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I. EXTENDED ABSTRACT

In sparse approximation the goal is to approximate a given
signal 4y € R? by a linear combination of a small number
S < d of elements ¢; € RY, called atoms, out of a given
larger set, such as a basis or a frame, called the dictionary.
Storing the normalised atoms as columns in the dictionary
matrix ® = (¢;...,¢K), and denoting the restriction to the
columns indexed by a set I by ®;, we can write informally,

find y~ Zkezw’“ =0z st |I|=S<d (1)

Finding the smallest error for a given sparsity level S and
the corresponding support set I, which determines x; via
Ty = <I>}y for <I>} the Moore-Penrose pseudo inverse, be-
comes an NP-hard problem in general unless the dictionary
is an orthonormal system. In this case thresholding, meaning
choosing as I the indices of the atoms having the S-largest
inner products with the signal in magnitude, will succeed.
For all other cases, one had to find algorithms which are
more efficient, if less optimal, than an exhaustive search
through all possible supports sets I with subsequent projection
P(®;)y:=o 1<I>1‘.y. The two most investigated directions are
greedy methods and convex relaxation techniques - the two
golden classics being Orthogonal Matching Pursuit (OMP),
[1], and Basis Pursuit (BP), [2], respectively.

The interesting question concerning both schemes is when
they are successful, assuming that the signal y is known to
be S-sparse, meaning y = ®yx; with |I| = S. It was first
studied in [3], [4] and for dictionaries with coherence p :=
max;- |(©;, ¢x)| a sufficient condition for both schemes is
that 25 < 1, which is quite restrictive, especially considering
the much better performance in practice. This led people to
look at the average performance when modelling the signals
as generated via

Y= OkCkOp(R)s )
where (oy) is a Rademacher sequence, the coefficient se-
quence c is non-increasing, ¢y > cx+1 > 0, and ¢ = 0

for k > S and p is some permutation such that the support
1= {p(l), . 7p(S)}) satisfies oy := ||(I>}—‘I)] — Hd||2’2 < %
It was shown, [5], that BP recovers the true support except
with probability 2K'~2™ as long as 16u2S - mlog K < 1.
The fact that for OMP a similar result could only be found in
a multi-signal scenario, [6], started to give OMP the reputation
of being weaker than BP.

This was further increased by the advent of Compressed
Sensing (CS), [7], which can be seen as sparse approximation
with design freedom for the dictionary. While for BP-type
schemes in combination with randomly chosen dictionaries
strong results appeared very early, [8], [9], comparable results
for OMP and its variants took longer to develop and are
weaker in general, [10], [11]. Still, thanks to its computa-
tional advantages and flexibility, e.g. concerning the stopping
criteria, OMP remained popular in signal processing - the only
difference being that users had a defensive statement a la "of
course BP will perform even better’ ready at all times.

In [12] (resp. its extendend version [13]) we provide the long
missing analysis of the average performance of OMP and
show that on average neither BP nor OMP are stronger, but
confirm folklore wisdom, that OMP works better for signals
with decaying coefficients while BP is better for equally sized
coefficients.

Concretely for the noiseless case our result reads as follows:

Theorem 1.1. Assume that the signals follow the model in (2)
and that for i < S the coefficients satisfy c;1¢/c; <1 — %for
t, A > 0. Then, except with probability 2SK1=2m OMP will
recover the full support as long as

S mtS'log K 9 1
2]+ = 41 <.
([)\l+ 3 +>Su <5 3)

The idea that the performance of OMP improves for de-

caying coefficients has already been used in [14] and the
simplified result states that if the sorted absolute coefficients
form a geometric sequence with decay a < %, then OMP is
guaranteed to succeed for all sparsity levels S with Sp < 1.
Our result, specialised to the case ¢t = 1, meaning ¢;41/¢; <
o < 1, essentially says that OMP will recover the support
except with probability 2SK!1~2™ as long as Sp? < 1 — «
and Sp2y/mlog K < +/1 — a. So giving up certainty for high
probability allows to relax the bound in [14] by an order of
magnitude.
Further comparison to BP - Sp?mlog K < 1 for failure
probability 2K*~2™ - shows that OMP has the advantage
that the admissible sparsity level has a milder dependence on
the dictionary size and success probability while BP has the
advantage of being independent of the coefficient decay.

We will further present results for (partial) support recovery
in the case of sub-Gaussian noise and support our findings with
numerical simulations, Fig. 1/2.
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Fig. 1. Percentage of correctly recovered supports for noiseless signals with
various sparsity and coefficient decay parameters via BP (a,c) and OMP (b,d)
in the Dirac-DCT dictionary (a,b) and the Dirac-DCT-random dictionary (c,d).

o

) o o
@ © ©
& 8 &

coefficient decay o

°
®
8

°
g
3

1
- 09
08
y 07
06
05
04
03
10 2 40 02

0 30
sparsity level S
(a)

09
08

07

°
9
8

06

°
@
&

05

coefficient decay a

04

03

075 02
10 20 30 40
sparsity level S

(©)

09

08

07

o

06

°

05

coefficient decay a

04

03

075 02
10 40

20 30
sparsity level S

O]

Fig. 2. Percentage of correctly recovered atoms before recovery of first
wrong atom via OMP for signals with various sparsity levels and coefficient
decay parameter contaminated with Gaussian noise corresponding to SNR =
256 (a,c) and SNR = 16 (b,d) in the Dirac-DCT dictionary (a,b) and the
Dirac-DCT-random dictionary (c,d), as well as the percentage of correctly
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recoverable atoms for SNR = 256 and SNR = 16 (e,f).
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