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Abstract11

Purpose: In the past, Dictionary Learning (DL) and Sparse Coding (SC) have been12

proposed for the regularization of image reconstruction problems. The regularization13

is given by a sparse approximation of all image-patches using a learned dictionary, i.e.14

an overcomplete set of basis functions learned from data. Despite its competitiveness,15

DL and SC require the tuning of two essential hyper-parameters: the sparsity level16

S - the number of basis functions of the dictionary, called atoms, which are used to17

approximate each patch, and K - the overall number of such atoms in the dictionary.18

These two hyper-parameters usually have to be chosen a-priori and are determined19

by repetitive and computationally expensive experiments. Further, the final reported20

values vary depending on the specific situation. As a result, the clinical application of21

the method is limited, as standardized reconstruction protocols have to be used.22

Methods: In this work, we use adaptive DL and propose a novel adaptive sparse23

coding algorithm for 2D radial cine MR image reconstruction. Using adaptive DL and24

adaptive SC, the optimal dictionary size K as well as the optimal sparsity level S are25

chosen dependent on the considered data.26

Results: Our three main results are the following: First, adaptive DL and adaptive SC27

deliver results which are comparable or better than the most widely used non-adaptive28

version of DL and SC. Second, the time needed for the regularization is accelerated29

due to the fact that the sparsity level S is never overestimated. Finally, the a-priori30

choice of S and K is no longer needed but is optimally chosen dependent on the data31

under consideration.32

Conclusions: Adaptive DL and adaptive SC can highly facilitate the application33

of DL- and SC-based regularization methods. While in this work we focussed on 2D34

radial cine MR image reconstruction, we expect the method to be applicable to different35

imaging modalities as well.36

Keywords: Adaptive Dictionary Learning, Adaptive Sparse Coding, Compressed Sensing,37

Radial Cine MRI, Unsupervised Learning, Parameter Estimation38
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I. INTRODUCTION

I. Introduction65

Magnetic Resonance Imaging (MRI) has become nowadays an indispensable imaging modal-66

ity which is widely used in daily clinical routine to image the interior of a patient. For67

example, cardiac cine MRI can be used for the assessment of the cardiac function. For that,68

a slice of the patient’s heart is scanned over multiple cardiac cycles and a sequence of 2D69

images showing the heart movement can be obtained. However, a major issue of MRI is the70

slow data-acquisition process due to physical limits imposed by the scanner. In particular,71

typical cardiac MR-scans are performed during a breathhold to avoid respiratory motion72

artefacts. Therefore the breathhold duration limits the spatial and temporal resolution of73

MR-scans, which represents a problem for ill patients with limited breathhold capabilities.74

The data-acquisition in MRI takes place in the so-called k-space, i.e. the Fourier space. Since75

the acquisition is often slow, undersampling in k-space is used to shorten scan times. This76

leads to undersampling artefacts due to the violation of the Nyquist sampling limit. Parallel77

imaging and regularized iterative reconstruction methods have been proposed to minimize78

undersampling artefacts, e.g.1. Regularization approaches using transforms learned from79

data, i.e. Dictionary Learning (DL), and sparse coding (SC) have been considered in the80

past2,3,4,5,6,7,8,9. In DL-based regularization, the model assumption is patch-wise sparsity81

and therefore, the idea is to patch-wise impose the regularization on the image to be recon-82

structed.83

The rationale behind the regularization based on learned dictionaries is that patches of an84

image have an inherently low-dimensional representation. DL aims to find building blocks85

(i.e. the basis functions) of such a representation in an unsupervised manner based on the86

given patches. SC then aims to find a sparse (low-dimensional) representation of a target87

patch with respect to this dictionary. The regularization of the solution is achieved by the88

fact that, given the incoherent undersampling scheme applied in k-space, the artefacts re-89

sulting from the direct reconstruction of an image are high-dimensional and thus suppressed90

by the low dimensional representation, which suffices to capture the important features.91

In2, for example, a pre-trained dictionary is used to regularize the images. Further, ap-92

proaches in which the dictionary is learned from the current image estimate during the93

reconstruction have been proposed3,4 and successfully applied to cine MR image reconstruc-94

tion5,6. However, regardless of the excellent image quality which can be achieved by the95
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I. INTRODUCTION

latter mentioned methods, there still remain a few issues. First, the sparsity level S used for96

DL and SC as well as the number of atoms in the dictionary K need to be chosen a-priori97

and are typically determined by repeating the experiments for different choices of S and98

K. However, the parameters are clearly data-dependent and there is no guaranty on the99

achievable performance of the reconstruction algorithms on different datasets. Second, per-100

forming an S-sparse approximation of all image patches is computationally quite expensive,101

especially when S is chosen relatively high. These two issues make the method prohibitive102

for the application in the clinical routine where standardized reconstruction protocols have103

to be used.104

In this work, to overcome the problem given by the computational complexity of the DL-105

and sparse coding (SC)-stage as well as the need for choosing the hyper-parameters S and106

K, we propose to use adaptive versions of DL and SC algorithms. While in other works107

the concept of adaptivity has been already introduced for the task of image recovery10 and108

image reconstruction11, these works only address the adaptive choice of the parameter which109

controls the contribution of the regularization using pre-defined sparsifying transforms, see110

for example11,12. In some well-known works, e.g.4,5 and6, the authors refer to adaptive111

dictionary learning in the sense that the dictionary is learned during the reconstruction. In112

contrast, our notion of adaptivity refers to the adaptive choice of the sparsity level S and the113

number of atoms K in the dictionary based on the considered data. Adaptive sparse coding114

of signals has been previously considered mainly in the signal processing community, see115

e.g.13,14,15,16. Our adaptive OMP is based on the selection of the atoms using thresholding116

which is similar to13 and15. However, while13 and15 require the careful tuning of a hyper-117

parameter, in our case, the equivalent hyper-parameter is selected based on the dictionary118

size K. Therefore, to the best of our knowledge, this is the first work using adaptivity of the119

sparsity level S and the number of atoms K of the learned dictionary for the task of image120

reconstruction in MRI and therefore substantially differs from previous works.121

The paper is structured as follows. In Section II.A. the reconstruction problem using the122

DL-based regularization technique is described and the general concepts of DL and SC are123

briefly revised and outlined. Section II.B. contains the main part of the work where we124

describe adaptive versions of ITKrM and OMP and their advantage over non-adaptive DL125

and SC algorithms. We conduct different experiments in Section II.C. which we discuss in126

Section IV. and then conclude the work with a summary in Section V..127
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II. MATERIALS AND METHODS

II. Materials and Methods128

II.A. Problem Formulation and Dictionary Learning-based Regu-129

larization Approaches130

Mathematically, the process of undersampling can be formulated as applying a binary mask131

SI to the measured Fourier data. Let x ∈ CN denote the vector representation of the132

unknown cine MR image with N = Nx · Ny · Nt, where Nx × Ny is the shape of a single133

2D image and Nt corresponds to the number of cardiac phases. Let F denote the encoding134

operator and I ⊂ J = {1, . . . , N} the set of Fourier coefficients which are needed to properly135

reconstruct the image x. The inverse problem one aims to solve is of the form136

yI = FIx + e, (1)

where FI := SI ◦F and e denotes random noise. Images directly reconstructed from under-137

sampled k-space by applying the adjoint operator FH
I contain severe artefacts which limit138

the diagnostic quality. Since by discarding non-measured data problem (1) becomes under-139

determined, there is an infinite number of solutions and, in order to constrain the space of140

solutions of interest, regularization techniques must be used. When DL and SC are used as141

a regularization method, possible formulations of the image reconstruction problem are the142

ones of joint minimization problems143

min
x,{γj}j

‖FIx− yI‖22 +
λ

2

∑
j

(
‖Rjx−Ψγj‖22 + ‖γj‖0

)
, (P1)

see e.g.2, or144

min
x,Ψ,{γj}j

‖FIx− yI‖22 +
λ

2

∑
j

(
‖Rjx−Ψγj‖22 + ‖γj‖0

)
, (P2)

see e.g.5 and6. Here, x denotes the unknown solution, yI the measured undersampled145

acquired k-space data, λ a regularization parameter, and ‖γj‖0 counts the number of non-146

zero coefficients in γj. The operator Rj extracts the j-th 3D patch from the image x, Ψ147

denotes the dictionary, i.e. a set of K unit norm vectors also referred to as atoms, and γj148

the sparse representation of the patch Rjx with respect to Ψ. The difference between (P1)149

3



II.A. Problem Formulation II. MATERIALS AND METHODS

and (P2) is that in (P1), one assumes to have a pre-trained dictionary Ψ, while in (P2), the150

dictionary Ψ is learned during the reconstruction based on the current image estimates. Note151

that in6 and5, a TV term is further added to the minimization problem (P2). However, since152

in this work we focus on the DL component of the reconstruction, we neglect the additional153

TV-regularization term. Problems (P1) and (P2) can be solved by the alternating direction154

method of multipliers (ADMM) which alternates between the minimization with respect to155

x, the dictionary Ψ and the set of vectors {γj}j. Usually, the starting point for the iterative156

reconstruction algorithm is given by the direct reconstruction from the measured data, that157

is xI = FH
I yI .158

II.A.1. Dictionary and Sparse Code Update159

Assuming a fixed x, the minimization of (P1) and (P2) is achieved by solving the problems160

min
{γj}j

∑
j

(
‖Rjx−Ψγj‖22 + ‖γj‖0

)
(2)

and161

min
Ψ,{γj}j

∑
j

(
‖Rjx−Ψγj‖22 + ‖γj‖0

)
, (3)

respectively. Problem (2) is solved with any SC algorithm, while (3) is typically solved using162

an alternating minimization procedure, which alternates between DL to obtain Ψ and SC to163

obtain the set of vectors {γj}j. The choice of the algorithms used for training the dictionary164

Ψ and obtaining the sparse codes {γj}j is the main focus of this work and will be discussed165

later.166

II.A.2. Reconstruction Update167

Assuming a fixed dictionary Ψ and a fixed set of sparse codes {γj}j, one can easily see168

that minimizing (P1) or (P2) with respect to x is equivalent to solving the system of linear169

equations170

Hx = b, (4)
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II. MATERIALS AND METHODS II.A. Problem Formulation

where the operator H is given by171

H = FH
I FI + λ

∑
j

RT
j Rj, (5)

and the right-hand-side b is given by a linear combination of the initial reconstruction xI172

and an image which corresponds to a properly averaged combination of all patches Ψγj, i.e.173

b = FH
I yI + λ

∑
j

RT
j Ψγj. (6)

Since in general, the inversion of the operator H is computationally not feasible, problem174

(4) is solved using an iterative method. Given that H is symmetric, a common choice for175

the solver is the pre-conditioned conjugate gradient method17.176

II.A.3. Notation177

In the following, for conciseness, we denote the vectorised patches extracted from an image178

by yn ∈ Rd and call them signals. By In we denote the optimal sparse support of a signal179

yn, i.e. the set of indices of the non-zero coefficients of the corresponding sparse vector, and180

by I tn the support obtained by thresholding. By |In| we denote the cardinality of In, by ΨIn181

the restriction of the dictionary Ψ to the atoms indexed by i ∈ In and by Ψ†In the pseudo182

inverse of ΨIn . By S we denote the sparsity of a signal yn, i.e. the cardinality of its support183

In. The coherence of the dictionary Ψ, i.e. the maximal absolute inner product between two184

different atoms, is denoted by µ(Ψ) := maxi 6=j |〈ψi, ψj〉|.185

II.A.4. ITKrM Algorithm186

One of the probably most popular and widely used DL algorithms is K-SVD (K-Singular187

Value Decomposition) introduced in18. While K-SVD yields meaningful representations in188

practice, a big drawback is its computational complexity. To circumvent this issue, the189

Iterative Thresholding and K-residual Means (ITKrM) algorithm was introduced in19,20,190

which like K-SVD, belongs to the class of alternating optimization algorithms. In contrast191

to K-SVD, ITKrM alternates between updating the sparse support using the much cheaper192

thresholding procedure instead of Orthogonal Matching Pursuit (OMP)21 and updating the193
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II.B. Adaptive DL and SC II. MATERIALS AND METHODS

dictionary by calculating K residual means instead of calculating K singular value decom-194

positions. In particular, in each iteration of ITKrM, for each signal yn we calculate the195

thresholded support I tn and the residual an = yn−ΨItnΨ†Itnyn, which captures the remaining196

signal energy and is used for the atom update,197

ψ̄k =
∑
n:k∈Itn

[
an + ψk〈ψk, yn〉

]
· sign(〈ψk, yn〉). (7)

Obviously, ITKrM exhibits a much lower computational complexity than K-SVD and, de-198

spite the fact that it is much simpler, was reported to yield similar results19.199

II.B. Proposed Adaptive Dictionary Learning and Adaptive Sparse200

Coding Algorithms201

A difficulty which comes along with all popular DL algorithms is that the sparsity level202

S and dictionary size K (in terms of an initial dictionary) have to be chosen a-priori as203

input parameters. In applications such as image restoration, one typically chooses S and204

K empirically or experimentally. For instance, for d-dimensional signals, typical values are205

d ≤ K ≤ 4d and S =
√
d, but depending on the situation they can highly vary and, as we206

will show later, they might have a significant impact on the reconstruction quality as well207

as the required computational time.208

To circumvent this issue, a modification of ITKrM was introduced in22, where S and K209

are adapted in each iteration. In the following, we briefly review the main ideas used to210

incorporate adaptivity into ITKrM, yielding its adaptive version aITKrM. For the interested211

reader, we refer to22 for an extensive discussion of the introduced concepts, the algorithm212

and a matlab-toolbox. Inspired by some of the ideas used for adapting the sparsity level213

S, we further introduce adaptivity in the SC stage. In particular, we propose an adaptive214

version of OMP where not only the sparsity level S is chosen adaptively but which will also215

turn out to significantly accelerate the SC procedure.216

II.B.1. Adaptive Dictionary Learning217

In the following, we briefly describe the concept of adaptivity of the DL stage. A basic218

ingredient for the convergence of ITKrM is that the current estimate of the dictionary is219

6



II. MATERIALS AND METHODS II.B. Adaptive DL and SC

not too coherent. Therefore, in order to avoid this, a replacement procedure and a strategy220

for finding good replacement candidates was introduced in22, leading to a version of ITKrM221

where not only the learned dictionary exhibits good properties but also the dictionary size222

K and the sparsity level S are adapted in each iteration.223

Concretely, for adapting the dictionary size, the replacement strategy, resulting from an224

analysis of the convergence behaviour of ITKrM, is separated into pruning of coherent and225

unused atoms and adding promising replacement candidates. This modification hence yields226

an improved dictionary and allows both increasing and decreasing the dictionary size. In227

particular, two atoms are considered too coherent if their inner product in absolute value228

is above a certain threshold µmax. If this is the case, the less often used one is deleted or229

they are merged. To decide which atoms are useless one has to count how often an atom230

has been selected and additionally to check if its corresponding coefficient is larger than a231

certain threshold. Considering also the size of the coefficients prevents that we keep atoms232

representing noise, as coefficients corresponding to these atoms are small. If the number of233

times such an atom has been used is smaller than the minimal number of observations M ,234

this atom is deleted. The same strategy is used to decide whether a well designed replacement235

candidate should be added or not, meaning one has to check if it is useful and if it is incoherent236

enough to all atoms which are already in the dictionary. Note that M only depends on the237

input data and can therefore be estimated22. Hence, the only parameter which has to be238

chosen is the maximal allowed coherence between two atoms µmax. Compared to choosing S239

or K this is much simpler as it only determines how similar two atoms in our dictionary are240

allowed to be. For any dictionary Ψ, we have µ(Ψ) ∈ [0, 1], where for example µ(Ψ) = 0241

indicates that we haven an orthonormal basis and µ(Ψ) = 1 means that we have one atom242

twice.243

The idea behind adaptively choosing S is to start learning the dictionary Ψ with estimated244

sparsity level Se = 1 as each signal can be interpreted as being 1-sparse (with probably245

enormous error) in Ψ. Yielding a reasonable first estimate of most dictionary atoms, one246

proceeds by carefully increasing, decreasing or keeping Se the same, depending on the size247

of the estimated average sparsity level S̄. More precisely, in each iteration of aITKrM, the248

sparsity level Sn of each signal yn is estimated as the number of its squared coefficients249

(|(Ψ†Itnyn)(i)|2)i∈Itn and residual inner products with the dictionary (|〈ψi, an〉|2)i/∈Itn that are250

larger than some threshold θ2 times the residual energy ‖an‖22. Note that this threshold is251

7



II.B. Adaptive DL and SC II. MATERIALS AND METHODS

computed within the algorithm and has not be given as input parameter. If the average252

of these estimated sparsity levels S̄ = b 1
N

∑
n Sne, is larger than Se, this indicates that the253

current estimate Se is too small and has to be increased by one, if S̄ = Se, it is kept the254

same and if Se > S̄, Se has to be decreased by one.255

II.B.2. Adaptive Sparse Coding256

As a next step, we introduce adaptivity into the SC procedure. In particular, we propose257

a version of OMP where the sparsity level S is no longer needed as input parameter but258

adaptively chosen for each signal. As we will demonstrate later, the sparsity level of an259

image can vary from position to position, meaning, each image-patch can have a different260

optimal sparsity level. More precisely, depending on the texture of each image patch, we261

have higher or lower S, hence, suggesting to introduce an adaptive choice of S in the SC262

step.263

In order to incorporate adaptivity into OMP, we replace the condition of stopping after264

adding at most S atoms by a bound for the maximal inner product between any atom and265

the current residual. More precisely, in each iteration, we check if there exists an atom ψk for266

which the absolute value of the residual inner product |〈ψk, an〉| is larger than some threshold267

times the norm of the residual. The index corresponding to the atom yielding the largest268

inner product is then selected. Projecting the signal onto the span of already selected atoms269

and calculating the new residual, this procedure is repeated until the stopping condition270

is met. A suitable threshold is obtained using concentration of measure. More precisely,271

we want aOMP to stop if the residual consists only of noise. For that, assume our current272

residual is of the form an = r, where r denotes a Gaussian noise vector, and for the current273

support |In| = S. The expected number of remaining atoms for which the residual inner274

product is larger than τ‖r‖2 can be calculated as275

∑
k/∈In

P
(
|〈ψk, r〉| > τ‖r‖2

)
< 2(K − S) exp

(
−dτ

2

2

)
, (8)

which for τ =
√

2 log(4K)/d is smaller than 1
2
. Inequality (8) is the main ingredient of the276

algorithm as it provides a proper threshold τ which is used as stopping condition in aOMP277

and prevents aOMP from overfitting the considered patch by discarding noise.278

To further accelerate aOMP, we introduce a preliminary step where we select the ’strongest’279

8



II. MATERIALS AND METHODS II.C. In-Vivo Experiments

part of the support. In particular, before always adding the next best fitting atom (one280

at a time) we will choose part of the support by thresholding with τ1 =
√

2 log(8K)/d,281

meaning we choose several atoms at a time, while having the previous expectation smaller282

than 1
4
. This partial support is subsequently refined/expanded by proceeding aOMP until283

one of the stopping conditions is met. A summary of the proposed algorithm can be found284

in Algorithm 1.285

Algorithm 1: Proposed adaptive Orthogonal Matching Pursuit (aOMP)

Input: Ψ,Y //dictionary, signals

Initialise: Γ = 0 //d×N matrix

τ1 =
√

2 log(8K)/d //thresholds

τ2 =
√

2 log(4K)/d

foreach n do

Itn = arg where
(
|〈ψk, yn〉| > τ1 · ‖yn‖2

)
an = yn − P (ΨIt

n
)yn

while maxk |〈ψk, an〉| > τ2 · ‖an‖2 do

Itn = Itn ∪ arg maxk |〈ψk, an〉|
an = yn − P (ΨIt

n
)yn

Γ[Itn, n] = Ψ†
It
n
yn

Output: Γ //sparse coefficient matrix

Note that we suggest to replace OMP by thresholding only within the DL stage but to286

keep OMP for the SC stage. This choice is motivated by two reasons. First, thresholding is287

a computationally much cheaper procedure than OMP and hence, suitable for accelerating288

the regularization stage of the iterative reconstruction. Second, although OMP is known289

to yield better results than thresholding for sparse approximation, it is unstable under per-290

turbations. More precisely, using an appropriate dictionary Ψ for the sparse approximation291

of a class of signals, OMP is known to yield much better results than simple thresholding.292

However, in the presence of perturbations of the dictionary, which is the case during the DL293

learning procedure, OMP performs worse. In particular, even in the presence of only small294

perturbations, the performance of OMP drastically decreases and hence, can be replaced by295

simple thresholding yielding similar results.296
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II.C. In-Vivo Experiments297

Here, we conducted several experiments to study the behaviour of the proposed adaptive298

DL and SC algorithms used for the solution of (P1) and (P2). For that purpose, we ran299

experiments where we reconstructed 2D cine MR images from undersampled k-space data.300

In order to get an assessment of the quality of the obtained reconstructions for various301

combinations of DL and SC algorithms and to highlight some aspects of the adaptive DL302

and SC algorithms, we performed the following experiments.303

1. Adaptive Vs. Non-Adaptive DL and SC: Here, we quantitatively compared the per-304

formance of the reconstruction algorithms used to solve problems (P1) and (P2) using305

three different combinations of DL and SC algorithms: K-SVD + OMP, ITKrM +306

OMP and aITKrM + aOMP. For these experiments, images obtained by kt-SENSE23
307

were used as ground-truth images. From these images, the k-space data was retrospec-308

tively generated and corrupted by Gaussian noise in order to simulate an acceleration309

factor of 9. We repeated the experiments for different choices of the sparsity level S.310

More precisely, to demonstrate the impact of the choice of potentially too low/too high311

S, we used S = 4, S = 8 and S = 16 for the non-adaptive DL and SC algorithms.312

2. Convergence behaviour: We investigated the convergence behaviour of the different313

combinations of DL and SC methods by tracking the average of the chosen image314

measures during the reconstruction.315

3. Computational Time: We compared the different combinations K-SVD + OMP /316

ITKrM + OMP / aITKrM + aOMP in terms of computational time.317

4. Qualitative Comparison: Here, we reconstructed images from the k-space data ob-318

tained from the scanner with the three different combinations of DL and SC.319

For all experiments, we used the publicly available Python-implementations of K-SVD320

and OMP in the scikit-learn library24 which are based on an efficient implementation of321

K-SVD using batch OMP25. Our Python-implementations of ITKrM, aITKrM and aOMP322

will be made available after peer-review. For our customized implementation of the forward323

and the adjoint operators FI and FH
I , we used the libraries ODL26 and PyNUFFT27. The PCG324

method used to solve system (4) was provided by ODL.325
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II. MATERIALS AND METHODS II.C. In-Vivo Experiments

II.C.1. Dataset326

Our dataset consisted of n = 15 2D cine MR images from patients as well as healthy327

volunteers and represents a subset of particularly interesting cases selected from28. Further,328

10 different images were used to pre-train dictionaries used for solving (P1). The images were329

obtained using a bSSFP sequence on a 1.5 T MR scanner (Achieva, Philips Healthcare, Best,330

The Netherlands) within a single breathhold of 10 s (TR/TE = 3.0/1.5 ms, FA 60◦). The331

images have a shape of Nx×Ny×Nt = 320×320×30, where Nx×Ny is the number of in-plane332

pixels and Nt is the number of cardiac phases which were acquired during the scan. The in-333

plane resolution of the images is 2 mm and the slice thickness is 8 mm. The acquired k-space334

data corresponds to the Fourier-data sampled along Nθ = 3400 radial trajectories which were335

chosen according to29. From these images, we retrospectively generated the undersampled336

k-space data yI by solely using Nθ = 1130 radial spokes. Using only Nθ = 1130 spokes337

corresponds to an undersampling factor of approximately ∼ 9 and reduces the scan time to338

approximately 3 seconds. Further, the k-space data was corrupted by a normally distributed339

random noise vector e with a standard deviation of 0.05.340

II.C.2. Experiment Set-Up341

The patch-size used for all experiments was 4× 4× 4, i.e. d = 64. As in5, we approximated342

the real and imaginary part of the complex-valued images separately but using the same343

real-valued dictionary Ψ. For the non-adaptive combinations of DL and SC algorithms, we344

fixed the number of atoms of the dictionary Ψ to be K = 128. Note that the empirical345

choice of K is typically in the range d ≤ K ≤ 4d while using a sparsity level of S =
√
d,346

which, for a fixed size of patches 4× 4× 4, results in 64 ≤ K ≤ 256 and S = 8. In fact, in347

well-known literature, this choice is well-established. For example, in6, the parameters are348

empirically set to K = 256 and S = 15. In5, the number of atoms is set even higher, varying349

from K = 300 to K = 600, dependent on the experiments. However, due to the fact that in350

our work our forward model is given by a radial encoding operator using multiple coils, the351

artefacts contained in the NUFFT-reconstruction xI are inherently different from the ones352

obtained by a zero-filled reconstruction as in5 or6. Since the artefacts can be expected to353

have a more high-frequency type of texture, we decided to only use K = 128.354

As already mentioned, the experiments were repeated for a relatively low choice of S = 4,355
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a typical choice S =
√
d = 8 and a relatively high choice of S = 16. Since the k-space data356

yI was contaminated by random noise, the regularization parameter λ was set to λ = 1 in357

order to achieve a relatively strong contribution of the regularization imposed by DL and SC358

and therefore being able to highlight the impact of the different DL and SC algorithms. The359

number of PCG iterations used to update the reconstruction by solving (4) and the number360

of overall iterations for ADMM were set to nPCG = 4 and T = 12, respectively.361

For solving (P1), the dictionaries were pre-trained on patches extracted from the images362

of 10 different subjects. The dictionaries were initialized by K = 128 randomly selected363

patches and trained by randomly extracting 150 000 patches of the real and imaginary part364

of the images at each DL iteration. The maximal number of iterations for the respective DL365

algorithm was set to nDL = 200. The resulting size of the dictionary learned with aITKrM366

was K = 151. For solving (P2), the dictionaries were trained by randomly extracting367

N = 10 000 patches of the real and imaginary part of the current image estimate xk for368

each DL iteration. The maximal number of iterations of the respective dictionary algorithm369

within one ADMM iteration was set to nDL = 20. The dictionaries were initialized as370

for solving (P1) and continuously updated during the reconstruction. For each subsequent371

ADMM iteration, the dictionary Ψ was initialized with the one learned during the previous372

ADMM iteration. For the sparse approximation we used strides of 2 in Nx-, Ny- and Nt-373

direction, which reduces the number of patches to be sparsely approximated by a factor of 8.374

For the combination aITKrM + aOMP, we used µmax = 0.7 and for the number of minimal375

observations we used M = d, which is suitable for this number of training signals. Note376

that we did not learn the constant atom since the patches were centred before training the377

dictionaries.378

II.C.3. Quantitative Measures379

For evaluating the performance of the different reconstruction algorithms, we report the peak380

signal-to-noise ratio (PSNR) and the normalized root mean squared error as error-based381

image metrics and the structural similarity index measure30 (SSIM) and the Haar wavelet-382

based perceptual similarity index measure (HPSI)31 as similarity-based image metrics. Note383

that the latter has been reported to exhibit a higher correlation with the human opinion384

tested on different benchmark datasets, see31. The hyper-parameters needed by SSIM and385

HPSI are the ones published in the respective works. In order to focus on the regions of386
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the images with diagnostic content, the metrics were calculated on the images which were387

previously cropped to N ′x ×N ′y = 220× 220.388

III. Results389

III.A. Reconstruction Results390

Here, we reconstructed all 15 cine MR images using the different combinations of DL and391

SC algorithms. Figure 1 shows an example of images reconstructed with the three different392

combinations of DL and SC algorithms for the different sparsity levels S = 4, S = 8 and393

S = 16. As can be seen from the point-wise error images, all non-adaptive and the adaptive394

DL and SC combinations led to visually comparable results. Table 1 lists the average PSNR,395

NRMSE, SSIM and HPSI for the different reconstructions. We see that for both non-adaptive396

combinations K-SVD + OMP and ITKrM + OMP, setting S = 16 yielded the worst results397

compared to S = 8 and S = 4. In particular, the gap between the both was larger for larger398

S, which can be attributed to issues during the dictionary learning and is a well known issue399

of ITKrM for overestimated sparsity levels19. The adaptive combination aITKrM + aOMP400

achieved similar reconstruction quality as K-SVD + OMP with the best reported choices of401

the sparsity level by further slightly improving SSIM.402
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c) (d) (e)

Figure 1: Results obtained by using different combinations of DL and SC algorithms. (a1)-
(a3): K-SVD + OMP for S = 16 (a1), S = 8 (a2) and S = 4 (a3), (b1)-(b3): ITKrM
+ OMP for S = 16 (b1), S = 8 (b2) and S = 4 (b3), the initial NUFFT-reconstruction
from Nθ = 1130 radial spokes (c), aITKrM + aOMP (d) and the kt-SENSE reconstruction
using Nθ = 3400 radial spokes (e) which served as ground truth for the retrospective k-space
data-generation.
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Table 1: Comparison of the performance of different algorithms for DL and SC used in the
reconstruction.

Ψ Learned during Reconstruction

Non-Adaptive Adaptive

DL K-SVD ITKrM aITKrM

SC OMP OMP aOMP

S 16 8 4 16 8 4 ad.

PSNR 43.870 44.538 44.354 40.825 43.017 43.628 44.491

NRMSE 0.068 0.062 0.064 0.096 0.074 0.069 0.063

SSIM 0.671 0.692 0.710 0.604 0.657 0.698 0.734

HPSI 0.989 0.992 0.992 0.982 0.989 0.991 0.992

Pre-Trained Ψ

Non-Adaptive Adaptive

DL K-SVD ITKrM aITKrM

SC OMP OMP aOMP

S 16 8 4 16 8 4 ad.

PSNR 44.856 45.205 44.594 43.117 44.483 44.009 45.314

NRMSE 0.06 0.058 0.062 0.073 0.063 0.066 0.057

SSIM 0.684 0.699 0.714 0.645 0.687 0.709 0.738

HPSI 0.992 0.992 0.992 0.988 0.991 0.99 0.993

III.B. Convergence Behaviour403

For assessing the convergence speed of the reconstruction algorithms, we tracked the differ-404

ent measures used for the evaluation of the performance of the reconstruction algorithms405

during the iterative reconstruction. Figure 2 shows the mean PSNR, NRMSE, SSIM and406

HPSI averaged over the different images. Quite consistently, it can be observed that the re-407

construction using the adaptive combinations aITKrM + aOMP surpassed the non-adaptive408

DL and SC combinations at early iterates with respect to all measures and tended to let409

the curves flatten out earlier than the non-adaptive counterparts. This could be particularly410

well observed for the case of NRMSE and PSNR and held true for all scenarios with different411

S. ITKrM + OMP with S = 16 revealed a semi-convergence type of behaviour which can412

be attributed to the fact that S = 16 is too high for ITKrM in the presence of noise in the413

15



III.C. Reconstruction Times III. RESULTS

k-space. This also shows that the choice of S can have a high impact on the reconstruction.414
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Figure 2: Convergence behaviour of the reconstruction scheme for solving (P1) (first row)
and for solving (P2) (second row) using different combinations of DL and SC algorithms.
The combination of aITKrM + aOMP yields better or equally good results compared to
the non-adaptive combinations with respect to all measures, for solving (P1) and (P2). The
images show the respective average measure over the iterations.

III.C. Reconstruction Times416

Here, we report the times for the different components of the DL-based reconstruction algo-417

rithms. The components which significantly contributed to the relatively high reconstruction418

times were the DL and SC algorithms and the PCG method which is needed to obtain an419

approximate solution of (4). Obviously, the latter was constant for the three different combi-420

nations of DL and SC. Table 2 lists the average time needed for DL and SC for each ADMM421

iteration. Therefore, the overall time needed for a specific component can be obtained by422

multiplying the respective time by the number of ADMM iterations T .423
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Table 2: Comparison of DL and SC in terms of computational times in seconds for one
ADMM iteration for solving problem (P2).

DL and SC Sparsity Level DL / SC Time

K-SVD + OMP S = 16 71 / 849

S = 8 69 / 415

S = 4 69 / 206

ITKrM + OMP S = 16 9 / 824

S = 8 8 / 412

S = 4 8 / 205

aITKrM + aOMP adaptive 7 / 149

We see that K-SVD was the slowest DL algorithm and took approximately 69-71 seconds424

for one single ADMM iteration. ITKrM was considerably faster and took only between 8-9425

seconds whereas its adaptive version was the fastest and took only around 7 seconds even426

though some additional time was needed to estimate the sparsity level and replacing coherent427

and unused atoms. For the SC, we see that for OMP, the chosen sparsity level obviously428

had an impact on the required computational time and took 824-849 seconds for S = 16,429

412-415 seconds for S = 8 and 205-206 seconds for S = 4. Our adaptive version aOMP was430

even faster as OMP for the lowest choice of S = 4 and required about 149 seconds.431

Figure 3 shows a diagram representing the overall time for the respective component of the432

reconstruction algorithm. From the bars we can see the time which each component took433

relative to the total reconstruction time. First, we see that for the non-adaptive experiments,434

the time needed for the SC of all patches constitutes the computational bottleneck of the435

method when S is chosen too high, i.e. S = 16. Second, we see that, as expected, ITKrM436

was able to substantially reduce the computational time compared to K-SVD. However, the437

gain in terms of acceleration was negligible when putting it in relation to the overall time438

because OMP still remains the computational overhead for S = 16. The last bar of the439

graph shows that first, by employing aITKrM, the time needed to learn the dictionary still440

amounted to approximately the same as for ITKrM, and second, in this configuration, the441

time needed for SC was clearly reduced and approximately corresponds to the one for OMP442

with S = 4.443
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Figure 3: Reconstruction times grouped by components for different combinations of DL
and SC algorithms for solving problem (P2). When solving (P1), the times needed for PCG
and SC remain similar, while the time for learning the dictionary Ψ can be neglected since
it is assumed to be given a-priori.

III.D. Experiments Using Real k-Space Data444

In the following, we tested the reconstruction algorithm with the different combinations of DL445

and SC by using the real k-space data acquired along Nθ = 1130 radial trajectories obtained446

from the scanner and compared it to kt-SENSE using Nθ = 3400 radial trajectories. Note447

that sampling k-space along Nθ = 3400 spokes already corresponds to an undersampling448

factor of ∼ 3 which is needed to perform the scan in a single breathhold. Further, the kt-449

SENSE reconstruction algorithm itself imposes prior information to regularize the inverse450

problem and therefore, the kt-SENSE reconstructions obtained from the Nθ = 3400 radial451

spokes cannot be considered as ground truth images for this experiment. Therefore, we452

abstain from reporting quantitative measures as well as point-wise error images. A rigorous453

quality assessment would need to be performed with respect to predefined clinical features454

and a clinical application. However, since this is beyond the scope of this work, we only455

show an example of the reconstruction for the sake of completeness and to demonstrate the456

applicability of aITKrM and aOMP for real k-space data. Figure 4 shows an example of457

images reconstructed with the three different combinations of DL and SC algorithms. Figure458

4 (a1)-(a3) show the results obtained with K-SVD + OMP and (b1)-(b3) with ITKrM +459

OMP for different sparsity levels S, respectively. The initial NUFFT-reconstruction is visible460
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in Figure 4 (c). Figure 4 (d) shows the result obtained with aITKrM + aOMP and (e) shows461

the kt-SENSE reconstruction usingNθ = 3400 radial spokes. Visually, all methods performed462

similarly well, and K-SVD + OMP and ITKrM + OMP show a slightly higher noise level463

compared to aITKrM + aOMP, which is consistent with the results presented in Subsection464

III.A.. However, note again that the times needed to obtain the reconstructed images are465

substantially lower for aITKrM + aOMP and no a-priori choice of the hyper-parameters S466

and K was required.467

(a1) (a2) (a3)

(b1) (b2) (b3)

(c) (d) (e)

Figure 4: Results obtained from real k-space data obtained from the scanner measurements.
K-SVD + OMP with S = 4 (a1), S = 8 (a2), S = 16 (a3), ITKrM + OMP with S = 4 (b1),
S = 8 (b2), S = 16 (b3), NUFFT-reconstruction using Nθ = 1130 radial lines (c), aITKrM
+ aOMP (d) and kt-SENSE using Nθ = 3400 radial spokes (e).
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IV. Discussion468

The proposed adaptive versions of the DL and SC algorithm given by the adaptive Iterative469

Thresholding and K-residual Means (aITKrM) algorithm and adaptive Orthogonal Matching470

Pursuit (aOMP) provide valid alternatives to the well-established K-SVD algorithm and the471

non-adaptive SC algorithm OMP. As this work is of methodological nature, in the following472

we discuss advantages and limitations of the described algorithms in more detail.473

IV.A. Adaptive Estimation of S and K474

Clearly, the major advantage of the presented adaptive DL and SC algorithms aITKrM and475

aOMP is to no longer need to choose the sparsity level S and the number of atoms K a-priori.476

This is not only important for making such algorithms more eligible for practical applica-477

tions but also as a wrong choice of S and K can have a large impact on the computational478

time and the reconstruction quality. Intuitively speaking, a too small choice of S leads to479

too smooth results with probably missing details while a too high choice of S results in a480

preservation of undersampling artefacts which we are trying to remove. Also, the structure481

of an image varies from location to location and hence, also S should vary dependent on the482

considered image patch.483

Moreover, the optimal number of atoms K is also data-dependent. In particular, for dic-484

tionaries learned on images containing more structure, a larger K is needed than for fairly485

smooth ones. Further, the optimal size of the dictionary was also shown to be dependent on486

the noise level of a corrupted image, i.e. the more noise, the smaller K should be chosen22.487

These observations suggest that a global choice of S and K cannot be optimal, disregarding488

from the fact that they are not known and can only be guessed.489

Using aITKrM and aOMP, S and K are adaptively chosen based on the texture of the cur-490

rent image estimate. Intuitively, at early iterations of the iterative reconstruction, a stronger491

regularization of the image estimate is required in order to reduce the artefacts. At later492

iterations, where the current image estimate contains less noise and artefacts, a higher S493

is required to be able to represent fine anatomic details. In fact, this behaviour could be494

observed during the reconstruction and is illustrated in Figure 5. In Figure 5 (a1) and (b1),495

the real and imaginary part of the NUFFT-reconstruction xI are displayed. In (c1) and (d1),496
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we can see the corresponding patch-wise approximated images using aOMP and a dictionary497

learned by aITKrM. Figures 5 (e1) and (f1) show the estimated sparsity levels at various lo-498

cations in the image. The second row of Figure 5 shows the same images at the penultimate499

iteration T = 11 of the reconstruction. As we can see in (e2) and (f2), the average estimated500

sparsity level S is significantly higher than for the NUFFT-reconstruction, especially in the501

regions of the image which contain the patient’s anatomy. This indicates that the proposed502

adaptivity of aITKrM and aOMP is suitable for adapting to the texture of cine MR images.503

In particular, it achieves the desired property of strongly regularizing images with strong504

artefacts and noise at early iterates while still being able to well-represent image details at505

later iterations in the iterative reconstruction.506

(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

0
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Figure 5: Estimated sparsity level at different stages during the iterative reconstruction for
solving (P2). First row: (a1) and (b1) - real and imaginary part of the initial NUFFT-
reconstruction xI , (c1) and (d1) - the correspondent patch-wise sparse approximations using
aITKrM + aOMP, (e1) and (f1) - the estimated sparsity levels of image-patches at various
locations. Second row: (a2) and (b2) - real and imaginary part of the twelfth iterate obtained
by using aITKrM + aOMP, (c2) and (d2) - the correspondent patch-wise sparse approxima-
tions using aITKrM + aOMP, (e2) and (f2) - the estimated sparsity levels of image-patches
at various locations. The average sparsity level S is therefore lower at early iterates in the
reconstruction and higher at later iterates.

This demonstrates that for the specific task of iterative image reconstruction, the op-507

timal sparsity level S of a patch first of all depends on the needed complexity to represent508

relevant features and second, might change during the reconstruction. Further, in Subsec-509

tion III.C., we have observed that choosing a too high S clearly has significant impact on the510

computational time and at the same time does not necessarily increase the reconstruction511

quality.512

In Figure 6 we see an example of eight atoms out of the dictionaries learned by the respective513
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DL algorithms. The atoms of the dictionaries shown in the figure were learned on a set of514

patches extracted from the initial NUFFT-reconstruction xI (first row) and from the penul-515

timate image estimate of the reconstruction (second row). We can see that the dictionaries516

learned by the non-adaptive DL algorithms with S = 16 tend to inherently contain quite a517

large portion of noise in the atoms which, on the other hand, is almost not present in the518

atoms learned by aITKrM. This observation is consistent with the theory discussed in22 for519

the case where the sparsity level S or the dictionary size K are overestimated and suggests520

that S = 16 is a far to high choice of the sparsity level. The fact that the hyper-parameters521

S and K no longer need to be chosen a-priori could highly facilitate a possible application522

of the reconstruction algorithm in the clinical routine, where standardized acquisition and523

reconstruction protocols have to be used. Further, as we have seen in the examples shown in524

Subsection II.C., the S- and K-adaptivity achieves competitive results compared to K-SVD525

+ OMP and additionally reduces the required reconstruction times.526

Figure 6: Examples of eight three-dimensional atoms (un-stacked along the time dimension)
of the dictionaries learned by K-SVD (left), ITKRM (mid) and aITKrM (right). The dic-
tionaries were learned on 3D patches extracted from the initial NUFFT-reconstruction xI
(first row) and the penultimate image estimate (second row). For K-SVD and ITKrM, the
sparsity level was S = 16. Since S = 16 is relatively high, the atoms obtained by K-SVD
and ITKrM contain quite some noise. Note that the constant atom is not shown in the
images.

IV.B. Limitations527

A possible limitation of the presented work is that the thresholds chosen for the algorithms528

underlie the theoretical consideration of Gaussian and sub-Gaussian noise which might not529

be true in general. However, sampling along radial trajectories is known to represent an in-530

coherent sampling pattern with noise-like properties and similar or even better results could531
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be probably obtained by using Compressed-Sensing Cartesian schemes32.532

As all iterative reconstruction methods which employ a-priori knowledge expressed as a533

penalty term, the DL-based regularization method requires to choose the regularization pa-534

rameter λ. However, note that quite some work has been dedicated on how to adaptively535

choose the parameter λ as well, see e.g.10,11, which might be incorporated in the reconstruc-536

tion algorithm using aITKrM + aOMP.537

IV.C. Reconstruction Quality538

The achieved image quality using aITKrM + aOMP is comparable with the one achieved539

using the standard combinationK-SVD + OMP with the best reported choices of the sparsity540

level as can be seen in Figure 1 and Table 1. The performed experiments reveal that for541

K-SVD, choosing a too high S impairs image quality compared to a lower choice of S.542

This effect is even clearer for ITKrM, where a too high S is known to disturb atoms in543

the dictionary, especially in the presence of noise22. Moreover, in Figure 3 we have seen544

that overestimating S leads to a substantial increase of computational time. From these545

experiments we can further conclude that the choice of S is non-trivial. Also, relying on the546

choice of hyper-parameters suggested in the literature might not be optimal, as the reported547

parameters are always data- and problem dependent and usually adapted to a specific task.548

This observation makes the S- and K-adaptivity a particularly interesting feature of the549

combination aITKrM + aOMP from a practical point of view. First of all, it is potentially550

possible to reduce the computational time and further improve the reconstruction quality551

by properly estimating S and K. Second, the hyper-parameters are adaptively tuned to the552

considered data and no a-priori choice is needed.553

IV.D. Reconstruction Times554

Learning a dictionary with aITKrM instead of K-SVD leads to an acceleration factor of555

approximately 10 which is useful when the dictionary is learned during the reconstruction.556

The reason is that the computationally most expensive component of K-SVD is OMP, where557

aITKrM in contrast only requires the faster thresholding. More importantly, using aOMP558

has the potential of highly reducing the time needed for the sparse approximation of all559

patches since, instead of using a (as we have seen, potentially too high) global sparsity level560
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S, it is adaptively chosen according to the considered patch-example.561

We point out that the used implementations of aITKrM as well as aOMP were not run562

on a GPU and could therefore be further accelerated and optimized. In particular, the563

underyling nature of ITKrM offers the possibility to transfer the calculations on a GPU564

and exploit parallelisation as it can process the patches sequentially. Also, note that for565

K-SVD we used an already optimized and efficient version based on batch OMP33 and566

therefore, further improvements in terms of computational time could be expected from a567

more sophisticated implementation of ITKrM and aOMP.568

V. Conclusion569

In this work we have investigated the application of adaptive sparsity level and dictionary570

size estimation for the regularization of cine MR image reconstruction using dictionary learn-571

ing (DL) and sparse coding (SC). We have used an adaptive version of ITKrM (Iterative572

Thresholding and K-residual Means) for DL and have presented a novel adaptive version573

of the Ortogonal Matching Pursuit (OMP) algorithm for SC. We have shown its competi-574

tiveness and advantages compared the wellestablished K-SVD and OMP algorithms. Most575

methods employing DL and SC for the regularization of image reconstruction in MR use a576

global sparsity level S for DL as well as for SC. Further, S and the number of atoms K577

to be used are usually determined by computationally expensive hyper-parameter searches.578

Using the adaptive methods aITKrM and aOMP, the a-priori choice of S and K is no longer579

needed. Instead, S and K are optimally determined for each patch within the iterative580

reconstruction and adapted to the texture of the currently considered image estimates. As581

we have seen, aOMP provides appropriate estimates of S for the sparse approximation of582

the patches and by this, a more efficient regularization is achieved. This also results in a583

significant acceleration of the regularization step, especially when compared to the case for584

standard a-priori choices of S and K.585
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