 ≤ µ̄2 · ‖Ψ?ψj‖2
2 ≤ µ̄2B̄.

Hence, from Proposition 6.2 we obtain

P
(
‖vĪ‖2

2 ≥
SB̄

K
+ t

)
≤ exp

(
− t2

2
(
tµ̄2 + µ̄2 SB̄

K

))

≤ exp

(
−1

4
·min

{
t

µ̄2
,
t2 ·K
µ̄2SB̄

})
. (6.26)

Remembering that ‖·‖2
1,2 is the largest squared 2-norm of a column, we get via a union

bound

P
(
‖(Ψ?Ψ− I)Ī‖2

1,2 ≥
SB̄

K
+ t

)
≤ K exp

(
−1

4
·min

{
t

µ̄2
,
t2 ·K
µ̄2SB̄

})
, (6.27)

and therefore, for any J̄ ⊆ Ī and p(j) /∈ J̄ , we have

‖Ψ?
J̄ψp(j)‖2 ≤

(
SB̄

K
+ 2µ̄

√
n1 logK ·max

{
2µ̄
√
n1 logK,

√
SB̄

K

}) 1
2

≤

(
SB̄

K
+ max

{
4µ̄2 · n1 logK,

SB̄

K

}) 1
2

≤ max

{
2µ̄ ·

√
2n1 logK,

√
2SB̄

K

}
=: E, (6.28)
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except with probability K1−n1 . Note that, instead of using this probabilistic bound
we could also use the deterministic bound ‖Ψ?

J̄
ψp(j)‖2 ≤

√
|J |µ̄. Especially for partial

support recovery conditions where |J̄ | = |J | � |I| = S, we might get better estimates
when using the crude bound

√
|J |µ̄. However, in case of results covering also full

support recovery, the number of elements contained in J̄ resp. J can only be bounded
by |J | ≤ S and in general B̄/K � µ̄2.
For the sake of convenience, as it is easier to handle when combining all the estimates
at the end of the proof, for the squared norm term we use the bound

‖Ψ?
J̄ψp(j)‖

2
2 ≤

√
|J |µ̄ · E. (6.29)

Hence, putting all these pieces together, for the first norm term on the right-hand side
of (6.20), we finally get for i

‖Q(ΨJ̄)ψp(i)‖2
2 ≥ 1−

√
|J |µ̄

1− δJ̄
· E. (6.30)

Next, we bound the second term on the right-hand side of (6.20) and (6.21), respec-
tively. Since the number of elements contained in the set Gc is small, we use only a
crude bound for this term. In particular, for all k ∈ Gc ∪R, we have

|〈ψp(k), Q(ΨJ̄)(ΨΓ)ḠckxG
c
k
〉|

= |〈ψp(k), (ΨΓ)ḠckxG
c
k
〉 − 〈Ψ?

J̄ψp(k), (Ψ
?
J̄ΨJ̄)−1Ψ?

J̄(ΨΓ)ḠckxG
c
k
〉|

≤ |〈ψp(k), (ΨΓ)ḠckxG
c
k
〉|+ ‖Ψ?

J̄ψp(k)‖2 · ‖(Ψ?
J̄ΨJ̄)−1‖2,2 · ‖Ψ?

J̄(ΨΓ)ḠckxG
c
k
‖2

≤ |〈ψp(k), (ΨΓ)ḠckxG
c
k
〉|+ ‖Ψ?

J̄ψp(k)‖2 ·
√
|J |

1− δJ̄
·max
`∈J̄
|〈ψ`, (ΨΓ)ḠckxG

c
k
〉|

≤ max
k∈Gc∪R̄

|〈ψp(k), (ΨΓ)ḠckxG
c
k
〉|+ E ·

√
|J |

1− δJ̄
·max
`∈J̄
|〈ψ`, (ΨΓ)ḠckxG

c
k
〉|

≤ µ̄ · ‖ΓḠckxGck‖1

(
1 +

√
|J |

1− δJ̄
· E

)
. (6.31)

For the terms involving P (ΨJ̄), we have for any k ∈ Gc ∪R

|〈ψp(k), P (ΨJ̄)(ΨΓ)R̄xR〉| = |〈Ψ?
J̄ψp(k), (Ψ

?
J̄ΨJ̄)−1Ψ?

J̄(ΨΓ)R̄xR〉|
≤ ‖Ψ?

J̄ψp(k)‖2 · ‖(Ψ?
J̄ΨJ̄)−1‖2,2 · ‖Ψ?

J̄(ΨΓ)R̄xR‖2

≤ max
`∈J̄
|〈ψ`, (ΨΓ)R̄xR〉| ·

√
|J |

1− δJ̄
· ‖Ψ?

J̄ψp(k)‖2

≤ max
`/∈R
|〈ψp(`), (ΨΓ)R̄xR〉| ·

√
|J |

1− δJ̄
· E. (6.32)

In order to bound |〈ψp(`), (ΨΓ)R̄xR〉| for ` /∈ R and |〈ψp(k), (ΨΓ)R̄kxRk〉| for k ∈ R in
(6.21), we use Hoeffding’s inequality. Note again that for k /∈ R, we have Rk = R and
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hence, we get for any k

P
(
|〈ψp(k), (ΨΓ)R̄kxRk〉| ≥ θk

)
= P

(∣∣ ∑
j∈Rk

〈ψp(k), ψp(j)〉γp(j)cjσj
∣∣ ≥ θk

)
≤ 2 exp

(
− θ2

k

2
∑

j∈Rk

∣∣〈ψp(k), ψp(j)〉
∣∣2 γ2

p(j)c
2
j

)

≤ 2 exp

(
− θ2

k

2µ̄2‖ΓR̄cR‖2
2

)
. (6.33)

Setting θk = 2µ̄
√
n2 logK · ‖ΓR̄cR‖2 and using a union bound over all indices k, we

have

max
k
|〈ψp(k), (ΨΓ)R̄kxRk〉| ≤ 2µ̄

√
n2 logK · ‖ΓR̄cR‖2, (6.34)

except with probability 2K1−2n2 .

Note that, this bound holds only for one specific R̄ := p(R) := p(Ri) however, in
order to show that OMP succeeds we need this bound for all possible R. As R is
defined by Ai, for this inequality, we will use another union bound over all sets Ai at
the very end of the proof.

Combining these estimates, for the last two terms in (6.20) and (6.21), respectively,
we have for any k ∈ Gc ∪R,

|〈ψp(k), (ΨΓ)R̄kxRk〉|+ |〈ψp(k), P (ΨJ̄)(ΨΓ)R̄xR〉|

≤ 2µ̄
√
n2 logK · ‖ΓR̄cR‖2

(
1 +

√
|J |

1− δJ̄
· E

)
, (6.35)

except with probability 2K1−2n2 .

Putting the bounds from (6.30), (6.31) and (6.35) together, for the first part in (6.18)
resp. (6.19), we get for i

|〈ψp(i), Q(ΨJ̄)(ΨΓ)J̄cxJc〉|

≥ γp(i)ci

(
1−

√
|J |µ̄

1− δJ̄
· E

)

−
(
‖ΓḠcixGci‖1 + 2

√
n2 logK · ‖ΓR̄cR‖2

)(
µ̄+

√
|J |µ̄

1− δJ̄
· E

)

≥ γp(i)ci −
(
‖ΓḠcxGc‖1 + 2

√
n2 logK · ‖ΓR̄cR‖2

)(
µ̄+

√
|J |µ̄

1− δJ̄
· E

)
, (6.36)
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and all k ∈ R,

|〈ψp(k), Q(ΨJ̄)(ΨΓ)J̄cxJc〉|

≤ γp(k)ck +
(
‖ΓḠcxGc‖1 + 2

√
n2 logK · ‖ΓR̄cR‖2

)(
µ̄+

√
|J |µ̄

1− δJ̄
· E

)
, (6.37)

except with probability 2K1−2n2 .

As a next step we derive bounds for the remaining terms in (6.18) and (6.19), meaning
for the inner products with the perturbation dictionary Z.

Step 2 - bounds for inner products with Z

For the second term in (6.18) and (6.19), for all k ∈ Gc ∪R, we get∣∣〈ψp(k), Q(ΨJ̄)(ZΛ)ĪxI〉
∣∣ = |〈ψp(k), (ZΛ)ĪxI〉 − 〈ψp(k), P (ΨJ̄)(ZΛ)ĪxI〉|

≤ |〈ψp(k), (ZΛ)ĪxI〉|+ |〈Ψ?
J̄ψp(k), (Ψ

?
J̄ΨJ̄)−1Ψ?

J̄(ZΛ)ĪxI〉|

≤ |〈ψp(k), (ZΛ)ĪxI〉|+
√
|J |

1− δJ̄
· ‖Ψ?

J̄ψp(k)‖2 ·max
`∈J̄
|〈ψ`, (ZΛ)ĪxI〉|

≤ max
`
|〈ψp(`), (ZΛ)ĪxI〉| ·

(
1 +

√
|J |

1− δJ̄
· E

)
. (6.38)

In order to bound the inner product in the above inequality, we use Proposition 3.4.
Note that, we have I = {1, . . . , S} and hence, for any index `

|〈ψp(`), (ZΛ)ĪxI〉| =
∣∣∑
k∈I

〈ψp(`), zp(k)〉λp(k)ckσk
∣∣ =

∣∣ S∑
k=1

〈ψp(`), zp(k)〉λp(k)ckσk
∣∣. (6.39)

Defining ν̄Z = maxi,j |〈ψi, zjλj〉|, and setting vik = vp(k) = 〈ψp(`), zp(k)〉λp(k) and ckεk =
ckσk, from Proposition 3.4, we get for any index `

P
(∣∣ S∑

k=1

〈ψp(`), zp(k)〉λp(k)ckσk
∣∣ ≥ t

)

≤ 2 exp

− t2

2
(
‖c‖∞‖ψ?p(`)ZΛ‖∞ · t+ ‖c‖2

2 ·
‖ψ?
p(`)

ZΛ‖22
K−S

)


≤ 2 exp

− t2

2
(
‖c‖∞ · ν̄Z · t+ ‖c‖2

2 ·
‖ZΛ‖22,2
K−S

)


≤ 2 exp

(
−1

4
·min

{
t

‖c‖∞ · ν̄Z
,

t2(K − S)

‖c‖2
2 · ‖ZΛ‖2

2,2

})
. (6.40)
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Together with a union bound over all indices ` and using ‖c‖2 = ‖cI‖2, we have

max
`
|〈ψp(`), (ZΛ)ĪxI〉| ≤ 2

√
n3 logK ·max

{
2ν̄Z‖cI‖∞

√
n3 logK, ‖cI‖2

‖ZΛ‖2,2√
K − S

}
.

except with probability 2K1−n3 .

Combining these estimates, for the inner products of the perturbation part, we have
for any index k

|〈ψp(k), Q(ΨJ̄)(ZΛ)ĪxI〉|

≤ 2
√
n3 logK ·max

{
2ν̄Z‖cI‖∞

√
n3 logK, ‖cI‖2

‖ZΛ‖2,2√
K − S

}(
1 +

E
√
|J |

1− δJ̄

)
,

except with probability 2K1−n3 .

Step 3 - combining all the estimates

In order to get a sufficient condition ensuring that OMP adds another correct atom
within the subsequent iteration, we now have to combine all the previously obtained
estimates. Hence, for i and any k ∈ R, we have∣∣〈ψp(i), rJ̄〉∣∣− ∣∣〈ψp(k), rJ̄〉

∣∣
≥ γp(i)ci − γp(k)ck

− 4
√
n3 logK ·max

{
2ν̄Z‖cI‖∞

√
n3 logK, ‖cI‖2

‖ZΛ‖2,2√
K − S

}(
1 +

E
√
|J |

1− δJ̄

)

− 2µ̄ ·
(
‖ΓḠccGc‖1 + 2

√
n2 logK · ‖ΓR̄cR‖2

)(
1 +

E
√
|J |

1− δJ̄

)
, (6.41)

except with probability 2K(K−2n2 +K−n3).

To get a bound for the constant δJ̄ ≤ ‖Ψ?
Ī
ΨĪ − I‖2,2 = δ(ΨĪ) =: δĪ , we use Chre-

tien and Darses’s result on the conditioning of random subdictionaries. In particular,
using Theorem 3.1 of [14], reformulated for our purposes, we have

P
(
δ(ΨĪ) > δ0

∣∣|Ī| = S
)
≤ 216K · exp

(
−min

{
δ0

2µ̄
,
δ2

0K

4e2SB̄

})
≤ 216K ·max{K−n4 , K−n5},
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whenever,

µ̄ ≤ δ0

2n4 logK
and S ≤ δ2

0K

4n5e2B̄ logK
.

Note that, for the term E in (6.28), we have E ≤
√

2SB̄/K whenever 4µ̄2n1 logK ≤
SB̄/K. Defining γmin = mink γk, εmin = mink εk, γ = maxk γk and ε = maxk εk, we
have for ε ≤ 1,

γj =
2

2− ε2
j

≥ 2

2− ε2
min

= γmin ≥ 1, (6.42)

γk =
2

2− ε2
k

≤ 2

2− ε2
= γ ≤ 2, (6.43)

λk = γk

(
ε2
k −

ε4
k

4

) 1
2

≤ γkεk ≤ γε, (6.44)

and hence, for νZ = maxi,j |〈ψi, zj〉|,

ν̄Z = max
i,j
|〈ψi, zjλj〉| ≤ γε · νZ and ‖ZΛ‖2,2 ≤ γε · ‖Z‖2,2. (6.45)

Setting n1 = n2 = n3 = n and n4 = n5 = m, for δJ̄ ≤ δĪ ≤ 1
2

and 4µ̄2n logK ≤ SB̄/K,
we can further bound∣∣〈ψp(i), rJ̄〉∣∣− ∣∣〈ψp(k), rJ̄〉

∣∣
≥ ciγmin − ckγ

− 4γε
√
n logK ·max

{
2νZ‖cI‖∞

√
n logK, ‖cI‖2

‖Z‖2,2√
K − S

}(
1 + 2

√
2|J |SB̄
K

)

− 2µ̄ ·
(
‖ΓḠccGc‖1 + 2

√
n logK · ‖ΓR̄cR‖2

)(
1 + 2

√
2|J |SB̄
K

)
, (6.46)

except with probability K(2K−2n + 3K−n + 216K−m). To bound the norm terms of
the coefficients, we use the definitions of the slots introduced in Section 6.1.1, where
we have

b(i) = j ⇔ ci ∈ (c1β
j, c1β

j−1] and Uj = b−1({j}).

Hence, for Gc = Cc ∪ Dc, t := maxj |Uj| the maximal number of elements in a slot,
and ci ∈ Cc the largest still missing coefficient, we get

‖ΓḠccGc‖1 =
∑
`∈Gc
|γp(`)c`| ≤ γ

(∑
`∈Cc
|c`|+

∑
`∈Dc
|c`|

)
≤ γ

(
ci|Cc|+ c1β

b(i)|Dc|
)
≤ ci · γ (|Cc|+ |Dc|) ≤ ci · γ · 2t. (6.47)
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For all k ∈ R, we have ck ≤ c1β
b(i)+1 and therefore,

‖ΓR̄cR‖2 ≤ c1β
b(i)+1 · γ

(
t ·

∞∑
k=0

β2k

) 1
2

≤ c1β
b(i)+1 · γ

(
t

1− β2

) 1
2

≤ ciβ · γ
(

t

1− β2

) 1
2

. (6.48)

Inserting these bounds into (6.46) and using that c1β
b(i) ≤ ci and hence, ‖cI‖∞

ci
≤ ‖cI‖∞

c1βb(i)

and ‖cI‖2
ci
≤ ‖cI‖2

c1βb(i)
, we obtain

c−1
i

(∣∣〈ψp(i), rJ̄〉∣∣− ∣∣〈ψp(k), rJ̄〉
∣∣)

≥ γmin − γβ

− 4γε
√
n logK ·max

{
2νZ
‖cI‖∞
c1βb(i)

√
n logK,

‖cI‖2

c1βb(i)
‖Z‖2,2√
K − S

}(
1 + 2

√
2|J |SB̄
K

)

− 2γ · µ̄ ·

(
2t+ 2

√
n logK ·

(
tβ2

1− β2

) 1
2

)(
1 + 2

√
2|J |SB̄
K

)
, (6.49)

except with probability K(2K−2n + 3K−n + 216K−m).

Using that |J | ≤ S, in case 4µ̄2n logK ≤ SB̄/K, a condition ensuring that with
high probability OMP picks p(i) before p(k) for any k ∈ R, is therefore given by

γmin − γβ
!

≥ 4γε
√
n logK ·max

{
2νZ

c1

c1βb(i)

√
n logK,

‖cI‖2

c1βb(i)
‖Z‖2,2√
K − S

}(
1 + 2S

√
2B̄

K

)

+ 4γ · µ̄ ·

(
t+
√
n logK ·

(
tβ2

1− β2

) 1
2

)(
1 + 2S

√
2B̄

K

)
. (6.50)

If we look at the next step, with inew the index of the new largest missing coefficient,
we can reuse the bounds from above, except for (6.34), as they do not depend on
the decomposition, meaning, on inew. However, the bound in (6.34) depends on inew

and so we need this for all decompositions. Hence, taking a union bound over all
possible sets Ai and thus all possible sets R := Ri in (6.34), choosing c1β

b(i) = c1β
s

and multiplying both sides by γ−1
min finally yields the result. The condition in case

where 4µ̄2n logK ≥ SB̄/K is obtained by replacing 2S
√

2B̄
K

with 4µ̄
√

2Sn logK.

As a next step we derive recovery conditions for OMP using a perturbed dictionary
for the case of noisy signals.
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6.3 Recovery Conditions for Noisy Signals

Here we derive conditions ensuring partial support recovery in case of signals contam-
inated with noise. For that, let our signals be modelled as

ỹ = y + η = ΦĪxI + η =
∑
i∈I

φp(i)σici + η, (6.51)

with y defined as in (6.1) and η a sub-Gaussian noise vector with parameter ρ. In
particular, this means that we have E(η) = 0 and for all vectors v with ‖v‖2 = 1 and
θ > 0 the marginals 〈v, η〉 satisfy E(eθ〈v,η〉) ≤ eθ

2ρ2/2.
In case of Gaussian noise, the parameter ρ corresponds to the standard deviation and
hence, for normalised coefficient sequences c, ‖c‖2 = 1, the signal to noise ratio (SNR)
is 1

dρ2 . Note that, with ρ =
√
Bu‖cIc‖∞, where Bu denotes the upper frame bound of

Φ and Ic = {S + 1, . . . , K}, the signal model in (6.51) provides also a generalisation
of (6.1) to approximately S-sparse signals, where y =

∑
i φp(i)σici.

Theorem 6.3. Assume that the signals follow the model in (6.51) with coefficients
grouped by their magnitude into s slots Uj as defined in (6.4). Let t denote the maximal
number of elements within a slot and Ψ some perturbation of the generating dictionary
Φ as defined in (6.7) with ε ≤ 1. Further, assume that

µ(Ψ) ≤ 1

4m logK
and S ≤ K

16me2‖Ψ‖2
2,2 logK

.

Then OMP will recover an atom from the support in the first ` iterations, except with
probability K(4sK−2n + 2K−n + 216K−m), as long as

1− γ

γmin

β

≥ 4 ε · γ

γmin

√
n logK ·max

{
2νZ
‖cI‖∞
c`

√
n logK,

‖cI‖2

c`

√
‖Z‖2

2,2

K − S

}
(1 + 2`µ(Ψ))

+ 4µ(Ψ) · γ

γmin

(
t+
√
nt logK ·

(
β2

1− β2

) 1
2

)
(1 + 2`µ(Ψ))

+ 4
ρ

γmin · c`

√
n logK

(
1 + 2

√
2t` · µ(Ψ)

)
, (6.52)

where ε = maxk ‖φk − ψk‖2, γ = 2
2−ε2 , γmin = 2

2−ε2min
with εmin = mink ‖φk − ψk‖2 and

νZ = maxi,j |〈ψi, zj〉|.

Considering the case of no perturbation, meaning, where Ψ = Φ, the condition
ensuring partial support recovery in the first ` iterations, except with probability
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K(4sK−2n + 216K−m), is given by

4µ(Ψ)

(
t+
√
nt logK ·

(
β2

1− β2

) 1
2

)
(1 + 2`µ(Ψ))

+ 4
ρ

c`

√
n logK

(
1 + 2

√
2t` · µ(Ψ)

)
≤ 1− β. (6.53)

From this we can see that even in the perturbation-free case, OMP is only able
to recover atoms corresponding to coefficients above the noise-level. More precisely,
the condition in (6.53) puts also a constraint on the smallest coefficient c` which we
are able to recover as in order to have the second term sufficiently small we need to
have c` ≥ κρ

√
n logK, where κ denotes some constant. Note that, the condition for

the perturbation-free case is equivalent to the condition derived in [60] however, (6.53)
formulates a generalisation as it is valid for a larger class of signals.

In order not to get lost in too many details and to maintain a better overview, we
want to refer to Appendix A.3 for the proof of Theorem 6.3. To get a better feeling for
the terms involved, let us specialise the condition in (6.52) to the case where t = 1 and
therefore, c` > c1β

`. Further, assume that all atoms are equally perturbed, εmin ≈ ε,
‖Z‖2,2 .

√
logK and 2νZ‖cI‖∞ . ‖cI‖2/

√
K − S. Hence, the condition ensuring the

recovery of an atom from the support in the first ` iterations is approximately given
by

1− β
4

&
√
n logK

(
µ(Ψ) + ε · β−`‖cI‖2

c1

√
logK

K − S
+ β−`

ρ

c1

)
(1 + 2`µ(Ψ)) . (6.54)

From this we can again see that strongly decaying signal coefficients and hence, β
small, decrease the success rate of OMP as they increase the contribution of the
perturbation and noise parts. While even in the perturbation-free case, ε = 0, the
range of parameters for which OMP performs well is limited by the noise level ρ, this
limitation is further increased with increasing ε.

6.4 Comparison of OMP and Thresholding

In this section we provide recovery conditions for thresholding in case of noiseless
perfectly S-sparse signals and compare them with the conditions obtained for OMP.
Note that, implicitly we already have them from the proof of Theorem 3.1 in Chapter 3.
However, here we restate them in a shape that is better comparable to the conditions
of OMP and for completeness also provide the proof in the appendix.

Theorem 6.4. Assume that the signals follow the model in (6.1) with cS = mini∈I ci.
Then, given a perturbation Ψ of the generating dictionary Φ as defined in (6.7) and
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ε ≤ 1, we have that except with probability 4K1−2n, thresholding recovers the generating
support Ī if

4
γ

γmin

(µ(Ψ) + ενZ) · ‖cI‖2

cS

√
n logK ≤ 1, (6.55)

where ε = maxk ‖φk − ψk‖2, γ = 2
2−ε2 and γmin = 2

2−ε2min
with εmin = mink ‖φk − ψk‖2

and νZ = maxi,j |〈ψi, zj〉|.

From the condition in (6.55) we see that the success of thresholding depends on

the quantity ‖cI‖2
cS

. For equally sized coefficients we have ‖cI‖2
cS

=
√
S, however, in

more realistic scenarios where the coefficients are not of equal size this term can grow
very fast. In particular, in case of decaying coefficients we in general have cS � 1,
especially for larger S. Even in the perturbation free-case, ε = 0, the dependence on
this term strongly restricts the range of parameters for which thresholding performs
well. The proof of Theorem 6.4 can be found in Appendix A.4.

A major advantage of thresholding is its low computational complexity. Threshold-
ing is computationally much cheaper than OMP. However, when we have the signal
generating dictionary, OMP is known to perform better especially for signals with co-
efficients which are not of equal size, [60].
In Chapter 5 we have seen that ITKrM provides a computationally much lighter alter-
native to K-SVD. Interestingly, although K-SVD uses the better (even though more
expensive) sparse approximation algorithm OMP, both algorithms were shown to yield
similar results. To get some theoretical insights which shed light on the question why
K-SVD performs not much better than ITKrM we will now compare the recovery
conditions of their corresponding sparse approximation algorithms.

Note that, compared to thresholding where all the S most contributing atoms are
picked at once, in each iteration, OMP always adds one atom at the time. It is
therefore difficult to directly compare the corresponding recovery conditions of these
algorithms. However, in order to still gain a rough comparison, let us consider the
situation where we assume that OMP has correctly recovered all atoms except for
some with indices within the last slot Us. More precisely, using the definition of the
slots introduced in Section 6.1.1 with i the index of the largest missing coefficient, we
assume that ci ∈ Us, Ni = ∅ and Ri = Sc. Note that, we have ci ≥ cS ∈ Us and
ck = 0 for all k ∈ Ri. Using that ‖Z‖2,2/

√
K − S . µ(Ψ, Z) ≤ νZ and assuming

that in each slot we have no more than
√
n logK elements, in case of exactly S-sparse

noiseless signals, the condition ensuring that OMP recovers cS with high probability
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is approximately

1 & 4
γ

γmin

· ενZ ·
‖cI‖2

cS

√
n logK (1 + 2Sµ(Ψ))

+ 2
γ

γmin

· µ(Ψ) ·
√
n logK (1 + 2Sµ(Ψ)) , (6.56)

whereas for thresholding, we need to have

1 ≥ 4
γ

γmin

· ενZ ·
‖cI‖2

cS

√
n logK

+ 4
γ

γmin

· µ(Ψ) · ‖cI‖2

cS

√
n logK. (6.57)

Comparing these conditions, we see that for Sµ(Ψ) ≤ 1 the first parts of the right hand

sides are approximately the same. In particular, with increasing ε the term ενZ · ‖cI‖2cS
starts to dominate both conditions. Therefore, for large ε the recovery condition of
OMP is very similar to the one of thresholding. This may explain why OMP works
very well in case where we have the generating dictionary (ε = 0) and the fast decrease
of its performance if we have to deal with perturbations (ε > 0). In order to verify
these and also our previous observations, in the following we conduct some numerical
experiments.

6.5 Numerical Simulations

In order to see how some perturbation added to the generating dictionary Φ influences
the performance of OMP, we conduct some numerical experiments with noiseless as
well as noisy signals in Rd, with d = 128. In particular, we assume that the signals
follow the model in (6.1) and (6.51), respectively, where the permutation p is chosen
uniformly at random. For the signal coefficients we consider the special case where
they form a geometric sequence with decay factor α ∈ [0.75, 1], that is, ci = κSα

i for
i ≤ S and ci = 0 for all i > S, where κS denotes some constant ensuring that ‖c‖2 = 1.
The sparsity level S is chosen between 2 and 48 and for the noisy signals we choose η to
be i.i.d. Gaussian with variance ρ2 = 1

256d
and ρ2 = 1

16d
. For the generating dictionary

Φ we use the concatenation of the Dirac and DCT bases as well as the Dirac-DCT
dictionary with additional 2d vectors chosen uniformly at random from the unit sphere.
The perturbed dictionary Ψ is obtained by adding some scaled perturbation dictionary
Z to the generating dictionary Φ, as defined in (6.7). In particular, we have

ψk =

(
1− ε2

k

2

)
φk +

(
ε2
k −

ε4
k

4

) 1
2

zk,
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where εk = ‖φk − ψk‖2 and zk some unit random vector such that 〈φk, zk〉 = 0.

In the following we conduct various experiments, in order to show how the degree
of added perturbation (varying ε), the decay of the signal coefficients, noise as well as
the properties of the signal generating dictionary influence the percentage of correctly
recovered atoms. Further, we also run some experiments, comparing the performance
of OMP with that of thresholding. For all our experiments we use N = 1000 signals
and for the perturbed dictionary Ψ we consider the case where all atoms ψk are equally
perturbed, meaning, we have ‖φk − ψk‖2 = ε for all k.

Noiseless signals with Dirac-DCT and Dirac-DCT random dictionary:

In our first experiment we consider noiseless signals as described above in the Dirac-
DCT dictionary (ΦDD) as well as the Dirac-DCT dictionary with additional 2d ran-
dom vectors (ΦDDr) and show how an increase of ε affects the recovery rate of OMP.
For the coherence µ and the operator norm we have for the Dirac-DCT dictionary
µ(ΦDD) = 0.125 and ‖ΦDD‖2,2 = 1.42, and for the Dirac-DCT random dictionary
µ(ΦDDr) = 0.366 and ‖ΦDDr‖2,2 = 2.74. For the perturbation dictionaries ZDD and
ZDDr, we have ‖ZDD‖2,2 = 2.34 and ‖ZDDr‖2,2 = 2.95.
Figure 6.1 shows the percentage of correctly recovered atoms via OMP with pertur-
bations ΨDD = ΦDDA + ZDDW of the signal generating dictionary ΦDD for various
sparsity levels and decay parameters of the signal coefficients. From the results we
can see that even very small distances between the generating and the perturbed dic-
tionary (ε = 0.05) can cause a strong decrease in the recoverability of OMP. Further,
while signal coefficients exhibiting more decay ensure the recovery of all correct atoms
in case where we have the signal generating dictionary (ε = 0), this holds no longer
true in case we only have a perturbation of it. Especially in the case of larger pertur-
bations (ε = 0.5) and strongly decaying coefficients, OMP is only able to recover the
full support for very sparse (S small) signals.
Figure 6.2 shows the equivalent results for OMP with perturbed dictionaries ΨDDr =
ΦDDrA + ZDDrW and noiseless signals generated using ΦDDr. Comparing the results
in Figure 6.1 and Figure 6.2 we can clearly observe the better performance of OMP
for the very well-behaved Dirac-DCT dictionary ΦDD.
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Percentage of correctly recovered atoms via OMP with perturbed dictio-
naries ΨDD with ε = 0 (a), ε = 0.05 (b), ε = 0.1 (c), ε = 0.2 (d), ε = 0.4 (e) and
ε = 0.5 (f), for noiseless signals with generating dictionary ΦDD and various sparsity
levels and coefficient decay parameters.

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Percentage of correctly recovered atoms via OMP with perturbed dictio-
naries ΨDDr with ε = 0 (a), ε = 0.05 (b), ε = 0.1 (c), ε = 0.2 (d), ε = 0.4 (e) and
ε = 0.5 (f), for noiseless signals with generating dictionary ΦDDr and various sparsity
levels and coefficient decay parameters.
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Noisy signals with Dirac-DCT and Dirac-DCT random dictionary:

In our second experiment we consider noisy signals in the Dirac-DCT dictionary ΦDD

as well as the Dirac-DCT random dictionary ΦDDr. For that, we additionally draw N
noise vectors to create the signals. The noise variances are chosen to be ρ2 = 1

256d
and

ρ2 = 1
16d

, which correspond to signal to noise ratios (SNR) of 256 and 16, respectively.
Figure 6.3 shows the obtained results for perturbed dictionaries ΨDD = ΦDDA+ZDDW
of the signal generating dictionary ΦDD, for noisy signals with SNR=16 in (a,b,c) and
SNR=256 in (d,e,f), and for distances ε = 0 (a,d), ε = 0.2 (b,e) and ε = 0.5 (c,f).
Comparing these results with the noiseless case in Figure 6.1, we can clearly observe
the effect of noise in the perturbation free case (ε = 0). This decrease in the number
of correctly recovered atoms occurs as in case of noisy signals we are only able to
recover atoms corresponding to signal coefficients which are above the noise level. In
case where we have to deal with perturbations of the generating dictionary (ε > 0),
these effects are combined with the ones of the perturbation, resulting in an additional
restriction of the range of parameters for which OMP performs well.
Figure 6.4 shows the equivalent results for perturbed dictionaries ΨDDr = ΦDDrA +
ZDDrW of the signal generating dictionary ΦDDr. Comparing the results in Figure 6.3
and Figure 6.4, we can again see the better performance of OMP for the very well-
behaved dictionary ΦDD.
Another interesting observation is that the percentage of correctly recovered atoms
in case of noiseless signals and ε = 0.2 is almost the same as for noisy signals with
SNR=16 in the perturbation-free case, ε = 0. Similarly, for the noisy case with
SNR=256 and ε = 0 we have almost the same results as for the noiseless case with
ε = 0.05. For conciseness, we summarised the respective results in Figure 6.5.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Percentage of correctly recovered atoms via OMP with perturbed dictio-
naries ΨDD with ε = 0 (a,d), ε = 0.2 (b,e) and ε = 0.5 (c,f), for signals in ΦDD

which are contaminated with Gaussian noise corresponding to SNR=16 (a,b,c) and
SNR=256 (d,e,f), for various sparsity levels and coefficient decay parameters.

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Percentage of correctly recovered atoms via OMP with perturbed dictio-
naries ΨDDr with ε = 0 (a,d), ε = 0.2 (b,e) and ε = 0.5 (c,f), for signals in ΦDDr

which are contaminated with Gaussian noise corresponding to SNR=16 (a,b,c) and
SNR=256 (d,e,f), for various sparsity levels and coefficient decay parameters.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Connection between SNR and perturbations. Percentage of correctly re-
covered atoms via OMP for noisy signals with SNR=16 in ΨDD (a) and ΨDDr (c); for
noisy signals with SNR=256 in ΨDD (e) and ΨDDr (g); for noiseless signals in ΨDD

(b,f) and ΨDDr (d,h) with ε = 0.2 (b,d) and ε = 0.05 (f,h).
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Comparison OMP and thresholding:

In our last experiment we compare the success rates of OMP with those of thresholding
for noiseless signals in the Dirac-DCT dictionary ΦDD. Similar to previous experiments
we compare the percentage of correctly recovered atoms for various distances ε between
the generating dictionary ΦDD and a perturbation of it ΨDD = ΦDDA + ZDDW .
Further, we also give a comparison of how often OMP and thresholding are able to
recover the full support of the corresponding signals.
The results in Figure 6.6 show the percentage of correctly recovered atoms via OMP
(a,c,e,g) and thresholding (b,d,f,h) with ΨDD and signals using ΦDD. The considered
distances between the generating dictionary ΦDD and ΨDD are ε = 0 (a,b), ε = 0.05
(c,d), ε = 0.2 (e,f) and ε = 0.5 (g,h). From the results we can clearly see the much
better performance of OMP, especially for smaller ε. However, apart from the fact
that the range of parameters for which thresholding performs well is very limited,
thresholding seems to be more stable. A particularly interesting case is the one in
(g) and (h). While we have a very huge gap between the performances of OMP and
thresholding for ε = 0, comparing the percentage of correctly recover atoms for ε = 0.5,
this gap closes more and more.
Finally, we also wanted to compare how often OMP and thresholding are able to recover
the full support of our signals. In particular, Figure 6.7 shows the results which we
obtained by counting for each pair (S, α) how often OMP (a,c,e,g) and thresholding
(b,d,f,h) recovered the full support of the corresponding signals for distances ε = 0
(a,b), ε = 0.05 (c,d), ε = 0.2 (e,f) and ε = 0.5 (g,h). Again, we can see the much
better performance of OMP which for increasing ε almost decreases to the one of
thresholding.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Percentage of correctly recovered atoms via OMP (a,c,e,g) and thresholding
(b,d,f,h) with perturbed dictionaries ΨDD with ε = 0 (a,b), ε = 0.05 (c,d), ε = 0.2 (e,f)
and ε = 0.5 (g,h), for noiseless signals with generating dictionary ΦDD and various
sparsity levels and coefficient decay parameters.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Percentage of correctly recovered supports via OMP (a,c,e,g) and thresh-
olding (b,d,f,h) with perturbed dictionaries ΨDD with ε = 0 (a,b), ε = 0.05 (c,d),
ε = 0.2 (e,f) and ε = 0.5 (g,h), for noiseless signals with generating dictionary ΦDD

and various sparsity levels and coefficient decay parameters.
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6.6 Discussion

In this chapter we have presented average case results for OMP for the case where
we do not have the signal generating dictionary but only a perturbed version of it.
We have seen that even in the noiseless case, such perturbations can cause great
difficulties as the conditions which ensure support recovery include a term which can
grow very fast. In particular, signal properties ensuring (full-) support recovery in
the case where we have the signal generating dictionary may provoke the opposite in
the presence of perturbations. In case of noisy signals, an additional term has been
added to the recovery conditions, causing further limitations of the range of parameters
for which OMP performs well. We also gained interesting insights when comparing
OMP with thresholding. From the theoretical results we have seen why thresholding
performs that worse compared to OMP and that a similar term as the one which
causes problems for thresholding also occurs within the recovery conditions of OMP
if we have to deal with perturbations of the signal generating dictionary. From this
we see, while OMP is a great sparse approximation algorithm in the perturbation-free
case, its performance can be quite limited in the presence of perturbations. These
observations could for example be used to accelerate dictionary learning algorithms
which use OMP for updating the sparse support. In particular, one could replace
OMP by simple thresholding within the first iterations and keep it for later iterations.
Hence, accelerating the dictionary learning in the early stages using thresholding while
keeping a good precision by using OMP in the later stages.





Chapter 7

Conclusion & Outlook

In this thesis we have taken a closer look at different areas of dictionary learning and
sparse representation modelling. After introducing the main concepts in Chapter 2,
we studied the contractive behaviour of the Iterative Thresholding and K residual
Means (ITKrM) algorithm in Chapter 3. In particular, we showed that one iteration
of ITKrM is a contraction under much more relaxed conditions compared to existing
results. In Chapter 4, we analysed situations where ITKrM does not recover the gener-
ating dictionary. This showed us that there seem to exist stable fixed points which are
not equivalent to the generating dictionary and can be characterised as very coherent.
Based on a closer inspection of these spurious fixed points, we developed a replace-
ment strategy and a strategy to find good replacement candidates. With the help of
these replacement candidates we further addressed the question how to automatically
choose the sparsity level S and the dictionary size K. In Chapter 5 we investigated
the application of the adaptive version of ITKrM (aITKrM) together with an adaptive
version of OMP (aOMP) to reconstruct MR images from highly undersampled data.
By conducting various experiments we saw that the choice of the sparsity level S as
well as the dictionary size K is non-trivial and strongly data dependent. However,
using aITKrM and aOMP, S and K were no longer needed as input-parameter but
optimally determined during the iterative reconstruction. Finally, Chapter 6 was de-
voted to the question how sparse approximation algorithms perform in case the given
input dictionary is not the signal generating dictionary itself but a perturbed version
of it. For that, we provided average case results for OMP in presence of perturbations
of the generating dictionary and compared its performance with the one of simple
thresholding.

While we gained a lot of interesting insights, unfortunately some questions also re-
mained unanswered. For instance, in the convergence results of ITKrM we wanted to
replace a very limiting condition on the signal coefficients by a more general one. In
particular, we have that the convergence radius of ITKrM decreases with the dynamic
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range of the coefficients. For that, in order to overcome large dynamic ranges, while at
the same time removing the requirement of knowing the exact sparsity level S, we tried
to extend the results to the case where we only assume a gap between the coefficients
cS and cS±T , for some T > 0. Unfortunately we did not succeed as we ended up with
norm terms which we did not get small enough.
Within the contraction conditions of ITKrM we also tried to reduce all logK to log S
factors. While we were able to remove some of the logK factors by using the idea that
an updated atom is only affected by the error originating from the failure of thresh-
olding if its corresponding index is within the original support or if it is not within the
original support but in the thresholded support, some of the logK factors remained
due to a union bound over all indices which we could not replace.
Another interesting question that is still open concerns the theoretical analysis of an-
other adaptive sparse approximation algorithm - Adaptive Pursuit - that has been
shown to perform very well in numerical experiments. This algorithm works similar to
aOMP however, it is able to add and remove several atoms at a time. More precisely,
in each iteration it adds all atoms for which the residual inner product is larger than
some predefined threshold times the norm of the residual and removes those for which
the corresponding signal coefficient is below this critical value. While we were able to
provide upper and lower bounds for thresholds ensuring that in each iteration at least
one correct atom is added, we failed when proving that correct atoms are kept and
erroneously picked ones are removed. The reason for this was that we not only had
to upper and lower bound the size of the coefficients but also the norm term of the
residual which occurs within the threshold. This finally led to bounds which were too
restrictive.

Other interesting research topics would be the following. While the contraction theo-
rem in Chapter 3 is a large improvement over existing results, it is however only valid
for one iteration. Therefore, one interesting problem to be addressed is to prove that
the updated dictionary inherits from the current dictionary estimate the properties
that are required for being a contraction hence, ensuring convergence of ITKrM on a
much larger area.
The results in Chapter 5 have clarified the importance of the adaptive choice of the
sparsity level and the number of dictionary atoms. While aITKrM and aOMP have
been shown to be significantly faster compared to the well-established K-SVD and
OMP algorithms, they could be further accelerated and optimised. In particular, the
underlying nature of ITKrM offers the possibility to transfer the calculations on a
GPU and exploit parallelisation as it can process the patches sequentially. Further
improvements in terms of computational time could also be expected from a more
computationally efficient implementation of aITKrM and aOMP, e.g. by extending
aOMP to use the Cholesky decomposition as in [54]. With such modifications, they
could become an even bigger competitor for deep learning-based methods for medical
imaging applications.
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Another interesting question would be the average case performance of other sparse
approximation algorithms in the presence of perturbations of the generating dictionary.
Such results would be particularly interesting for developing or improving dictionary
learning algorithms.
However, these are only a few of many other interesting and open problems to be
answered in this very exciting field of research.
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A.1 Proof of Proposition 3.4

Here we prove Proposition 3.4, which was used within the proof of Lemma 3.5 in
Chapter 3 to deal with sums of dependent random variables. For this, we need the
following simplified version of Freedman’s inequality.

Theorem A.1. (Freedman, [23]). Let X0, . . . , XS be a martingale sequence with
bounded differences, that is |Xk − Xk−1| ≤ c almost surely for each k. Moreover, let
the predictable quadratic variation 〈X〉S =

∑S
k=1 E

[
(Xk −Xk−1)2

∣∣Fk−1

]
be bounded

by b. Then for all t > 0

P (XS −X0 ≥ t) ≤ exp

(
− t2

2(ct+ b)

)
.

Proposition 3.4. Let v ∈ RK be a vector, I = (i1, . . . , iS) be a sequence of length
S obtained by sampling from K = {1, . . . , K} without replacement, ε with values in
{−1, 1}S a Rademacher vector independent from I and c ∈ RS a scaling vector. Then
for any t ≥ 0,

P

(∣∣ S∑
k=1

ckεkvik
∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
(
‖c‖∞‖v‖∞t+ ‖c‖2

2‖v‖2
2/(K − S)

)) .

Proof. We will use Theorem A.1 on an appropriately constructed martingale. Let
I = (i1, . . . , iS), be the random vector obtained by sampling from K = {1, . . . , K}
without replacement, that is, I is drawn uniformly at random from the set

Ω := {ω ∈ KS : ωi 6= ωj for i 6= j}.

We equip Ω with the σ-algebra F := P(Ω) and the point measure P({ω}) := |Ω|−1,
to get the probability space (Ω,F ,P). We also set ∆ := {−1, 1}S, equip it with the
σ-algebra A := P(∆), the point measure Q({δ}) = 2−S and define the product space
(Ω×∆,F⊗A,P⊗Q). On Ω we define the filtration {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ FS = F ,
where Fk is the σ-algebra induced by ω1, . . . , ωk. To be exact, we define the random
variables

ij : Ω −→K ⊆ R with ij(ω) := ωj,

and set Fk := σ(i1, . . . , ik) for all 1 ≤ k ≤ S.

Since we also want to condition on the signs δ ∈ ∆, we define the random variables

εj : ∆ −→ {−1, 1} ⊆ R with εj(δ) := δj,
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and the corresponding filtration {∅,∆} = A0 ⊆ A1 ⊆ · · · ⊆ AS = A, by setting
Ak = σ(ε1, . . . , εk). On the product space Ω×∆ we then get the filtration Fk ⊗Ak.
Next we define the bounded random variables

Xk : Ω×∆ −→ R, with Xk(ω, δ) =
k∑
j=1

cjεj(δ)vij(ω).

The random variables Xk form a martingale sequence with resp. to the filtration
Fk ⊗Ak, since by independence of εk to F ⊗Ak−1 we have

E[Xk −Xk−1|Fk−1 ⊗Ak−1] = E
[
E[Xk −Xk−1|F ⊗ Ak−1]

∣∣Fk−1 ⊗Ak−1

]
= E

[
E[ckεkvik |F ⊗ Ak−1]

∣∣Fk−1 ⊗Ak−1

]
= ckE [vikE[εk|F ⊗ Ak−1]|Fk−1 ⊗Ak−1]

= ckE [vikE[εk]|Fk−1 ⊗Ak−1] = 0.

The sum we want to estimate is XS with expectation E(XS) = 0 = X0. Further we
have |Xk −Xk−1| = |ckεkvik | ≤ ‖c‖∞‖v‖∞ as well as (Xk −Xk−1)2 = c2

kv
2
ik

, so we can
bound the predictable quadratic variation as

〈X〉S =
S∑
k=1

E
[
(Xk −Xk−1)2

∣∣Fk−1 ⊗Ak−1

]
=

S∑
k=1

E
[
c2
kv

2
ik

∣∣Fk−1 ⊗Ak−1

]
=

S∑
k=1

c2
k

∑
`/∈{i1,...,ik−1}

v2
`

1

K − k + 1
≤ ‖c‖2

2

‖v‖2
2

K − S
.

The final result follows using the symmetry of XS.

A.2 Proof of Proposition 6.2

Here we prove Proposition 6.2, which concerns the norm of a random subvector and
was used to prove Theorem 6.1 in Chapter 6. For this, we again need Theorem A.1.

Proposition 6.2. Let v ∈ RK be a vector, I a subset chosen uniformly at random
among all subsets of size S, and vI the restriction of v to the subset I, then for any
t ≥ 0,

P
(
‖vI‖2

2 ≥ S
K
‖v‖2

2 + t
)
≤ exp

(
− t2

2
(
‖v‖2

∞t+ S
K
‖v‖4

4

)) .
Proof. Similar to Proposition 3.4 we let I = (i1, . . . , iS) be the random vector obtained
by sampling from K = {1, . . . , K} without replacement and define (Ω,F ,P), ij and Fk
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as above. For notational convenience, later on, we also define the set-valued functions
Ick where Ick(ω) := K/{i1(ω), . . . , ik(ω)}.

Next we define the bounded random variable

X : Ω −→ R, with X(ω) =
S∑
j=1

v2
ij(ω)

and set Xk := E[X|Fk]. By construction E[Xk+1|Fk] = Xk and so X0, X1, . . . , XS is
a martingale with X0 = E(X) and XS = X. To apply Theorem A.1 we first have to
bound Yk := Xk −Xk−1. We have

Yk = Xk −Xk−1

=
S∑
j=1

E
[
v2
ij

∣∣σ(i1, . . . , ik)
]
−

S∑
j=1

E
[
v2
ij

∣∣∣σ(i1, . . . , ik−1)
]
.

Since we have E
[
v2
ij

∣∣σ(i1, . . . , ik)
]

= v2
ij

for j ≤ k the expression above reduces to

Yk =
S∑
j=k

E
[
v2
ij

∣∣σ(i1, . . . , ik)
]
−

S∑
j=k

E
[
v2
ij

∣∣∣σ(i1, . . . , ik−1)
]
.

For j > k on the other hand, we have for ` ∈ K,

P (ij = `|σ(i1, . . . , ik)) =

{
1

K−k , ` /∈ {i1, . . . , ik},
0, else,

thus,

E
[
v2
ij

∣∣σ(i1, . . . , ik)
]

=
∑
`∈K

v2
` P (ij = `|σ(i1, . . . , ik)) =

∑
`/∈{i1,...,ik}

v2
`

K − k
=
‖vIck‖

2
2

K − k
,

so we can further simplify

Yk = v2
ik

+
S − k
K − k

(
‖vIck‖

2
2

)
− S − k + 1

K − k + 1

(
‖vIck−1

‖2
2

)
= v2

ik
+
S − k
K − k

(
‖vIck−1

‖2
2 − v2

ik

)
− S − k + 1

K − k + 1

(
‖vIck−1

‖2
2

)
= v2

ik

(
1− S − k

K − k

)
+ ‖vIck−1

‖2
2

(
S − k
K − k

− S − k + 1

K − k + 1

)
= v2

ik

K − S
K − k

− ‖vIck−1
‖2

2

K − S
(K − k)(K − k + 1)

=
K − S
K − k

(
v2
ik
−
‖vIck−1

‖2
2

K − k + 1

)
. (A.2.1)
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Since ‖vIck−1
‖2

2 ≤ (K − k+ 1)‖v‖2
∞ we can also bound the modulus of the difference in

the bracket above by ‖v‖2
∞ and further get that |Yk| = |Xk −Xk−1| ≤ ‖v‖2

∞.

Next we bound the predictable quadratic variation 〈X〉S. Using the convenient ex-
pression for Yk from (A.2.1), we have

〈X〉S =
S∑
k=1

E
[
Y 2
k

∣∣Fk−1

]
=

S∑
k=1

(
K − S
K − k

)2

E

(v2
ik
−
‖vIck−1

‖2
2

K − k + 1

)2
∣∣∣∣∣∣Fk−1


=

S∑
k=1

(
K − S
K − k

)2

E

[
v4
ik
− 2v2

ik

‖vIck−1
‖2

2

K − k + 1
+

‖vIck−1
‖4

2

(K − k + 1)2

∣∣∣∣∣Fk−1

]
.

Since Ick−1 = K/{i1, . . . , ik−1}, the function ‖vIck−1
‖2

2 is Fk−1-measurable and we get

〈X〉S =
S∑
k=1

(
K − S
K − k

)2
(
E
[
v4
ik

∣∣Fk−1

]
− 2E

[
v2
ik

∣∣Fk−1

] ‖vIck−1
‖2

2

K − k + 1
+

‖vIck−1
‖4

2

(K − k + 1)2

)
.

For p = 2, 4 we have

E
[
vpik
∣∣Fk−1

]
=

∑
`/∈{i1,...,ik−1}

vp`
1

K − k + 1
=
‖vIck−1

‖pp
K − k + 1

,

which leads to

〈X〉S =
S∑
k=1

(
K − S
K − k

)2
(
‖vIck−1

‖4
4

K − k + 1
−

‖vIck−1
‖4

2

(K − k + 1)2

)

=
S∑
k=1

(K − S)2

(K − k)2(K − k + 1)2

(
(K − k + 1) ‖vIck−1

‖4
4 − ‖vIck−1

‖4
2

)
.

Since for any vector z ∈ Rd we have ‖z‖4
4 ≤ ‖z‖4

2 ≤ d‖z‖4
4, we arrive at the final bound

〈X〉S ≤
S∑
k=1

(K − S)2

(K − k)(K − k + 1)2
‖vIck−1

‖4
4 ≤

S∑
k=1

(K − S)2

K − S + 1
· ‖v‖4

4

(K − k)(K − k + 1)

≤ ‖v‖4
4(K − S)

S∑
k=1

1

K − k
− 1

K − k + 1
≤ ‖v‖4

4

S

K
.
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A.3 Proof of Theorem 6.3

Here we state the proof of Theorem 6.3 which provides partial support recovery con-
ditions for OMP in case of noisy signals.

Proof. We use the same strategy and abbreviations as in the proof of Theorem 6.1.
In case of noisy signals the residuals are now of the form

r̃J̄ = Q(ΨJ̄)ỹ = Q(ΨJ̄)(ΦĪxI + η) = rJ̄ +Q(ΨJ̄)η.

A sufficient condition to ensure that OMP picks another correct atom within the next
iteration is that we have for i, the index of the largest still missing coefficient,∣∣〈ψp(i), r̃J̄〉∣∣ > max

k∈Ri

∣∣〈ψp(k), r̃J̄〉
∣∣ . (A.3.1)

Note that we have ∣∣〈ψp(i), r̃J̄〉∣∣ ≥ ∣∣〈ψp(i), rJ̄〉∣∣− ∣∣〈ψp(i), Q(ΨJ̄)η〉
∣∣ ,

and for all k ∈ Ri, ∣∣〈ψp(k), r̃J̄〉
∣∣ ≤ ∣∣〈ψp(k), rJ̄〉

∣∣+
∣∣〈ψp(k), Q(ΨJ̄)η〉

∣∣ ,
and hence, the condition in (A.3.1) is implied by ensuring that for i and all k ∈ Ri,
we have∣∣〈ψp(i), rJ̄〉∣∣− ∣∣〈ψp(k), rJ̄〉

∣∣ ≥ ∣∣〈ψp(i), Q(ΨJ̄)η〉
∣∣+
∣∣〈ψp(k), Q(ΨJ̄)η〉

∣∣ . (A.3.2)

Since the terms on the left hand side are the same as for the noiseless perfectly S-
sparse case, we first bound the terms on the right hand side of (A.3.2). For that, we
use the decomposition J̄ = Āi ∪ Ḡ, where Āi := p(Ai) and Ḡ := p(G). Hence, we can
write for any k /∈ J ,

|〈ψp(k), Q(ΨJ̄)η〉| = |〈ψp(k), Q(ΨJ̄)
[
P (ΨĀi) +Q(ΨĀi)

]
η〉|

= |〈ψp(k), Q(ΨĀi)η〉 − 〈ψp(k), P (ΨJ̄)Q(ΨĀi)η〉|
= |〈ψp(k), Q(ΨĀi)η〉 − 〈Ψ

?
J̄ψp(k), (Ψ

?
J̄ΨJ̄)−1Ψ?

J̄Q(ΨĀi)η〉|. (A.3.3)

Since
∣∣〈ψp(j), Q(ΨĀi)η〉

∣∣ = 0 for all j ∈ Ai, we get for any k /∈ J

|〈ψp(k), Q(ΨJ̄)η〉| ≤ |〈ψp(k), Q(ΨĀi)η〉|+ ‖Ψ
?
J̄ψp(k)‖2 · ‖(Ψ?

J̄ΨJ̄)−1‖2,2 · ‖Ψ?
ḠQ(ΨĀi)η‖2

≤ |〈ψp(k), Q(ΨĀi)η〉|+ ‖Ψ
?
J̄ψp(k)‖2 ·

√
|G|

1− δJ̄
·max
`∈G
|〈ψp(`), Q(ΨĀi)η〉|

≤ max
k/∈Ai
|〈ψp(k), Q(ΨĀi)η〉|

(
1 +

√
|G|

1− δJ̄
· ‖Ψ?

J̄ψp(k)‖2

)

≤ max
k/∈Ai
|〈Q(ΨĀi)ψp(k), η〉|

(
1 +

√
|G| · |J |
1− δJ̄

· µ̄

)
. (A.3.4)
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In order to bound |〈Q(ΨĀi)ψp(k), η〉| for all k /∈ Ai with high probability, we use the
sub-Gaussian property of the noise vector η. In particular, for the marginals 〈vik , η〉,
with vik = Q(ΨĀi)ψp(k) and ‖vik‖2 ≤ 1, we have

P
(∣∣〈Q(ΨĀi)ψp(k), η〉

∣∣ ≥ θη
)
≤ 2 exp

(
−
θ2
η

2ρ2

)
.

Using a union bound over all k and all possible subsets Ai, we obtain

P
(
∃Ai, k :

∣∣〈Q(ΨĀi)ψp(k), η〉
∣∣ ≥ θη

)
≤ 2sK exp

(
−
θ2
η

2ρ2

)
.

Substituting this bound into (A.3.4) and setting θη = 2ρ
√
n logK, we have that except

with probability 2sK1−2n,

|〈ψp(k), Q(ΨJ̄)η〉| ≤ 2ρ
√
n logK

(
1 +

√
|G| · |J |
1− δJ̄

· µ̄

)
for all k, J̄ .

Using that |G| = |C| ∪ |D| ≤ 2t and δJ̄ ≤ δĪ(Ψ) ≤ 1
2
, we have that except with

probability 2sK1−2n,

|〈ψp(k), Q(ΨJ̄)η〉| ≤ 2ρ
√
n logK

(
1 + 2

√
2t · |J | · µ̄

)
. (A.3.5)

Next, we bound the terms on the left hand side of (A.3.2). For that, we use the bounds
derived in Theorem 6.1 but with a slight tweak as we are interested in conditions
ensuring only partial support recovery. In particular, as already mentioned in the
proof of Theorem 6.1, in case J̄ contains only part of the elements in Ī, we might get
better estimates by using only a crude bound for the norm term ‖Ψ?

J̄
ψp(k)‖2. For that,

going back to (6.41) and replacing E by the bound
√
|J |µ̄, we have for i ∈ Gc, the

index of the largest still missing coefficient, and any k ∈ Ri,

c−1
i γ−1

min

(∣∣〈ψp(i), rJ̄〉∣∣− ∣∣〈ψp(k), rJ̄〉
∣∣)

≥ 1− γ

γmin

β

− 4
γ

γmin

· ε
√
n logK ·max

{
2νZ
‖cI‖∞
ci

√
n logK,

‖cI‖2

ci

√
‖Z‖2

2,2

K − S

}
(1 + 2|J |µ̄)

− 4
γ

γmin

· µ̄ ·

(
t+
√
nt logK

(
β2

1− β2

) 1
2

)
(1 + 2|J |µ̄) , (A.3.6)

except with probability K(2K−2n + 2K−n + 216K−m).
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Combining these estimates with the bound in (A.3.5), a sufficient condition ensur-
ing the recovery of p(i) before p(k) with k in R̄i in case of noisy signals is therefore

1− γ

γmin

β

> 4
γ

γmin

· ε
√
n logK ·max

{
2νZ
‖cI‖∞
ci

√
n logK,

‖cI‖2

ci

√
‖Z‖2

2,2

K − S

}
(1 + 2|J |µ̄)

+ 2
γ

γmin

· µ̄ ·

(
2t+ 2

√
nt logK

(
β2

1− β2

) 1
2

)
(1 + 2|J |µ̄)

+ 4
ρ

γminci

√
n logK

(
1 + 2µ̄

√
2t|J |

)
.

Using that in the `-th iteration |J | ≤ ` and c` is the smallest possible largest missing
coefficient, we have that OMP recovers only correct atoms within the first ` iterations,
except with probability K(4sK−2n + 2K−n + 216K−m), as long as

1− γ

γmin

β

≥ 4
γ

γmin

· ε
√
n logK ·max

{
2νZ
‖cI‖∞
c`

√
n logK,

‖cI‖2

c`

√
‖Z‖2

2,2

K − S

}
(1 + 2`µ̄)

+ 4
γ

γmin

· µ̄ ·

(
t+
√
nt logK

(
β2

1− β2

) 1
2

)
(1 + 2`µ̄)

+ 4
ρ

γminc`

√
n logK

(
1 + 2µ̄

√
2t`
)
.

A.4 Proof of Theorem 6.4

Here we state the proof of Theorem 6.4 which provides support recovery conditions
for thresholding in case of noiseless perfectly S-sparse signals.

Proof. Throughout the proof we will use the short hands µ̄ := maxi 6=j |〈ψi, ψj〉| and
νZ := maxi,j |〈ψi, zj〉|. Further, we assume w.l.o.g. that Ī = I = {1, . . . , S}. Note
that, for our result we only use Hoeffding’s inequality where the expectation is only
over the sign sequence σ and hence, independent of the permutation p.
In order to ensure that thresholding succeeds, this means, to ensure the recovery of
all i ∈ I, we need to have

min
i∈I
|〈ψi, y〉| > max

i/∈I
|〈ψi, y〉| . (A.4.1)
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Using the decomposition

y = ΦIxI = (ΨΓ)IxI + (Φ−ΨΓ)IxI = (ΨΓ)IxI + (ZΛ)IxI , (A.4.2)

the inner product of a signal y with an atom ψi of the perturbed dictionary Ψ, can be
expanded as

|〈ψi, y〉| = |〈ψi, (ΨΓ)IxI〉+ 〈ψi, (ZΛ)IxI〉|

=
∣∣∑
j∈I

〈ψi, ψj〉γjxj +
∑
j∈I

〈ψi, zj〉λjxj
∣∣

=
∣∣∑
j∈I

〈ψi, ψj〉γjσjcj +
∑
j∈I

〈ψi, zj〉λjσjcj
∣∣

=
∣∣ciγi + σi

∑
j∈I\{i}

〈ψi, ψj〉γjσjcj +
∑
j∈I

〈ψi, zj〉λjσjcj
∣∣. (A.4.3)

Depending on the index i under consideration, we get the following bounds from below
resp. above,

i ∈ I : |〈ψi, y〉| ≥ ciγi −
∣∣ ∑
j∈I\{i}

〈ψi, ψj〉γjσjcj
∣∣− ∣∣∑

j∈I

〈ψi, zj〉λjσjcj
∣∣,

i /∈ I : |〈ψi, y〉| ≤
∣∣∑
j∈I

〈ψi, ψj〉γjσjcj
∣∣+
∣∣∑
j∈I

〈ψi, zj〉λjσjcj
∣∣.

Therefore, a sufficient condition for the recovery of I is that for all i ∈ I, we have

ciγi > 2 ·max
k

∣∣ ∑
j∈I\{k}

〈ψk, ψj〉γjσjcj
∣∣+ 2 ·max

k

∣∣∑
j∈I

〈ψk, zj〉λjσjcj
∣∣. (A.4.4)

In order to bound the right hand side, we use Hoeffding’s inequality. Hence, for the
inner product with the perturbed dictionary Ψ, we obtain

P
(∣∣ ∑

j∈I\{k}

γjσjcj〈ψk, ψj〉
∣∣ ≥ t1

)
≤ 2 exp

(
− t21

2
∑

j∈I\{k} |〈ψk, ψj〉|
2 γ2

j c
2
j

)

≤ 2 exp

(
− t21

2µ̄2‖ΓIcI‖2
2

)
,

and similarly for the inner product with the perturbation dictionary Z,

P
(∣∣∑

j∈I

λjσjcj〈ψk, zj〉
∣∣ ≥ t2

)
≤ 2 exp

(
− t21

2
∑

j∈I |〈ψk, zj〉|
2 λ2

jc
2
j

)

≤ 2 exp

(
− t21

2ν2
Z‖ΛIcI‖2

2

)
.
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Using a union bound over all indices k, we have that except with probability 2K1−2n1

max
k

∣∣ ∑
j∈I\{k}

γjσjcj〈ψk, ψj〉
∣∣ ≤ 2µ̄ · ‖ΓIcI‖2

√
n1 logK, (A.4.5)

and except with probability 2K1−2n2

max
k

∣∣∑
j∈I

λjσjcj〈ψk, zj〉
∣∣ ≤ 2νZ · ‖ΛIcI‖2

√
n2 logK. (A.4.6)

Defining γmin = mink γk, εmin = mink εk, γ = maxk γk and ε = maxk εk, we have for
ε ≤ 1,

γi =
2

2− ε2
i

≥ 2

2− ε2
min

= γmin ≥ 1,

γk =
2

2− ε2
k

≤ 2

2− ε2
= γ ≤ 2,

λk = γk

(
ε2
k −

ε4
k

4

) 1
2

≤ γkεk ≤ γε.

Bounding the norm terms as ‖ΓIcI‖2 ≤ γ‖cI‖2 and ‖ΛIcI‖2 ≤ γε‖cI‖2 and setting
n1 = n2 = n, cS = mini∈I ci, we have that thresholding recovers the generating
support I, except with probability 4K1−2n, whenever

cS · γmin ≥ 4γ(µ̄+ ενZ) · ‖cI‖2

√
n logK.

The final result follows from multiplying both sides by c−1
S γ−1

min.
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