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Abstract

We provide non-asymptotic bounds for first and higher order inclusion probabilities of the
rejective sampling model with various size parameters. Further we derive bounds in the
semi-definite ordering for matrices that collect (conditional) first and second order inclusion
probabilities as their diagonal resp. off-diagonal entries.
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1. Introduction

In finite population sampling theory the aim is to draw statistical conclusions for population
characteristics based on a sample of it. In the landmark paper of Hájek [5], he studied the
behaviour of the Horvitz-Thompson estimator under rejective sampling. This proved to
be the starting point of many inquiries into rejective sampling [6, 4, 9, 1, 8, 15, 14] and
corresponding concentration inequalities [2, 12].
Following Hájek’s introduction, we consider a finite population U of size N , essentially
meaning U = [N ] := {1, . . . , N}, from which we want to draw a set or sample I of size S.
Let p1, . . . , pN be drawing probabilities such that pi ∈ (0, 1) and

∑
i pi = S.

We say that our samples I are drawn from the Poisson sampling model with weights pi, if
the probability of drawing a sample I is given by

PB(I) =
∏
i∈I

pi
∏
j /∈I

(1− pj). (1)

The advantage of Poisson sampling is that each index i appears in the sample I indepen-
dently of all the others since it can be seen as a series of N Bernoulli random variables δi,
where each δi has expectation pi. The disadvantage is that the sampled sets have varying
sizes. Reducing to sets of only one size leads to the corresponding rejective sampling model
with weights pi and parameter S, where the probability of a sample I is given by

PS(I) := PB(I | |I| = S) =

{
c−1

∏
i∈I pi

∏
j /∈I(1− pj) if |I| = S

0 else
, (2)

with c = PB(|I| = S) =
∑

|I|=S

∏
i∈I pi

∏
j /∈I(1 − pj). Due to its construction, rejective

sampling is also known as conditional Poisson sampling. We restrict ourselves to the case
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pi ∈ (0, 1), since for pi = 0 we can just drop the corresponding index i from the population
[N ] since it gets never picked anyway. Similarly, for pi = 1, we can trivially include the
index i in every set I we sample and then just sample S − 1 indices from the rest of the
population [N ] \ {i} — corresponding to rejective sampling of size S − 1.
Of particular interest are the first order inclusion probabilities which are defined as

πi(S) :=
∑
I:i∈I

PS(I) = PS(i ∈ I). (3)

If S is clear from context or not relevant, we will sometimes write πi instead. Denoting
by 1I ∈ RN the vector whose i-th entry is 1 if i ∈ I and zero else, we have for the vector
of inclusion probabilities π(S) := ES [1I ] ∈ RN . For the Poisson sampling model we have
pi = PB(i ∈ I). In general the inclusion probabilities of the rejective and Poisson sampling
models are not equal, i.e. pi ̸= πi, unless pi = c for all i ∈ [N ] and for some c ∈ [0, 1]. For
our short literature review we further define,

d :=
N∑
i=1

pi(1− pi) and αi :=
pi

1− pi
. (4)

Hájek [5] first studied the relation between pi and πi and showed that

max
1≤i≤N

|πi/pi − 1| → 0 as d → ∞. (5)

Hence asymptotically, the inclusion probabilities of the rejective and Poisson sampling mod-
els are indistinguishable. Nevertheless there are a lot of settings where one is interested in
the non-asymptotic relation between the different inclusion probabilities. So it was conjec-
tured in [6] and later shown in [9] that

min
i

αi ≤ min
i

πi and max
i

πi ≤ max
i

αi. (6)

This already gives control over the extreme points of the two sequences, but still not a
general way of relating the two sequences. Using the notion of majorization, it was further
shown in [8, 15] that

π ≺ α and (N−1, . . . , N−1) =
π(N)

N
≺ · · · ≺ π(S)

S
≺ · · · ≺ π(1) = α, (7)

where ≺ is defined as follows: for two real vectors a = (a1, . . . , aN ) and b = (b1, . . . , bN ) we
write a ≺ b, if

N∑
i=1

ai =

N∑
i=1

bi and

N∑
i=k

a(i) ≤
N∑
i=k

b(i) k = 2, . . . N, (8)

where a(1) ≤ · · · ≤ a(N) and b(1) ≤ · · · ≤ b(N) are a and b arranged in increasing order.
Though this generalised the conjectures stated in [5, 9], these results again only give control
over extreme values and partial sums of inclusion probabilities. In particular, to the best
of our knowledge, non-asymptotic control over the ratio πi/pi for non extremal i is missing
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in the literature. In this paper we provide non-asymptotic upper and lower bounds for all i
via

1− ∥p∥∞ ≤ πi
pi

≤ 2. (9)

The upper bound is a simple application of [12, Lemma 7], which states that for any event
A ⊆ P([N ]) such that for all I, J ⊆ [N ] it holds

[I ∈ A, I ⊆ J ] =⇒ [J ∈ A] (10)

we have PS(A) ≤ 2PB(A). This result in itself is a generalisation of an earlier result by
Hájek, [5]. Applying this to the set A := {I ⊆ [N ] | i ∈ I} yields the upper bound πi ≤ 2pi.
In some settings one is interested in the relationship between the inclusion probabilities of
rejective sampling of size S and size S − 1. Equation (7) already gives us control over the
extreme points of the inclusion sequences π(S) and π(S − 1) via the relation

min
i

πi(S − 1) ≤ min
i

πi(S) ·
S − 1

S
and max

i
πi(S) ·

S − 1

S
≤ max

i
πi(S − 1)

Again, we generalise the upper bound from the extremal to all entries by showing that
πi(S − 1) ≤ πi(S) for all i.
Other interesting quantities are higher inclusion probabilities. We formally define the ℓ-th
order inclusion probabilities for all sets with ℓ elements, that is L = {i1, . . . , iℓ} ⊆ [N ], as

πL(S) := πi1,...,iℓ(S) := PS(L ⊆ I). (11)

Second order inclusion probabilities were already studied by Hájek, [5], who derived the
asymptotic bound,

πi,j = πiπj
[
1− d−1(1− πi)(1− πj) +O(d−1)

]
as d → ∞, (12)

which holds uniformly for all pairs i, j with i ̸= j. This result was extended to higher order
inclusion probabilities by Boistard et. al.,[3], who also sharpened the asymptotic bound to

πi1,i2,...,iℓ = πi1πi2 · · ·πiℓ
[
1− d−1

∑
i,j∈L:i<j

(1− πi)(1− πj) +O(d−2)
]

as d → ∞, (13)

which again holds uniformly in i1, i2, . . . , iℓ. We provide non-asymptotic upper bounds for
higher order inclusion probabilities in the spirit of (12) and (13), meaning

πL∪M ≤ πLπM for L ∩M = ∅. (14)

Our next results are motivated by applications in sparse approximation and dictionary
learning, where rejective sampling is used to model non-uniform distributions of the loca-
tions of sparse supports [12, 10, 11]. A simple example for such a sparse signal model would
be to fix a d×N matrix Φ = (ϕ1, . . . , ϕN ), called dictionary, and model the sparse signals
y as

y := ΦIxI :=
∑
i∈I

ϕixi,
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where x is a random vector independent of I, whose entries are i.i.d. centered random
variables with unit variance. Questions about the signals quickly turn into questions about
the sampling scheme and, in particular, about the matrix E[1I1∗I ], which collects all first and
second order inclusion probabilities as its diagonal resp. off-diagonal entries. For instance
if we want to bound the signal spectrum, we have

∥E[yy∗]∥ = ∥Φ E[1I1∗I ] Φ∗∥, (15)

and if we want to learn the dictionary Φ from the signals y, we often encounter the weighted
cross-Gram matrix between Φ and our current guess Ψ, that is (Ψ∗Φ) ⊙ E[1I1∗I ], where ⊙
denotes the Hadamard (entrywise) product between vectors or matrices.
We derive an interesting relation between first and second order inclusion probabilities with
parameters S and S−1, which for any N×N matrix A allows to bound the operator norm of
A⊙ES [1I1

∗
I ] in terms involving only A and the vector of first order inclusion probabilities π.

To control the full spectrum of the matrices in (15), we finally provide bounds for ES [1I1
∗
I ]

in the positive semi-definite ordering of symmetric (Hermitian) matrices, where for two
symmetric matrices A,B we have A ⪯ B if B − A is positive semi-definite. The bounding
matrices again only depend on π.

2. Main

We first provide the non-asymptotic upper and lower bound on the ratio between first order
inclusion probabilities of rejective sampling πi and corresponding weights pi.

Lemma 1 Let πi = PS(i ∈ I) be the inclusion probabilities associated to a rejective sam-
pling model with parameter S and weights pi ∈ (0, 1) with

∑
i pi = S, then we have

1− ∥p∥∞ ≤ πi
pi

≤ 2.

Proof The upper bound follows from [12, Lemma 7] so we only need to show the lower
bound c := 1− ∥p∥∞ ≤ πi/pi. By definition, we have

πi = PB(i ∈ I | |I| = S) =
PB({i ∈ I} ∩ {|I| = S})

PB(|I| = S)
=

∑
I:|I|=S,i∈I PB(I)∑
I:|I|=S PB(I)

∑
J

PB(J)︸ ︷︷ ︸
= 1

,

and pi =
∑

J :i∈J PB(J). So the desired inequality c · pi ≤ πi is equivalent to

c
∑

I:|I|=S

PB(I)
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I

PB(I)
∑
J

PB(J).

Splitting the sum over I, J into sums over those containing i and those not containing i we
see that the inequality above is implied by

c
∑

I:|I|=S,i/∈I

PB(I)
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I

PB(I)
∑
J :i/∈J

PB(J). (16)
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Note that for any set I not containing the index i we have

pi
1− pi

· PB(I) =
pi

1− pi

∏
k∈I

pk
∏
k/∈I

(1− pk) =
∏

k∈I∪{i}

pk
∏

k/∈I∪{i}

(1− pk) = PB(I ∪ {i}).

Multiplying both sides in 16 with pi/(1− pi) we get

c
∑

I:|I|=S+1,i∈I

PB(I)
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I

PB(I)
∑
J :i∈J

PB(J),

so it suffices to show that

c
∑

I:|I|=S+1,i∈I

PB(I) ≤
∑

I:|I|=S,i∈I

PB(I).

Indeed we have

c
∑

I:|I|=S+1,i∈I

PB(I) = c
∑

I:|I|=S+1,i∈I

PB(I)
∑

k:k∈I,k ̸=i

1

S

= c
∑

I:|I|=S+1,i∈I

1

S

∑
k:k∈I,k ̸=i

PB(I \ {k})
pk

1− pk

≤ c

S(1− ∥p∥∞)

∑
(I,k):|I|=S+1,i∈I

k∈I,k ̸=i

PB(I \ {k}) · pk

=
1

S

∑
J :|J |=S,i∈J

PB(J)
∑
k/∈J

pk ≤
∑

J :|J |=S,i∈J

PB(J),

where we used that
∑

k/∈J pk ≤
∑

k pk = S.

The last lemma tells us that as long as the weights are not too extreme, meaning ∥p∥∞ ≪ 1,
first order inclusion probabilities and weights are comparable. For instance if ∥p∥∞ ≤ 1/2,
we can switch between the two quantities simply by multiplying with a factor 2. Before we
can provide an example where this is convenient we will derive simple bounds relating high
order inclusion probabilities of potentially different parameters S to each other.

Lemma 2 Let πL(S) = PS(L ⊆ I) be the inclusion probabilities associated to a rejective
sampling model with parameter S and weights pi ∈ (0, 1), then we have

πL(S − 1) ≤ πL(S), (a)

and πL∪M (S) ≤ πL(S) · πM (S) if L ∩M = ∅. (b)

For two indices i ̸= j we further have

πi,j(S) = πi(S) ·
πj(S − 1)− πi,j(S − 1)

1− πi(S − 1)
. (c)
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Proof (a) We define L = {I ⊆ [K] : L ⊆ I}. Using this together with the definition of PS

we can rewrite πL(S − 1) ≤ πL(S) as∑
J :|J |=S−1 1L(J) · PB(J)∑

J :|J |=S−1 PB(J)
≤

∑
I:|I|=S 1L(I) · PB(I)∑

I:|I|=S PB(I)
,

which is equivalent to∑
(I,J):|J |=S−1,|I|=S

1L(J) · PB(J)PB(I) ≤
∑

(I,J):|J |=S−1,|I|=S

1L(I) · PB(J)PB(I).

Now the crucial step, which we will use several times also in the subsequent proofs, is to
see that we can partition these sums in a special way. For a pair (I, J), by definition of the
Poisson sampling model, we can write PB(I)PB(J) in the following way

PB(I)PB(J) =
∏
i∈I

pi
∏
j /∈I

(1− pj)
∏
i∈J

pi
∏
j /∈J

(1− pj) =
∏

i∈I∩J
p2i

∏
i∈I△J

pi(1− pi)
∏

j /∈I∪J

(1− pj)
2,

where I△J denotes the symmetric difference of I, J . This implies that if for two pairs
(I, J), (I ′, J ′) we have

I ∩ J = I ′ ∩ J ′ and I△J = I ′△J ′ then PB(I)PB(J) = PB(I
′)PB(J

′).

This allows us to define natural partitions on the set of pairs (I, J) such that the probability
PB(I)PB(J) is constant on each partition. Concretely, for any integer T ∈ {1, . . . , S},
together with a set A ⊆ K with |A| = S − T and a set B ⊆ K \ A with |B| = 2T − 1, we
look at the collection of pairs (I, J) with intersection A and symmetric difference B, that is

QA,B := {(I, J) : I, J ⊆ K, |I| = S, |J | = S − 1, I ∩ J = A, I△J = B} .

Since each pair (I, J) with |I| = S, |J | = S − 1 can be uniquely assigned to a collection
QA,B and P(I)P(J) is constant for all (I, J) ∈ QA,B, it is sufficient to show that∑

(I,J)∈QA,B

1L(J) ≤
∑

(I,J)∈QA,B

1L(I)

or equivalently that

|{(I, J) ∈ QA,B : L ⊆ J}| ≤ |{(I, J) ∈ QA,B : L ⊆ I}. (17)

If L is not contained in A∪B there is no valid pair (I, J) ∈ QA,B and the inequality trivially
holds. If L ⊆ A ∪ B we abbreviate LA = L ∩ A and LB = L ∩ B. Since LA ⊆ A, all pairs
in (I, J) ∈ QA,B automatically satisfy LA ⊆ I and LA ⊆ J so we can rewrite (17) as

|{(I, J) ∈ QA,B : LB ⊆ I}| ≤ |{(I, J) ∈ QA,B : LB ⊆ I}|. (18)

Since we need to have A ∪ LB ⊆ J , in case |A ∪ LB| = |A|+ |LB| > S the left hand side in
(18) is zero and the inequality holds. Finally, if k = |LB| ≤ S−|A| = T , we can still choose
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T − k − 1 out of the 2T − k − 1 resp. T − k out of the 2T − k − 1 remaining elements in B
to fill I resp. J and create a valid pair. Since(

2T − k − 1

T − k − 1

)
≤

(
2T − k − 1

T − k

)
the inequality in (18) is satisfied, which completes the proof of (a). (a)✓
(b) We define L = {I ⊆ [K] : L ⊆ I} and M = {I ⊆ [K] : M ⊆ I}. Using this together
with the definition of PS we can rewrite πL∪M (S) ≤ πL(S) · πM (S) as∑

I:|I|=S 1M(I) · 1L(I) · PB(I)∑
I:|I|=S PB(I)

≤
∑

J :|J |=S 1M(J) · PB(J)∑
J :|J |=S PB(J)

·
∑

I:|I|=S 1L(I) · PB(I)∑
I:|I|=S PB(I)

,

which is equivalent to∑
(I,J):|I|=|J |=S

1M(I) · 1L(I) · PB(I)PB(J) ≤
∑

(I,J):|I|=|J |=S

1M(J) · 1L(I) · PB(I)PB(J).

We now use a similar decomposition as before. For T ∈ {0, . . . , S}, A ⊆ K with |A| = S−T
and B ⊆ K \ A with |B| = 2T , we again let A be the intersection and B the symmetric
difference of the sets I and J respectively and for any combination A,B define

QA,B := {(I, J) : I, J ⊆ K, |I| = |J | = S, I ∩ J = A, I△J = B} .

Since P(I)P(J) is constant for all (I, J) ∈ QA,B and every pair (I, J) is contained in exactly
one of those sets, it is sufficient to show that∑

(I,J)∈QA,B

1M(I) · 1L(I) ≤
∑

(I,J)∈QA,B

1M(J) · 1L(I)

or equivalently that

|{(I, J) ∈ QA,B : M ⊆ I, L ⊆ I}| ≤ |{(I, J) ∈ QA,B : M ⊆ J, L ⊆ I}|.

If L ∪M is not contained in A ∪ B there is no valid pair (I, J) ∈ QA,B and the inequality
trivially holds. If (L ∪M) ⊆ A ∪B we abbreviate LA = L ∩A, LB = L ∩B, MA = M ∩A
and MB = M ∩ B. Since (LA ∪MA) ⊆ A, all pairs in (I, J) ∈ QA,B automatically satisfy
(LA ∪MA) ⊆ I, MA ⊆ J and LA ⊆ I so we can rewrite the inequality we want to show as

|{(I, J) ∈ QA,B : MB ⊆ I, LB ⊆ I}| ≤ |{(I, J) ∈ QA,B : MB ⊆ J, LB ⊆ I}|. (19)

Since we need to have (A∪LB∪MB) ⊆ I, in case |A∪LB∪MB| = |A|+ |LB|+ |MB| > S the
left hand side in (19) is zero and the inequality trivially holds. Finally, if k = |LB|+ |MB| ≤
S − |A| = T , we can still choose T − k out of the 2T − k resp. T − |LB| out of the 2T − k
remaining elements in B to fill I resp. J and create a valid pair. Since |LB| ≤ k, we have(

2T − k

T − k

)
≤

(
2T − k

T − |LB|

)
,
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meaning the inequality in (19) is again satisfied, which completes the proof of (b). (b)✓
(c) We want to show that [1− πi(S − 1)] · πi,j(S) = πi(S) · [πj(S − 1)− πi,j(S − 1)]. Re-
calling that for any set J not containing the index i we have

pi
1− pi

· PB(J) = PB(J ∪ {i}),

we get

πi,j(S) =

∑
I:|I|=S 1I(i)1I(j) · PB(I)∑

I:|I|=S PB(I)
·
∑

I:|I|=S,i∈I PB(I)∑
I:|I|=S,i∈I PB(I)

=

∑
I:|I|=S,i∈I 1I(j) · PB(I)∑

|I|=S,i∈I PB(I)
· πi(S)

=
pi

1− pi
· 1− pi

pi
·
∑

J :|J |=S−1,i/∈J 1J(j) · PB(J)∑
J :|J |=S−1,i/∈J PB(J)

· πi(S) ·
∑

J :|J |=S−1 PB(J)∑
J :|J |=S−1 PB(J)

= πi(S) ·
∑

J :|J |=S−1,i/∈J 1J(j) · PB(J)∑
J :|J |=S−1 PB(J)

·
∑

J :|J |=S−1 PB(J)∑
J :|J |=S−1,i/∈J PB(J)

.

Further rewriting the fractions in the expression above yields∑
J :|J |=S−1,i/∈J 1J(j) · PB(J)∑

J :|J |=S−1 PB(J)
=

∑
J :|J |=S−1 1J(j) · PB(I)∑

J :|J |=S−1 PB(J)︸ ︷︷ ︸
πj(S−1)

−
∑

J :|J |=S−1 1J(i)1J(j) · PB(J)∑
J :|J |=S−1 PB(J)︸ ︷︷ ︸

πi,j(S−1)

as well as∑
J :|J |=S−1 PB(J)∑

J :|J |=S−1,i/∈J PB(J)
=

∑
J :|J |=S−1 PB(J)∑

J :|J |=S−1 PB(J)−
∑

J :|J |=S−1,i∈J PB(J)
=

1

1− πi(S − 1)
,

which completes the proof of (c). (c)✓

The last statement of the lemma might seem rather arbitrary, however it leads to the
following convenient way of bounding quantities such as ∥(Ψ∗Φ)⊙ E[1I1∗I ]∥.

Theorem 3 Let ES be the expectation according to the rejective sampling probability with
parameter S and weights pi ∈ (0, 1). Further let π ∈ RN be the vector of first order inclusion
probabilities and Dπ be the N ×N matrix with π on the diagonal and zero else. Then for
any N ×N matrix A we have

∥A⊙ ES [1I1
∗
I ]∥ ≤ 1 + ∥π∥∞

(1− ∥π∥∞)2
· ∥Dπ[A− diag(A)]Dπ∥+ ∥diag(A)Dπ∥.

In order to prove the theorem, we need the following corollary of Schur’s product theorem.
For convenience we include its short proof.

Corollary 4 Let A and B be two square matrices of the same dimension. If A is positive-
semidefinite (p.s.d.), then

∥A⊙B∥ ≤ ∥diag(A)∥ · ∥B∥.
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Proof The matrix(
∥B∥ · (I⊙A) A⊙B
(A⊙B)∗ ∥B∥ · (I⊙A)

)
=

(
A A
A A

)
⊙
(
∥B∥ · I B
B∗ ∥B∥ · I

)
is p.s.d., since the right hand side of the equation is a Hadamard product of two p.s.d.
matrices which is by Schur’s product theorem also p.s.d. By Theorem 7.7.9 in [7] there thus
exists a contraction C, meaning ∥C∥ ≤ 1, such that

A⊙B = ∥B∥ (I⊙A)1/2 C (I⊙A)1/2,

and hence ∥A⊙B∥ ≤ ∥I⊙A∥ · ∥B∥ = ∥ diag(A)∥ · ∥B∥.

Proof [of Theorem 3] We first note that since ES [1I1
∗
I ] has π(S) on the diagonal, a simple

application of the triangle inequality yields

∥A⊙ ES [1I1
∗
I ]∥ ≤ ∥(A− diag(A))⊙ ES [1I1

∗
I ]∥+ ∥ diag(A)⊙ ES [1I1

∗
I ]∥

= ∥(A− diag(A))⊙ ES [1I1
∗
I ]∥+ ∥ diag(A)Dπ(S)∥,

which already proves the theorem for S = 1, where all off-diagonal entries of ES [1I1
∗
I ]

are zero, meaning the first norm term is zero. In case S ≥ 2 it remains to show that for
H = A− diag(A) we have ∥H ⊙ ES [1I1

∗
I ]∥ ≤ c · ∥Dπ(S)HDπ(S)∥ with constant c as above.

Using the abbreviation ∆π(S) = I −Dπ(S) we know from Lemma 2(c) that

(H ⊙ ES [1I1
∗
I ])ij = Hij · πi,j(S) =

πi(S)

1− πi(S − 1)
·Hij · [πj(S − 1)− πi,j(S − 1)]

=
(
∆−1

π(S−1)Dπ(S)HDπ(S−1) −∆−1
π(S−1)Dπ(S)H ⊙ ES−1[1I1

∗
I ]
)
ij
.

Next Lemma 2(a) tells us that Dπ(S−1) ⪯ Dπ(S), which leads to

∥H ⊙ ES [1I1
∗
I ]∥ ≤ ∥∆−1

π(S−1)∥ · ∥Dπ(S)HDπ(S−1) −Dπ(S)H ⊙ ES−1[1I1
∗
I ]∥

≤ (1− ∥π(S)∥∞)−1 ·
(
∥Dπ(S)HDπ(S)∥+ ∥Dπ(S)H ⊙ ES−1[1I1

∗
I ]∥

)
. (20)

Applying the inequality above to H∗ and using the symmetry of ES [1I1
∗
I ] we also get

∥H ⊙ ES [1I1
∗
I ]∥ ≤ (1− ∥π(S)∥∞)−1 ·

(
∥Dπ(S)HDπ(S)∥+ ∥HDπ(S) ⊙ ES−1[1I1

∗
I ]∥

)
. (21)

For S = 2, the matrix ES−1[1I1
∗
I ] is again a diagonal matrix, meaning the second norm

term vanishes and we are done. For S > 2 we simply apply the inequality in (21) to
H̄ ⊙ ES−1[1I1

∗
I ] with H̄ = Dπ(S)H, leading to

∥Dπ(S)H ⊙ ES−1[1I1
∗
I ]∥ = ∥H̄ ⊙ ES−1[1I1

∗
I ]∥

≤ (1− ∥π(S − 1)∥∞)−1 ·
(
∥Dπ(S−1)H̄Dπ(S−1)∥+ ∥H̄Dπ(S−1) ⊙ ES−2[1I1

∗
I ]∥

)
≤ (1− ∥π(S)∥∞)−1 ·

(
∥π(S)∥∞∥Dπ(S)HDπ(S)∥+ ∥Dπ(S)HDπ(S) ⊙ ES−2[1I1

∗
I ]∥

)
.
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Inserting the inequality above into (21) yields

∥H ⊙ ES [1I1
∗
I ]∥ ≤ (1− ∥π(S)∥∞)−2 ·

(
∥Dπ(S)HDπ(S)∥+ ∥Dπ(S)HDπ(S) ⊙ ES−2[1I1

∗
I ]∥

)
and since ES−2[1I1

∗
I ] has π(S − 2) on its diagonal the result follows from Corollary 4 and

Lemma 2(a).

The theorem allows for instance to bound the weighted Gram matrix of a dictionary Φ
using only the first order inclusion probabilities π or alternatively the weights p, as

∥(Φ∗Φ)⊙ ES [1I1
∗
I ]∥ ≤ 1 + ∥π∥∞

(1− ∥π∥∞)2
(
∥ΦDπ∥2 + 2∥π∥∞

)
≤ 1 + 2∥p∥∞

(1− 2∥p∥∞)2
(
4∥ΦDp∥2 + 4∥p∥∞

)
.

If we want to control not only the largest singular value of the weighted Gram matrix, but
the full spectrum, we need the following result, which provides bounds for ES [1I1

∗
I ] in the

semi-definite order.

Lemma 5 Let ES be the expectation according to the rejective sampling probability with
parameter S and weights pi ∈ (0, 1). Further let π ∈ RN be the vector of first order
inclusion probabilities and Dπ be the N × N matrix with π on the diagonal and zero else.
Then we have

ES [1I1
∗
I ] ⪯ ππ∗ + 2Dπ. (a)

Further, defining for L ⊆ [K] with |L| < S the set L := {I ⊆ [K] : L ⊆ I}, we have

ES

[
1I\L1

∗
I\L · 1L(I)

]
⪯ ES−|L|[1I1

∗
I ] ·

∏
ℓ∈L

πℓ
1− πℓ

. (b)

Proof (a) We want to show that ES(1I1
∗
I) ⪯ ππ∗ + 2Dπ or equivalently∑

I:|I|=S 1I1
∗
IPB(I)∑

I:|I|=S PB(I)
⪯

∑
(I,J):|I|=|J |=S 1I1

∗
JPB(I)PB(J)

(
∑

I:|I|=S PB(I))2
+

2 ·
∑

I:|I|=S diag(1I)PB(I)∑
I:|I|=S PB(I)

.

Multiplying both sides by (
∑

I:|I|=S PB(I))
2 we therefore have to show that∑

(I,J):|I|=|J |=S

1I1
∗
IPB(I)PB(J) ⪯

∑
(I,J):|I|=|J |=S

1I1
∗
JPB(I)PB(J)

+ 2
∑

(I,J):|I|=|J |=S

diag(1I)PB(I)PB(J). (22)

We now use the same partition as in the proof of Lemma 2(b), that is, for T ∈ {0, . . . , S},
A ⊆ K with |A| = S − T and B ⊆ K \A with |B| = 2T , we define

QA,B := {(I, J) : I, J ⊆ K, |I| = |J | = S, I ∩ J = A, I△J = B} .
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Since the sum of positive semi-definite matrices is positive semi-definite it suffices to show
that for all possible choices of A,B we have∑

(I,J)∈QA,B

1I1
∗
I ⪯

∑
(I,J)∈QA,B

1I1
∗
J + 2

∑
(I,J)∈QA,B

diag(1I).

For A,B fixed we abbreviate Q =
∑

(I,J)∈QA,B
1I1

∗
I and Q̄ =

∑
(I,J)∈QA,B

1I1
∗
J . Note that∑

(I,J)∈QA,B
diag(1I) = diag(Q), so the inequality above is equivalent to showing that

0 ⪯ Q̄−Q+ 2diag(Q). (23)

For the entries of these matrices we have

Qij = |{(I, J) ∈ QA,B : i, j ∈ I}| resp. Q̄ij = |{(I, J) ∈ QA,B : i ∈ I, j ∈ J}|.

In case i, j ∈ A we obviously have Qij = Q̄ij = |QA,B|, so

Q⊙ (1A1
∗
A) = Q̄⊙ (1A1

∗
A).

In particular, this means that (23) holds trivially for T = 0, where B = ∅.
In case that i ∈ A, j ∈ B we have Qij = Q̄ij =

(
2T−1
T−1

)
=: dT and therefore

Q⊙ (1A1
∗
B + 1B1

∗
A) = Q̄⊙ (1A1

∗
B + 1B1

∗
A).

It only remains to check what happens for i, j ∈ B. The case T = 0 is already settled, thus
we assume T ≥ 1. On the diagonal we get Q̄ii = 0 while Qii =

(
2T−1
T−1

)
= dT . We have

Qij =
(
2T−2
T−2

)
=: qT and Q̄ij =

(
2T−2
T−1

)
=: q̄T . In summary

Q̄−Q+ 2diag(Q) = (q̄T − qT ) · 1B1∗B − (q̄T − qT + dT ) · diag(1B) + 2 diag(Q). (24)

Since q̄T ≥ qT the matrix (q̄T − qT ) · 1B1∗B is positive semi-definite. Finally, as
(
2T−2
T−2

)
+(

2T−2
T−1

)
=

(
2T−1
T−1

)
we have q̄T + qT = dT . Thus for all T ≥ 1, we have

(q̄T − qT + dT ) diag(1B) = 2 · q̄T diag(1B)

⪯ 2 · dT diag(1B) = 2 diag(Q) diag(1B) ⪯ 2 diag(Q),

showing that also the remaining terms in (24) are positive semi-definite, which completes
the proof of (a). (a)✓
(b) We will prove the statement by induction. Let L̂ be a set of size T ≤ S − 2 and
L̂ = {I ⊆ [K] : L̂ ⊆ I}. We first show that for k /∈ L̂ and L = L̂ ∪ {k} we have

(1− πk(S)) · ES

[
1I\L1

∗
I\L · 1L(I)

]
⪯ πk(S) · ES−1

[
1I\L̂1

∗
I\L̂ · 1L̂(I)

]
. (25)

We again use that for any set J not containing the index k we have

pk
1− pk

· PB(J) = PB(J ∪ {k}).
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Thus expanding the expectation we get

ES

[
1I\L1

∗
I\L · 1L(I)

]
=

∑
I:|I|=S,L⊆I PB(I)(1I\L1

∗
I\L)∑

I:|I|=S PB(I)
·
∑

I:|I|=S,k∈I PB(I)∑
I:|I|=S,k∈I PB(I)

=

∑
I:|I|=S,L⊆I PB(I)(1I\L1

∗
I\L)∑

I:|I|=S,k∈I PB(I)
·
∑

I:|I|=S,k∈I PB(I)∑
I:|I|=S PB(I)

=

∑
J :|J |=S−1,k /∈J,L̂⊆J PB(J)(1J\L̂1

∗
J\L̂)∑

J :|J |=S−1,k /∈J PB(J)
· πk(S)

⪯

∑
J :|J |=S−1,L̂⊆J PB(J)(1J\L̂1

∗
J\L̂)∑

J :|J |=S−1,k /∈J PB(J)
·
∑

I:|I|=S−1 PB(I)∑
I:|I|=S−1 PB(I)

· πk(S)

=

∑
J :|J |=S−1,L̂⊆J PB(J)(1J\L̂1

∗
J\L̂)∑

I:|I|=S−1 PB(I)
·

∑
I:|I|=S−1 PB(I)∑

J :|J |=S−1,k /∈J PB(J)
· πk(S)

= ES−1

[
1I\L̂1

∗
I\L̂ · 1L̂(I)

]
·

∑
I:|I|=S−1 PB(I)∑

J :|J |=S−1,k /∈J PB(J)
· πk(S).

Now all that remains to do in order to prove (25) is to bound the fraction above. Writing
out the expression in the denominator we get∑

I:|I|=S−1 PB(I)∑
J :|J |=S−1,k /∈J PB(J)

=

∑
I:|I|=S−1 PB(I)∑

I:|I|=S−1 PB(I)−
∑

I:|I|=S−1,k∈I PB(I)

=
1

1− PS−1(k ∈ I)
≤ 1

1− PS(k ∈ I)
=

1

1− πk(S)
.

By induction and using again the bound from Lemma 2(a) that πk(S−1) ≤ πk(S) we finally
get

ES

[
1I\L1

∗
I\L · 1L(I)

]∏
ℓ∈L

(1− πℓ(S)) ⪯ ES−|L|[1I1
∗
I ] ·

∏
ℓ∈L

πℓ(S).

which completes the proof of (b). (b)✓

Again we give an application example for the derived result. If we have a collection of sparse
signals y, whose supports follow a rejective sampling model, we know from (15) that

∥E[yy∗]∥ = ∥ΦES [1I1
∗
I ]Φ

∗∥ ≤ ∥Φππ∗Φ∗∥+ 2∥ΦDπΦ
∗∥

= ∥Φπ∥22 + 2∥ΦD√
π∥2 ≤ (S + 2)∥ΦD√

π∥2,

where in the last inequality we have used that Φπ = ΦD√
π

√
π and that ∥

√
π∥22 = ∥π∥1 = S.

3. Discussion

We have derived non-asymptotic bounds for inclusion probabilities and matrices that col-
lect (conditional) first and second order inclusion probabilities as their diagonal resp. off-
diagonal entries. Most results are motivated by problems in sparse modelling and dictio-
nary learning and so we have provided example applications throughout the text. More

12



applications can for instance be found in [11, 13], where we derive convergence results for
two popular dictionary learning algorithms (MOD and ODL) under the rejective sampling
model. However, we think that the proof-techniques developed in this text are of indepen-
dent interest, as they provide an easy way to analyse the relation between rejective and
Poisson sampling in the non-asymptotic regime.
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