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Abstract

In this paper we derive sufficient conditions for the convergence of two popular
alternating minimisation algorithms for dictionary learning - the Method of Optimal
Directions (MOD) and Online Dictionary Learning (ODL), which can also be thought
of as approximative K-SVD. We show that given a well-behaved initialisation that is
either within distance at most 1/ log(K) to the generating dictionary or has a special
structure, ensuring that each element of the initialisation only points to one generating
element, both algorithms will converge with geometric convergence rate to the gener-
ating dictionary. This is done even for data models with non-uniform distributions on
the supports of the sparse coefficients. These allow the appearance frequency of the
dictionary elements to vary heavily and thus model real data more closely.

Keywords: dictionary learning; sparse matrix factorisation; sparse coding; Method of
Optimal Directions; MOD; Online Dictionary Learning; ODL; K-Singular Value Decompo-
sition; K-SVD; convergence; non-uniform support distribution; rejective sampling

1. Introduction

The goal of dictionary learning is to find compact data representations by factorising a
data matrix Y ∈ Rd×N into the product of a dictionary matrix Φ ∈ Rd×K with normalised
columns and a sparse coefficient matrix X ∈ RK×N

Y ≈ ΦX and X sparse. (1)

The sparsifying dictionary or sparse components of a data class can be used to iden-
tify further structure in the data, [13], or simply be exploited for many data processing
tasks, such as signal restoration or compressed sensing, [20, 10, 7]. Following the seminal
Bayesian approach, [13], there exist several strategies and algorithms to tackle the above
problem [13, 3, 12, 35, 17, 18, 19, 37, 33] and a growing number of theoretical results to
accompany them [14, 38, 4, 34, 15, 6, 5, 1, 2, 39, 40, 8, 36, 26, 23]. These fall mainly into
two categories - optimisation based approaches and graph clustering algorithms. While
graph clustering algorithms have stronger theoretical success guarantees, especially in the
overcomplete case K > d, [2, 4], optimisation based approaches, in particular alternating
optimisation algorithms, are extremely successful and popular in practice. The common
starting point of three golden classics among these alternating optimisation algorithms,
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the Method of Optimal Directions (MOD), [12], the K-Singular Value Decomposition (K-
SVD), [3] and the algorithm for Online Dictionary Learning (ODL), [19], is the following
programme. Given the data matrix Y = (y1, . . . , yN ) and a dictionary size K find a dictio-
nary Ψ = (ψ1, . . . , ψK) and sparse coefficients X = (x1, . . . xN ) that optimise

argminΨ,X ∥Y −ΨX∥2F s.t. X ∈ S and ∥ψk∥2 = 1 for all k. (2)

The set S enforces sparsity on the coefficients matrix, for instance by allowing only S non-
zero coefficients per column, that is ∥xn∥0 ≤ S. The norm constraint on the dictionary
elements, also called atoms, removes the scaling ambiguity between the dictionary and the
coefficients. Note that there remains a sign ambiguity, so for any solution to the problem
above, we get 2K equivalent solutions by flipping the signs of the atoms and adjusting X
accordingly. Since the problem is not convex there might exist even more local and/or
global minima and to find a local minimum one cannot use gradient descent as the gradient
with respect to (Ψ, X) does not have a closed form solution. This is why the three classic al-
gorithms from above employ alternating optimisation and alternate between optimising the
coefficients while keeping the dictionary fixed and optimising the dictionary while keeping
the coefficients fixed. To update the coefficients, one aims for instance to find

X̂ = argminX ∥Y −ΨX∥2F = argminX
∑
n

∥yn −Ψxn∥22 s.t. ∥xn∥0 ≤ S, (3)

which corresponds to N sparse approximation problems. While solving these problems
exactly is NP-complete in general, [22, 41], and thus unfeasible for large S, there exist
many efficient routines, which have success guarantees under additional conditions and
perform well in practice, such as OMP, [25], used for MOD and K-SVD. LARS, [11], used
for ODL solves a related problem. In this paper we consider simple thresholding, which is
on par with computationally more involved algorithms like OMP in a dictionary learning
context, [24], and still relatively easy to analyse theoretically.
Conversely, to update the dictionary for fixed coefficients X̂ one aims to find

argminΨ ∥Y −ΨX̂∥2F =: f(Ψ) s.t. ∥ψk∥2 = 1. (4)

The approach leading to the MOD update, [12], is to give up the unit norm constraint
on the dictionary elements in (4). The modified problem then has a closed form solution,
argminΨ f(Ψ) = Y X̂†, so one can simply update the dictionary as Y X̂†D, where D is a
diagonal matrix ensuring that each atom has unit norm.
Another idea is to solve (4) approximately with one step of projected block coordinate
descent. So we first calculate the gradient of f with respect to Ψ resulting in

∇Ψf(Ψ) = −
∑

(yn −Ψx̂n)x̂
∗
n = −Y X̂∗ +ΨX̂X̂∗.

We then choose adapted step sizes for each dictionary element stored in the diagonal matrix
Λ and – with D again a diagonal matrix ensuring normalisation – update the dictionary as[

Ψ+ (Y X̂∗ −ΨX̂X̂∗) · Λ
]
·D =

[
ΨΛ−1 − Y X̂∗ +ΨX̂X̂∗

]
· ΛD. (5)
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Algorithm 1.1: MOD and ODL (aK-SVD) - one iteration

Input : Ψ, Y, S, κ (with κ > 1)
Set X̂ = (x̂1, . . . , x̂N ) = 0
foreach n do

În = argmaxI:|I|=S ∥Ψ∗
Iyn∥1 // thresholding

x̂n(În)← Ψ†
În
yn // coefficient estimation

if ∥x̂n∥2 ≥ κ∥yn∥2 then
x̂n ← 0 // set pathological estimates to zero

end

end

Ψ←

{
Y X̂†

Y X̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗)

// MOD update

// ODL (aK-SVD) update

Ψ← (ψ1/∥ψ1∥2, . . . , ψK/∥ψK∥2) // atom normalisation

Output: Ψ

The particular choice Λ−1 = diag(X̂X̂∗) leads to the dictionary update in ODL, [19].
Finally, for K-SVD the update of the k-th atom and corresponding coefficients can be de-
rived from (4) or rather (2) by fixing Ψ, X̂ except for the k-th atom ψk and its corresponding
locations (but not values) of non-zero entries in the k-th row of X̂ and optimising for both
using a singular value decomposition. For more details on the update we refer to [3]. How-
ever, we want to point out that K-SVD and ODL can be seen as closely related. Indeed
if we take an approximate version of K-SVD, known as aK-SVD, [27], where the SVD is
replaced with a 1 step power iteration, and additionally skip the coefficient update during
the dictionary update, we arrive again at ODL, see [29] for more details. To keep the close
link in mind we will refer to the dictionary update as in (5) as ODL (aK-SVD) update.
As already mentioned the disadvantage of the practically efficient, alternating optimisation
algorithms for dictionary learning is that they are less supported by theory. In particular,
when assuming that the data follows a random sparse model with an overcomplete gener-
ating dictionary Φ, there are no global recovery guarantees, in the sense that one of the
algorithms above or a variant will recover Φ with high probability.

Our Contribution In this paper we will cement the theoretical foundations of dictionary
learning via alternating minimisation by characterising the convergence basin for both MOD
and ODL (aK-SVD) in combination with thresholding as sparse approximation algorithm
as summarised in Algorithm 1. In particular we will show that under mild conditions on the
generating dictionary, any initialisation within atom-wise ℓ2-norm and scaled operator norm
distance of order 1/ logK will converge exponentially close to the generating dictionary given
enough training signals. Moreover, we provide further conditions on an initialisation that
ensure convergence even for distances close to the maximal distance

√
2.

In case of ODL (aK-SVD) this is the first result of this kind. For MOD a convergence
radius of order 1/S2 was derived in [1], however, our results show that even under milder
assumptions the basin of convergence is several orders of magnitude larger. Finally, our
most important contribution is that we provide the first theoretical results which are valid
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for data generating models where the non-zero entries of the generating coefficients are not
essentially uniformly distributed. This means that some dictionary elements can be more
likely to appear in the data representation than others. Such a non-homogeneous use of
dictionary elements can usually be observed in dictionaries learned on image or audio data.
Our results, proving the stability and convergence of alternating minimisation methods for
non-uniform sparse support models, might be an explanation for their practical advantages
over graph clustering or element-wise dictionary learning methods.

Organisation The remainder of the paper is organised as follows. After introducing the
necessary notation in Section 2 we will define our random signal model and give some
intuition why MOD and ODL should converge in Section 3. We then provide our main
result together with some explanations and connections to other work and the proof of the
main theorem in Section 4. However, to make the proof more accessible, the four lemmas
it relies on are deferred to Appendix A and further technical prerequisites to Appendix B.
We conclude with a discussion of our results and an outline of future work in Section 5.

2. Notation and setting

The notation and setting follows [32, 29] very closely. Let A ∈ Rd×K and B ∈ RK,m.
Let Ak and Ak denote the k-th column and k-th row of A respectively and A∗ denote the
transpose of the matrix A. For 1 ≤ p, q, r ≤ ∞ we set ∥A∥p,q := max∥x∥q=1 ∥Ax∥p. Recall
that ∥AB∥p,q ≤ ∥A∥q,r∥B∥r,p and ∥Ax∥q ≤ ∥A∥q,p∥x∥p. Often encountered quantities
are ∥A∥2,1 = maxk∈{1,...,K} ∥Ak∥2 and ∥A∥∞,2 = maxk∈{1,...,d} ∥Ak∥2, which denote the
maximal ℓ2 norm of a column resp. row of A. For ease of notation we sometimes write
∥A∥ = ∥A∥2,2 for the largest absolute singular value of A. For a vector v ∈ Rd, we denote
by v := mini |vi| the smallest absolute value of v and ∥v∥∞ the maximal entry of v. For
a subset I ⊆ K := {1, . . . ,K}, called the support, we denote by AI the submatrix with
columns indexed by I and AI,I the submatrix with rows and columns indexed by I. We
further set RI := (II)∗ ∈ R|I|×K , allowing us to write AI = AR∗

I . This also allows us to
embed a matrix AI ∈ Rd×S into Rd×K by zero-padding via AIRI ∈ Rd×K . We use the
convention that subscripts take precedent over transposing, e.g. A∗

I = (AI)
∗. We denote by

1I ∈ RK the vector, whose entries indexed by I are 1 and zero else. Further, for any vector
v we denote by Dv resp. diag(v) the diagonal matrix with v on the diagonal and abbreviate
Dv·w := Dv ·Dw. Finally we write ⊙ for the Hadamard Product (or pointwise product) of
two matrices/vectors of the same dimension.
Throughout this paper we will denote by Φ ∈ Rd×K the generating dictionary, i.e. the
ground truth we want to recover, and by Ψ ∈ Rd×K the current guess. Wlog we will assume
that the columns of Ψ are signed in way that the vector α ∈ RK defined via αi := ⟨ϕi, ψi⟩
has only positive entries. We will denote the ℓ2-distance between dictionary elements by

ε(Ψ,Φ) := ∥Ψ− Φ∥2,1 = max
i
∥ψi − ϕi∥2 ⇔ ε(Ψ,Φ)2 = 2− 2α. (6)

If it is clear from context, we will sometimes write ε instead of ε(Ψ,Φ). An important
variable which will be used frequently throughout this paper is Z := Ψ−Φ — the difference
matrix between the generating dictionary Φ and a guess Ψ. We define the distance between
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Φ and Ψ as

δ(Ψ,Φ) := max
{
∥(Ψ− Φ)D√

π∥, ∥Ψ− Φ∥2,1
}
= max

{
∥ZD√

π∥, ∥Z∥2,1
}
. (7)

This might not seem intuitive at first glance, but to show convergence we have to control
the weighted operator norm of the difference matrix as well as the ℓ2-distance. Again, if it
is clear from context we will simply write δ.

3. Probabilistic model

As was noted in the introduction we want the locations of the non-zero coefficients to follow
a non-uniform distribution, allowing some dictionary elements to be picked more frequently
than others.

Definition 1 (Poisson and rejective sampling) Let δk denote a sequence of K inde-
pendent Bernoulli 0-1 random variables with expectations 0 ≤ pk ≤ 1 such that

∑K
k=1 pk = S

and denote by PB the probability measure of the corresponding Poisson sampling model. We
say the support I follows the Poisson sampling model, if I := {k | δk = 1} and each support
I ⊆ K is chosen with probability

PB(I) =
∏
i∈I

pi
∏
j /∈I

(1− pj). (8)

We say our support I follows the rejective sampling model, if each support I ⊆ K is chosen
with probability

PS(I) := PB(I | |I| = S). (9)

If it is clear from the context, we write P(I) instead of PS(I).

The Poisson sampling model would be quite convenient since the probability of one atom
appearing in the support is independent of the others. Unfortunately, we need a model with
exactly S-sparse supports, rather than supports that are S-sparse on average. The rejective
model satisfies this second condition and still yields almost independent atoms, in the sense
that we can often reduce estimates for rejective sampling to estimates for Poisson sampling,
[32]. Note also that unless we are in the uniform case, where pi = S/K for all i, the inclusion
probabilities πi := P(i ∈ I) are different from the parameters pi. They can be related using
[32][Lemma 1], which we restate for convenience in Appendix B.1. We frequently use the
square diagonal matrix D√

π := diag((
√
πk)k). Based on the rejective sampling model, we

define the following model for our signals.

Definition 2 (Signal model) Given a generating dictionary Φ ∈ Rd×K consisting of K
normalized atoms, we model our signals as

y = ΦIxI =
∑
i∈I

ϕixi, xi = ciσi, (10)

where the support I = {i1, . . . iS} ⊆ K is chosen according to the rejective sampling model (9)
with parameters p1, . . . , pK such that

∑K
i=1 pi = S and 0 < pk ≤ 1/6, the coefficient sequence
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c = (ci)i ∈ RK consists of i.i.d. bounded random variables ci with 0 ≤ cmin ≤ ci ≤ cmax ≤ 1
and the sign sequence σ ∈ {−1, 1}K is a Rademacher sequence, i.e. its entries σi are i.i.d
with P(σi = ±1) = 1/2. Supports, coefficients and signs are modeled as independent and we
can write x = 1I ⊙ c⊙ σ.

The assumption pi ≤ 1/6 ensures that the pi and the corresponding inclusion probabilities
of the rejective sampling model πi are not too different (see Theorem 15). We further
introduce the vector β ∈ RK via βi := E[c2i ] and denote by Dβ the corresponding diagonal
matrix. To see how this signal model allows us to prove convergence of the algorithms, note
that before normalisation, by using Y = ΦX, we can write the two dictionary update steps
concisely as

MOD: Y X̂∗(X̂X̂∗)−1 = ΦXX̂∗(X̂X̂∗)−1,

ODL:
1

N

[
Y X̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗)

]
=

1

N

[
ΦXX̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗)

]
,

where we scaled the update step of the ODL algorithm by a factor of 1/N . The key is to
show that both these update steps concentrate around Φ. To that end we define the two
averages of random matrices

A :=
1

N
XX̂∗ =

1

N

N∑
n=1

xnx̂
∗
n and B :=

1

N
X̂X̂∗ =

1

N

N∑
n=1

x̂nx̂
∗
n. (11)

With these we can write the update step of MOD as ΦAB−1 and that of ODL as ΦA −
Ψ[B − diag(B)]. We first take a closer look at the terms within the sums above, where for
simplicity we drop the index n. Assuming that thresholding finds the correct support I, we
can write xx̂∗ using the zero-padding operator R∗

I as

xx̂∗ = x(R∗
IΨ

†
Iy)

∗ = xx∗Φ∗(Ψ†
I)

∗RI ,

Further assuming that ΨI is well conditioned, meaning Ψ∗
IΨI ≈ I, we can approximate

Ψ†
I ≈ Ψ∗

I , leading to

xx̂∗ ≈ xx∗Φ∗ΨIRI = xx∗Φ∗ΨR∗
IRI = xx∗Φ∗Ψdiag(1I).

As we modelled the generating coefficients as x = c ⊙ σ ⊙ 11, using the independence of
c, σ, I we get that in expectation over c, σ,

Ec,σ[xx
∗] = Ec[cc

∗]⊙ Eσ[σσ
∗]⊙ (1I1

∗
I) = Dβ diag(1I) = diag(1I)Dβ.

So the empirical estimator A = 1
N

∑N
n=1 xnx̂

∗
n ≈ E[xx̂] will be well approximated by

E[xx̂∗] ≈ Ediag(1I)DβΦ
∗Ψdiag(1I) = (DβΦ

∗Ψ)⊙ E[1I1∗I ].

The matrix E[1I1∗I ] simply stores as ij-th entry how often {i, j} ⊆ I, meaning the diagonal
entries are far larger than the off-diagonal ones, and we can approximate E[1I1∗I ] ≈ Dπ +
ππ∗ ≈ Dπ. Finally using that Dα = diag(Φ∗Ψ) a similar analysis for B yields

A ≈ E[xx̂∗] ≈ (DβΦ
∗Ψ)⊙Dπ = Dπ·α·β and B ≈ E[x̂x̂∗] ≈ Dπ·α2·β.
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So before normalisation the updates via MOD and ODL should be approximately

ΦAB−1 ≈ ΦD−1
α and ΦA−Ψ[B − diag(B)] ≈ ΦDπ·α·β. (12)

This means that the output of both dictionary update steps after normalisation should be
very close to the ground truth, and the proof boils down to quantifying the error in the
approximation steps outlined above.

4. Main result

Concretely, we will prove the following theorem.

Theorem 3 Assume our signals follow the signal model in 2. Define

α := min
k
|⟨ψk, ϕk⟩| = 1− ε2/2, γ :=

cmin

cmax
and ρ := 2κ2S2γ−2α−2π−3/2,

with κ2 ≥ 2 and let C, n be two universal constants, where C is no larger than 42 and n no
larger than 130. Denote by δ⋆ the desired recovery accuracy and assume δ⋆ log (nKρ/δ⋆) ≤
γ/C. We abbreviate ν = 1/

√
log (nKρ/δ⋆) < 1. If the atom-wise distance ε = ε(Ψ,Φ) of

the current guess Ψ to the generating dictionary Φ satisfies

max
{
ν∥ΦD√

π∥, µ(Φ)
}
≤
(
1− ε2

2

)
· γ

4C log (nKρ/δ⋆)
(13)

and the current guess Ψ additionally satisfies either

max
{
ν∥ΨD√

π∥, µ(Ψ), µ(Ψ,Φ)
}
≤
(
1− ε2

2

)
· γ

4C log (nKρ/δ⋆)
(14)

or δ(Ψ,Φ) ≤ γ

C log (nKρ/δ⋆)
=: δ◦, (15)

then the updated and normalised dictionary Ψ̂, which is output by ODL or MOD, satisfies

δ(Ψ̂,Φ) ≤ 1

2
·
(
δ⋆/2 + min {δ◦, δ(Ψ,Φ)}

)
=:

1

2
·∆, (16)

except with probability

60K exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
. (17)

To make the theorem more accessible, we now provide a detailed discussion of the implica-
tions and assumptions.

Convergence First note that a repeated application of the theorem proves convergence
of MOD and ODL (aK-SVD) up to accuracy δ⋆, assuming a generating dictionary and an
initialisation that satisfies the conditions above and given a new batch of training signal
in each iteration of size which scales at worst as N ≈ logKρ2/δ2⋆ . To see this, note that
the theorem ensures that the distance between the generating dictionary and the output
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dictionary decreases fast enough for condition (15) to be satisfied after one step. Once an
input dictionary satisfies δ⋆ ≤ δ(Ψ,Φ) ≤ δ◦ each iteration will w.h.p. shrink the distance
by a factor η ≤ 3/4, since we have

δ(Ψ̂,Φ) ≤ 1
4 · δ⋆ +

1
2 · δ(Ψ,Φ) ≤

3
4 · δ(Ψ,Φ).

As the conditions on the generating dictionary get easier to satisfy in each step, we can
iterate this argument to get convergence.
Finally, if an input dictionary already satisfies δ(Ψ,Φ) ≤ δ⋆, that is, we reached the desired
precision, the contraction property (16) guarantees that the output dictionary still satisfies
δ(Ψ̂,Φ) ≤ 3

4δ⋆ ≤ δ⋆. This stability is due to the assumption that the target recovery
accuracy satisfies δ⋆ log (nKρ/δ⋆) ≤ γ/C meaning δ⋆ ≤ δ◦. Going through the proof shows
that without this assumption, for instance because there are not enough training signals for
a higher accuracy available, the theorem above is still true and the target distance will be
achieved after one step. In this case however, since the output dictionary might no longer
satisfy (14), yet not be close enough to satisfy (15), it is not guaranteed that a further
iteration will preserve this distance.

Generating dictionary The first condition in (13) contains as implicit conditions on the
generating dictionary that

∥ΦD√
π∥ ≲

1√
logK

and µ(Φ) ≲
1

logK
, (18)

which together ensure that Φ is a sensible dictionary. It guarantees that most random sparse
supports are well-conditioned, that is ∥Φ∗

IΦI − I∥ ≤ ϑ < 1. This further means that most
signals generated by the model have a stable representation, y = ΦIxI with ∥y∥2 ≈ ∥xI∥2,
and could be identified by a sparse approximation algorithm that has access to Φ. To see that
the condition is quite mild, note that for uniformly distributed supports, pi = πi = S/K,
and Φ a unit norm tight frame, ∥Φ∥ = K/d, we can rewrite it as S ≤ d/ logK, which is for
instance a common requirement in compressed sensing.

Initialisation (input dictionary): The condition in (13) further limits the maximal atom-
wise distance of an initialisation. Assuming again uniformly distributed supports and a tight
generating dictionary it corresponds to

ε(Ψ,Φ) = max
k
∥ψk − ϕk∥ ≲

(
2− 2

√
S logK

d

)1/2

Considering that the maximal distance between two unit norm vectors is
√
2, this means that

convergence is possible even from far away initialisations. However, to actually converge
we have additional requirements. The initialisation needs to be well behaved, which is
ensured by (14) via ∥ΨD√

π∥ ≲ 1√
logK

and µ(Ψ) ≲ 1
logK , similar to (18) for the generating

dictionary. The more stringent and interesting requirement in (14) is the condition on the
cross-coherence µ(Ψ,Φ) or rather the cross-Gram matrix Ψ∗Φ. As the minimal entry on its
diagonal is α = (1− ε2/2) it translates to

max
i ̸=j
|⟨ψi, ϕj⟩| · logK ≲ min

k
|⟨ψk, ϕk⟩| ,
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or Ψ∗Φ being diagonally dominant. Intuitively, (13) and (14) mean that the admissible
distance can be very close to

√
2, as long as the initialisation is a well-behaved dictionary

and no two estimated atoms point to the same generating atom, meaning it is clear to the
sparse approximation algorithm which estimated atom belongs to which generating atom.
While it might be possible to relax this separation condition, it is unlikely that it can be
removed in the overcomplete case. Indeed, following the guidelines in [23], one can construct
well-behaved incoherent initialisations for which both MOD and ODL converge to a local
minimum that is not equivalent to the generating dictionary.
Finally, if the initialisation is within distance 1/ logK to the generating dictionary, meaning
condition (15) is satisfied, it is automatically well-behaved and has a diagonally dominant
cross-Gram matrix, because it inherits these properties from the generating dictionary,
which by (13) is well behaved and incoherent.

Number of signals: From the probability bound in (17) we see that in order for the failure
probability in each step to be small, the number of the fresh signals per iteration has to be
approximately

N ≈ ρ2

δ2⋆
· logK ≈ 1

π3δ2⋆
· logK.

This ensures that even the most rarely appearing atoms are seen often enough to learn
them properly. The relation above reflects the general dependencies, meaning we need
more training signals for higher accuracy and more imbalanced atom distributions, but is a
little too pessimistic. We expect that the scaling can be reduced to N ≈ logKδ−1

⋆ π−3/2 and
even N ≈ K logK/δ⋆ in the uniform case, but leave the endeavour to those still motivated
after reading the current proof1.

Attainable accuracy: We have already seen that the target accuracy should not be chosen
too large in order to have stable convergence and that the number of training signals required
in each iteration should grow with the desired accuracy. Another interesting observation
is that even given an arbitrarily close initialisation and arbitrarily many training signals,
the best attainable accuracy is limited by the coherence and conditioning of the generating
dictionary via (13) — even in the noiseless case considered here. The main reason is
that (13) is a very light condition which does not exclude the existence and rare selection
of sparse supports, leading to ill-conditioned or even rank-deficient matrices ΨI . Such
supports cannot be recovered by thresholding or any other sparse approximation algorithm.
This failure probability stops the algorithm from attaining arbitrarily small precision. If
we exchange (13) by the more restrictive assumption 2Sµ(Φ) < 1 then all supports of size
S are well enough conditioned to be identified by a sparse algorithm like OMP using Φ (or
some very small perturbation of it). This means that Φ is a fixed point of the algorithm
and that for a close enough initialisation we have convergence to Φ in expectation.

Comparison to existing results for MOD: Finally, we can compare our result with
that in [1] for MOD with an ℓ1-minimisation based sparse approximation routine. As-
suming a signal model with uniformly selected random supports and a non-zero coefficient
distribution, which is bounded from above, it is shown that for an approximately tight dic-
tionary with coherence µ(Φ) ≲ 1/

√
d and a sparsity level S ≲ d1/6 MOD will converge from

1. Hints how to proceed can be found after the proof Lemma 10
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any initialisation satisfying ε(Ψ,Φ) ≲ 1/S2, given enough training signals. In this special
case our assumptions on the generating dictionary — µ(Φ) ≲ 1/ logK and S ≲ d/ log(K)
— are more relaxed. As already seen, this comes at the price of a theoretical limit on the
achievable accuracy, which in practice, however, is determined by the number of available
signals. Further, we also have lighter conditions on the distance between the initialisation
and the generating dictionary. In particular, for a tight dictionary our conditions can be
written as

ε(Ψ,Φ) ≲
1

logK
and ∥Ψ− Φ∥ ≲

√
K

S log2K
,

whereas the assumption in [1] that ε(Ψ,Φ) ≲ 1/S2 implies ∥Ψ − Φ∥ ≲
√
K/S2 by using

∥A∥ ≤ ∥A∥F ≤
√
K∥A∥2,1. Hence the assumptions in [1] are more restrictive.

These restrictions seem due to using ℓ1-minimisation for sparse approximation, which on
the other hand has the advantage that it does not require the distribution of the non-zero
coefficients to be bounded away from zero. However, such an assumption is used in the graph
clustering algorithm suggested in [1] to get an initialisation, that satisfies the convergence
conditions. This indicates that such a condition is necessary to get a larger convergence
area.

Proof [Proof of Theorem 3] We first collect the results of Lemmas 7-10. Writing

T := (D√
π·α)

−1B(D√
π·α·β)

−1 and Iℓc := I− eℓe∗ℓ (19)

for convenience, we get that except with failure probability as in (17) we have

∥ΦA(D√
π·α·β)

−1 − ΦD√
π∥2,2 ≤ α∆/8 and ∥T − I∥2,2 ≤ ∆/4,

as well as for all ℓ ∈ {1, · · · ,K}

∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥2 ≤

∆

8
and max

{γαν
4C

, ∥ΨD√
π∥
}
· ∥IℓcT eℓπ

−1/2
ℓ ∥2 ≤

∆

8
.

Using these 4 inequalities we show that for both algorithms a properly scaled version of
the updated dictionary, which we denote by Ψ̄, contracts towards the generating dictionary.
Concretely, we show that for some constants sℓ close to 1

∥(Ψ̄− Φ)D√
π∥ ≤ ∆/4 and max

ℓ
∥ψ̄ℓ − sℓϕℓ∥ ≤ ∆/3. (20)

Together these bounds guarantee that the normalised version of the updated dictionary Ψ̂
satisfies δ(Ψ̂,Φ) ≤ ∆/2, meaning we have contraction towards the generating dictionary in
the weighted operator norm and the maximum column norm simultaneously. We start with
the proof of ODL which is a bit simpler.

ODL: Motivated by 12, we define a scaled version of the updated dictionary Ψ̄ :=
[ΦA−ΨB +Ψdiag(B)] (Dπ·α·β)

−1, which ensures that on average Ψ̄ concentrates around

10



Φ. The scaling does not change the underlying algorithm, since we have a normalisation
step at the end of each iteration, which we will analyse afterwards. We decompose Ψ̄ as

Ψ̄ = ΦA(Dπ·α·β)
−1 −Ψ[B − diag(B)](Dπ·α·β)

−1

= ΦA(Dπ·α·β)
−1 −ΨD√

π·α
[
(D√

π·α)
−1B(Dπ·α·β)

−1 −D−1√
π

]
+ΨD√

π·α
[
(D√

π·α)
−1 diag(B)(Dπ·α·β)

−1 −D−1√
π

]
= ΦA(Dπ·α·β)

−1 −ΨD√
π·α (T − I)D−1√

π +ΨD√
π·α (diag(T )− I)D−1√

π . (21)

We first show contraction in the weighted operator norm. Note that in both regimes we
have ∥ΨD√

π∥ ≤ 2/C, either by direct assumption or based on the bound

∥ΨD√
π∥ ≤ ∥ΦD√

π∥+ ∥(Ψ− Φ)D√
π∥ ≤ ∥ΦD√

π∥+ δ ≤ ∥ΦD√
π∥+ δ◦.

With the expression for the updated dictionary Ψ̄ in (21) and using the fact that ∥Dα∥ ≤ 1
we can bound the operator norm of the difference (Ψ̄− Φ)D√

π as

∥(Ψ̄− Φ)D√
π∥ ≤ ∥ΦA(D√

π·α·β)
−1 − ΦD√

π∥︸ ︷︷ ︸
≤ α∆/8 (7)

+2∥ΨD√
π·α∥︸ ︷︷ ︸

≤ 4/C

· ∥T − I∥︸ ︷︷ ︸
·∆/4 (8)

≤ ∆

4
.

Next we show that for each atom of the scaled dictionary the ℓ2-distance also decreases
with each iteration. We access the ℓ-th dictionary atom ψ̄ℓ simply by multiplying Ψ̄ with
the standard basis vector eℓ. This yields

ψ̄ℓ = Ψ̄eℓ = ΦA(Dπ·α·β)
−1eℓ −ΨD√

π·α [T − diag(T )]D−1√
π eℓ

= ΦA(Dπ·α·β)
−1eℓ +ΨD√

π·α IℓcT eℓπ
−1/2
ℓ . (22)

Using this decomposition together with our second set of inequalities we get

∥ψ̄ℓ − ϕℓ∥ ≤ ∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥︸ ︷︷ ︸

≤ ∆/8 (9)

+ ∥ΨD√
π·α∥ · ∥IℓcTeℓπ

−1/2
ℓ ∥︸ ︷︷ ︸

≤ ∆/8 (10)

≤ ∆

4
,

which shows the second part in (20) for sℓ = 1. To finish the proof we still need to show that
(20) guarantees contraction in the weighted operator norm and in the maximum column
norm after normalisation. However, we postpone the analysis of the normalising step to
after the analysis of the MOD algorithm, since it is the same for both algorithms.

MOD: Turning to the MOD algorithm we recall that if the estimated coefficient matrix
X̂ has full row rank K or equivalently X̂X̂∗ has full rank, which is guaranteed by the
second of our 4 inequalities, we can write the dictionary update step before normalisation
as ΦXX̂∗(X̂X̂∗)−1

= ΦAB−1. This dictionary update step — though conceptually very
easy — is harder to analyse theoretically due to the inverse of the matrix B. Again we
will do the analysis for a scaled version of the updated dictionary Ψ̄ := ΦAB−1Dα ≈ Φ.
As for ODL we start by showing that the weighted operator norm of the difference Ψ̄− Φ
contracts. We split Ψ̄D√

π as follows

Ψ̄D√
π = ΦAB−1D√

π·α

= ΦA(D√
π·α·β)

−1 +ΦA(D√
π·α·β)

−1
([

(D√
π·α)

−1B(D√
π·α·β)

−1
]−1 − I

)
= ΦA(D√

π·α·β)
−1 +ΦA(D√

π·α·β)
−1
(
T−1 − I

)
. (23)
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Since by Lemma 8 the matrix T is close to the identity, ∥T −I∥ ≤ ∆/4, the Neumann series
for its inverse converges and we have T−1 = [I − (I − T )]−1 =

∑
k≥0(I − T )k. Using the

geometric series formula we get for the operator norms of T−1, T−1 − I

∥T−1∥ = ∥
∑
k≥0

(I− T )k∥ ≤
∑
k≥0

∥I− T∥k ≤ 1

1−∆/4
, (24)

∥T−1 − I∥ = ∥
∑
k≥1

(I− T )k∥ ≤
∑
k≥1

∥T − I∥k ≤ ∆

4−∆
≤ ∆

3
, (25)

where for the last inequality we have used that ∆ ≤ 3
2 · δ◦ ≤ 1/4 ≤ 1 since δ◦ = γν2/C and

ν ≤ 1/3. Note also that by Lemma 7 and (13), we get

∥ΦA(D√
π·α·β)

−1∥ ≤ ∥ΦA(D√
π·α·β)

−1 − ΦD√
π +ΦD√

π∥ ≤
α∆

8
+ ∥ΦD√

π∥ ≤
5

4
· αγν
4C

. (26)

Combining these observations and using the triangle inequality repeatedly yields

∥(Ψ̄− Φ)D√
π∥ ≤ ∥ΦA(D√

π·α·β)
−1 − ΦD√

π∥︸ ︷︷ ︸
≤ α∆/8 (7)

+ ∥ΦA(D√
π·α·β)

−1∥︸ ︷︷ ︸
≤ αγν/C (26)

· ∥T−1 − I∥︸ ︷︷ ︸
≤ ∆/3 (25)

≤ ∆

4
.

This shows that under the assumptions of the theorem, the weighted operator norm of
the distance between the generating dictionary and the scaled update decreases in each
iteration.
Now to the contraction of the atomwise ℓ2-norm. First we again split our updated dictionary
atom ψ̄ℓ into two parts using that I = eℓe

∗
ℓ + Iℓc

ψ̄ℓ = Ψ̄eℓ = ΦA(D√
π·α·β)

−1T−1eℓπ
− 1

2
ℓ

= ΦA(Dπ·α·β)
−1eℓ · e∗ℓT−1eℓ +ΦA(D√

π·α·β)
−1IℓcT−1eℓπ

− 1
2

ℓ . (27)

Using the shorthand sℓ = e∗ℓT
−1eℓ and substracting sℓϕℓ we get

∥ψ̄ℓ − sℓϕℓ∥ ≤ |sℓ| · ∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥+ ∥ΦA(D√

π·α·β)
−1∥ · ∥IℓcT−1eℓπ

− 1
2

ℓ ∥.

The first term is well-behaved and makes no problems. Indeed, since |sℓ| ≤ ∥T−1∥, using
(24) and Lemma 9 yields

|sℓ| · ∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥ ≤ (1−∆/4)−1 ·∆/8. (28)

To bound ∥IℓceℓT−1eℓ∥ we use T−1 = I+ T−1(I− T ) and Iℓceℓ = 0 to get

∥IℓcT−1eℓ∥ = ∥IℓcT−1(I− T )eℓ∥ = ∥IℓcT−1(eℓe
∗
ℓ + Iℓc)(I− T )eℓ∥

≤ ∥IℓcT−1eℓ∥ · ∥I− T∥+ ∥T−1∥ · ∥IℓcTeℓ∥.

Rearranging the above and using (24) as well as Lemma 8 yields

∥IℓcT−1eℓ∥ ≤
∥T−1∥

1− ∥I− T∥
· ∥IℓcTeℓ∥ ≤

1

(1−∆/4)2
· ∥IℓcTeℓ∥.

Combining these observations with the bound from (26) and Lemma 10 yields

∥ψ̄ℓ − sℓϕℓ∥ ≤
1

1−∆/4
· ∆
8
+

1

(1−∆/4)2
· 5
4
· αγν
4C
· ∥IℓcTeℓπ

− 1
2

ℓ ∥︸ ︷︷ ︸
≤∆/8 (10)

≤ ∆

3
. (29)
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Normalisation Combining the above results shows that with high probability, the dic-
tionary update step of both algorithms before normalisation satisfies

∥(Ψ̄− Φ)D√
π∥2,2 ≤ ∆/4 and max

ℓ
∥ψ̄ℓ − sℓϕℓ∥ ≤ ∆/3, (30)

where sℓ = 1 in case of ODL and |sℓ − 1| ≤ ∥T−1 − 1∥ ≤ ∆/3 in case of MOD. So what
is left to show is that the normalisation step at the end of each iteration does not interfere
with convergence. Let F := diag(∥ψ̄i∥2)−1 be the square diagonal normalization matrix and
denote by Ψ̂ := Ψ̄F the normalized dictionary of the current update step. Since ∥ϕℓ∥ = 1
we have

|∥ψ̄ℓ∥ − 1| ≤ ∥ψ̄ℓ − ϕℓ∥ ≤ ∥ψ̄ℓ − sℓϕℓ∥+ ∥(sℓ − 1)ϕℓ∥ ≤ ∆/3 + ∆/3 ≤ ∆,

which further means that ∥F∥2,2 ≤ (1−∆)−1 and ∥I− F∥ ≤ ∆ · (1−∆)−1. Hence, using
that by assumption ∥ΦD√

π∥ ≤ 1/(4C) and ∆ ≤ 2/C the weighted operator norm of the
difference of the generating dictionary Φ and the normalised update Ψ̂ can be bounded as

∥(Ψ̂− Φ)D√
π∥ ≤ ∥(Ψ̄− Φ)D√

π∥∥F∥+ ∥ΦD√
π∥∥(I− F )∥

≤ ∆

4
· 1

1−∆
+

1

4C
· ∆

1−∆
≤ ∆

2
. (31)

To bound the ℓ2-norm we simply use Lemma B.10 from [35], which says that if ∥ϕ∥ = 1 and
∥ψ − sϕ∥ ≤ t, then ψ̂ = ψ/∥ψ∥ satisfies ∥ψ̂ − ϕ∥2 ≤ 2− 2

√
1− t2/s2. Combining this with

the bound
√
1− t ≥ 1− t

2−t for t ∈ (0, 1) and using t = ∆/3 and |1− sℓ| ≤ ∆/3, meaning
sℓ ≥ 1−∆/3, yields

∥ψ̂ℓ − ϕℓ∥ ≤ t ·
(
s2ℓ −

t2

2

)−1/2

≤ ∆

3
·
((

1− ∆

3

)2
− ∆2

18

)−1/2

≤ ∆

2
.

This shows that not only ∥(Ψ̂ − Φ)D√
π∥ but also ∥Ψ̂ − Φ∥2,1 and thus δ(Ψ̂,Φ) is bounded

by ∆/2 and thus concludes the proof of Theorem 3.

5. Discussion

In this paper we have shown that two widely used alternating minimisation algorithms,
MOD and ODL (aK-SVD) both combined with thresholding, converge to a well behaved
data-generating dictionary Φ from any initialisation Ψ that either lies within distance
O(1/ logK) or is itself well-behaved and has a diagonally dominant cross-coherence ma-
trix Ψ∗Φ. For ODL this constitutes the first convergence result of this kind, while for MOD
it extends the convergent areas, derived in [1], by orders of magnitude and under weaker
assumptions on the generating dictionary.
We want to emphasize that — to the best of our knowledge — our convergence theorem is
the first result in theoretical dictionary learning, which is valid for signal generating models
that do not assume a (quasi)-uniform distribution of sparse supports. Instead it can handle
more realistic distributions, where each atom is used with a different probability. This sta-
bility might also be an explanation for the popularity of alternating minimisation algorithms

13



in practical applications such as image processing. Natural images, for instance, contain
more low than high-frequencies and the success of e.g. wavelets in classical signal processing
can be attributed to the fact that they can be divided into frequency bands with different
appearance probabilities. Since also more recent schemes such as compressed sensing can
by improved by exploiting information about the inclusion/appearance probabilities of each
wavelet, [32, 28], we expect that our study of dictionary learning for non-uniform support
distributions will encourage the development of exciting new signal processing methods that
leverage this additional information about the frequency of appearance (and thus in some
sense the importance) of different atoms.
Note that the techniques we used to prove convergence for MOD and ODL here can also be
used to turn the contraction results for ITKrM, [23], into convergence results, [30]. As part
of our future work we plan to further increase the realism of our data models by including
different coefficient distributions for different atoms and noise. We also plan to analyse
partial convergence of the dictionary, meaning convergence for most but not all atoms. The
main motivation for this is that a randomly initialised dictionary is still rather unlikely to
satisfy even the relaxed diagonal dominance requirement. However, we expect that after
resorting, a large, left upper part of Ψ∗Φ will be diagonally dominant and that all asso-
ciated atoms still converge quite closely. A result of this kind would put the replacement
and adaptive dictionary learning strategies, developed in [23], on a firmer theoretical basis.
Lastly, we are interested in increasing the realism of our signal model even further by in-
cluding also second order inclusion probabilities into our generating model. This is again
inspired by the behaviour of wavelets in natural images, where it is know that spatially
close wavelets are likely to appear together.
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Appendix A. Proofs of the 4 inequalities

A major hurdle in analysing the above dictionary learning algorithms is that each update
of the sparse coefficients involves projecting onto submatrices of the current guess Ψ. For
the remainder of this chapter we will set ϑ := 1/4 and write

FΦ := {I : ∥Φ∗
IΦI − I∥ ≤ ϑ} and FΨ := {I : ∥Ψ∗

IΨI − I∥ ≤ ϑ} (32)

for the set of index sets where the random variables ΦI resp. ΨI are well conditioned. We
further write

FZ :=
{
I : ∥ZI∥ ≤ δ ·

√
2 log(nKρ/δ⋆)

}
(33)

for the set of index sets, where the norm of the random variable ZI is comparable to δ.
Finally, set

G := FΦ ∪ FΨ ∪ FZ . (34)

We also need to control the sparse approximation step in each iteration. Recall that thresh-
olding amounts to finding the largest S entries in magnitude of Ψ∗y, collecting them in the
index set Î and calculating the corresponding optimal coefficients as x̂Î = Ψ†

Î
y. For the

remainder of this chapter, we write

H :=
{
(I, σ, c) | Î = I

}
(35)

for the set of index, sign and coefficient triplets, where thresholding is guaranteed to recover
the correct support. With all the necessary notation in place, we can show that under the
assumptions of Theorem 3, the failure probability of thresholding and the probability that
our submatrices are ill-conditioned can be bound by approximately δ⋆/ρ. This will be used
repeatedly by the lemmas afterwards.

Lemma 4 Under the assumptions of Theorem 3 we have

[2P(Hc) + P(Gc)] · ρ ≤ δ⋆/32. (36)

Proof We begin with bounding the failure probability of thresholding, P(Hc). Set N :=
Ψ∗Φ− diag(Ψ∗Φ). By definition of the algorithm, thresholding recovers the full support of
a signal y = ΦIxI , if

∥Ψ∗
Icy∥∞ < ∥Ψ∗

Iy∥min.

Note that the signals have two sources of randomness, σ and I. Recall that α = mini |⟨ψi, ϕi⟩|.
Plugging in the definition of y, we bound the failure probability as

Py(∥Ψ∗
Iy∥min < ∥Ψ∗

Icy∥∞) = Py (∥Ψ∗
IΦIxI∥min < ∥Ψ∗

IcΦIxI∥∞)

≤ Py (cmin∥ diag(Ψ∗
IΦI)∥min − ∥NI,IxI∥∞ < ∥Ψ∗

IcΦIxI∥∞)

≤ Py (cmin · α < 2∥NIxI∥∞)

≤ Py

(
2∥NIxI∥∞ ≥ cmin · α

∣∣ ∥NI∥∞,2 < η
)
+ PS (∥NI∥∞,2 ≥ η) . (37)
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To bound the first term, we use that for k ∈ I, we have xk = σkck, where σ ∈ RS is an
independent Rademacher sequence. As the signs σ are independent of the support I, we
can apply Hoeffding’s inequality to each entry of NIxI . The second term is a little more
involved. By the Poissonisation trick [31, Lemma 3.5] we have

P (∥NI∥∞,2 ≥ η) ≤ 2PB (∥NI∥∞,2 ≥ η) ,

where PB is the Poisson sampling model corresponding to the p1, · · · , pK . Now a simple ap-
plication of the matrix Chernoff inequality, [42], restated in 11, together with an application
of Hoeffding’s inequality to the first term in (37) yields

Py(∥Ψ∗
Iy∥min < ∥Ψ∗

Icy∥∞) ≤ 2K exp

(
− c2min

8c2maxη
2
· α2

)
+ 2K

(
e
∥ND√

p∥2∞,2

η2

) η2

µ(Ψ,Φ)2

≤ 2K exp

(
− γ2

8η2
· α2

)
+ 2K

(
2e
∥ND√

π∥2∞,2

η2

) η2

µ(Ψ,Φ)2

, (38)

where we used that (1 − ∥p∥∞) · pi ≤ πi, from [32] resp. Theorem 15(a), which implies
pi ≤ 6

5πi < 2πi as well as ∥ND√
p∥2∞,2 ≤ 2∥ND√

π∥2∞,2.
Before going on we recall the abbreviations

ν =
1√

log(nKρ/δ⋆)
≤ 1

3
and δ◦ =

γ

C log(nKρ/δ⋆)
=
γν2

C
,

where the bound on ν holds true since nρδ−1
⋆ ≥ 130 · 2 · 42. Setting η := γαν/4 the first

term in 38 becomes 2Kδ2⋆/(nρK)2. To bound the second term observe that

∥ND√
π∥2∞,2 = ∥[Ψ∗Φ− diag(Ψ∗Φ)]D√

π∥2∞,2 ≤ ∥ΦD√
π∥2, (39)

so our condition on the generating dictionary in (13), ∥ΦD√
π∥ ≤ γαν/(4C), ensures that

2e∥ND√
π∥2∞,2η

−2 ≤ e−2. To lower bound the exponent of the second term we will have to
look at both regimes described in Theorem 3, separately. In the first regime, δ > δ◦, by
(15) we simply have µ(Ψ,Φ) ≤ αγν2/(4C). In the second regime, δ ≤ δ◦, we can employ
the following bound

µ(Ψ,Φ) = max
i ̸=j
|⟨ϕi, ψj⟩| ≤ max

i ̸=j
|⟨ϕi, ϕj⟩|+max

j
∥ψj − ϕj∥ ≤ µ(Φ) + δ,

together with the observation that whenever δ ≤ δ◦ ≤ 1/C, we have α = 1 − ε2/2 ≥
1− δ2/2 ≥ (C − 1)/C and therefore also

δ ≤ αγ

αC log(nKρ/δ⋆)
≤ αγ

(C − 1) log(nKρ/δ⋆)
=

αγν2

(C − 1)
. (40)

This means that in both regimes we have µ(Ψ,Φ) ≤ 2αγν2/(C − 1). Substituting these
bounds into 38, we get

P (Hc) ≤ 2K

(
δ⋆
nρK

)2

+ 2K

(
δ⋆
nρK

)(C−1)2/32

≤ 4K

(
δ⋆
nρK

)2

. (41)
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Now we turn to bounding the quantity P(Fc
Z). Again by the Poissonisation trick, the matrix

Chernoff inequality and the bound pi ≤ 2πi we have

P
(
∥ZIZ

∗
I ∥ > t

)
≤ 2PB

(
∥ZIZ

∗
I ∥ > t

)
≤ 2K

(
e∥ZDpZ

∗∥
t

)t/ε2

≤ 2K

(
2e∥ZDπZ

∗∥
t

)t/ε2

≤ 2K

(
2eδ2

t

)t/δ2

.

Setting t = 2δ2max{e2, log(nKρ/δ⋆)} = 2δ2 log(nKρ/δ⋆) we get

P(Fc
Z) = P

(
∥ZI∥ ≥ δ ·

√
2 log(nKρ/δ⋆)

)
≤ 2K

(
δ⋆
nKρ

)2

. (42)

Next we use Theorem 13, [31], and pi ≤ 6
5πi to bound P(Fc

Φ ∪ Fc
Ψ) as

P(Fc
Φ ∪ Fc

Ψ) ≤ 512K exp

(
−min

{
5ϑ2

24e2∥ΦD√
π∥2

,
ϑ

2µ(Φ)
,

5ϑ2

24e2∥ΨD√
π∥2

,
ϑ

2µ(Ψ)

})
.

In the first regime we have by assumption that max{ν∥ΦD√
π∥, µ(Φ)} ≤ γαν2/(4C) and

max{ν∥ΨD√
π∥, µ(Ψ)} ≤ γαν2/(4C), while in the second regime we only have the first

inequality as well as δ ≤ γαν2/(C − 1). However, we can use the bound

∥ΨD√
π∥ ≤ ∥ΦD√

π∥+ ∥(Ψ− Φ)D√
π∥ ≤ ∥ΦD√

π∥+ δ

≤ γαν · ( 1
4C + ν

C−1) ≤ γαν/C, (43)

and the fact that for δ ≤ δ◦ = γν2/C ≤ ν2/C we have

µ(Ψ) = max
i ̸=j
|⟨ψi, ψj⟩| ≤ max

i ̸=j
|⟨ϕi, ϕj⟩+ ⟨ϕi, ψj − ϕj⟩+ ⟨ψi − ϕi, ψj⟩|

≤ µ(Φ) + 2ε ≤ µ(Φ) + 2δ ≤ 9
4 · ν

2/C. (44)

All together this means that for ϑ = 1/4 we can lower bound the expression in the minimum
in both regimes by 2 log(nKρ/δ⋆), leading to P(Fc

Φ ∪ Fc
Ψ) ≤ 512K (δ⋆/(nρK))2 . Collecting

all the bounds we finally get for n ≥ 130 that

P(Hc) · 2ρ+ P(Gc) · ρ ≤ 522Kρ

(
δ⋆
nρK

)2

≤ δ⋆
32
.

Another ingredient we need to prove the 4 inequalities used in the proof of our main theorem
is the following lemma to estimate expectations of products of random matrices. A detailed
proof, based on [9, 16], can be found in Appendix B.1 .

Lemma 5 Let A(I) ∈ Rd1×d2, B(I) ∈ Rd2×d3, C(I) ∈ Rd3×d4 be random matrices, where
I is a discrete random variable taking values in I and G ⊆ I. If for all I ∈ G we have
∥B(I)∥ ≤ Γ then

∥E [A(I) ·B(I) · C(I) · 1G(I)] ∥ ≤ ∥E [A(I)A(I)∗] ∥1/2 · Γ · ∥E [C(I)∗C(I)] ∥1/2.
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Finally, we also need the following corollary of results from [32], which is again proved in
Appendix B.2.

Corollary 6 Denote by E the expectation according to the rejective sampling probability
with level S and by π ∈ RK the first order inclusion probabilities of level S. Let I be a
K ×K matrix with zero diagonal, W = (w1 . . . , wK) and V = (v1, . . . , vK) a pair of d×K
matrices and G a subset of all supports of size S, meaning G ⊆ {I : |I| = S}. If ∥π∥∞ ≤ 1/3,
we have

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ ≤ 3 · ∥D√

πID√
π∥, (a)

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥ ≤ 9

2 · ∥D√
πID√

π∥2 + 3
2 ·max

k
∥e∗kID√

π∥2, (b)

∥E[WR∗
IRIV

∗ · 1I(ℓ)1G(I)]∥ ≤ πℓ · (∥WD√
π∥ · ∥V D√

π∥+ ∥wℓ∥ · ∥vℓ∥) , (c)

as well as

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥
≤ 3

2 · πℓ ·
(
3 · ∥D√

πI eℓ∥2 +maxkI 2
kℓ +

9
2 · ∥D√

πID√
π∥2 + 3

2 ·maxk∥e∗kID√
π∥2
)
. (d)

With the last three results in place we are finally able to prove Lemmas 7-10, which provide
the 4 inequalities our proof is based on.

Lemma 7 Under the assumptions of Theorem 3 we have

P
(
∥ΦA(D√

π·α·β)
−1 − ΦD√

π∥ > α∆/8

)
≤ (d+K) exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
. (45)

Proof The idea is to write ΦA(D√
π·α·β)

−1−ΦD√
π as a sum of independent random matrices

and apply the matrix Bernstein inequality to show that we have concentration. Since
we assumed in the algorithm that the estimated coefficients can never have larger norm
than the signal times κ we first define for v ∈ Rd the set of possible stable supports as
B(v) := {I : ∥Ψ†

Iv∥ ≤ κ∥v∥}. Based on this definition we define the following random
matrices for n ∈ [N ]

Ŷn : = yny
∗
n(Ψ

†
În
)∗RÎn

(D√
π·α·β)

−1 · 1B(yn)(În)− ΦD√
π,

where as always, În denotes the set found by the thresholding algorithm. As each matrix
Ŷn only depends on the signal yn they are independent and we have

N−1∑
n Ŷn = ΦA(D√

π·α·β)
−1 − ΦD√

π,

so we can use the matrix Bernstein inequality 12 from [42] to bound the left hand side of
(45). For that we have to find an upper bound for the operator norm. By the assumptions
on the generating dictionary and since we ensured in the algorithm that the estimated
coefficients, which are too large are set to zero, meaning ∥x̂n∥ ≤ κ∥yn∥ and ∥yn∥ ≤ Scmax,
we get for ρ = 2κ2S2γ−2α−2π−3/2 and π < 1/3,

∥Ŷn∥ ≤ κS2c2max∥D−1
β ∥∥D

−1
α ∥∥D−1√

π ∥+ ∥ΦD√
π∥ ≤ ραπ + 1 ≤ ρα/2 =: r. (46)
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Bounding ∥E[Ŷn]∥ is a little more involved. Recall that H is the set of signals y, meaning
support, sign and coefficient triplets (I, σ, c), where thresholding recovers the correct support
from the corresponding signal. Further G is the set of supports I where ϑI is small - i.e. the
corresponding subdictionary ΨI is well-conditioned. For each n we define a new random
matrix Yn, for which the estimated support În is replaced with the correct support In and
ΦD√

π is replaced by Φdiag(1In)D
−1√
π

Yn : = yny
∗
n(Ψ

†
In
)∗RIn(D√

π·α·β)
−1 · 1B(yn)(In)− Φdiag(1In)D

−1√
π .

Note that ∥Φdiag(1In)D
−1√
π ∥ ≤ Sπ−1/2 so the same bound as for ∥Ŷn∥ holds. Concretely,

with the same argument as above Yn is bounded by r. Further, by definition of H the
first terms of the two random matrices Yn and Ŷn coincide on H, while the second terms
coincide in expectation, meaning E[Φ diag(1In)D

−1√
π ] = ΦD√

π. So dropping the index n for
convenience, as each signal has the same distribution, e.g., writing I for In, we get using
Lemma 4,

∥E[Ŷ ]∥ ≤ ∥E[Ŷ − Y ]∥+ ∥E[Y ]∥ ≤ P(Hc) · 2r + ∥E[1Gc(I)Y ]∥+ ∥E[1G(I)Y ]∥
≤ P(Hc) · 2r + P(Gc) · r + ∥E[1G(I)Y ]∥. (47)

Next note that whenever I ∈ G we have for any sign and coefficient pair (σ, c) that the

corresponding signal y satisfies ∥Ψ†
Iy∥ ≤ (1 − ϑ)−

1
2 · ∥y∥ ≤ κ∥y∥, so we have G ⊆ B(y),

meaning 1B(y)1G = 1G . Remembering that y = ΦIxI = ΦI(σI ⊙ cI), we can take the
expectation over (σ, c), which, using the shorthand EG [f(I)] := EI [1G(I)f(I)], yields

∥E[1G(I)Y ]∥ = ∥EI [1G(I) · Eσ,c[ΦIxIx
∗
IΦ

∗
I(Ψ

†
I)

∗RI(D√
π·α·β)

−1 − Φdiag(1I)D
−1√
π ]]∥

= ∥EG [ΦIΦ
∗
I(Ψ

†
I)

∗RI(D√
π·α)

−1 − ΦI(Dα)I,IRI(D√
π·α)

−1]∥. (48)

We next have a closer look at the term Φ∗
I(Ψ

†
I). Set H = I − Ψ∗Ψ. For I ∈ G we have

∥HI,I∥ = ∥IS − Ψ∗
IΨI∥ ≤ ϑ, meaning ΨI has full rank and Ψ†

I = (Ψ∗
IΨI)

−1Ψ∗
I . We can

further use the Neumann series to get the useful identity

(Ψ∗
IΨI)

−1 = (IS −HI,I)
−1 =

∑
k≥0H

k
I,I = IS + (Ψ∗

IΨI)
−1HI,I (49)

= IS +HI,I(Ψ
∗
IΨI)

−1, (50)

and the norm estimate ∥(Ψ∗
IΨI)

−1∥ ≤ (1 − ϑ)−1. By definition of Z = Ψ − Φ, we have
E := diag(Z∗Ψ) = I−Dα. We also define the zero diagonal matrix

I := (ΨE − Z)∗Ψ = (ΦE − ZDα)
∗Ψ = (Φ−ΨDα)

∗Ψ, (51)

which lets us express Φ∗
I(Ψ

†
I)

∗ as

Φ∗
I(Ψ

†
I)

∗ = (Ψ∗
I − Z∗

I )(Ψ
†
I)

∗ = IS − Z∗
I (Ψ

†
I)

∗

= (Dα)I,I + EI,IΨ∗
IΨI(Ψ

∗
IΨI)

−1 − Z∗
IΨI(Ψ

∗
IΨI)

−1

= (Dα)I,I +II,I(Ψ
∗
IΨI)

−1 = (Dα)I,I +II,I +II,I(Ψ
∗
IΨI)

−1HI,I . (52)
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Note that for any I we have ∥II,I∥ ≤ ∥(ΨE − Z)I∥ · ∥ΨI∥ ≤ ε
√
S ·
√
S < 2S and therefore

∥ΦIII,IRI(D√
π·α)

−1∥ ≤ ρα/2 = r. So substituting the expression for Φ∗
I(Ψ

†
I)

∗ above into
(48) resp. (47) and rewriting ΦI = ΦD√

πD
−1√
π R

∗
I we get

∥E[Ŷ ]∥ ≤ [2P(Hc) + P(Gc)] · r + ∥EG [ΦI(II,I +II,I(Ψ
∗
IΨI)

−1HI,I)RI(D√
π·α)

−1]∥
≤ [2P(Hc) + P(Gc)] · r + P(Gc) · r + ∥E[ΦIII,IRI(D√

π·α)
−1]∥

+ ∥EG [ΦIII,I(Ψ
∗
IΨI)

−1HI,IRI(D√
π·α)

−1]∥
≤ [P(Hc) + P(Gc)] · ρα+ ∥ΦD√

π∥ · ∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ · ∥D−1

α ∥
+ ∥ΦD√

π∥ · ∥EG [D
−1√
π R

∗
III,I(Ψ

∗
IΨI)

−1HI,IRID
−1√
π ]∥ · ∥D−1

α ∥. (53)

Using Corollary 6(a) and ε ≤ min{δ,
√
2}, we bound the first expectation as

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ ≤ 3∥D√

πID√
π∥ ≤ 3 · (∥ΦD√

π∥ · ε2/2 + ∥ZD√
π∥) · ∥ΨD√

π∥
≤ 3 · δ · ∥ΨD√

π∥ · (∥ΦD√
π∥+ 1). (54)

Before we estimate the second expectation, note that applying Corollary 6(b) to H,I ,I ∗

and using that max{∥ΨD√
π∥, ∥ΦD√

π∥} ≤ ν/C ≤ 1/8 yields the following three bounds,
whose derivation can be found in Appendix B.2,

∥E[D−1√
π R

∗
IHI,IH

∗
I,IRID

−1√
π ]∥ ≤ 2 · ∥ΨD√

π∥2, (55)

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥ ≤ 1/2 · (3∥ZD√

π∥+ 3ε)2 · ∥ΨD√
π∥2, (56)

∥E[D−1√
π R

∗
II

∗
I,III,IRID

−1√
π ]∥ ≤ 2 · (∥ΦD√

π∥ · ε2/2 + ∥ZD√
π∥)2. (57)

Applying Theorem 5 to the second expectation in (53), using that on G we have ∥(Ψ∗
IΨI)

−1∥ ≤
(1− ϑ)−1 ≤ 4/3, and the first two inequalities above yields

∥EG [D
−1√
π R

∗
III,I · (Ψ∗

IΨI)
−1 ·HI,IRID

−1√
π ]∥

≤ ∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ∥1/2 · 4/3 · ∥E[D−1√

π R
∗
IH

∗
I,IHI,IRID

−1√
π ]∥1/2

≤
(
4∥ZD√

π∥+ 4ε
)
· ∥ΨD√

π∥2 ≤ 8 · δ · ∥ΨD√
π∥2. (58)

Substituting (54), (58) and the probability bound from Lemma 4 into (53) leads to

∥E[Ŷ ]∥ ≤ αδ⋆/32 + δ/α · ∥ΦD√
π∥ · ∥ΨD√

π∥ · (3 + 3∥ΦD√
π∥+ 8∥ΨD√

π∥). (59)

By the assumptions of Theorem 3 we have in both regimes ∥ΦD√
π∥ ≤ γαν/(4C) and ∥ΨD√

π∥·
δ ≤ γαν/(2C), while due to (43) we have ∥ΨD√

π∥ ≤ γαν/C again in both regimes. Bounding
the quantity in (59) in two ways we get

∥E[Ŷ ]∥ ≤ αδ⋆
32

+
αγ

C
·min

{
γν2

C
,
2γν2

C
· δ
}
≤ αδ⋆

32
+
αγ

C
·min{δ◦, δ} ≤ α ·

∆

16
.

Finally, an application of the matrix Bernstein inequality 12 with t = m = α∆/16 and
r = αρ/2 and some simplifications yield the desired bound.

The next lemma shows that the matrix B =
∑N

n=1 x̂nx̂
∗
n essentially behaves like a diagonal

matrix. In particular, after rescaling we have (D√
π·α)

−1B(D√
π·α·β)

−1 ≈ I.
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Lemma 8 Under the assumptions of Theorem 3 we have

P
(
∥(D√

π·α)
−1B(D√

π·α·β)
−1 − I∥ > ∆/4

)
≤ 2K exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.

Proof We will follow the approach in last proof very closely, that is, we write the matrix
(D√

π·α)
−1B(D√

π·α·β)
−1 − I as a scaled sum of independent random matrices Ŷn and apply

the matrix Bernstein inequality. Recalling that În denotes the set found by thresholding
and that B(v) := {I : ∥Ψ†

Iv∥ ≤ κ∥v∥} denotes the set of possible stable supports for v, we

define for n ∈ [N ] the matrices Ŷn as well as their auxiliary counterparts Yn as

Ŷn : = (D√
π·α)

−1R∗
În
Ψ†

În
yny

∗
n(Ψ

†
În
)∗RÎn

(D√
π·α·β)

−1
1B(yn)(În)− I

and Yn : = (D√
π·α)

−1R∗
InΨ

†
In
yny

∗
n(Ψ

†
În
)∗RIn(D√

π·α·β)
−1
1B(yn)(In)− diag(1In)D

−1
π .

Recall that ρ = 2κ2S2γ−2α−2π−3/2, so both matrices can be bounded as

max{∥Ŷn∥, ∥Yn∥} ≤ κ2S2c2max∥D−1
β ∥∥D

−2
α ∥∥D−1

π ∥+ ∥D−1
π ∥ ≤ 3ρ/4 =: r. (60)

On H, meaning whenever thresholding succeeds, the first terms of Ŷn and Yn again coincide
while the second terms are the same in expectation, that is E[diag(1In)D−1

π ] = I. So with
the same argument as in (47) and as usual dropping the index n for convenience, we get

∥E[Ŷ ]∥ ≤ 2ρ · P(Hc) + ρ · P(Gc) + ∥E[1G(I)Y ]∥. (61)

Similarly as in (48) we next use that all well conditioned supports are stable for any signal y,
meaning G ⊆ B(y). Taking the expectation over (σ, c) yields

∥E[1G(I)Y ]∥ = ∥EGEσ,c[(D√
π·α)

−1R∗
IΨ

†
IΦIxIx

∗
IΦ

∗
I(Ψ

†
I)

∗RI(D√
π·α·β)

−1−diag(1I)D−1
π ]∥

=
∥∥EG

[
(D√

π·α)
−1R∗

I

(
Ψ†

IΦ
∗
IΦ

∗
I(Ψ

†
I)

∗ − (Dα)
2
I,I

)
RI(D√

π·α)
−1
]∥∥. (62)

Using the expression for Φ∗
I(Ψ

†
I)

∗ from (52) we get

Ψ†
IΦIΦ

∗
I(Ψ

†
I)

∗ − (D2
α)I,I = (Dα)I,III,I(Ψ

∗
IΨI)

−1 + (Ψ∗
IΨI)

−1I ∗
I,I(Dα)I,I

+ (Ψ∗
IΨI)

−1I ∗
I,III,I(Ψ

∗
IΨI)

−1. (63)

The first two terms on the right hand side are each other’s transpose, so substituting the
above into (62) yields

∥E[1G(I)Y ]∥ ≤ 2 ·
∥∥EG

[
D−1√

π R
∗
III,I(Ψ

∗
IΨI)

−1RID
−1√
π

]∥∥ · ∥D−1
α ∥

+ ∥D−1
α ∥ ·

∥∥EG
[
D−1√

π R
∗
I(Ψ

∗
IΨI)

−1I ∗
I,III,I(Ψ

∗
IΨI)

−1RID
−1√
π

]∥∥ · ∥D−1
α ∥. (64)

To estimate the first term we repeat the steps in (53), noting that for all I we have
∥D−1√

π R
∗
III,IRID

−1√
π ∥ ≤ ρα2/2. Using (54) as well as (58) we get

∥EGD
−1√
π R

∗
III,I(Ψ

∗
IΨI)

−1RID
−1√
π ]∥ ≤ P(Gc) · ρα2/2 + ∥E[D−1√

π R
∗
III,IRID

−1√
π ]∥

+ ∥EG [D
−1√
π R

∗
III,I(Ψ

∗
IΨI)

−1HI,IRID
−1√
π ]∥

≤ P(Gc) · ρα2/2 + 3 · (∥ΦD√
π∥ · δ2/2 + ∥ZD√

π∥) · ∥ΨD√
π∥

+ 4 ·
(
∥ZD√

π∥+ δ
)
· ∥ΨD√

π∥2. (65)

21



Before we estimate the second term note that for I ∈ G we can use (51) to bound ∥II,I(Ψ
∗
IΨI)

−1∥
in two different ways, either as

∥II,I(Ψ
∗
IΨI)

−1∥ = ∥(Φ−ΨDα)
∗
IΨI(Ψ

∗
IΨI)

−1∥

= ∥ΦI(Ψ
†
I)

∗ + (Dα)I,I∥ ≤
√

1+ϑ
1−ϑ + 1 ≤

√
5/3 + 1 ≤ 7/3, (66)

or recalling that on G we have ∥ZI∥2 = ∥Z∗
IZI∥ ≤ 2δ2 log(nKρ/δ⋆) = 2δ2/ν2 as

∥II,I(Ψ
∗
IΨI)

−1∥ = ∥(ΨE − Z)∗IΨI(Ψ
∗
IΨI)

−1∥

= ∥EI,I − Z∗
I (Ψ

†
I)

∗∥ ≤ ε2/2 + δ/ν ·
√
2 ≤
√
2δ/ν · (ν/2 + 1) ≤ 2δ/ν. (67)

We next split the second term using (49), apply Theorem 5 with the abbreviation Γ =
min{7/3, 2δ/ν} and use Corollary 6(b) or rather (57) and (55) to get∥∥EG

[
D−1√

π R
∗
I(Ψ

∗
IΨI)

−1I ∗
I,III,I(Ψ

∗
IΨI)

−1RID
−1√
π

]∥∥
≤
∥∥E[D−1√

π R
∗
II

∗
I,III,IRID

−1√
π

]∥∥
+ 2
∥∥EG

[
D−1√

π R
∗
II

∗
I,I ·II,I(Ψ

∗
IΨI)

−1 ·HI,IRID
−1√
π

]∥∥
+
∥∥EG

[
D−1√

π R
∗
IHI,I · (Ψ∗

IΨI)
−1I ∗

I,III,I(Ψ
∗
IΨI)

−1 ·HI,IRID
−1√
π

]∥∥
≤
∥∥E[D−1√

π R
∗
II

∗
I,III,IRID

−1√
π

]∥∥
+ 2
∥∥E[D−1√

π R
∗
II

∗
I,III,IRID

−1√
π

]∥∥1/2 · Γ · ∥∥E[D−1√
π R

∗
IHI,IHI,IRID

−1√
π

]∥∥1/2
+
∥∥E[D−1√

π R
∗
IHI,IHI,IRID

−1√
π

]∥∥ · Γ2

=
(∥∥E[D−1√

π R
∗
II

∗
I,III,IRID

−1√
π

]∥∥1/2 + Γ
∥∥E[D−1√

π R
∗
IHI,IHI,IRID

−1√
π

]∥∥1/2)2
≤ 2

(
∥ΦD√

π∥ · δ2/2 + ∥ZD√
π∥+min{7/3, 2δ/ν} · ∥ΨD√

π∥
)2
. (68)

Substituting (65) and (68) into (64) and this in turn into (61) yields

∥E[Ŷ ]∥ ≤ 2ρ · [P(Hc) + P(Gc)] + 6/α ·
(
∥ΦD√

π∥ · δ2/2 + ∥ZD√
π∥
)
· ∥ΨD√

π∥
+8/α ·

(
∥ZD√

π∥+ δ
)
· ∥ΨD√

π∥2

+2/α2 ·
(
∥ΦD√

π∥ · δ2/2 + ∥ZD√
π∥+min{7/3, 2δ/ν} · ∥ΨD√

π∥
)2
. (69)

We next show that the expression above is bounded by ∆/6. In both regimes we have by
Lemma (4) that 2ρ · [P(Hc) + P(Gc)] ≤ δ⋆/16. In the first regime, if δ > δ◦ = γν2/C and
therefore min{δ◦, δ} = δ◦, we use that δ ≤

√
2, max{∥ΨD√

π∥, ∥ΦD√
π∥} ≤ αγν/(4C) and

thus ∥ZD√
π∥ ≤ αγν/(2C) to get

∥E[Ŷ ]∥ ≤ δ⋆
16

+
γν2

C
· γ

16C

[
18α+ 12α+ 2 · (16/3)2

]
≤ δ⋆

16
+ δ◦ ·

87γ

16C
≤ ∆

6
.

Conversely in the second regime, when δ ≤ δ◦ and therefore min{δ◦, δ} = δ, we use that
∥ZD√

π∥ ≤ δ ≤ δ◦ = γν2/C and ∥ΨD√
π∥ ≤ αγν/C as well as ν ≤ 1/2 and α ≥ 1 − δ2◦/2 ≥

17/18 to get

∥E[Ŷ ]∥ ≤ δ⋆
16

+ δ · γ
2C

[
6 +

6αγ2

64C2
+

8αγ

4C
+
( γ2

64C2
+

1

α
+

2γ

C

)2]
≤ δ⋆

16
+ δ · 4γ

C
≤ ∆

6
.
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As before we arrive at the desired bound after applying the matrix Bernstein inequality 12
for t = ∆/16 with r = 3

4ρ and m = ∆/6 and some simplifications.

Now we turn to bounding individual columns of the random matrices treated in the last
two lemmas.

Lemma 9 Under the conditions of Theorem 3 we have

P
(
∥ΦA(Dπ·α·β)

−1eℓ − ϕℓ∥ > ∆/8
)
≤ 28 exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.

Proof As in the matrix case the idea is to write the vector whose norm we want to
estimate as sum of independent random vectors based on the signals yn and use Bernstein’s
inequality. To this end we define for a fixed index ℓ the random vectors

Ŷn :=
[
yny

∗
n(Ψ

†
În
)∗RÎn

(Dπ·α·β)
−1 · 1B(yn)(În)− Φ

]
eℓ,

Yn :=
[
yny

∗
n(Ψ

†
In
)∗RIn(Dπ·α·β)

−1 · 1B(yn)(In)− Φdiag(1In)D
−1
π

]
eℓ.

Note that we can obtain Ŷn, Yn by multiplying the analogue matrices in the proof of Lemma 7
from the right by D−1√

π eℓ. Following the proof strategy of Lemma 7 with the necessary

changes, we first bound the ℓ2-norm of the random vectors Ŷn, Yn as

max{∥Ŷn∥, ∥Yn∥} ≤ κS2c2max∥∥D−1
π ∥∥D−1

β ∥∥D
−1
α ∥+ S∥D−1

π ∥ ≤ 3ρ/4 =: r.

Repeating the procedures in (47) we next get

∥E[Ŷ ]∥ ≤ [2P(Hc) + P(Gc)] · ρ+ ∥E[1G(I)Y ]∥ ≤ δ⋆/32 + ∥E[1G(I)Y ]∥, (70)

while repeating the procedures in (48)/(61), and using the expression from (52) Φ∗
I(Ψ

†
I)

∗ =
(Dα)I,I +II,I(Ψ

∗
IΨI)

−1 = (Dα)I,I +II,I +II,I(Ψ
∗
IΨI)

−1HI,I yields

∥E[1G(I)Y ]∥ =
∥∥EG

[
ΦR∗

I

(
Φ∗
IΨ

†∗
I − (Dα)I,I

)
RIeℓ

]∥∥/(αℓπℓ)

≤
∥∥EG

[
ΦR∗

III,I(Ψ
∗
IΨI)

−1RIeℓ
]∥∥/(απℓ)

≤
(∥∥EG

[
ΦR∗

III,IRIeℓ
]∥∥+ ∥∥EG

[
ΦR∗

III,I(Ψ
∗
IΨI)

−1HI,IRIeℓ
]∥∥) /(απℓ). (71)

We next use the decomposition I = Iℓc + eℓe
∗
ℓ . Note that for any diagonal matrix D we

have IℓcDeℓ = 0 and that for any matrix Vℓℓ = eℓV eℓ. Since II,I has a zero diagonal and
we have II,I = RI(ΨE −Z)∗ΨR∗

I = RI(ΦE −ZDα)
∗ΨR∗

I , Corollary 6(c) yields for the first
term

∥ΦEG
[
R∗

III,IRIeℓ
]∥∥ = ∥EG

[
ΦIℓcR∗

IRI(ΦE − ZDα)
∗
1I(ℓ)

]
· ψℓ

∥∥
≤ πℓ · ∥ΦIℓcD√

π∥ · ∥(ΦE − ZDα)D√
π∥ · ∥ψℓ

∥∥
≤ πℓ · ∥ΦD√

π∥ · (∥ΦD√
π∥ · ε2/2 + ∥ZD√

π∥). (72)

Before we estimate the second term with the same split, note that applying Corollary 6(d)
to H,I ,I ∗ and using that max{∥ΨD√

π∥, ∥ΦD√
π∥} ≤ ν/C ≤ 1/8 yields the following three
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bounds, derived in detail in Appendix B.2,

∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 9 · πℓ ·max{µ(Ψ), ∥ΨD√
π∥}2, (73)

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 9 · πℓ · δ2, (74)

∥E[D−1√
π IℓcR∗

II
∗
I,III,IRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 9 · πℓ · δ2. (75)

Further, recall that HI,ℓ = RIHeℓ and Iℓ,I = e∗ℓIR∗
I . So applying Theorem 5 and using

(74) as well as twice Corollary 6(c), we get∥∥EG
[
ΦR∗

III,I(Ψ
∗
IΨI)

−1HI,IRIeℓ
]∥∥

≤ ∥ϕℓ∥ ·
∥∥EG

[
Iℓ,I · (Ψ∗

IΨI)
−1 ·HI,ℓ 1I(ℓ)

]∥∥
+ ∥ΦD√

π∥ ·
∥∥EG

[
D−1√

π IℓcII,I · (Ψ∗
IΨI)

−1 ·HI,ℓ 1I(ℓ)
]∥∥

≤
(
∥E[Iℓ,II ∗

ℓ,I1I(ℓ)]∥1/2 + ∥ΦD√
π∥ · ∥E[D−1√

π IℓcII,II ∗
I,IIℓcD−1√

π 1I(ℓ)]∥1/2
)

· 4/3 · ∥E[H∗
I,ℓHI,ℓ1I(ℓ)]∥1/2

≤ (
√
πℓ · ∥e∗ℓID√

π∥+ ∥ΦD√
π∥ ·
√
πℓ · 3δ) · 4/3 ·

√
πℓ · ∥e∗ℓHD√

π∥
≤ 4/3 · πℓ · δ · (∥ΨD√

π∥+ 3∥ΦD√
π∥) · ∥ΨD√

π∥. (76)

Plugging the last two bounds back into (71) and (70) yields

∥E[Ŷ ]∥ ≤ δ⋆/32 + 1/α · ∥ΦD√
π∥ · (∥ΦD√

π∥ · ε2/2 + ∥ZD√
π∥)

+ 4/3 · δ/α · ∥ΨD√
π∥ · (∥ΨD√

π∥+ 3∥ΦD√
π∥).

We next proceed as in the last proof. We always have ∥ΦD√
π∥ ≤ αγν/(4C). If δ > δ◦,

thus min{δ, δ◦} = δ◦, we use that additionally we have ∥ΨD√
π∥ ≤ αγν/(4C) and ∥ZD√

π∥ ≤
αγν/(2C) to get

∥E[Ŷ ]∥ ≤ δ⋆
32

+
γν2

C
· αγ
16C

· (1 + 2 + 4/3 ·
√
2 · 4) ≤ δ⋆

32
+ δ◦ ·

11αγ

16C
≤ ∆

16
.

Conversely, if δ ≤ δ◦, thus min{δ, δ◦} = δ, we use that ∥ZD√
π∥ ≤ δ together with ∥ΨD√

π∥ ≤
αγν/C and ν ≤ 1/3 to get

∥E[Ŷ ]∥ ≤ δ⋆
32

+ δ · γν
4C
·
(
αγν

4C
· δ/2 + 1 + 4/3 · 7αγν

C

)
≤ δ⋆

32
+ δ · 2γν

4C
≤ ∆

16
.

Finally an application of the vector Bernstein inequality 12 for t = m = ∆/16 and r = 3ρ/4
and some simplifications yield the desired bound.

Now to the grand final, showing that also the fourth inequality used in the proof of the
main theorem is satisfied with high probability.

Lemma 10 Under the conditions of Theorem 3 for Λ = max
{
∥ΨD√

π∥, αγν4C

}
P
(
Λ · ∥Iℓc (D√

π·α)
−1B(Dπ·α·β)

−1 eℓ∥ >
3∆

16

)
≤ 28 exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.
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Proof As usual we rewrite the vector to bound as sum of random vectors based on the
signals yn and use Bernstein’s inequality. Thus we define

Ŷn : = Λ · Iℓc (D√
π·α)

−1R∗
În
Ψ†

În
yny

∗
nΨ

†∗
În
RÎn

(Dπ·α·β)
−1
1B(yn)(În) eℓ

and its counterpart Yn by simply replacing in the above În by In. Since for any diagonal
matrix D we have Iℓc Deℓ = 0 we can again obtain Ŷn, Yn from the corresponding matrices
in the proof of Lemma 8, this time by multiplying from the left by Iℓc and from the right
by D−1√

π eℓ. Following the usual proof strategy we first bound the ℓ2-norm of the random

vectors Ŷn, Yn as

max{∥Ŷn∥, ∥Yn∥} ≤ κ2∥y∥2∥D−2
α ∥∥D−1

β ∥∥D
−3/2
π ∥ ≤ 3ρ/4 =: r,

while for the expectation we get similar to (48) and (62)

∥E[Ŷ ]∥ ≤ δ⋆/32 + Λ · π−1
ℓ · ∥D

−2
α ∥ ·

∥∥EG
[
D−1√

π IℓcR∗
I

(
Ψ†

IΦIΦ
∗
IΨ

†∗
I

)
RIeℓ

]∥∥. (77)

Using a decomposition as in (63) we get

IℓcR∗
I

(
Ψ†

IΦIΦ
∗
IΨ

†∗
I

)
RIeℓ = −IℓcR∗

III,I(Ψ
∗
IΨI)

−1RIeℓ − IℓcR∗
I(Ψ

∗
IΨI)

−1I ∗
I,I RIeℓ

+ IℓcR∗
I(Ψ

∗
IΨI)

−1I ∗
I,III,I(Ψ

∗
IΨI)

−1RIeℓ. (78)

The expectation corresponding to the first term can be obtained by replacing Φ with D−1√
π Iℓc

in (71). Going through (72) and (76) with the same change yields

∥EG [D
−1√
π IℓcR∗

III,I(Ψ
∗
IΨI)

−1RIeℓ]∥
≤ πℓ · (∥ΦD√

π∥ · ε2/2 + ∥ZD√
π∥+ 4δ · ∥ΨD√

π∥). (79)

To estimate the second term note that I ∗
I,I RIeℓ = RIIℓcI ∗eℓ1I(ℓ) since I has a zero

diagonal. So using the identity (50), Theorem 5, Corollary 6(c) and (d) or rather (73) we
get for the second term

∥EG [D
−1√
π IℓcR∗

I(Ψ
∗
IΨI)

−1I ∗
I,IRI eℓ]∥

≤ ∥EG [D
−1√
π Iℓc R∗

I(Ψ
∗
IΨI)

−1RIIℓcD−1√
π 1I(ℓ)]∥ · ∥D√

πI ∗eℓ∥
≤ ε · ∥ΨD√

π∥ ·
(
∥EG [D

−1√
π Iℓc R∗

IRIIℓcD−1√
π 1I(ℓ)]∥

+ ∥EG [D
−1√
π IℓcR∗

IHI,I · (Ψ∗
IΨI)

−1 · IℓcRID
−1√
π 1I(ℓ)]∥

)
≤ δ · ∥ΨD√

π∥ ·
(
πℓ + ∥E[D−1√

π IℓcR∗
IHI,IH

∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥1/2 · 4/3 ·
√
πℓ
)

≤ πℓ · δ · ∥ΨD√
π∥ ·

(
1 + 4 ·max{µ(Ψ), ∥ΨD√

π∥}). (80)

As probably feared the third term in (78) requires further decomposition. Again we split
the inverse (Ψ∗

IΨI)
−1 into (Ψ∗

IΨI)
−1 = I + (Ψ∗

IΨI)
−1HI,I = I + HI,I(Ψ

∗
IΨI)

−1. Recalling
that for I ∈ G we have ∥II,I(Ψ

∗
IΨI)

−1∥ ≤ min{7/3, 2δ/ν} = Γ and applying Theorem 5 to
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all four resulting terms yields

∥EG [D
−1√
π IℓcR∗

II
∗
I,I ·II,IRI eℓ]∥

≤ ∥E[D−1√
π IℓcR∗

II
∗
I,III,IRIIℓcD−1√

π 1I(ℓ)]∥1/2 · ∥E[I ∗
I,ℓII,ℓ1I(ℓ)]∥1/2

∥EG [D
−1√
π IℓcR∗

IHI,I · (Ψ∗
IΨI)

−1I ∗
I,I ·II,IRI eℓ]∥

≤ ∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥1/2 · Γ · ∥E[I ∗
I,ℓII,ℓ1I(ℓ)]∥1/2

∥EG [D
−1√
π IℓcR∗

II
∗
I,I ·II,I(Ψ

∗
IΨI)

−1 ·HI,IRIeℓ]∥

≤ ∥E[D−1√
π IℓcR∗

II
∗
I,III,IRIIℓcD−1√

π 1I(ℓ)]∥1/2 · Γ · ∥E[H∗
I,ℓHI,ℓ1I(ℓ)]∥1/2

∥EG [D
−1√
π IℓcR∗

IHI,I · (Ψ∗
IΨI)

−1I ∗
I,III,I(Ψ

∗
IΨI)

−1 ·HI,IRIeℓ]∥

≤ ∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥1/2 · Γ2 · ∥E[H∗
I,ℓHI,ℓ1I(ℓ)]∥1/2

Bounding the terms on the left hand side via Corollary 6(d) or rather (73) and (75) and
the terms on the right hand side via Corollary 6(c) we get

∥EG [D
−1√
π IℓcR∗

I(Ψ
∗
IΨI)

−1I ∗
I,III,I(Ψ

∗
IΨI)

−1RIeℓ]∥
≤ πℓ ·

(
3δ + 3Γmax{µ(Ψ), ∥ΨD√

π∥}
)(
∥e∗ℓID√

π∥+ Γ∥e∗ℓHD√
π∥
)

≤ πℓ ·
(
3δ + 3Γmax{µ(Ψ), ∥ΨD√

π∥}
)(
∥ΦD√

π∥ ε2/2 + ∥ZD√
π∥+ Γ∥ΨD√

π∥
)
. (81)

Finally substituting (79)-(81) into (77) yields

∥E[Ŷ ]∥ ≤ δ⋆
32

+
Λ

α2

(
∥ΦD√

π∥
ε2

2
+ ∥ZD√

π∥+ δ ∥ΨD√
π∥
(
5 + 4max{µ(Ψ), ∥ΨD√

π∥}
))

+
3Λ

α2

(
δ + Γmax{µ(Ψ), ∥ΨD√

π∥}
)(
∥ΦD√

π∥
ε2

2
+ ∥ZD√

π∥+ Γ∥ΨD√
π∥
)
.

As before we distinguish between δ > δ◦, where min{δ, δ◦} = δ◦ = γν2/C and we can use
∥ΨD√

π∥ ≤ αγν/(4C) = Λ, µ(Ψ) ≤ αγν2/(4C) as well as ∥ZD√
π∥ ≤ αγν/(2C) and Γ ≤ 7/3,

to get

∥E[Ŷ ]∥ ≤ δ⋆
32

+
γ2ν2

16C2

[
3 +
√
2
(
5 +

αγν

C

)
+ 16

(√
2 +

7αγν

12C

)]
≤ δ⋆

32
+ δ◦

36γ

16C
≤ ∆

16
,

and δ ≤ δ◦, where min{δ, δ◦} = δ and we can use ∥ΨD√
π∥ ≤ αγν/C = Λ and µ(Ψ) ≤

9ν2/(4C), meaning max{µ(Ψ), ∥ΨD√
π∥} ≤ ν ≤ 1 as well as ∥ZD√

π∥ ≤ δ and Γ ≤ 2δ/ν, to
again get

∥E[Ŷ ]∥ ≤ δ⋆
32

+ δ
γν

αC

[
1 + 9δ +

9αγ

8C

(
8ν + δν + δ2ν + 16δ

)]
≤ δ⋆

32
+ δ

2γν

αC
≤ ∆

16
.

As before an application of the vector Bernstein inequality 12 for t = m = ∆/16 and
r = 3ρ/4 and some simplifications yield the desired bound.

Note that for the probability bounds in the last four lemmas, we have used the simplified
version of the vector/matrix Bernstein inequality from [42], stated in 12, which bounds
the variance appearing in the denominator via the quantity r. Using the same approach as
above one could estimate terms of the form ∥ỸnỸ ∗

n ∥ and ∥Ỹ ∗
n Ỹn∥, where Ỹn is the centered

version of Yn, to improve the bounds on the variance and thus lower the number of training
signals required in the main theorem, [21, 42].
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Appendix B. Technical results

For convenience we first restate several bounds for random matrices used in the proofs of
Lemma 4 as well as Lemma 7-10. We then provide the proofs of Lemma 5 and Corollary 6
together with the detailed derivation of (55-57) and (73-75).

B.1 Random matrix bounds

We first recall two bounds for sums of random matrices and vectors.

Theorem 11 (Matrix Chernoff inequality [42]) Let X1, ..., XN be independent random
positive semi-definite matrices taking values in Rd×d. Assume that for all n ∈ {1, ..., N},
∥Xn∥ ≤ η a.s. and ∥

∑N
n=1 E[Xn]∥ ≤ µmax. Then, for all t ≥ eµmax,

P

(
∥

N∑
n=1

Xn∥ ≥ t

)
≤ K

(eµmax

t

) t
η
.

Theorem 12 (Matrix resp. vector Bernstein inequality [42, 21]) Consider a sequence
Y1, ..., YN of independent, random matrices (resp. vectors) with dimension d×K (resp. d).
Assume that each random matrix (resp. vector) satisfies

∥Yn∥ ≤ r a.s. and ∥E[Yn]∥ ≤ m.

Then, for all t > 0,

P

(
∥ 1
N

N∑
n=1

Yn∥ ≥ m+ t

)
≤ κ exp

(
−Nt2

2r2 + (r +m)t

)
, (82)

where κ = d +K for the matrix Bernstein inequality and κ = 28 for the vector Bernstein
inequality.

Next we recall Theorem 3.1 from [31] which allows us to control the operator norm of a
submatrix with high probability.

Theorem 13 (Operator norm of a random submatrix [31]) Let Ψ be a dictionary
and assume I ⊆ K is chosen according to the rejective sampling model with probabilities
p1, . . . , pK such that

∑K
i=1 pi = S. Further let Dp denote the diagonal matrix with the

vector p on its diagonal. Then

P (∥Ψ∗
IΨI − I∥ > ϑ) ≤ 216K exp

(
−min

{
ϑ2

4e2∥ΨDpΨ∗∥
,

ϑ

2µ(Ψ)

})
.

To prove Theorem 5 we first state and prove the following lemma to bound sums of
products of matrices.

Lemma 14 (Sums of products of matrices [9], [16]) Let An ∈ Rd1×d2, Bn ∈ Rd2×d3,
Cn ∈ Rd3×d4. Then∥∥∥∥∥

N∑
n=1

AnBnCn

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
n=1

AnA
∗
n

∥∥∥∥∥
1/2

max
n
∥Bn∥

∥∥∥∥∥
N∑

n=1

C∗
nCn

∥∥∥∥∥
1/2

.
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Proof Write

N∑
n=1

AnBnCn =


A1 A2 A3 .
. .
. .
. .



B1 . . .
. B2

. B3

. .



C1 . . .
C2 .
C3 .
. .

 .

Now the result immediately follows by applying the following properties of the operator
norm ∥ABC∥ ≤ ∥A∥∥B∥∥C∥, ∥A∥ = ∥AA∗∥1/2 and ∥C∥ = ∥C∗C∥1/2.

Lemma 5 is a straightforward consequence of the result above.
Proof [of Lemma 5] We want to show that for random matrices A(I) ∈ Rd1×d2 , B(I) ∈
Rd2×d3 , C(I) ∈ Rd3×d4 , where I is a discrete random variable taking values in I and G ⊆ I
with maxI∈G ∥B(I)∥ ≤ Γ we have

∥E [A(I) ·B(I) · C(I) · 1G(I)] ∥ ≤ ∥E [A(I)A(I)∗] ∥1/2 · Γ · ∥E [C(I)∗C(I)] ∥1/2.

Rewriting the expectation as a sum and applying the lemma above yields

∥E [A(I)B(I)C(I)1G(I)] ∥ = ∥
∑
I∈G

P[I]1/2A(I)B(I)C(I)P[I]1/2∥

≤ ∥
∑
I∈G

P[I]A(I)A(I)∗∥1/2 · Γ · ∥
∑
I∈G

P[I]C(I)∗C(I)∥1/2

≤ ∥E [A(I)A(I)∗] ∥1/2 · Γ · ∥E [C(I)∗C(I)] ∥1/2,

where in the last inequality we have used that the matrices A(I)A(I)∗ and C(I)∗C(I) are
positive semidefinite and that P[I] ≥ 0.

B.2 Proof of Corollary 6

Finally, we will turn to the proof of Corollary 6. Note that in the uniformly distributed
support model, which is equivalent to rejective sampling with uniform weights pi = S/K,
most estimates become trivial, since we have πi = P(i ∈ I) = S/K = pi and P({i, j} ⊆ I) =
S(S−1)
K(K−1) . This means that for a zero diagonal matrix I we have

E[R∗
III,IRI ] = E[I ⊙ (1I1

∗
I)] = I ⊙ E[1I1∗I ] = I · S(S − 1)

K(K − 1)
,

so we simply get

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ = ∥I ∥ · S − 1

K − 1
≤ ∥I ∥ · S

K
= ∥D√

πID√
π∥.

Unfortunately, in the rejective sampling model with non-uniform weights pi, these estimates
become much more involved. In particular, we will heavily rely on the following theorem,
collecting results from [32].
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Theorem 15 Let PB be the probability measure corresponding to the Poisson sampling
model with weights pi < 1 and PS be the probability measure corresponding to the associated
rejective sampling model with parameter S, PS(I) = PB(I | |I| = S), as in Definition 1.
Further denote by ES the expectation with respect to PS and by πS the vector of first order
inclusion probabilities of level S, meaning πS(i) = PS(i ∈ I) or equivalently πS = ES(1I).
We have

(1− ∥p∥∞) · pi ≤ πS(i) ≤ 2 · pi, if
∑

k pk = S, (a)

πS−1(i) ≤ πS(i), (b)

PS({i, j} ⊆ I) ≤ πS(i) · πS(j), ifi ̸= j. (c)

Further, defining for L ⊆ [K] with |L| < S the set L = {I ⊆ [K] : L ⊆ I}, we have

ES

[
1I\L1

∗
I\L · 1L(I)

]
·
∏
ℓ∈L

[1− πS(ℓ)] ⪯ ES−|L|[1I1
∗
I ] ·
∏
ℓ∈L

πS(ℓ). (d)

Finally, if π := πS satisfies ∥π∥∞ < 1, then for any K ×K matrix A we have

∥A⊙ E[1I1∗I ]∥ ≤
1 + ∥π∥∞

(1− ∥π∥∞)2
· ∥Dπ[A− diag(A)]Dπ∥+ ∥diag(A)Dπ∥. (e)

With these results in hand we can finally prove Corollary 6.
Proof [of Corollary 6 including (55-57) and (73-75)]
(a) We want to show that for a matrix I with zero diagonal we have

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ ≤ 3 · ∥D√

πID√
π∥.

Using the identities AI,I = RIAR
∗
I and R∗

IRI = diag(1I), we can rewrite for a general
matrix A and a diagonal matrix D

DR∗
IAI,IRID = DR∗

IRIAR
∗
IRID = D diag(1I)Adiag(1I)D

= diag(1I)DAD diag(1I) = (DAD)⊙ (1I1
∗
I).

Using Theorem 15(e) and ∥π∥∞ ≤ 1/3 we therefore get for I with zero-diagonal

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ = ∥E[(D−1√

π ID−1√
π )⊙ (1I1

∗
I)]∥

= ∥(D−1√
π ID−1√

π )⊙ E[1I1∗I ]∥
≤ 3∥DπD

−1√
π ID−1√

π Dπ∥ = 3∥D√
πID√

π∥,

which proves (a). (a)✓
(b) We want to show that for a matrix I with zero diagonal we have

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥ ≤ 9

2 · ∥D√
πID√

π∥2 + 3
2 ·max

k
∥e∗kID√

π∥2.

We again rewrite the expression, whose expectation we need to estimate, as

R∗
III,II ∗

I,IRI = R∗
IRI ·I ·R∗

IRI ·I ∗ ·R∗
IRI

= diag(1I) ·I · diag(1I) ·I ∗ · diag(1I)
= [I · diag(1I) ·I ∗]⊙ (1I1

∗
I)

=
(∑
k∈I

IkI ∗
k

)
⊙ (1I1

∗
I) =

∑
k∈I

(IkI ∗
k )⊙ (1I1

∗
I).
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Since the k-th entry of Ik and therefore both the k-th row and k-th column of IkI ∗
k are

zero, we have (IkI ∗
k )⊙ (1I1

∗
I) = (IkI ∗

k )⊙ (1I\{k}1
∗
I\{k}), yielding

R∗
III,II ∗

I,IRI =
∑
k∈I

(IkI ∗
k )⊙ (1I\{k}1

∗
I\{k})

=
∑
k

(1I(k) ·IkI ∗
k )⊙ (1I\{k}1

∗
I\{k})

=
∑
k

(IkI ∗
k )⊙ (1I\{k}1

∗
I\{k} · 1I(k)). (83)

Using the Schur Product Theorem, which says that for p.s.d matrices A,P, P̄ , with Pij , P̄ij ≥
0 and P ⪯ P̄ we have A⊙ P ⪯ A⊙ P̄ , together with Theorem 15(d) further leads to

ES

[
R∗

III,II ∗
I,IRI

]
=
∑
k

(IkI ∗
k )⊙ ES

[
1I\{k}1

∗
I\{k} · 1I(k)

]
⪯
∑
k

(Ik
πS(k)

1−πS(k)
I ∗

k )⊙ ES−1[1I1
∗
I ]

=
(∑

k

Ik
πS(k)

1−πS(k)
I ∗

k

)
⊙ ES−1[1I1

∗
I ]

= (I diag( πS
1−πS

)I ∗)⊙ ES−1[1I1
∗
I ].

Abbreviating M := I diag( πS
1−πS

)I ∗, and using Theorem 15 (e) and (b) we get

∥ES

[
D−1√

π R
∗
III,II ∗

I,IRID
−1√
π

]
∥ = ∥D−1√

π ES

[
R∗

III,II ∗
I,IRI

]
D−1√

π ∥
≤ ∥(D−1√

π MD−1√
π )⊙ ES−1[1I1

∗
I ]∥

≤ 3∥DπS−1 [D
−1√
π MD−1√

π − diag(D−1√
π MD−1√

π )]DπS−1∥
+ ∥ diag(D−1√

π MD−1√
π )DπS−1∥

≤ 3∥D√
πMD√

π − diag(D√
πMD√

π)∥+ ∥ diag(M)∥
≤ 3∥D√

πMD√
π∥+ ∥ diag(M)∥,

where in last inequality we have used that D√
πMD√

π is positive semidefinite. Combining
the inequality above with the bounds

∥D√
πMD√

π∥ = ∥D√
πID√

π diag(
1

1−π )D
√
πI ∗D√

π∥ ≤ (1− ∥π∥∞)−1∥D√
πID√

π∥2,
∥ diag(M)∥ = max

k
e∗kID√

π diag(
1

1−π )D
√
πI ∗ek ≤ (1− ∥π∥∞)−1max

k
∥e∗kID√

π∥2,

and our assumption that ∥π∥∞ ≤ 1/3 leads to (b). (b)✓

(55-57) We next specialise the general inequality from (b) to the three concrete matrices
needed in the proofs of Lemma 7-10. For the case H = I−Ψ∗Ψ, note that since D√

πΨ
∗ΨD√

π

is a positive semidefinite matrix we have

∥D√
πHD√

π∥ = ∥D√
πΨ

∗ΨD√
π − diag(D√

πΨ
∗ΨD√

π)∥ ≤ ∥D√
πΨ

∗ΨD√
π∥ = ∥ΨD√

π∥2.
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Further note that the k-th entry of e∗kH is zero, meaning

∥e∗kHD√
π∥ = ∥(e∗k − ψ∗

kΨ)D√
π∥ ≤ ∥ψ∗

kΨD√
π∥ ≤ ∥ΨD√

π∥.

So, as long as ∥ΨD√
π∥ ≤ 1/3, which holds in both regimes, we get

∥E[D−1√
π R

∗
IHI,IH

∗
I,IRID

−1√
π ]∥ ≤ 9/2 · ∥ΨD√

π∥4 + 3/2 · ∥ΨD√
π∥2

≤ (9/2 · 1/32 + 3/2) · ∥ΨD√
π∥2 = 2∥ΨD√

π∥2.

In case I = (ΨE − Z)∗Ψ = (ΦE − ZDα)
∗Ψ, we use

∥D√
πID√

π∥ ≤ ∥(ΦE − ZDα)D√
π∥ · ∥ΨD√

π∥ = (∥ΦD√
πE − ZD√

πDα∥) · ∥ΨD√
π∥

≤ (∥ΦD√
π∥ · ε2/2 + ∥ZD√

π∥) · ∥ΨD√
π∥.

Further since Ekk = ⟨ψk, zk⟩ and I− ψkψ
∗
k is an orthogonal projection we have

∥e∗kID√
π∥ ≤ ∥ψk⟨ψk, zk⟩ − zk∥ · ∥ΨD√

π∥
= ∥(ψkψ

∗
k − I)zk∥ · ∥ΨD√

π∥ ≤ ∥zk∥ · ∥ΨD√
π∥ ≤ ε · ∥ΨD√

π∥.

So, using that ε ≤
√
2, as long as ∥ΦD√

π∥ ≤ 1, we get

2 · ∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥

≤ (9∥ΦD√
π∥2 · ε4/4 + 9ε2∥ZD√

π∥+ 9∥ZD√
π∥2 + 3ε2) · ∥ΨD√

π∥2.
≤ (9 · ε2/2 + 18ε∥ZD√

π∥+ 9∥ZD√
π∥2 + 3ε2) · ∥ΨD√

π∥2

≤ (3∥ZD√
π∥+ 3ε)2 · ∥ΨD√

π∥2.

Finally note that ∥D√
πID√

π∥ = ∥D√
πI ∗D√

π∥. Combining this with the bound

∥e∗kI ∗D√
π∥ ≤ ∥ψk∥ · ∥(ΦE − ZDα)D√

π∥ ≤ ∥ΦD√
π∥ · ε2/2 + ∥ZD√

π∥. (84)

we get that again as long as ∥ΨD√
π∥ ≤ 1/3

∥E[D−1√
π R

∗
II

∗
I,III,IRID

−1√
π ]∥ ≤ (∥ΦD√

π∥ · ε2/2 + ∥ZD√
π∥)2 · (9/2 · ∥ΨD√

π∥2 + 3/2)

≤ (∥ΦD√
π∥ · ε2/2 + ∥ZD√

π∥)2 · 2,

which proves the third inequality. (55-57)✓

(c) We want to show that for a subset G of all supports of size S and a pair of d×K
matrices W = (w1 . . . , wK) and V = (v1, . . . , vK) we have

∥E[WR∗
IRIV

∗ · 1I(ℓ)1G(I)]∥ ≤ πℓ · (∥WD√
π∥ · ∥V D√

π∥+ ∥wℓ∥ · ∥vℓ∥) .

For ℓ ∈ I we can rewrite WR∗
IRIV

∗ = W diag(1I)V
∗ = W diag(1I\{ℓ})V

∗ + wℓv
∗
ℓ . Using

this split and that by Theorem 15(c) we have P({ℓ, k} ⊆ I) ≤ πℓπk yields

∥E[WR∗
IRIV

∗ · 1I(ℓ)1G(I)]∥
≤ ∥W E

[
diag(1I\{ℓ}) · 1I(ℓ)1G(I)

]
V ∗∥+ ∥wℓv

∗
ℓ ∥ · E [1I(ℓ)1G(I)]

≤ ∥WD√
π∥ · ∥D−1√

π E
[
diag(1I\{ℓ}) · 1I(ℓ)1G(I)

]
D−1√

π ∥ · ∥D√
πV

∗∥+ ∥wℓv
∗
ℓ ∥ · πℓ

= ∥WD√
π∥ · ∥V D√

π∥ ·max
k ̸=ℓ

π−1
k · P({ℓ, k} ⊆ I ∩ I ∈ G) + ∥wℓ∥ · ∥vℓ∥ · πℓ

≤ πℓ · (∥WD√
π∥ · ∥V D√

π∥+ ∥wℓ∥ · ∥vℓ∥)
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which completes the proof of (c). (c)✓

(d) We prove that for a general matrix I with zero diagonal we have

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥

≤ πℓ
1− πℓ

(
3∥D√

πI eℓ∥2 +max
k

I 2
kℓ +

9
2∥D√

πID√
π∥2 + 3

2 max
k
∥e∗kID√

π∥2
)
. (85)

Using (83) and the identity Iℓc = diag(1[K]\{ℓ}), we first rewrite

IℓcR∗
III,II ∗

I,IRIIℓc · 1I(ℓ) = (R∗
III,II ∗

I,IRI)⊙ (1[K]\{ℓ}1
∗
[K]\{ℓ}) · 1I(ℓ)

=
∑

k
(IkI ∗

k )⊙
(
1I\{k,ℓ}1

∗
I\{k,ℓ} · 1I(ℓ)1I(k)

)
.

As before an application of the Schur Product Theorem and Theorem 15(d) leads to

ES [IℓcR∗
III,II ∗

I,IRIIℓc · 1I(ℓ)] =
∑
k

(IkI ∗
k )⊙ ES

[
1I\{k,ℓ}1

∗
I\{k,ℓ} · 1I(ℓ)1I(k)

]
⪯ πS(ℓ)

1− πS(ℓ)
(IℓI ∗

ℓ )⊙ ES−1[1I1
∗
I ]

+
∑
k ̸=ℓ

πS(ℓ)

1− πS(ℓ)

(
Ik

πS(k)

1− πS(k)
I ∗

k

)
⊙ ES−2[1I1

∗
I ]

⪯ πS(ℓ)

1− πS(ℓ)

(
(IℓI ∗

ℓ )⊙ ES−1[1I1
∗
I ] +M ⊙ ES−2[1I1

∗
I ]
)
,

where again M = I diag( πS
1−πS

)I ∗. Finally, applying again Theorem 15 (e) and (b) and
similar simplifications as in the proof of (b) yield

∥ES [D
−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥

≤ πℓ
1− πℓ

(
∥(D−1√

π IℓI ∗
ℓ D

−1√
π )⊙ ES−1[1I1

∗
I ]∥+ ∥(D−1√

π MD−1√
π )⊙ ES−2[1I1

∗
I ]∥
)

≤ πℓ
1− πℓ

(3∥D√
πIℓI ∗

ℓ D√
π∥+ ∥ diag(IℓI ∗

ℓ )∥+ 3∥D√
πMD√

π∥+ ∥ diag(M)∥)

≤ πℓ
1− πℓ

(
3∥D√

πI eℓ∥2 +maxk I 2
kℓ +

9
2∥D√

πID√
π∥2 + 3

2 maxk ∥e∗kID√
π∥2
)
,

which together with our assumption that ∥π∥∞ ≤ 1/3 leads to (d). (d) ✓

(73-75) Finally, we specialise the general inequality from (d) to the three concrete cases
needed in the proofs of Lemma 7-10. Reusing the bounds for H from the corresponding
special case of (b) as well as H2

kℓ = |⟨ψk, ψℓ⟩|2 ≤ µ(Ψ)2 and the assumption ∥ΨD√
π∥ ≤ 1/3,

yields

∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥
≤ 3/2 · πℓ ·

(
3 · ∥ΨD√

π∥2 + µ(Ψ)2 + 9/2 · 1/9 · ∥ΨD√
π∥2 + 3/2 · ∥ΨD√

π∥2
)

≤ 3/2 · πℓ ·max{µ(Ψ)2, ∥ΨD√
π∥2} · 6 ≤ 9 · πℓ ·max{µ(Ψ)2, ∥ΨD√

π∥2}.
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To prove the other two inequalities note that for I =W ∗V we get

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥ ·
1− πℓ
πℓ

≤ 3∥D√
πW

∗vℓ∥2 +max
k

(w∗
kvℓ)

2 + 9∥D√
πW

∗V D√
π∥2 + 3max

k
∥w∗

kV D√
π∥2

≤
(
max
k
∥wk∥2 + 3∥WD√

π∥2
)
·
(
max

ℓ
∥vℓ∥2 + 3∥V D√

π∥2
)
. (86)

Applying this to I = (ΨE − Z)∗Ψ and reusing the bounds for the corresponding special
case of (b) with ∥ΨD√

π∥ ≤ 1/8 yields

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥
≤ 3/2 · πℓ ·

[
3 · (∥ΨD√

π∥ · ε2/2 + ∥ZD√
π∥)2 + ε2

]
·
(
1 + 3 · ∥ΨD√

π∥2
)

≤ 3/2 · πℓ · δ2 ·
[
3 · (∥ΨD√

π∥ · ε/2 + 1)2 + 1
]
·
(
1 + 3 · ∥ΨD√

π∥2
)
≤ 9 · πℓ · δ2.

Due to the symmetry of (86) this also proves the case of I ∗. (73-75)✓
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