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I. INTRODUCTION

Many tasks in high dimension signal processing, such as denoising
or reconstruction from incomplete information, can be efficiently
solved if the data at hand is known to be sparse in a dictionary Φ,
meaning given a d×K dictionary matrix, Φ = (φ1 . . . φK) ∈ Rd×K ,
with normalised columns also known as atoms, ‖φk‖2 = 1, any data
point y can be approximately represented as superposition of S atoms
in the support I , that is y ≈

∑
i∈I φixi and |I| = S.

However, before being able to exploit this model for a given data
class it is necessary to identify the parametrising dictionary, a process
known as dictionary learning. By now, lots of algorithms exist that
perform well in experiments and are popular in applications, [1],
[2], [3] - for an introductory survey see for instance [4] - and also
theoretical insights into dictionary learning are starting to accumulate.
Unfortunately, so far the algorithms supported by global recovery
results, [5], [6], [7], are rather unpractical, results for optimisation
based approaches only hold for bases, [8], [9], [10], and results for
practically usable alternating optimisation algorithms only guarantee
local recovery, [11], [12], [13]. All theoretical results are based on
rather stringent assumptions such as exact sparsity of the training
data and knowledge of the sparsity level.
In this work we will improve on results in [13], [14] and give relaxed
conditions that ensure that the alternating minimisation algorithm
ITKrM contracts towards a generating dictionary.

II. DICTIONARY LEARNING VIA ITKRM

Given a batch of signals Y = (y1, . . . , yN ) ∈ Rd×N , the goal of
dictionary learning is to find a dictionary Φ yielding an approximately
S-sparse representation of each signal yn. That is, we want to
decompose the data matrix into a dictionary Φ ∈ Rd×K and a sparse
coefficient matrix X = (x1, . . . , xN ) ∈ RK×N , Y ≈ ΦX.
An algorithm designed to solve this problem is the Iterative Thresh-
olding and K residual Means (ITKrM) algorithm, [13], summarised
in Table I. As the name suggests, it alternates between updating the
sparse coefficients based on the current dictionary and updating the
dictionary based on the current coefficient matrix.
The algorithm has the advantage of working well on image data,
compare Figures 1 and 2, while also being amenable to theoretical
analysis. Given a generating dictionary Φ, assume that the signals
follow the model,

y =
∑

iφic(p(i))σi (1)

where p is a permutation drawn uniformly at random, σ is a
Rademacher sequence, r is sub-Gaussian noise and c a non-increasing
approximately S-sparse sequence, meaning c(S+1)/c(S)� 1.
Defining d(Φ,Ψ) := maxk ‖φk − ψk‖22 (after reordering and sign
flips), it was shown in [13] that ITKrM has a convergence radius of
size d(Φ,Ψ) ≤ O(1/

√
S) and in [14] that it contracts towards Φ for

dictionaries as a far away as d(Φ,Ψ) ≈ 2− 2(logK)3/2
√
S/d.

The strategy used to prove both results relies in large part on bounding
how often thresholding with an estimated dictionary Ψ will fail
to recover the generating support I = {p−1(1), . . . , p−1(S)}, and
adding the resulting maximally possible error to each atom in the
dictionary update. This is clearly suboptimal since the incorrect
estimate of a generating support can at worst affect 2S atoms. Also
the proof strategy cannot be extended to signal models with only
approximately known sparsity level, where we do not have a large gap
between the S and S+1 largest coefficient, but only between the S−T
and S+T+1 largest coefficient for T ≥ 1, c(S+T+1)/c(S−T )� 1.
In such a situation we probably recover indices of the largest S−T
coefficients but not necessarily the full support. In other words,
thresholding fails every time and adding the maximally possible error
to each atom cannot lead to a non-zero convergence radius.
As a first step towards such a more general result, we therefore
have to change the proof strategy and take into account that the
failure of thresholding will only affect an atom φi if it is in the
generating support, i ∈ I , but not in the thresholded support, i /∈ It,
or vice versa. Further, using more involved tools such as Freedman
inequality, we get the following improvement over [14].

III. CONTRACTION OF ITKRM

In the simplest case of noiseless, exactly S-sparse signals with
balanced coefficients, meaning c(i) ≈ S−1/2 for i ≤ S and c(i) = 0
for i > S, our result reads as:

Theorem III.1. Assume that our signals follow the model in
(1) and that current dictionary estimate has coherence µ(Ψ) :=
maxi 6=j |〈ψi, ψj〉|, and satisfies

µ(Ψ) .
1

logK
and ‖Ψ‖22,2 .

K

S logK
.

1) If 0 ≤ dmin ≤ d(Ψ,Φ) . 1√
log K

2) or d(Ψ,Φ) & 1√
log K

but the cross Gram matrix Φ?Ψ is
diagonally dominant in the sense that for all k

|〈φk, ψk〉| & max{µ̂ logK, ‖Ψ‖2,2
√
S logK/K)},

where µ̂ := maxi 6=j |〈φi, ψj〉| and dmin depends on the number of
training signals N & S2K logK as well as the coherence µ(Φ)
and operator norm ‖Φ‖2,2 of the generating dictionary, then with
high probability one iteration of ITKrM will reduce the distance by
at least a factor κ < 1, that is, d(Ψ̄,Φ) < κ · d(Ψ,Φ).

IV. CONCLUSION

We have derived relaxed contraction conditions for ITKrM, that
are satisfiable for dictionaries with distances to the generating dictio-
naries up to d(Φ,Ψ) ≈ 2−2

√
S logK/d. The proof strategy further

opens up the road for proving convergence results for more realistic
signal models with less accurately known sparsity level, that better
reflect practical situations, as for instance in Figures 1 and 2.
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ITKrM(Ψ, Y , S) - (one iteration) Given an input dictionary Ψ, a
sparsity level S and N training signals yn, do:
• For all n ∈ {1, . . . , N}

– For all n find ItΨ,n = argmaxI:|I|=S‖Ψ?
Iyn‖1

– Set an = yn − P (ΨItΨ,n
)yn

• For all k ∈ ItΨ,n calculate

ψ̄k =
1

N

∑
n

[an + P (ψk)yn] · sign(〈ψk, yn〉) · χ(ItΨ,n, k)

• Output Ψ̄ =
(
ψ̄1/‖ψ̄1‖2, . . . , ψ̄K/‖ψ̄K‖2

)
TABLE I

ITKRM ALGORITHM

(a) (b)

(c) (d)

Fig. 1. Two bases learned by ITKrM with sparsity S = 3 (c) and S = 5
(d) on all patches of Peppers (a). The training data consists of all patches
after removing their mean (corresponding to projection on the orthogonal
complement of the constant atom, left upper corner) with dimension d =
63. We then compute the average over all patches of the absolute values
of the coefficients, that are calculated by OMP using all 64 atoms, sorted
in descending order and divided by the patch norm, (b) (only some of the
coefficients are plotted).
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