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Abstract

With ever growing amounts of data, the task of finding and using underlying structure is be-

coming more and more important. One influential insight, which modern signal processing

tasks like compressed sensing or dictionary learning rely on, is that many data types allow

some kind of sparse representation. So given a suitable basis, a small number of elements is

sufficient to approximate any given signal.

In the first part of this thesis we derive technical results allowing us to analyse compressed

sensing and dictionary learning in more general settings than previously possible. Concretely,

we derive tail bounds for the operator norm of random submatrices with non-uniformly dis-

tributed supports, essentially showing that for a well-conditioned matrix most submatrices

behave like an isometry.

Compressed sensing consists of reconstructing a sparse signal from a small number of linear

measurements. If these measurements are chosen from a bigger set of possible linear mea-

surements via sampling from a (possibly non-uniform) probability distribution, this is called

(variable density) subsampling. In the next part of the thesis we derive an optimal subsam-

pling density, guaranteeing recovery in a very general setting. More precisely, we show how

the optimal subsampling density depends on the structure of the sensing matrix and on the

distribution of the sparse supports, which can easily be estimated from data. This leads to a

simple formula for subsampling densities achieving state of the art performance in numerical

experiments. Our approach also extends to structured acquisition, where instead of isolated

measurements, blocks of measurements are taken.

In some applications the sparsifying basis is not known or one wants to find a better one.

Learning such a basis from data is called dictionary learning. In the third part of this thesis

we study the convergence behaviour of two of the most popular dictionary learning algorithms

- the Method of Optimal Directions (MOD) and the Approximate K-SVD (aK-SVD). By again

using our bounds for operator norms of non-uniformly distributed submatrices, we are able to

use a very general non-uniform signal model and derive sufficient conditions for the conver-

gence of these algorithms, improving greatly upon existing results.

In the last part we analyse the performance of two sparse approximation algorithms, Orthogo-

nal Matching Pursuit (OMP) and Thresholding in the case in which only a perturbed version

of the basis is known. Both theory and numerical simulations show that the computationally

lighter Thresholding algorithm is a viable alternative to OMP in applications such as dictionary

learning.
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Chapter 1

Introduction

Sparse representations are crucial for modern signal processing tasks like denoising, compres-

sion, compressed sensing, inpainting and many more. When talking about sparsity, we usually

mean that a signal is either directly sparse, i.e. has only a small number of non-zero entries,

or has a sparse representation in a suitable basis or overcomplete system, meaning that it can

be written as a linear combination of a small number of elements.

Sparsity for example lies at the heart of modern compression algorithms like the JPEG and

JPEG2000 standards which transform images into a different basis before using a threshold to

keep only the largest coefficients, thus saving space when storing data. Frequently used trans-

forms (especially for image data) are the discrete cosine transform (DCT) or some wavelet

transform, for which it is well known that the resulting representations are approximately

sparse. These two transforms correspond to orthogonal bases, which are very easy to handle.

Unfortunately, in many applications we have to resort to overcomplete systems, called dictio-

naries, to get decent sparse representations for a particular signal class.

Formally, we represent a signal y ∈ Rd as a linear combination of S ≪ d elements of

Φ = (ϕ1, · · · , ϕK) ∈ Rd×K with d < K, via

y =
∑
i∈I

ϕixi = ΦIxI s.t. |I| = S,

where ΦI denotes the restriction to the columns indexed by I, called the support.

Nevertheless, such a representation in a dictionary also has some drawbacks. For example

finding the vector x and its support I given the dictionary Φ and signal y is combinatorial

in nature. So to avoid searching through all possible sets I, suboptimal routines are typically

used. This is called sparse approximation and some of the most popular sparse approximation

algorithms are Orthogonal Matching Pursuit (OMP), Thresholding or Basis Pursuit (BP).

Deriving sufficient conditions for these algorithms to successfully recover x and I given the

dictionary Φ and signal y will be a big part in the first part of the thesis. We will see that

success of these algorithms depends to a large extend on bounding the extreme singular values

of ΨI .

In the next part we will analyse a close cousin of sparse approximation, compressed sens-

ing. There, we usually talk about a measurement matrix A which, contrary to using a fixed

dictionary Φ, has some design choices. We try to recover an unknown signal from as few

measurements as possible, where by measurements we mean a linear map A ∈ Rm×d, taking

a signal x ∈ Rd and mapping it to a vector y ∈ Rm via y = Ax. As we want to minimise the

number of measurements, we usually havem≪ d and thus the above system of linear equations
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is underdetermined, meaning there is either no solution or infinitely many. So by assuming

that x is sparse (or sparse in a orthogonal basis) we hope to get uniqueness by searching for

the sparsest vector, such that the linear equations are satisfied. So similar in spirit as sparse

approximation we want to solve

x̂ = argmin ∥x∥0 s.t. y = Ax.

As this is non-convex and in general NP-hard, compressed sensing traditionally focuses on the

convex relaxation of this minimisation problem — replacing the ℓ0-norm by the ℓ1-norm and

instead trying to solve

x̂ = argmin ∥x∥1 s.t. y = Ax.

Finding conditions on the matrix A and lower bounds on the number of measurements m

such that the above minimisation problem recovers x with a given sparsity level S are some

of the main research goals in the vast field of compressed sensing [17, 32]. Some of the best

theoretical lower bounds on m in terms of the sparsity level S and signal dimension d are

achieved by using either a Gaussian or Bernoulli random matrix. While such random designs

also yield very good practical performance, in applications like Computed Tomography (CT)

or Magnetic Resonance Imaging (MRI) such random measurements are not possible due to

existing hardware constraints.

These applications inspired the setup that we will look at in this thesis, where the sensing

matrix A ∈ Cm×K is constructed by choosing m rows from some bigger matrix A0 ∈ CK×K

which represents the set of possible linear measurements. The question then becomes how to

best spend this budget of m rows, i.e. how to pick the ”best” linear measurements from this

set of possible linear measurements. Usually these strategies are characterised via a (possibly

non-uniform) probability distribution that tells us which row of A0 should be picked with which

probability. This setting is called (variable density) subsampling and we will analyse it in the

next part of the thesis.

All of the above applications assume knowledge of a basis Φ in which our given signals have a

sparse representation. Yet not for all signal classes such a basis is known, or in some cases we

would like to have a better one. For the signal class of images it is for example well known that

they can be sparsely represented in the 2D DCT basis, yet when dealing only with a certain

subclass (think of images of trees or knees), we would like to find a better dictionary that is even

more adapted to the data we want to represent. This process of learning a dictionary from data

is called dictionary learning. Formally we try to decompose a data matrix Y ∈ Rd×N , where

each column corresponds to one signal, into a dictionary Φ ∈ Rd×K and a sparse coefficient

matrix X ∈ RK×N such that

Y ≈ ΦX and X sparse.

There exist many algorithms to try and solve this problem. The most popular among them

belong to the class of alternating minimisation algorithms, which alternate between updating

the dictionary Φ, while keeping the sparse coefficients X fixed, and vice versa. The next part of

this thesis will analyse the convergence behaviour of two of the most popular such alternating

minimisation dictionary learning algorithms - the Method of Optimal Directions (MOD) and

a variation of the Approximate K-SVD (aK-SVD). When analysing these algorithms, one big

hurdle is to control the sparse approximation step between the dictionary updates. Since alter-

nating minimisation algorithms rely heavily on the choice of sparse approximation algorithm,

we finish this thesis by arguing that Thresholding is a viable alternative to OMP in settings

where only a perturbed version of the generating dictionary is available. This is the reason why

we analyse MOD and K-SVD with Thresholding as sparse approximation algorithm instead of

the computationally more complex OMP algorithm.
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Chapter 1. Introduction

1.1. Outline

This thesis will be structured as follows. Section 1.2 will define the setting and commonly used

notation.

In Chapter 2 we will see that in order to get theoretical results for sparse approximation

algorithms that reflect practical performance, we have to control the operator norms of the

submatrices ΦI . Deterministic bounds on ∥Φ∗
IΦI − I∥2,2 for arbitrary supports I are, unfortu-

nately, only of limited use, since they are very restrictive with regards to the matrix Φ. This

led to the emergence of results where the support I is chosen uniformly at random amongst

all possible subsets with cardinality S, thus deriving bounds on ∥Φ∗
IΦI − I∥2,2 for most sup-

ports I. These early results yielded powerful concentration inequalities for the operator norms

of these random submatrices yet they rely on the assumption that the support I is chosen

uniformly at random. Unfortunately, to model more general signal classes we show that it is

necessary to analyse the operator norms of non-uniformly selected random submatrices. Thus

in Chapter 2 we will derive concentration inequalities for the operator norms of non-uniformly

selected submatrices. These results, for instance, allow us to conduct an analysis of the average

case performance of Thresholding, Orthogonal Matching Pursuit and Basis Pursuit under very

general model assumptions.

In Chapter 3 we will turn to compressed sensing in a subsampling setup, where the sensing

matrix A is constructed by sampling rows form a bigger matrix A0 comprising all possible

linear measurements. Whereas early results in compressed sensing theory focused mainly on

uniform sampling methods, more recent results showed that, apart from the structure of the

matrix A0, the optimal subsampling strategy should also take the sparsity pattern of the sig-

nal into account. The obvious caveat of these results is that in most practical application this

oracle-like knowledge remains elusive.

We close this gap by characterising the structured sparsity via a probability distribution p on

the supports of the sparse signals, allowing us to again derive optimal subsampling strategies.

Given access to a dataset of similar signals, the probability distribution p can be easily es-

timated and we show that this technique achieves state of the art performance in numerical

experiments. In practice, instead of isolated measurements (single rows of A0), often blocks of

measurements are taken. We extend our results to this setting and show how to again derive

an optimal sampling strategy. Once again, our knowledge of how to bound submatrices with

non-uniformly distributed sparse supports is the key to the theoretical results in this chapter.

In Chapter 4 we will derive sufficient conditions for the dictionary learning algorithms MOD

and aK-SVD to recover an underlying ground truth under much more relaxed conditions than

previously thought necessary. We will show that if the distance maxi ∥ψi−ϕi∥2 between the gen-

erating dictionary Φ, i.e. the ground truth, and the initialisation Ψ is smaller than 1/ log(K),

then both dictionary learning algorithms with Thresholding as the sparse approximation algo-

rithm will recover the generating dictionary. This in itself is already a huge improvement upon

existing results, but the true strength of our result is to expand this radius of convergence to

distances close to
√
2, if Φ and Ψ exhibit a certain structure, where each element in Ψ only

points to one element of Φ. This confirms intuition that even for very large distances between

the initialisation and the generating dictionary, as long as there is an obvious choice for each

element in the initialisation to converge to, it will find the solution. We will further use a very
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1.2. Notation

general signal model with non-uniformly distributed sparse supports by again using the results

about the operator norms of random submatrices derived in Chapter 2.

In Chapter 5 we study the performance of OMP in comparison to Thresholding in the case

in which only a perturbed version of the generating dictionary is known. Both theory and

numerical simulations show that even for reasonably small perturbations, the advantage of

the computationally more complex OMP algorithm disappears. Moreover, simulations also

indicate that Thresholding is better at avoiding spurious local minima in the optimisation

landscape of dictionary learning. This is the reason why we only analysed Thresholding in

the sparse approximation step in the dictionary learning algorithms in the previous chapter,

even thought the original MOD and K-SVD algorithms used OMP as sparse approximation

algorithm.

Finally, Chapter 6 finishes this thesis with an outlook on possible future research directions

and a discussion of open problems.

1.2. Notation

A quick note on the notation used throughout this text. For an integer K, we write K :=

{1, · · · ,K}. The vectors (ei)1≤i≤K denote the vectors of the canonical basis of RK . For a

matrix A ∈ Cd×K , we denote by A:,k (resp. Ak,:) the k-th column (resp. row) of A and by AJ,L

the submatrix with rows indexed by set J ⊆ {1, · · · , d} and columns indexed by set L ⊆ K. If

we talk about certain columns of a matrix A, we often drop the second index, i.e. instead of

A:,k we will write Ak and instead of A:,J , we will write AJ . By A∗ we denote the conjugate

transpose of the matrix A and by A∗
k ∈ R1×d, the conjugate transpose of the k-th column of A.

We denote by A†
J the Moore-Penrose pseudoinverse of the matrix AJ and by P (AJ) := AJA

†
J

the projection onto the column span of AJ .

For 1 ≤ p, q, r ≤ ∞ we set

∥A∥p,q := max
∥x∥q=1

∥Ax∥p.

So for B ∈ CK×m we get ∥AB∥p,q ≤ ∥A∥q,r∥B∥r,p and ∥Ax∥q ≤ ∥A∥q,p∥x∥p. Frequently

encountered quantities are

∥A∥∞,2 = max
k∈{1,...,d}

∥Ak∥2 and ∥A∥2,1 = max
k∈{1,...,K}

∥Ak∥2,

which denote the maximum ℓ2-norm of a row and the maximum ℓ2-norm of a column of A

respectively. Note that ∥A∥∞,2 = ∥A∗∥2,1. Further note that ∥A∥∞,1 simply is the maximum

absolute entry of the matrix A. For ease of notation we sometimes write ∥A∥ = ∥A∥2,2 for the

operator norm which corresponds to the largest singular value of A. For a vector v ∈ Rd, we

denote by v := ∥v∥min := mini |vi| the smallest absolute entry of v and ∥v∥max := ∥v∥∞ the

biggest absolute entry of v. We write x ≲ y if there exists a constant c > 0, such that x ≤ cy.
We write vec : Cd×d 7→ Cd2 for the vectorisaton operation that transforms a complex matrix

into a complex vector by stacking the columns on top of each other and by vec−1 its inverse.

Further, for any vector v we denote by Dv resp. diag(v) the diagonal matrix with v on the

diagonal and abbreviate Dv·w := Dv ·Dw. Finally we write ⊙ for the Hadamard Product (or

pointwise product) of two matrices of the same dimension.

In the following we will often consider dictionaries Φ and Ψ, i.e., a collection of K unit norm

vectors ϕi, ψi ∈ Rd, called atoms, and define the coherence of a dictionary Φ as µ(Φ) :=

12



Chapter 1. Introduction

maxi ̸=j |⟨ϕi, ϕj⟩|. For a dictionary Φ and an index set I of size S we define ϑ(ΦI) = ∥Φ∗
IΦI −

IS∥2,2. Note that if ϑ(ΦI) < 1 and therefore ΦI has full rank, we have for the projection

P (ΦI) = ΦI(Φ
∗
IΦI)

−1Φ∗
I . If it is clear from context, we will write ϑ instead of ϑ(ΦI) and µ

instead of µ(Φ).

As was noted in the introduction we want the supports to follow a non-uniform distribution,

allowing some columns, to be picked more frequently than others. For a set K we denote by

P(K) the power set (set of all subsets) of K. We are going to use the following two sampling

models which define two discrete probability measures on P(K) that allow us to model non-

uniform distributions for our supports.

Definition 1.1 (Poisson sampling) Let δj denote a sequence of K independent Bernoulli

0-1 random variables with expectations pj such that
∑K

j=1 pj = S. We say the support I follows

the Poisson sampling model, if I := {i | δi = 1}. Each support I ⊆ K is chosen with probability

PB(I) =
∏
i∈I

pi
∏
j /∈I

(1− pj). (1.1)

Supports following a Poisson sampling model have (by definition of the Bernoulli r.v.) car-

dinality S on average. This comes with the big advantage that the probability of one atom

appearing in the support is independent of the others, allowing us to use concentration inequal-

ities for sums of independent random matrices later on. The drawback of this model is that

the supports are not exactly S sparse. This can be achieved by keeping only those supports

that have cardinality S and throwing away the rest. This amounts to simply conditioning the

above Poisson sampling model on the event that exactly S of the Bernoulli r.v. are equal to

1, leading to our second support distribution model.

Definition 1.2 (Rejective sampling - Conditional Bernoulli) Let δj denote a sequence

of K independent Bernoulli 0-1 random variables with expectations pj such that
∑K

j=1 pj = S

and denote by P the probability measure of the corresponding Poisson sampling model. We

say our support I follows the rejective sampling model, if each support I ⊆ K is chosen with

probability

PS(I) := PB(I | |I| = S) =

{
c
∏

i∈I pi
∏

j /∈I(1− pj) if |I| = S

0 else
, (1.2)

where c is a constant to ensure that PS is a probability measure.

The distributions of the supports in the above two sampling models are uniquely defined

by the expectations of the Bernoulli random variables pℓ. For more information on Poisson

and rejective sampling, we refer the interested reader to [42]. We define the square diagonal

matrix D√
p := diag((

√
pℓ)ℓ) and set the inclusion probabilities in the rejective sampling model

πℓ := PS(ℓ ∈ I). Note that πℓ ̸= pℓ except for the case where πℓ = S/K for all ℓ. This is

a result of the rejective sampling model with its intrinsic dependence. The square diagonal

matrix D√
π := diag((

√
πℓ)ℓ) will also be used often throughout this thesis. We further set

RI := (II)∗ ∈ R|I|×K , allowing us to write AI = AR∗
I . This also allows us to embed a matrix

AI ∈ Rd×S into Rd×K by zero-padding via AIRI ∈ Rd×K . We denote by 1I ∈ RK the vector,

whose entries indexed by I are 1 and zero else.

Let DI be the square diagonal selector matrix whose diagonal entries are the δℓ, i.e., set

DI := diag((δℓ)ℓ). Note that there is a one to one correspondence between selector matrices

13



1.2. Notation

and index sets, i.e., (DI)ℓ,ℓ = 1 ⇔ ℓ ∈ I. Thus, any probability measure on the index sets I

induces a probability measure on the set of selector matrices. Note also that we have

DI = R∗
IRI = diag(1I).

Further, for A ∈ RK×K and j, k ∈ K let A⃗j,k = Aj,kej ⊗ ek be the K ×K matrix with only

non-zero entry Aj,k. This allows us to write

DIADI =
∑

i,j δiδjA⃗i,j .

Note that for a set I with |I| = S and A ∈ Rd×K , we have AI ∈ Rd×S and ADI ∈ Rd×K .

However, as all columns of ADI that are not in I are zero, the operator norms ∥AI∥ and ∥ADI∥
coincide.

14



Chapter 2

Submatrices with non-uniformly
selected random supports and
insights into sparse approximation

The following chapter essentially is a reprint of the article

S. Ruetz and K. Schnass. Submatrices with nonuniformly selected random sup-

ports and insights into sparse approximation. SIAM Journal on Matrix Analysis

and Applications, 42(3):1268–1289, 2021

https://doi.org/10.1137/20M1386384

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

In this chapter we derive concentration inequalities for the operator norms of non-uniformly

selected random submatrices. This is especially important in sparse approximation and dic-

tionary learning, which will become apparent in later parts of the thesis where we will make

repeated use of the results derived in this chapter. After introducing and discussing some

existing results, we provide our new concentration inequalities and show a few applications.

2.1. Introduction

For convenience and motivation, we recall the basic concept of sparse approximation. In sparse

approximation, the goal is to find a sparse solution to an underdetermined system of linear

equations. A signal y ∈ Rd is assumed to be a linear combination of a small number S ≪ d of

elements ϕi, called atoms, out of a larger set, called the dictionary. Denoting the dictionary

by Φ = (ϕ1, . . . , ϕK) ∈ Rd×K and by ΦI the restriction to the columns indexed by the set I,

called the support, one assumes that

y ≈
∑
k∈I

ϕkxk = ΦIxI s.t. |I| = S.

The sparse approximation problem amounts to finding the vector x and its support I given

the dictionary Φ and signal y. In general, this is a NP-hard problem, hence sparse approxima-

15
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Figure 2.1: Left: Original image from which the patches are extracted. Middle: Relative

frequency of wavelet coefficients above threshold (blue) – average frequency (red) on a log

scale. Right: Locations of non-zeros coefficients in the 2D Haar-Wavelet basis – the higher the

row or column index the smaller the corresponding wavelet.

tion algorithms such as Thresholding, Orthogonal Matching Pursuit (OMP) and Basis Pursuit

(BP) were proposed. It turns out that in order to prove support recovery guarantees for these

algorithms, information about the extreme singular values of ΦI is needed.

Let ∥·∥2,2 denote the operator norm and I the identity matrix. Deterministic methods to bound

∥Φ∗
IΦI− I∥2,2 for arbitrary supports I are of limited use since the restrictions on the dictionary

Φ are too stringent. This started the study of random collections of columns of the dictionary

Φ. In [82] it was first shown that under rather mild conditions on the dictionary Φ, most sub-

dictionaries ΦI are close to an isometry, i.e., ∥Φ∗
IΦI − I∥2,2 ≤ ϑ0 < 1, with later improvements

in [25]. So far, all available results on the conditioning of random subdictionaries rely on the

supports I to be drawn from the uniform distribution. Unfortunately this assumption is rarely

satisfied for practically relevant signal classes, where some atoms of the underlying dictionary

are usually more likely to appear in a sparse representation than others.

To demonstrate this non-homogeneity, we conduct the following small experiment. We take

the 2D Haar-Wavelet decomposition of all normalised 64× 64 patches from the image Peppers

and apply a threshold1 of
√

log(d)/(36d) for d = 642 to the coefficients to get sparse approxi-

mations. We then count how often each atom has a non-zero coefficient to get a proxy for its

inclusion probability in a sparse support I. 2.1 shows the relative frequency of each element

of the 2D Haar-Wavelet basis. It comes as no surprise that low frequency (large) wavelets are

much more likely to appear in the sparse supports than high frequency (small) wavelets. So

the supports of the sparse signals exhibit a non-uniform structure which previous results on

the conditioning of random subdictionaries do not cover. We try to close this gap by defining

two non-uniform support distributions and deriving tail bounds on the norms of the resulting

random submatrices. This allows us to derive recovery guarantees of the sparse supports for a

larger class of practically relevant signals.

Prior work: As mentioned above, Tropp [82] and Chrétien and Darses [25] derived con-

centration inequalities for the operator norm of random submatrices with uniformly distributed

supports. These results were applied to BP showing that BP recovers the correct support and

coefficients under rather mild conditions on the dictionary [83]. For OMP, similar results were

developed in [73], whereas for Thresholding average case results appeared in [74].

In [48] the dictionary Φ is assumed to be a concatenation of two dictionaries Φ1 and Φ2, i.e.,

1. The threshold is inspired by the expected size of the largest inner product of a wavelet with noise drawn
uniformly at random from the unit sphere.
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Chapter 2. Submatrices with non-uniformly random supports

Φ = (Φ1,Φ2). The authors derive a concentration inequality on the extreme singular values

of submatrices that consist of a fixed set of columns with cardinality n1 of the first dictionary

and a random set of columns n2 of the second dictionary. This allows to model signals where

some atoms are known to be in the support while some others are picked uniformly at random.

The idea of using the structure of sparse signals to improve recovery of the sparse coefficients

can also be found in the field of compressed sensing (CS). The aim in compressed sensing is to

recover a sparse signal y ∈ Rd from an incomplete set of linear measurements z = Ay, where

A ∈ Rm×d and m≪ d, [18, 30]. The signal y is assumed to be sparse or compressible in some

(orthonormal) basis or frame Φ, i.e., y = Φx for a sparse coefficient vector x.

From a theoretical point of view the best measurement matrices A, i.e., those achieving the

smallest m for a given sparsity level S, are random matrices. Unfortunately in many prac-

tical applications it is not possible or efficient to use random matrices, since they cannot

be realised by the underlying physical measurement process, such as in compressed magnet

resonance imaging (MRI). Instead one is given an (often orthonormal) measurement matrix

Ψ ∈ Rd×d and has to find a subsampling pattern Ω ⊆ {1, ..., d} which selects m rows of Ψ,

so that for A = PΩΨ the signal y and the coefficients x can be reliably reconstructed from

z = Ay = AΦx = Āx.

As in sparse approximation, rather strong assumptions on the matrix AΦ = Ā are needed in

order to guarantee recovery for all sparse x. In [19] the elements of Ω were assumed to be chosen

uniformly at random in order to employ probabilistic arguments to derive sufficient conditions

for recovery for relatively small m. Over the years, various different subsampling strategies

– most of them highly non-uniform – were proposed (see for example [13, 22, 60, 2, 46, 14]).

Underlying the success of these variable density sampling strategies is the highly non-uniform

structure of the sparse supports. So it was shown that previous lower bounds on the size of

m are too pessimistic and performance can be improved if the subsampling pattern takes the

support structure of the sparse signals into account [2, 46, 14].

Contribution: We derive tail bounds for the operator norm of non-uniformly chosen sub-

matrices. The supports are assumed to follow either a Poisson sampling model or a rejective

sampling model, thus allowing us to model a large class of non-uniform distributions. Our

results rely on a generalisation of a Theorem by Chrétien and Darses [25]. The main tool

to handle non-uniformly distributed S-sparse supports is a kind of Poissonisation argument

where we provide a generalised version of Lemma 4.1 of [42]. We apply these results to derive

sufficient conditions for sparse approximation to work with high probability for Thresholding,

OMP and BP. In the CS setup this analysis provides a criterion to decide between two possible

measurement matrices A1 and A2 depending on the frequency of the basis elements. Further,

if there is no design freedom for the dictionary or CS matrix, we show how to incorporate

this prior information about the coefficient distribution into the algorithms using the ideas of

preconditioning and sensing dictionaries.

Organisation: In Section 2.2 we state our results for norms of non-uniformly distributed

random submatrices and apply those concentration inequalities to sparse approximation in

Section 2.3. Finally, we incorporate this knowledge in the construction of special sensing

dictionaries in Section 2.4 and show how they improve performance.

2.2. Main results

We now present our main results on submatrices whose supports are sampled from a non-

uniform distribution. We begin by stating the concentration inequality for the operator norm

of non-uniformly picked random submatrices, before turning to some special cases arising in
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2.2. Main results

sparse approximation. Then we state a concentration inequality for the maximal row norm of

random column-submatrices. Lastly we state and proof a kind of Poissonisation argument, of

independent interest, which is key for our proofs. Note that we state our results only for the

rejective sampling model, but they hold for the Poisson sampling model as well – see 2.6.

2.2.1 Operator norm of random submatrices

The aim is to get a tail bound for the random variable ∥HI,I∥2,2, where I is distributed

according to the models introduced above and H is a matrix with zero diagonal. As expected,

the result shows how the more frequently picked entries have a higher impact on the operator

norm than less important ones.

Theorem 2.1 Let H ∈ CK×K be a matrix with zero diagonal and assume I ⊆ K is chosen

according to the rejective sampling model with probabilities p1, . . . , pK such that
∑K

i=1 pi = S.

Further let D√
p denote the corresponding weight matrix. Then, for all r ≥ 2e2∥D√

pHD√
p∥2,2

PS

(
∥HI,I∥2,2 ≥ r

)
≤ 216K exp

(
−min

{
r2

4e2∥HD√
p∥2∞,2

,
r2

4e2∥D√
pH∥22,1

,
r

2∥H∥∞,1

})
.

Proof [Proof outline] We follow the proof that appeared in Chrétien and Darses [25] with

some minor changes to account for the non-uniformly distributed supports and the extension

to non-symmetric matrices. Their proof consists of roughly three steps. First they bound the

failure probability of the rejective sampling model by the independent Poisson sampling model,

which necessitates Lemma 2.5

PS (∥DIHDI∥2,2 ≥ r) ≤ 2PB (∥DIHDI∥2,2 ≥ r) .

Then they use a decoupling argument to make the selection of rows and columns independent,

i.e.,

PB (∥DIHDI∥2,2 ≥ r) ≤ 72PB

(
∥DIHD

′
I∥2,2 ≥ r/2

)
,

where D′
I is an independent copy of DI . Then they apply the matrix Chernoff inequality three

times to finish the proof. Our proof in the non-uniform, non-symmetric case follows the above

outline very closely. The main difficulty lies in bounding the rejective model by the Poisson

model, which is why we had to provide Lemma 2.5. The second and third steps are straight-

forward extensions of their argument. For the sake of completeness we provide a detailed proof

in Section 2.5.

Special cases – hollow (cross)-Gram matrices

In this subsection we look at the special case H = Φ∗Φ− I that appears naturally in the sparse

approximation framework. Previous results showed that success of recovery depends on the

coherence µ := maxi ̸=j |⟨ϕi, ϕj⟩| and the conditioning of the subdictionary ΦI , i.e.,

ϑI := ∥Φ∗
IΦI − I∥2,2 = max

{
λ2max(ΦI)− 1, 1− λ2min(ΦI)

}
.

Here λ2max(ΦI) and λ
2
min(ΦI) denote the largest and smallest eigenvalue of Φ∗

IΦI respectively.

In this setting, the matrix H := Φ∗Φ − I is called the hollow Gram matrix and we call

µ := maxi ̸=j |⟨ϕi, ϕj⟩| = ∥H∥∞,1 the coherence. Applying Theorem 2.1 to this matrix, we get

the following bound on ϑI .
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Chapter 2. Submatrices with non-uniformly random supports

Corollary 2.2 Let Φ ∈ Cd×K be a dictionary with unit norm columns and assume I ⊆ K
is chosen according to the rejective sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S. Further let D√
p denote the corresponding weight matrix. Then, for all r ≥

2e2∥D√
pHD√

p∥2,2

PS

(
∥Φ∗

IΦI − I∥2,2 ≥ r
)
≤ 216K exp

(
−min

{
r2

4e2∥HD√
p∥2∞,2

,
r

2µ

})
.

In this setting H is symmetric, hence H∗D√
p = HD√

p. The result can be used to bound

PS

(
∥ΦI∥2,2 ≷

√
1± r

)
and PS

(
∥(Φ∗

IΦI)
−1∥2,2 ≥

1

1− r

)
.

This comes in handy when trying to prove recovery guarantees for sparse approximation algo-

rithms later in this text.

Another frequently arising quantity is the cross-Gram matrix H := Ψ∗Φ − diag(Ψ∗Φ), where

Φ and Ψ are dictionaries. In this setting, we call µ̂ := maxi ̸=j |⟨ϕi, ψj⟩| the cross-coherence.

Applying Theorem 2.1 yields

Corollary 2.3 Let Ψ,Φ ∈ Cd×K be dictionaries with unit norm columns and assume I ⊆
K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S. Further let D√
p denote the corresponding weight matrix. Then, for all r ≥

2e2∥D√
pHD√

p∥2,2

PS

(
∥HI,I∥2,2 ≥ r

)
≤ 216K exp

(
−min

{
r2

4e2∥HD√
p∥2∞,2

,
r2

4e2∥D√
pH∥22,1

,
r

2µ̂

})
.

Note that in contrast to Subsection 2.2.1 the matrix H is not symmetric any more, hence we

need to control both ∥HD√
p∥∞,2 and ∥D√

pH∥2,1.
In contrast to previous works the above results are in terms of the maximal row norm of the

weighted Gram matrix. Using the bounds

∥HD√
p∥∞,2 ≤ ∥Ψ∗ΦD√

p∥∞,2 ≤ ∥Ψ∗∥∞,2∥ΦD√
p∥2,2 = ∥ΦD√

p∥2,2,
∥D√

pH∥2,1 = ∥H∗D√
p∥∞,2 ≤ ∥Φ∗∥∞,2∥ΨD√

p∥2,2 = ∥ΨD√
p∥2,2,

∥D√
pHD√

p∥2,2 ≤ 2∥ΨD√
p∥2,2∥ΦD√

p∥2,2

one would get bounds similar in spirit and appearance to [25, 82].

We stick to the quantities ∥HD√
p∥2∞,2 and ∥D√

pH∥22,1 to see how the weights of the distribution

interact with the structure of H. Intuitively the above results state that the more frequently

an atom is picked, the less coherent it should be to all the other atoms in order for a random

submatrix to be well-conditioned.

The generality of this result allows for pi ∈ [0, 1], which thus includes models where some atoms

are already known to be in the support and some to not appear at all. This allows for models

where a dictionary Φ is a concatenation of two dictionaries Φ1 and Φ2, i.e., Φ = (Φ1,Φ2) and

the submatrix of interest consists of a fixed set of columns with cardinality n1 of the first

dictionary and a random set of columns n2 of the second dictionary. Such a scenario can easily

be modeled by setting the pi and the weight matrix D√
p accordingly and would yield similar

results to [48].
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2.2.2 Maximum row norm of a random restriction

Another frequently encountered random variable in sparse approximation is the maximal row

norm ∥HI∥∞,2. Given a weight matrix D√
p, the following Lemma states that one can expect

this quantity to be approximately of size ∥HD√
p∥∞,2. This can be significantly smaller than

the worst case maxi,j |Hi,j |
√
S for |I| ≤ S, depending on the structure of H and D√

p. Plugging

in H = Ψ∗Φ − diag(Ψ∗Φ) we again see that the more frequently picked atoms should have

smaller coherences in order for ∥HD√
p∥∞,2 to be small. This result is an integral part of the

proof of Theorem 2.1 and hence we defer its proof to Section 2.5.

Lemma 2.4 Let H ∈ RK×K be some matrix. Assume I ⊆ K is chosen according to the

rejective sampling model with probabilities p1, . . . , pK such that
∑K

i=1 pi = S. Further let D√
p

denote the corresponding weight matrix. Then, for all v > 0

PS (∥HI∥∞,2 ≥ v) ≤ 2K

(
e
∥HD√

p∥2∞,2

v2

) v2

∥H∥2∞,1

.

2.2.3 Poissonisation argument in the non-uniform case

As already mentioned, we have to bound the failure probability under the rejective sampling

model by the failure probability under the Poisson sampling model in order to apply concentra-

tion inequalities for sums of independent random variables. In the uniform case the following

lemma is not needed, as one can argue that the supports can also be sampled by drawing one

atom after the other to get a uniform support distribution; see Claim (3.29) p. 2173 in [16].

For the non-uniform case it is not that easy. Lemma 4.1 of [42] almost provides the result that

we need, but has too restrictive assumptions on the expectations pi. Therefore we prove2 the

following result which does not have any constraints on the expectations pi.

Lemma 2.5 (Poissonisation) Denote by PB the probability measure corresponding to the

Poisson sampling model (1.1) and by PS the probability measure corresponding to the rejective

sampling model (1.2) – both with the same weight matrix D√
p. Let f : P(K) 7→ {0, 1} be such

that for all I, J ∈ P(K)

f(I) ≤ f(J) if I ⊆ J.

Then for all I ⊆ K we have PS (f(I) = 1) ≤ 2 PB (f(I) = 1).

Proof Note that the conditions on f imply that if f(J) = 0 for some J , then f(I) = 0 for all

I ⊂ J . We start by showing that for 0 ≤ T ≤ K − 1 we have

PB

(
f(I) = 1

∣∣ |I| = T
)
≤ PB

(
f(I) = 1

∣∣ |I| = T + 1
)
.

Expanding the conditional probability we get∑
I:|I|=T f(I)PB(I)∑

I:|I|=T PB(I)
≤
∑

J :|J |=T+1 f(J)PB(J)∑
J :|J |=T+1 PB(J)

,

which is equivalent to∑
I:|I|=T

f(I)PB(I)
∑

J :|J |=T+1

PB(J) ≤
∑

J :|J |=T+1

f(J)PB(J)
∑

I:|I|=T

PB(I). (2.1)

2. The result might be known but extremely well hidden, thus forcing us to prove it.
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Chapter 2. Submatrices with non-uniformly random supports

Now the crucial step is to see that we can partition these sums in a special way. For a pair

(I, J), by definition of the Poisson sampling model, we can write PB(I)PB(J) in the following

way

PB(I)PB(J) =
∏
i∈I

pi
∏
j /∈I

(1− pj)
∏
i∈J

pi
∏
j /∈J

(1− pj) =
∏

i∈I∩J
p2i

∏
i∈I△J

pi(1− pi)
∏

j /∈I∪J

(1− pj)2.

This implies that for two pairs (I, J), (I ′, J ′) with

I ∩ J = I ′ ∩ J ′ and I△J = I ′△J ′ we have PB(I)PB(J) = PB(I
′)PB(J

′),

where I△J denotes the symmetric difference between the sets I and J . This allows us to

define natural partitions on the set of pairs (I, J) such that the probability PB(I)PB(J) is

constant on each partition: Let k ∈ {0, . . . , T}, A ⊆ K with |A| = k and B ⊆ K \ A with

|B| = 2(T − k) + 1. A will be the intersection and B will model the symmetric difference of

the sets I and J respectively. For such a combination of A,B we define

QA,B := {(I, J) : I, J ⊆ K, |I| = T, |J | = T + 1, I ∩ J = A, I△J = B} .

Note that each pair (I, J) with |I| = T , |J | = T +1 can be uniquely assigned to one QA,B. So

if ∑
(I,J)∈QA,B

f(I) ≤
∑

(I,J)∈QA,B

f(J) (2.2)

for all possible choices of A,B then (2.1) follows and we are done.

We start with the special case |A| = 0 and fix B ⊆ K with |B| = 2T + 1. With slight abuse of

notation we write Ic := B \ I for the complement in B. With this notation (2.2) becomes∑
I⊆B:|I|=T

f(I) ≤
∑

J⊆B:|J |=T+1

f(J).

Remembering that f(I ∪ {i}) = 1 if f(I) = 1 we get∑
I⊆B:|I|=T

f(I) =
∑

I⊆B:|I|=T

f(I)
1

T + 1

∑
i∈Ic

f(I)

=
∑

I⊆B:|I|=T

f(I)
1

T + 1

∑
i∈Ic

f(I ∪ {i})

≤ 1

T + 1

∑
I⊆B:|I|=T

∑
i∈Ic

f(I ∪ {i})

=
1

T + 1
(T + 1)

∑
J⊆B:|J |=T+1

f(J).

If |A| > 0 then the same argument as above replacing f(·) with f(A ∪ ·) and T with T − |A|
yields (2.2) for all possible choices of A and B. Thus we get

PB

(
f(I) = 1

∣∣ |I| = T
)
≤ PB

(
f(I) = 1

∣∣ |I| = T + 1
)
.

Now we are finally in a position to prove our result. Note that

PB (f(I) = 1) =
∑K

k=1 PB (f(I) = 1 | |I| = k)PB (|I| = k)

≥ PB (f(I) = 1 | |I| = S)
∑K

k=S PB (|I| = k) ≥ PS (f(I) = 1) · 12 ,
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2.3. Application to sparse approximation

where the last inequality follows from Theorem 3.2 of [45] which says that if the mean number

of successes of K independent trials is an integer S, the median is also S.

Remark 2.6 Applying the above result to the functions f1(I) := 1{∥HI,I∥2,2≥t} and f2(I) :=

1{∥HI∥∞,2≥t} we get

PS (∥HI,I∥2,2 ≥ r) ≤ 2PB (∥HI,I∥2,2 ≥ r) and

PS (∥HI∥∞,2 ≥ v) ≤ 2PB (∥HI∥∞,2 ≥ v) .

Even though we stated our results only for the rejective sampling model, all of our proofs

consist of first bounding the failure probability under the rejective sampling model by the failure

probability under the Poisson sampling model. Hence all of our results hold for the Poisson

sampling model as well, with the failure bound actually improved by a factor 1/2.

2.3. Application to sparse approximation

In this section we apply the derived result to sparse approximation. The starting point of

sparse approximation is an underdetermined system of linear equations for which one tries to

find the sparsest solution. Assuming that the signal y is a linear combination of S columns of a

dictionary Φ, we show under which conditions sparse approximation algorithms are successful.

To that end we define the following statistical model for our signals.

Definition 2.7 (Signal model) We model our signals as

y = ΦIxI =
∑S

k=1 ϕikxik , xik = ckσk, ∀k ∈ {1, . . . , S},

where Φ ∈ Rd×K is a dictionary of K normalised atoms, I = {i1, . . . iS} is the random support

and c = {c1, . . . cS} is an arbitrary sequence of strictly positive coefficients. We assume I ⊆
K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S and denote by D√
p the corresponding weight matrix. Further we assume that the

signs σi form an independent Rademacher sequence, i.e., σi = ±1 with equal probability.

This definition allows us to use probabilistic arguments to show that in the majority of cases,

sparse approximation algorithms are able to recover the support under mild conditions on the

dictionary Φ and on the coefficients x. We denote by Py := Pσ,S the product measure of the

signs and the support and by µ := maxi ̸=j |⟨ϕi, ϕj⟩| the coherence of the dictionary Φ.

2.3.1 Thresholding

We start by considering the fastest and conceptually easiest sparse approximation algorithm.

Thresholding works by finding the indices corresponding to the S largest values of |⟨y, ϕi⟩|,
i.e.,

find J = argmax|I|=S ∥Φ∗
Iy∥1 and

reconstruct xJ = P (ΦJ)y.

In slight abuse of notation, let ∥c∥min := mini ci. In [74], average case results for Thresholding

were derived for the uniform case. There, a sufficient condition for Thresholding to work with

high probability was Sµ2 log(K) ≲ ∥c∥2min/∥c∥2∞. We extend these results to the non-uniform

case and show how the structure of the dictionary interacts with the distribution of coefficients.
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Chapter 2. Submatrices with non-uniformly random supports

Theorem 2.8 (Thresholding) Assume that the signals follow the model in (2.7), where the

support I ⊆ K is chosen according to the rejective sampling model with probabilities p1, . . . , pK
such that

∑K
i=1 pi = S. Further let D√

p denote the corresponding weight matrix and denote by

H = Φ∗Φ− I the hollow Gram-matrix. If

µ2 ≤ ∥c∥2min

8∥c∥2∞ log2(4K/ε)
and ∥HD√

p∥2∞,2 ≤
∥c∥2min

8e2∥c∥2∞ log(4K/ε)
,

then Thresholding recovers the support with probability at least 1− ε.

Proof By definition of the algorithm, Thresholding recovers the full support if

∥Φ∗
Icy∥∞ < ∥Φ∗

Iy∥min.

Note that the signals have two sources of randomness, σ and I. Plugging in the definition of

y we derive a bound on the failure probability

Py(∥Φ∗
Iy∥min < ∥Φ∗

Icy∥∞) = Py (∥Φ∗
IΦIxI∥min < ∥Φ∗

IcΦIxI∥∞)

≤ Py (∥c∥min − ∥(Φ∗
IΦI − I)xI∥∞ < ∥Φ∗

IcΦIxI∥∞)

≤ Py (∥c∥min < 2∥HIxI∥∞) .

Where we used that xik = σkck, where σ ∈ RS is an independent Rademacher sequence. Now

as the signs σ are independent from the support I, we can apply Hoeffding’s inequality to each

entry of HIσ (2.19) and use Lemma 2.4 to get

Py(∥Φ∗
Iy∥min < ∥Φ∗

Icy∥∞) ≤ Py (∥c∥min < 2∥HIxI∥∞)

≤ Py

(
∥HIxI∥∞ ≥

∥c∥min

2

∣∣∣∣ ∥HI∥∞,2 < γ

)
+ PS

(
∥HI∥∞,2 ≥ γ

)

≤ 2K exp

(
− ∥c∥

2
min

8∥c∥2∞γ2

)
+ 2K

(
e
∥HD√

p∥2∞,2

γ2

) γ2

µ2

.

Setting γ2 =
∥c∥2min

8∥c∥2∞ log(4K/ε)
, we see that the conditions of the Theorem imply that the failure

probability does not exceed ε.

2.3.2 OMP

One of the most popular sparse approximation algorithms is Orthogonal Matching Pursuit

(OMP). This greedy algorithm finds the support iteratively, adding one index at a time to the

current support. In every step, it picks the index of the atom which has the largest absolute

inner product with the residual and then updates the residual. Initialising r0 = y and J0 = ∅,
it

finds j = argmaxk |⟨ϕk, ri⟩| and

updates Ji+1 = Ji ∪ {j} resp. rJi+1 = y − P (ΦJi+1)y,

until a stopping criterion is met. Hence to prove that OMP recovers the correct support, one

needs to ensure that it picks an atom from the support in each step. So assuming OMP has

successfully found J ⊆ I in the i-th step, it will find another correct atom if

∥Φ∗
IcrJ∥∞ < ∥Φ∗

LrJ∥∞,

where L := I \ J . Based on this observation we prove the following Theorem.
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Theorem 2.9 (OMP) Assume that the signals follow the model in (2.7), where the support

I ⊆ K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such

that
∑K

i=1 pi = S. Let D√
p denote the corresponding weight matrix. Assume that the hollow

Gram-matrix H = Φ∗Φ− I satisfies ∥D√
pHD√

p∥2,2 ≤ 1
4e2

. If

∥HD√
p∥2∞,2 ≤ min

{
min

L⊆{1,...,S}

∥cL∥2∞
16e2∥cL∥22

,
1

16e2 log(216K/ε)

}
and

µ ≤ min

{
min

L⊆{1,...,S}

∥cL∥∞
4∥cL∥2

√
log(218K/ε)

,
1

4 log(218K/ε)

}
,

then OMP recovers the correct support with probability at least 1− ε.

Proof Set ∥Φ∗
IΦI − I∥2,2 =: ϑI and assume that ϑI < 1/2. We start by expanding the

residual in step i

rJ = y − P (ΦJ)y = ΦIxI − P (ΦJ)ΦIxI = ΦI\JxI\J − ΦJ(Φ
∗
JΦJ)

−1Φ∗
JΦI\JxI\J

Set L := I \ J . By definition, OMP finds another correct atom in the next step if

∥Φ∗
Ic(ΦLxL − ΦJ(Φ

∗
JΦJ)

−1Φ∗
JΦLxL)∥∞ < ∥Φ∗

L(ΦLxL − ΦJ(Φ
∗
JΦJ)

−1Φ∗
JΦLxL)∥∞,

i.e., the inner products with the residual of the remaining atoms in the support are bigger than

the inner products with the residual of atoms outside the support. Using the (reverse) triangle

inequality, we get the sufficient condition

∥Φ∗
IcΦLxL∥∞ + ∥Φ∗

IcΦJ(Φ
∗
JΦJ)

−1Φ∗
JΦLxL∥∞

< ∥xL∥∞ − ∥(Φ∗
LΦL − I)xL∥∞ − ∥Φ∗

LΦJ(Φ
∗
JΦJ)

−1Φ∗
JΦLxL∥∞.

Note that

max {∥Φ∗
IcΦL∥∞,2, ∥Φ∗

IcΦJ∥∞,2, ∥Φ∗
LΦL − I∥∞,2, ∥Φ∗

LΦJ∥∞,2} ≤ ∥HI∥∞,2.

So OMP works if

2∥HI∥∞,2∥xL∥2 + 2∥HI∥∞,2∥(Φ∗
JΦJ)

−1∥2,2∥Φ∗
JΦL∥2,2∥xL∥2 < ∥xL∥∞, (2.3)

By properties of the operator norm we have ∥Φ∗
JΦL∥2,2 ≤ ϑI and ∥(Φ∗

JΦJ)
−1∥2,2 ≤ 1

1−ϑI
.

Plugging this into (2.3) we see that OMP will pick a correct atom in the next step, if

∥HI∥∞,2

(
2 + 2

ϑI
1− ϑI

)
<
∥xL∥∞
∥xL∥2

.

So on the set {ϑI < 1/2} the columns of ΦI are linearly independent and we need to have

∥HI∥∞,2 < min
L⊆{1,...,S}

∥cL∥∞
4∥cL∥2

=: γ for OMP to find the correct support. So by Corollary 2.2

and Lemma 2.4 we get

PS(∥Φ∗
IcrJ∥∞ ≥ ∥Φ∗

LrJ∥∞) ≤ PS(ϑI ≥ 1/2) + PS(∥HI∥∞,2 ≥ γ)

≤ 216K exp

(
−min

{
1

16e2∥HD√
p∥2∞,2∥

,
1

4µ

})
+ 2K

(
e
∥HD√

p∥2∞,2

γ2

) γ2

µ2

.

Owing to the conditions on µ and ∥HD√
p∥∞,2 in the Theorem, the right hand side does not

exceed ε.

24



Chapter 2. Submatrices with non-uniformly random supports

Remark 2.10 Note that for coefficients ck ∼ αk we can always lower bound ∥cL∥∞/∥cL∥2 >√
1− α2. So in the case of uniformly distributed supports (pi = S/K) and a very incoherent

dictionary the conditions above reduce to

Sµ2 ≲ 1− α2 and Sµ2 logK ≲ 1,

which are essentially the same conditions derived in [73] for exactly sparse signals. This is

quite surprising, since this new proof is not only shorter but more importantly does not use the

assumption of random signs of the coefficients – meaning that the Theorem also holds without

the assumption of random signs.

2.3.3 BP

A very popular alternative to the above algorithms is the Basis Pursuit principle. Instead of

tackling the NP-hard problem of finding the sparsest solution with greedy methods, it instead

aims to solve the convex relaxation

x̂ = argmin ∥x∥1 s.t. y = Φx. (2.4)

The average case performance in the uniform case of this optimisation problem has been

extensively studied [82, 62, 16]. We give a short proof how these results can be transferred to

the non-uniform case.

Theorem 2.11 Assume that the signals follow the model in (2.7), where the support I ⊆
K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S. Let D√
p denote the corresponding weight matrix. Assume that the hollow Gram-

matrix H = Φ∗Φ− I satisfies ∥D√
pHD√

p∥2,2 ≤ 1
4e2

. If

µ ≤ 1

4 log(220K/ε)
and ∥HD√

p∥2∞,2 ≤
1

16e2 log(220K/ε)
,

then BP recovers the correct coefficients with probability at least 1− ε.

Proof We use results for fixed supports such that ℓ1-minimisation yields the exact solution

[81, 36]. In particular we know that if y =
∑

i∈I ϕiciσi, for some I ⊂ {1, ..,K} with |I| = S

and if ∥Φ∗
IcΦI(Φ

∗
IΦI)

−1σI∥∞ < 1, then x is the unique solution to the ℓ1 - minimisation

problem (2.4). So all we have to show is that ∥Φ∗
IcΦI(Φ

∗
IΦI)

−1σI∥∞ < 1 is satisfied with high

probability. Set M := Φ∗
IcΦI(Φ

∗
IΦI)

−1 and ϑI := ∥Φ∗
IΦI − I∥2,2. As usual we note that

∥M∥∞,2 = ∥Φ∗
IcΦI(Φ

∗
IΦI)

−1∥∞,2 ≤ ∥Φ∗
IcΦI∥∞,2∥(Φ∗

IΦI)
−1∥2,2 ≤ ∥HI∥∞,2

1

1− ϑI
.

Now Corollary 2.2 together with applying Hoeffding’s inequality to each entry of Mσ (2.19)

and Lemma 2.4 yields

Py (∥Mσ∥∞ ≥ 1)

≤ Py (∥Mσ∥∞ ≥ 1 | ∥M∥∞,2 ≤ 2γ) + PS (ϑI ≥ 1/2) + PS(∥HI∥∞,2 ≥ γ)

≤ 2Ke
− 1

8γ2 + 216K exp

(
−min

{
1

16e2∥HD√
p∥2∞,2

,
1

4µ

})
+ 2K

(
e
∥HD√

p∥2∞,2

γ2

) γ2

µ2

.
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2.3. Application to sparse approximation
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Figure 2.2: From left to right: The K-space {(k1, k2) : −
√
K/2+1 ≤ k1, k2 ≤

√
K/2} with the

frequencies used for the measurement matrix A1. The frequencies used for the measurement

matrix A2. Locations of non-zero coefficients of patches in the 2D-Haar Wavelet Basis. Ex-

pectation of each atom to be in the support (blue) and average expectations for comparison

(red) on a log scale.

Setting γ2 = 1
8 log(220K/ε) , we see that under the conditions of the Theorem the failure proba-

bility is bounded by ε.

To illustrate our results we conduct the following small experiment. We take the 2D Haar-

Wavelet decomposition of 1000 randomly chosen normalised patches yn of size 64 × 64 from

the image Peppers before applying a threshold of
√
log(d)/(36d) for d = 642 on the coefficients

to get sparse approximations. Counting how often each atom is used we get a proxy for the

probability of any atom being in the sparse support I, 2.2 (right). We denote by D√
p the

corresponding weight matrix and by D the vectorised 2D Haar-Wavelet basis. Now we are

given two measurement matrices derived from subsampled vectorised 2D-DCT matrices which

we denote by A1 ∈ Rm×d and A2 ∈ Rm×d. The subsampling pattern is generated by two

different subsampling strategies – see 2.2 (left and middle left). For our experiment we set

m = 512. We are tasked with solving the minimisation problem

x̂ = argmin ∥x∥1 s.t. Aiy = AiDx (2.5)

and are given the choice between the two measurement matrices A1 and A2. Our results tell

us that as long as the sparse supports of our signals follow the distribution described by the

weight matrix D√
p, we should pick the sensing dictionary Ai that minimises the quantities µ,

∥HD√
p∥∞,2 and ∥D√

pHD√
p∥2,2 (where H is the hollow Gram matrix of the matrix AiD after

normalisation). Looking at 2.1 columns 1-3 we see that for signals following the distribution

specified by D√
p, our results suggest A2 yields better performance. To test the actual perfor-

mance, we used BP to recover the coefficients xn from the set of incomplete measurements

Aiyn = AiDxn. Note that the coefficients xn are not sparse, but compressible. Looking at the

mean squared error (MSE) 1
N

∑N
n=1 ∥yn−Dx̂n∥22 in 2.1, we see that even though strictly speak-

ing our theory does not apply here (as these signals are not perfectly sparse) the quantities

∥HD√
p∥∞,2 and ∥D√

pHD√
p∥2,2 seem to be good predictors of average performance for signals

where the sparse support (in this case of the biggest entries) follows a distribution specified by

a weight matrix D√
p.
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Chapter 2. Submatrices with non-uniformly random supports

µ ∥HD√
p∥∞,2 ∥D√

pHD√
p∥2,2 MSE

A1 0.79 3.80 2.80 0.18

A2 0.98 0.74 0.77 0.06

Table 2.1: The first line corresponds to the uniform subsampling strategy, the second line to

the variable density subsampling strategy.

2.4. Sensing dictionaries and preconditioning

As an application of our results we construct a sensing dictionary to improve the average

performance of a dictionary for Thresholding and OMP, given that we know the distribution

of supports. We then extend these ideas to BP via preconditioning.

In the most general sense a sensing dictionary3 Ψ for a given dictionary Φ is a matrix of the

same size as Φ, whose columns satisfy ⟨ψk, ϕk⟩ = 1 for all k ∈ K. It can be used in greedy

algorithms to replace the original dictionary in the atom selection step. Sensing dictionaries

improving the worst case performance of OMP and Thresholding were first characterised and

constructed in [75]. In [74] those ideas were generalised to construct sensing dictionaries that

improve the average performance. We extend these average case results to non-uniformly

distributed supports to see how the distribution interacts with the structure of the sensing

dictionary.

The main idea in Thresholding and OMP is to determine which atoms to include in the support

by looking at the absolute inner products between the signal and the atoms. Using a sensing

dictionary changes this step in the Thresholding algorithm to

find J = argmax|I|=S ∥Ψ∗
Iy∥1 and

reconstruct xJ = P (ΦJ)y.

For OMP, similarly, the sensing dictionary comes into play when choosing the next atom to

add to the support while the residual update step stays the same. Initialising r0 = y and

J0 = ∅, for OMP with sensing dictionary Ψ one has to

find j = argmaxk |⟨ψk, ri⟩| and

update Ji+1 = Ji ∪ j resp. rJi+1 = y − P (ΦJi+1)y,

until a stopping criterion is met. Now we will show how to construct a sensing dictionary given

knowledge about the distribution of the supports.

Assuming that the distribution of our supports follows a Poisson or rejective sampling model

with known weight matrixD√
p, a sensing dictionary with good average case performance should

ideally minimise ∥(Ψ∗Φ − I)D√
p∥∞,2 - see Section 2.6. We now try to find Ψ such that this

quantity is minimised under the constraint that diag(Ψ∗Φ) = I. First note that the quantity

∥(Ψ∗Φ − I)D√
p∥2∞,2 is bounded from above by ∥(Ψ∗Φ − I)D√

p∥2F . Minimising the Frobenius

norm instead of the maximum row norm has the big advantage that it is easy to find an analytic

solution. For ease of notation let P := W 2. Following [74] we use Lagrangian multipliers and

derive both the objective and the constraint function along ψj to get

d

dψj
∥Ψ∗ΦD√

p∥2F =
∑
i

2⟨ϕi, ψj⟩ϕipi = 2ΦPΦ∗ψj and
d

dψj
⟨ϕj , ψj⟩ = ϕj .

3. Note that strictly speaking Ψ ̸= Φ is not actually a dictionary, as the columns are not normalised.
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2.4. Sensing dictionaries and preconditioning

So we see that for Thresholding and OMP, the sensing dictionary should be set to

Ψ := (ΦPΦ∗)−1ΦΛ,

where Λ is a diagonal matrix such that ⟨ϕi, ψi⟩ = 1 for all i ∈ K. This compares nicely

to the result in [74], where they arrived at Ψ = (ΦΦ∗)−1ΦΛ for the special case pi = S/K.

This shows how the distribution of coefficients changes the optimal sensing dictionary via the

diagonal matrix P . Figures 2.4 and 2.5 show how the performance of Thresholding and OMP

improves when using sensing dictionaries for various dictionaries and distributions.

For BP it is not as simple to use a different sensing dictionary. Instead we use preconditioning,

multiplying the original dictionary by an invertible matrix from the left and by a diagonal

matrix from the right. Inspired by the argument above, we set

Ψ = (ΦPΦ∗)−1/2ΦΛ,

where Λ is a diagonal matrix such that ⟨ψi, ψi⟩ = 1 for all i ∈ {1, . . . ,K}. We then change the

BP minimisation problem to

min ∥z∥1 such that ỹ = Ψz,

where ỹ = (ΦPΦ∗)−1/2y. This is equivalent to the original optimisation problem, as Λ is a

diagonal matrix with positive entries and (ΦPΦ∗)−1/2 is invertible.

2.4.1 Numerical results

To test the performance of our sensing dictionaries and preconditioning, we conduct the follow-

ing experiment. We build 2 dictionaries, each with 256 atoms of dimension 128. The columns

of the first dictionary are drawn uniformly at random from the unit sphere and the second

dictionary is a uniformly subsampled Discrete Cosine Basis with subsequent normalisation.

We consider three different distribution models: quadratic, linear and step – see 2.3. For

each distribution model and each support size between 1 and 80 we construct 1000 signals by

choosing the support according to the rejective sampling model. The sparse coefficients of x
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Figure 2.3: Left: Expectations of the Bernoulli random variables employed in our distribution

models. Right: The same plot with the relative frequency of the wavelet coefficients from 2.1

for comparison.
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Figure 2.4: Percentage of recovered supports (y-axis) for Thresholding with different sensing

dictionaries for various sizes of sparse supports (x-axis). Blue corresponds to no sensing dictio-

nary, red to the uniform average case sensing dictionary and orange to the distribution specific

average case sensing dictionary.

have absolute value one with random signs, i.e., xi = ±1 with equal probability. We then

compare how often Thresholding, OMP and BP can recover the full support when using the

original dictionary, the uniform average case sensing dictionary (P = I S
K ), and the distribution

specific average case sensing dictionary (or the preconditioned matrix for BP). The results for

Thresholding and OMP are displayed in 2.4 2.5 respectively. 2.6 shows how the preconditioning

changes the recovery rates for BP. As can be seen, incorporating prior knowledge about the

distribution of supports into the algorithms improves performance quite significantly for all 3

algorithms.

2.5. Proof of operator norm concentration

The proof follows the one that appeared in Chrétien and Darses [25] with some minor changes

to account for the non-uniformly distributed supports and the extension to non-symmetric

matrices. We start with an argument that lets us decouple the random variables selecting

the rows and columns. This is crucial for the application of concentration inequalities for

sums of independent random matrices later in the proof. Throughout this section, we write

∥ · ∥ := ∥ · ∥2,2 for the operator norm.

Proposition 2.12 Let H ∈ CK×K be some matrix with zero diagonal. Assume I ⊆ K
is chosen according to the Poisson sampling model with probabilities p1, . . . , pK such that∑K

i=1 pi = S. Then, for all r ≥ 0

PB (∥DIHDI∥ ≥ r) ≤ 36 PB

(
∥DIHD

′
I∥ ≥ r/2

)
,

where D′
I is an independent copy of DI .

Proof Let ηi for 1 ≤ i ≤ K be a series of i.i.d. Rademacher random variables. We follow the

approach of Chrétien/Darses [25] and Tropp [83] who refer to Bourgain/Tzafriri [12] and de la
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2.5. Proof of operator norm concentration
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Figure 2.5: Percentage of recovered supports (y-axis) for OMP with different sensing dictionar-

ies for various sizes of sparse supports (x-axis). Blue corresponds to no sensing dictionary, red

to the uniform average case sensing dictionary and orange to the distribution specific average

case sensing dictionary.
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Figure 2.6: Percentage of recovered supports (y-axis) for BP with different preconditioning

strategies for various sizes of sparse supports (x-axis). Blue corresponds to the original ℓ1-

minimisation problem, red to preconditioning with uniform weights and orange to precondi-

tioning with the correct weights.

Peña/Giné [28]. We define

Z = Z(η, δ) :=
∑

i ̸=j(1− ηiηj)δiδjH⃗i,j .

Setting Y =
∑

i ̸=j δiδjH⃗i,jηiηj , we can write Z = DIHDI − Y . Recall the Hahn-Banach

Theorem.
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Chapter 2. Submatrices with non-uniformly random supports

Theorem 2.13 (Hahn-Banach) Let X be a real vector space and p a sublinear functional

on X. Let f be a linear functional defined on a subspace A ⊂ X such that f(a) ≤ p(a) for all

a ∈ A. Then there exists a linear functional f̃ on X satisfying f̃(a) = f(a) for all a ∈ A and

f̃(x) ≤ p(x) for all x ∈ X.

From now on we work conditional on a choice of I (i.e. we fix our sequence δi, therefore the

support set I and the entries of DI are fixed as well). Denote by A = {λDIHDI | λ ∈ R} the
subspace generated by DIHDI and define a linear form f(λDIHDI) = λ∥DIHDI∥ on this

subspace. By definition we have f(a) ≤ ∥a∥ =: p(a) for all a ∈ A, where the properties of the

operator norm imply that p is a sublinear functional. Thus the Hahn-Banach Theorem gives

us the existence of a linear functional f̃ satisfying

f̃(DIHDI) = f(DIHDI) = ∥DIHDI∥ and f̃(Z) ≤ ∥Z∥.

Using the linearity of f̃ and that Y is symmetric around 0 we get

Pη (∥Z∥ ≥ ∥DIHDI∥) = Pη

(
∥Z∥ ≥ f̃(DIHDI)

)
≥ Pη

(
f̃(Z) ≥ f̃(DIHDI)

)
= Pη

(
f̃(−Y ) + f̃(DIHDI) ≥ f̃(DIHDI)

)
= Pη

(
f̃(Y ) ≥ 0

)
,

where again by linearity of f̃ we have

f̃(Y ) =
∑

i ̸=j:i,j∈I
f̃(H⃗i,j)ηiηj =

∑
i>j:i,j∈I

[
f̃(H⃗i,j) + f̃(H⃗j,i)

]
ηiηj .

So we see that f̃(Y ) is a homogeneous Rademacher chaos of order 2. For ease of notation

write ξ := f̃(Y ). As ξ is a centered real random variable we can write E[|ξ|] = 2E[ξIξ>0] and

a simple application of Hölders inequality yields

Eη[|ξ|]2 = 4Eη[ξIξ>0]
2 ≤ 4Pη (ξ > 0)Eη[ξ

2].

Write Eη[ξ
2] = Eη[ξ

2/3ξ4/3] and apply Hölders inequality again with p = 3
2 and q = 3 to get

Eη[ξ
2] ≤ Eη[|ξ|]

2
3Eη[ξ

4]
1
3 .

Putting the above together we arrive at

Pη(ξ > 0) ≥ 1

4

Eη[|ξ|]2

Eη[ξ2]
≥ 1

4

Eη[ξ
2]2

Eη[ξ4]
.

Since ξ is a homogeneous Rademacher chaos of order 2 we can apply Lemma 2.1 of Chrétien

and Darses [25], which states
Eη[ξ

2]2

Eη[ξ4]
≥ 1

9
.

So following the arguments in Chrétien and Darses [25] for bounding such a Rademacher chaos

we get Pη (∥Z∥ ≥ ∥DIHDI∥) ≥ 1
36 . Multiplying both sides with I{∥DIHDI∥≥r} and taking the

expectation w.r.t. to I leads to

PB(∥DIHDI∥ ≥ r) ≤ 36 PB,η(∥Z∥ ≥ r),

where PB,η denotes the product measure. By the same argument as in Proposition 2.1 of [83]

there exists a η̄ ∈ {−1, 1}K s.t.

PB,η (∥Z∥ ≥ r) = Eη

[
EB

(
I{∥Z(η,δ)∥≥r}

∣∣ η)] ≤ EB

(
I{∥Z(η̄,δ)∥≥r}

)
= PB (∥Z(η̄, δ)∥ ≥ r) .
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2.5. Proof of operator norm concentration

Setting T = {i : η̄i = 1}, we see by the definition of Z

Z(η̄, δ) = 2
∑

j∈T,k∈T c

δjδkH⃗j,k + 2
∑

j∈T c,k∈T
δjδkH⃗j,k = 2

∑
j∈T,k∈T c

δjδk(H⃗j,k + H⃗k,j).

Now we can do the decoupling. As δi for i ∈ T are independent from δj for j ∈ T c we can

replace δj for j ∈ T c with δ′ which is an independent copy of δ. Thus

PB,η (∥Z∥ ≥ r) ≤ PB

(
∥

∑
j∈T,k∈T c

δjδ
′
k(H⃗j,k + H⃗k,j)∥ ≥ r/2

)
.

The operator norm of this matrix (after reordering) satisfies∥∥∥∥( 0 A

B 0

)∥∥∥∥2 = ∥∥∥∥(B∗B 0

0 A∗A

)∥∥∥∥ = max{∥A∥2, ∥B∥2},

where A corresponds to
∑

j∈T,k∈T c δjδ
′
kH⃗j,k and B to

∑
j∈T,k∈T c δjδ

′
kH⃗k,j . As the spectral

norm of a submatrix is always less than or equal to the spectral norm of the whole matrix we

get by reintroducing the missing entries

PB,η(∥Z∥ ≥ r) ≤ PB(∥DIHD
′
I∥ ≥ r/2).

Putting everything together yields the desired result.

Now we are in a position to apply concentration inequalities for sums of independent random

matrices. For that recall the Matrix Chernoff inequality, [84].

Theorem 2.14 (Matrix Chernoff inequality [84]) Let X1, ..., XK be independent, self-adjoint

and positive semi-definite random matrices taking values in Cd×d. Now let B,m > 0 and as-

sume that for all 1 ≤ k ≤ K ∥Xk∥ ≤ B and ∥
∑K

k=1 EXk∥ ≤ m. Then, for all t > 0

P

(
∥

K∑
k=1

Xk∥ ≥ t

)
≤ d

(em
t

)t/B
.

Now we are going to derive a bound on PB (∥DIHD
′
I∥ ≥ r) by applying the Matrix Chernoff

inequality 3 times. We first use the randomness of D′
I while holding DI fixed, then we bound

the two resulting terms involving DI . This leads to the following result

Lemma 2.15 Let H ∈ CK×K be some matrix. Assume I, I ′ ⊆ K – leading to the selector ma-

trices R,R′ – are chosen according to the Poisson sampling model with probabilities p1, . . . , pK
such that

∑K
i=1 pi = S. Further let D√

p denote the corresponding weight matrix. Then, for all

r > 0

PB

(
∥DIHD

′
I∥ ≥ r

)
≤ K

(
e
u2

r2

) r2

v2

+K

(
e
∥D√

pHD√
p∥2

u2

) u2

∥HD√
p∥

2
∞,2

+K

(
e
∥WH∥22,1

v2

) v2

∥H∥2∞,1

.

We begin by bounding PB (∥DIHD
′
I∥ ≥ r).

Lemma 2.16 Let H ∈ CK×K be some matrix. Assume I ′ ⊆ K – leading to the selector matrix

R′ – is chosen according to the Poisson sampling model with probabilities p1, . . . , pK such that∑K
i=1 pi = S. Further let D√

p denote the corresponding weight matrix. Then, for all r > 0

PB

(
∥DIHD

′
I∥ ≥ r

)
≤ K

(
e
∥DIHD√

p∥2

r2

) r2

∥DIH∥22,1
.
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Chapter 2. Submatrices with non-uniformly random supports

Proof Using that for any matrix A we have ∥AA∗∥ = ∥A∗A∥ = ∥A∥2, we see

PB

(
∥DIHD

′
I∥ > r

)
= PB

(
∥DIHD

′
I∥2 > r2

)
= PB

(
∥DIHD

′
IH

∗DI∥ > r2
)
.

Denoting by Zj the j-th column of DIH, we get DIHD
′
IH

∗DI =
∑K

j=1 δ
′
jZjZ

∗
j . Then we have

∥ZjZ
∗
j ∥ = ∥Zj∥22 ≤ ∥DIH∥22,1 and

∥
K∑
j=1

E[δ′jZjZ
∗
j ]∥ = ∥

K∑
j=1

pjZjZ
∗
j ∥ = ∥DIHD√

pD√
pH

∗DI∥ = ∥DIHD√
p∥2.

As
∑K

j=1 δ
′
jZjZ

∗
j is a sum of independent random variables, an application of the Matrix

Chernoff inequality yields the result.

Now we turn to bounding the two quantities ∥DIHD√
p∥ and ∥DIH∥2,1 by the same argument

as above.

Lemma 2.17 Let H ∈ RK×K be some matrix. Assume I ⊆ K is chosen according to the

Poisson sampling model with probabilities p1, . . . , pK such that
∑K

i=1 pi = S. Further let D√
p

denote the corresponding weight matrix. Then, for all u > 0

PB

(
∥DIHD√

p∥ > u
)
≤ K

(
e
∥D√

pHD√
p∥2

u2

) u2

∥HD√
p∥

2
∞,2

.

Proof Again using that for any matrix A, ∥AA∗∥ = ∥A∗A∥ = ∥A∥2, we see

PB

(
∥DIHD√

p∥ > u
)
= PB

(
∥DIHD√

p∥2 > u2
)
= PB

(
∥D√

pH
∗DIHD√

p∥ > u2
)
.

Now denote by Yj the j-th row of HD√
p then we get D√

pH
∗DIHD√

p =
∑K

j=1 δjY
∗
j Yj . We have

∥Y ∗
j Yj∥ = ∥Yj∥22 ≤ ∥HD√

p∥2∞,2 and

∥
K∑
j=1

E[δjY ∗
j Yj ]∥ = ∥

K∑
j=1

pjY
∗
j Yj∥ = ∥D√

pH
∗D√

pD√
pHD√

p∥ = ∥D√
pHD√

p∥2.

As
∑K

j=1 δjY
∗
j Yj is a sum of independent random variables, an application of the Matrix

Chernoff inequality yields the result.

We now restate and prove Lemma 2.4 for the Poisson sampling model. Note that by definition

∥DIH
∗∥2,1 = ∥HDI∥∞,2 = ∥HI∥∞,2. Recall that by Lemma 2.5

PS (∥HI∥∞,2 ≥ v) ≤ 2 PB (∥HI∥∞,2 ≥ v) ,

so this result translates immediately to the rejective sampling model.

Lemma 2.18 Let H ∈ CK×K be some matrix. Assume I ⊆ K is chosen according to the

Poisson sampling model with probabilities p1, . . . , pK such that
∑K

i=1 pi = S. Further let D√
p

denote the corresponding weight matrix. Then, for all v > 0

PB (∥HI∥∞,2 ≥ v) ≤ K

(
e
∥HD√

p∥2∞,2

v2

) v2

∥H∥2∞,1

.
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Proof We begin by writing ∥HI∥∞,2 as the maximum of a sum of independent random vari-

ables ∥HI∥2∞,2 = maxi∈{1,...,K}
∑K

j=1 δjH
2
ij . Now we fix i ∈ {1, ..,K} and apply the standard

Chernoff inequality

PB

 K∑
j=1

δjH
2
ji ≥ v2

 ≤ (e∥HD√
p∥2∞,2

v2

) v2

∥H∥2∞,1

.

Taking a union bound yields the result.

Finally we can put everything together and prove Theorem 2.1. The main difficulty lies in

picking v and u such as to minimise the probability bound in 2.15.

Proof [Theorem 2.1] Set

α := min

{
r2

4e2∥D√
pH∥22,1

,
r2

4e2∥HD√
p∥2∞,2

,
r

2µ

}
v2 :=

r2

4α
u2 :=

r2

4e2
.

Now these definitions and the assumption r2 ≥ 4e4∥D√
pHD√

p∥2 imply

u2

∥HD√
p∥2∞,2

=
r2

4e2∥HD√
p∥2∞,2

≥ α, e
∥D√

pHD√
p∥2

u2
=

4e3∥D√
pHD√

p∥2

r2
≤ e−1,

v2

µ2
=

r2

4αµ2
≥ α, e

∥D√
pH∥22,1
v2

=
4e∥D√

pH∥22,1α
r2

≤ e−1,

r2

4v2
=

4r2α

4r2
= α, e

4u2

r2
=

4er2

4e2r2
= e−1.

So PS (∥DIHDI∥ ≥ r) ≤ 2PB (∥DIHDI∥ ≥ r) ≤ 72PB (∥DIHD
′
I∥ ≥ r/2) , together with

PB

(
∥DIHD

′
I∥ ≥ r

)
≤K

(e4u2
r2

) r2

4v2

+

(
e
∥D√

pHD√
p∥2

u2

) u2

∥HD√
p∥

2
∞,2

+

(
e
∥D√

pH∥22,1
v2

) v2

µ2


shows that PS (∥DIHDI∥ ≥ r) ≤ 216Ke−α.

For convenience we restate an easy consequence of Hoeffding’s inequality.

Lemma 2.19 (Hoeffding) Let M ∈ RK×S be a matrix and x ∈ RS such that sign(x) ∈ RS

is an independent Rademacher sequence. Then, for all t ≥ 0

Pσ (∥Mx∥∞ ≥ t) ≤ 2K exp

(
− t2

2∥M∥2∞,2∥x∥2∞

)
.

Proof We apply Hoeffding’s inequality to the k-th entry of Mx, which yields

Pσ

|∑
j

Mk,jxj | ≥ t

 ≤ 2 exp

(
− t2

2
∑

j M
2
k,jx

2
j

)
≤ 2 exp

(
− t2

2∥x∥2∞∥M:,k∥22

)
.

The statement follows using a union bound and the identity ∥M∥∞,2 = maxk ∥M:,k∥2.

Remark 2.20 In the published version of Chrétien and Darses [25] there is a tiny bug in the

proof of Proposition 4.2 in the way the variables u and v are balanced. In particular, for very

small µ, inequality 4.17 may be violated. v2 should instead be defined via an equality in 4.15,

whereas 4.14 should be an inequality.
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Chapter 2. Submatrices with non-uniformly random supports

2.6. Sensing matrices

Lemma 2.21 (Thresholding with sensing matrix) Assume that the signals follow the model

in (2.7), where the support I ⊆ K is chosen according to the rejective sampling model with prob-

abilities p1, . . . , pK such that
∑K

i=1 pi = S. Further let D√
p denote the corresponding weight

matrix and denote by H := Ψ∗Φ− I the hollow cross-Gram matrix. If

∥H∥2∞,1 ≤
∥c∥2min

8∥c∥2max log(4K/ε)
, and ∥HD√

p∥2∞,2 ≤
∥c∥2min

8e2∥c∥2max log(4K/ε)
,

then Thresholding with sensing dictionary Ψ recovers the support with probability at least 1−ε.

Proof Now by definition of the algorithm, Thresholding recovers the full support if

∥Ψ∗
Icy∥max < ∥Ψ∗

Iy∥min.

Repeating the steps from the proof of Theorem 2.8 with the obvious changes we obtain the

result.

Lemma 2.22 (OMP with sensing matrix) Assume that the signals follow the model in

(2.7), where the support I ⊆ K is chosen according to the rejective sampling model with prob-

abilities p1, . . . , pK such that
∑K

i=1 pi = S. Further let D√
p denote the corresponding weight

matrix. Let Ψ be a sensing matrix and assume the hollow Gram-matrix H = Φ∗Φ− I satisfies
∥D√

pHD√
p∥2,2 ≤ 1

4e2
. If

∥HD√
p∥2∞,2 ≤

1

16e2 log(216K/ε)

∥H∥∞,1 ≤
1

4 log(218K/ε)

∥(Ψ∗Φ− I)D√
p∥2∞,2 ≤ min

L⊆{1,...,S}

∥cL∥2∞
16e2∥cL∥22

∥Ψ∗Φ− I∥∞,1 ≤ min
L⊆{1,...,S}

∥cL∥∞
4∥cL∥2

√
log(218K/ε)

,

then OMP with sensing matrix Ψ recovers the correct support with probability at least 1− ε.

Proof Set L := I \ J . By definition, OMP finds another correct atom in the next step if

∥Ψ∗
Ic(ΦLxL − ΦJ(Φ

∗
JΦJ)

−1Φ∗
JΦLxL)∥∞ < ∥Ψ∗

L(ΦLxL − ΦJ(Φ
∗
JΦJ)

−1Φ∗
JΦLxL)∥∞.

Repeating the steps from the proof of Theorem 2.9 with the obvious changes we obtain the

result.

2.7. Discussion

In this chapter we have derived concentration inequalities for norms of random subdictionaries

with non-uniformly distributed sparse supports. This has allowed us to derive sufficient condi-

tions for sparse approximation algorithms to recover the correct support with high probability
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2.7. Discussion

given that the supports follow a rejective sampling or Poisson sampling model. We have shown

that recovery of signals depends on the structure of the cross-Gram matrix and the distribu-

tion of supports, proving that more frequently used atoms should be more incoherent than less

frequently used ones. The generalisation from uniformly to non-uniformly distributed supports

gives valuable insight into how, in a compressed sensing setup, measurement matrices should

be chosen or constructed. For both Thresholding and OMP it was shown that using sensing

dictionaries that take the distribution of supports into account improves performance. Using

preconditioning to extend this argument to BP, it was shown that prior knowledge about the

distribution also leads to improved performance for BP. In the next chapter we will see how

the results of this chapter can be applied in practice.
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Chapter 3

Adapted variable density
subsampling for compressed sensing

Equipped with the knowledge of how to bound operator norms of non-uniformly selected

random submatrices we turn to a prime application — compressed sensing. We will show

how to derive optimal subsampling strategies in a variable density setup by characterising the

sparsity patterns of our signals via a (possibly non-uniform) distribution on their supports.

The results in this chapter are based on [66].

3.1. Compressed Sensing

Let x ∈ CK be some signal and A ∈ Cm×K be some matrix, usually called the measurement

matrix. Compressed sensing (CS) consists of reconstructing the signal x from measurements

y = Ax. Usually m < K and it is assumed that the signal x is S-sparse, meaning that only

S ≪ K elements of x are non-zero. One tries to recover x by solving the following optimisation

problem

x̂ = argmin ∥x∥1 s.t. y = Ax. (3.1)

Starting with the seminal works [17, 32], compressed sensing theory tries to find sufficient

conditions for the above minimisation problem to recover the sparse signal. Early results

suggested that if each entry of the matrix A is sampled i.i.d. from a Gaussian distribution and

m ≳ S log(K), then the above minimisation program does yield the correct solution with high

probability.

These results were very soon extended to a random subsampling setting, where the sensing

matrix A is constructed by sampling rows ak from a unitary matrix A0 ∈ CK×K uniformly

at random [19, 63]. In this setting, a typical sufficient condition for the above minimisation

problem to recover the sparse signal with probability at least 1− ε reads as

m ≳ SK max
1≤k≤K

∥ak∥2∞ log(K/ε). (3.2)

If A0 is the discrete Fourier matrix — for which max1≤k≤K ∥ak∥2∞ = 1
K — this leads to

theoretical results comparable to the Gaussian setting. Nevertheless this still falls short of

explaining the remarkable success of CS in most applications, as Kmax1≤k≤K ∥ak∥2∞ is usually

quite large.

To solve this problem, variable density subsampling was introduced [63, 23, 60, 22, 46]. There
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3.2. Contribution

the sensing matrix A ∈ Cm×K is constructed by sampling the rows of A0 via a (possibly

non-uniform) probability distribution. Concretely, the sensing matrix A is defined to be

A :=
1√
m

(
1
√
ωjℓ

ajℓ

)
1≤ℓ≤m

,

where m is the number of measurements we are allowed to take and jℓ for 1 ≤ ℓ ≤ m are i.i.d

random variables such that P(jℓ = k) = ωk. Note that the subsampling strategy is determined

by the probabilities ωk for 1 ≤ k ≤ K. A typical choice in this setting is ωk := ∥ak∥2∞∑
k ∥ak∥2∞

leading to the sufficient condition

m ≳ S
∑
k

∥ak∥2∞ log(K/ε).

However, this still does not completely bridge the gap between theory and application. Recent

results go further by arguing that the optimal subsampling strategy should not only depend on

the sensing and sparsity matrices, but also on the structure of the sparse signals [2, 14, 3]. The

so called flip test proposed in [2] beautifully illustrates this. The assumption of knowledge of

the structure of the sparse signals was shown to be especially important in the case of blocks

of measurements [14, 26, 3]. The drawback of all of these results is that they rely on the exact

knowledge of the locations of the non-zero coefficients of the sparse signal, which by definition

of the problem is not available in practice.

3.2. Contribution

We generalise the aforementioned results and show that the subsampling strategy should de-

pend on the structure of the sensing/sparsity matrix together with the distribution of sparse

supports. In practice, if one has access to a number of signals from the same signal class as

x, a guess of the underlying distribution of sparse supports of x can be made and the optimal

subsampling pattern be thus derived. We then extend our results to the setting of structured

acquisition, where instead of isolated measurements, blocks of measurements are taken. In

Section 3.3 the main result is stated, Section 3.4 applies our theory to some special cases to

compare it to existing results and Section 3.5 shows how to apply the theory in practice. Sec-

tion 3.6.2 looks at the setting of sparsity in levels and blocks of measurements in more detail.

The proof of our main result is stated in Section 3.7.

3.3. Main result

Assume we are given a unitary matrix A0 ∈ CK×K representing the set of possible linear

measurements (A∗
0)i =: a∗i . We partition the set K into M blocks Ik such that ⊎kIk = K and

set

Bk := (ai)i∈Ik ∈ C|Ik|×K

The sensing matrix A is then defined as

A :=
1√
m

(
1
√
ωjℓ

Bjℓ

)
1≤ℓ≤m

,

where m ≤ M is the number of blocks we want to measure and jℓ for 1 ≤ ℓ ≤ m are i.i.d

random variables such that P(jℓ = k) = ωk. So the ωk define the probability with which each
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Chapter 3. Adapted variable density subsampling

block of measurements is selected. In line with existing compressed sensing literature we call

max
k
∥ak∥2∞, (3.3)

the coherence of the matrix A0. This is not the usual coherence used in other chapters of this

thesis, but can be seen as cross-coherence µ(A∗
0, I) = maxk,j |⟨ak, ej⟩|.

Definition 3.1 (Signal model) We model our signals as

x =
∑
i∈I

eixiσi, (3.4)

where xi ∈ R (or C) and I = {i1, . . . iS} is the random support following either the rejective

or Poisson sampling model with weight vector ω such that
∑K

i=1 ωi = S and denote by Dω the

corresponding diagonal matrix. Further we assume that σi forms a Rademacher (or Steinhaus1)

sequence.

With these definitions we are finally able to state our main result.

Theorem 3.2 Assume that the signals follow the model in 3.1, where the support I ⊆ K
is chosen according to the rejective sampling model with probabilities p1, · · · , pK such that∑K

k=1 pk = S and 0 < pk ≤ 1. If the measurements Bk are sampled according to probabilities

ωk and if

m ≳ max
k

∥B∗
kBk∥∞,1

ωk
log3(K/ε),

m ≳ max
k

∥BkDpB
∗
k∥2,2

ωk
log2(K/ε), (3.5)

then (3.1) recovers the sparse signal with probability 1− ε.

The exact statement — including constants — can be found in Section 3.7. The restriction

p > 0 is no real constraint, as in the case of pi = 0 for some i, a careful analysis of the proof

shows that one can then set the columns of A with indices in Jc to zero since they are never

part of the random supports I anyway.

Remark 3.3 This result also extends to signals x that are sparse in some unitary basis Ψ by

change of variable. If we denote by Φ∗ our original sensing matrix and let x = Ψz for some

sparse vector z, then we can again apply the above result with the new sensing matrix A0 = Φ∗Ψ

and sparse signal z. In this case, the coherence ∥ak∥∞ really is similar to a cross-coherence by

noting that ∥ak∥∞ = maxi,j |⟨ϕi, ψj⟩|.

The above result shows that the optimal sampling strategy ω should depend both on the

distribution p of sparse supports via the diagonal matrix Dp and on the structure of the

blocks Bk. One way to optimise the above bounds is by setting

ωk :=
max {∥BkDpB

∗
k∥2,2, ∥B∗

kBk∥∞,1}
L

, (3.6)

1. Meaning σi are independent realisations of the random variable eiZ with Z uniformly distributed on (0, 2π)
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3.4. Special cases

where L is a normalising constant ensuring
∑

k ωk = 1. By plugging this bound into the above

theorem we get that we need about

m ≳

(∑
k

∥BkDpB
∗
k∥2,2 +

∑
k

∥B∗
kBk∥∞,1

)
log3(K/ε) (3.7)

measurements to ensure recovery with high probability. In Section 3.4 we will look at special

cases of blocks of measurements, where this bound on m can be further simplified. For isolated

measurements, i.e. Bk = ak the above can be further simplified to yield the following result.

Corollary 3.4 Assume that the signals follow the model in 3.1, where the support I ⊆ K
is chosen according to the rejective sampling model with probabilities p1, · · · , pK such that∑K

k=1 pk = S and 0 < pk ≤ 1. If the measurements ak are sampled according to

ωk =
max{akDpa

∗
k, ∥ak∥2∞}

L
, (3.8)

where L is a normalising constant ensuring
∑

k ωk = 1, and if

m ≳

(
S +

∑
k

∥ak∥2∞

)
log3(K/ε), (3.9)

then (3.1) recovers the sparse signal with probability 1− ε.

Proof First note that ∥BkDpB
∗
k∥2,2 = akDpa

∗
k and thus∑

k

akDpa
∗
k = tr(A0DpA

∗
0) = tr(Dp) = S.

Further

∥B∗
kBk∥∞,1 = ∥a∗kak∥∞,1 ≤ max

i,j
|ak,iak,j | ≤ max

i
|ak,i|2 = ∥ak∥2∞,

leading to L ≤ S +
∑

k ∥ak∥2∞. Plugging these ωk into Theorem 3.2 yields the result.

This result is an improvement upon standard results for general (unknown) supports I, which

read as m ≳ S
∑

k ∥ak∥2∞ log(K) [19, 60, 46, 22]. This is to be expected since we assume that

information about the supports and their distribution is available. On the other hand, the

additional log factors are the price we pay for our random signal approach. A comparison to

existing results that assume knowledge about the structure of sparsity, which will be done in

the next section, will thus be more interesting.

Further, Corollary 3.4 shows how, for a given weight vector p, this lower bound is attained via

the formula in (3.8). This is an easy-to-use recipe yielding state of the art results in a number

of experiments (see Sections 3.4 and 3.5). Before moving on to empirical results, we want

to mention a few special cases of measurement matrices, sparsity basis and weights p which

underline the generality of the above result.

3.4. Special cases

In this section we show how our result can be applied to recover state of the art theoretical

results in CS theory.
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Chapter 3. Adapted variable density subsampling

3.4.1 Coherent matrix

A frequent example showing the necessity of some sort of knowledge of the structure in sparse

signals is the special case where A0 = I. Denote by J := {i : pi ̸= 0} the set of indices, where

the weights of our random support model are zero and set the columns of AJc to zero. In

this setting, Formula (3.8) leads to ωk =
δk,J
|J | and thus m ≳ |J | log3(K/ε) which means that

to ensure recovery with high probability, we have to sample all rows corresponding to positive

weights pℓ, i.e. all those rows that correspond to entries of our sparse vector that have a non-

zero probability of appearing in the support. This also includes the setting where p ∈ {0, 1}
recovering, up to logarithmic factors, results derived in [14] for fixed sparse supports.

3.4.2 Fourier matrix

Assume that A0 = F , i.e. the 1-D Fourier transform. This matrix is known to be incoherent

(∥ak∥2∞ = 1
K ) and in the isolated measurement setting this yields akDpa

∗
k =

∑
ℓ |ak,ℓ|pℓ ≤

∥ak∥∞∥p∥1 = 1
K

∑
ℓ pℓ =

S
K for any weight vector p (recall that we have

∑
ℓ pℓ = S). Plugging

these observations back into our main Theorem yields that independently of the distribution

p, one should sample uniformly at random, i.e. ωk = 1
K . Corollary 3.4 thus yields m ≳

S log3(K) which (up to log factors) is in line with standard lower bounds on the number of

measurements [17, 31].

3.4.3 Uniformly distributed sparse supports

One possible distribution of our sparse supports is the uniform distribution, where pℓ = S/K.

Plugging this into Formula (3.8) yields

ωk =
max{S/K, ∥ak∥2∞}

L
,

where L again is a normalising constant. This is very similar in spirit to coherence based

subsampling strategies [63, 23, 60], where ωk := ∥ak∥2∞∑
ℓ ∥aℓ∥2∞

. Since in the uniform case there is

no structure in the sparse signals that can influence the subsampling strategy it is only natural

that in this special case the optimal subsampling strategy depends only on the structure of the

sensing matrix together with a lower bound S/K to cover the whole space.

We conduct a small experiment by setting K = 216 and S =
√
K/2. Further we let Φ be

the 2D Hadamard transform and Ψ be the 2D Haar wavelet transform. We then generate 100

synthetic signals with uniformly distributed sparse supports, coefficients with absolute value 1

and random signs to compare the performance of three different subsampling strategies, which

can be seen in Figure 3.1. Sampling 5% of measurements from each of these distributions and

subsequently solving 3.1 with the Nesta algorithm [55, 10] and averaging the PSNR over 10

runs, each with 100 fresh signals, shows that our adapted subsampling strategy outperforms

both the uniform and the coherence bases subsampling strategy. This shows that in this special

case our result is tight in the sense that both terms in the numerator of Formula 3.8 are indeed

necessary.
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3.5. Numerical experiments

Figure 3.1: Subsampling densities (top row) and corresponding samples (bottom row) for

the adapted variable density sampling scheme (left column), the uniform distribution (middle

right) and the coherence based subsampling scheme (right row). The resulting average PSNR

are: Adapted - 133.5, Uniform - 105.6 and Coherence - 62.3.

3.5. Numerical experiments

Now that we conduct a few experiments, in each of which we assume to be given a training set

of images from which we generate the sparse distribution model by transforming them into a

wavelet basis before applying a threshold. The relative frequency with which each coefficient

appears in these sparse supports is our proxy for the inclusion probabilities p, since they are

just the expectation of an atom being in the support. This one-to-one correspondence is also

motivated by the close relationship between the rejective sampling model and the Bernoulli

sampling model with weights p. We further assume to be given a reference image which

we have to reconstruct. We will compare the performance of our subsampling strategy in

the isolated measurement case against a state-of-the-art variable density subsampling scheme

with polynomial decay, where we pick a frequency (k1, k2) in the 2D k-space with probability
1

(k21+k22)
2.5 . To ensure meaningful results, each experiment is averaged over 10 runs. We will use

the 2D Fourier matrix to take measurements and plot all sampling distributions in log-scale.

For our first experiment (Figure 3.2) we assume a standard compressed sensing setup with

isolated 2D Fourier measurements and a 2D DB4 wavelet matrix as sparsifying basis. We

want to sense the reference brain image (bottom right). To approximate the distribution of

the sparse supports, we use a dataset of around 4.000 real brain images [15] onto which we

apply the 2D DB4 wavelet transform followed by a thresholding operation with a threshold of

around 0.006, yielding the matrix W (top right). Plugging these weights into Formula (3.8)

and normalising the resulting density to 1, we get the adapted subsampling distribution ω

(top left). We compare this strategy to the above mentioned polynomial decaying density

(top middle) by sampling 10% of frequencies in the k-space (bottom left and middle). Finally,

an application of the Nesta algorithm to solve (3.1) for both sets of measurements yields the

results in the figure. As can be seen, the adapted subsampling strategy is able to slightly

outperform the quadratically decaying subsampling strategy — resulting in a PSNR value of

23.8 compared to 32.0.

To show that our new subsampling strategy does indeed adapt to the underlying distribution

of sparse supports, we repeat the above experiment (Figure 3.3) but this time use a different

dataset — the MRNet dataset which consists of around 30.000 images of knees [41]. To generate
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Chapter 3. Adapted variable density subsampling

Figure 3.2: Adapted variable density sampling scheme (left column) vs polynomial decay

(middle column). Matrix W of sparse support distribution in the DB4 wavelet basis (top

right) and test image (bottom right). The resulting PSNR values are: Adapted - 32.8 and

Polynomial - 32.0.

Figure 3.3: Adapted variable density sampling scheme (left column) vs polynomial decay

(middle column). Matrix W of sparse support distribution in the DB4 wavelet basis (top

right) and test image (bottom right). The resulting PSNR values are: Adapted - 27.9 and

Polynomial - 26.8.

the matrix W we again transform each training image into the DB4 wavelet basis and apply

a threshold of about 0.006 to get distribution of non-zero coefficients (top right). This time

the resulting weights are non-symmetrical and hence plugging them into Formula (3.8) results

in a non-symmetrical subsampling density, thereby adapting to the underlying structure of

the signals. This makes the difference between the adapted subsampling distribution and the

polynomial subsampling strategy more pronounced, which will also result in greater differences

in the PSNR. Sampling 10% of measurements from the adapted and polynomial densities

(bottom left and middle), we get by applying the Nesta algorithm to (3.1) that our adapted

subsampling scheme outperforms the heuristically inspired polynomial subsampling strategy

— resulting in a PSNR value of 27.9 compared to 26.8.

This difference in performance gets even more pronounced in the next experiment (Figure 3.4),

where we use the same setup (and dataset) as in the first experiment, but flip the sparse
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3.6. Sparsity in levels and blocks of measurements

Figure 3.4: Adapted variable density sampling scheme (left column) vs polynomial decay

(middle column). Matrix W of sparse support distribution in the DB4 wavelet basis (top

right) and test image (bottom right). The resulting PSNR values are: Adapted - 22.9 and

Polynomial - 11.6.

coefficients of each image (including the test image) by applying the transform x 7→ xf ∈ CK ,

xf1 = xK , x
f
2 = xK−1, · · · , xfK = x1 to the vectorised sparse coefficients. This is inspired by

the so-called flip test [2]. Obviously, the estimated distribution of the sparse supports is now

flipped as well and plugging these weights p into Formula (3.8) yields a completely different

sampling distribution. We again sample 10% of measurements from the 2D k-space (bottom

left and middle). This time, our adapted subsampling strategy easily outperforms the heuristic

polynomial decay subsampling strategy — resulting in a PSNR value of 22.7 compared to 12.0.

3.6. Sparsity in levels and blocks of measurements

We now analyse one of the most common framework in modern compressed sensing theory.

3.6.1 Sparsity in levels

A frequent assumption in modern compressed sensing theory is sparsity in levels [2, 14, 3].

To apply our results to this framework we assume that K = 2J+1 for some J ∈ N and set

A0 = FΨ∗, where F is the 1-D Fourier transform with rows indexed from −K/2 + 1 to K/2

and Ψ is the 1-D inverse Haar wavelet transform. Denote by Ω the dyadic partition of the

set {1, · · · ,K} where Ω0 := 0 and Ωj := {2j + 1, · · · , 2j+1} for j = 1, · · · , J . Further denote

by M the J + 1 frequency bands of the discrete Fourier transform F , i.e., M0 := {0, 1} and

Mj := {−2j + 1, · · · ,−2j−1} ∪ {2j−1 + 1, · · · , 2j} for j = 1, · · · , J . Lemma 1 in [1] states that

for ℓ ∈Mi and k ∈ Ωj

|ak,ℓ|2 ≲ 2−j2|j−i|. (3.10)

We define the average sparsity in level ℓ as

Sℓ := ∥pΩℓ
∥1 (3.11)
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Chapter 3. Adapted variable density subsampling

For simplicity we assume Sℓ > 1 for all 1 ≤ ℓ ≤ J . Plugging this into (3.8) yields for k ∈Mj

akDpa
∗
k ≲ 2−jSj + 2−j

∑
p ̸=j

2|j−p|Sp, (3.12)

and thus by using ω as defined in (3.8) our main result yields the sufficient condition

m ≳

∑
j

Sj +
∑
p ̸=j

2|j−p|Sp

 log3(K/ε), (3.13)

in line with results in [3].

3.6.2 Blocks of measurements

Even though the above sampling strategies yield very good reconstruction results, probing

measurements independently at random is infeasible — or at least impractical — in most real

applications, see [14] and references therein. Luckily, our results easily extend to the case of

blocks of measurements Bk.

Sensing vertical (or horizontal) lines in 2D

We will again follow the notation in [14, 3] very closely to facilitate easier comparison. Assume

again that K = 2J+1 for some odd J ∈ N. Let Φ ∈ C
√
K×

√
K be a unitary matrix (for

example the discrete 1D Fourier-Haar transform matrix) and assume that our set of possible

measurements is given by

A0 = Φ⊗ Φ ∈ CK×K , (3.14)

where ⊗ denotes the Kronecker product. With this notation, we define blocks of measurements

which, in a 2D Fourier-Wavelet setting would correspond to vertical lines in frequency space.

For this set

Bk := Φk,: ⊗ Φ =
(
Φk,1Φ | . . . | Φk,

√
KΦ
)
∈ C

√
K×K for all 1 ≤ k ≤

√
K. (3.15)

The separable nature of this setup has the big advantage that the matrix B∗
kBk has a very nice

representation. Note that in our main result we have to control ∥BkDpB
∗
k∥ = ∥D√

pB
∗
kBkD√

p∥.
Using that Φ is a unitary matrix we see

B∗
kBk = (Φk,: ⊗ Φ)∗(Φk,: ⊗ Φ) = (Φ∗

k,:Φk,: ⊗ Φ∗Φ) = (Φ∗
k,:Φk,: ⊗ I). (3.16)

For our weight vector p ∈ RK we denote by W ∈ R
√
K×

√
K the matrix satisfying vec(W ) = p.

Multiplying B∗
kBk = (Φ∗

k,:Φk,: ⊗ I) from the left and right with the diagonal matrix D√
p and

taking the operator norm yields

∥D√
p(Φ

∗
k,:Φk,: ⊗ I)D√

p∥ = ∥D√
p

 Φ∗
k,1Φk,1I . . . Φ∗

k,1Φk,
√
KI

...
. . .

...

Φ∗
k,
√
K
Φk,1I . . . Φ∗

k,
√
K
Φk,

√
KI

D√
p∥. (3.17)

Since reordering of columns and rows does not change the operator norm, we apply the per-

mutation R : K 7→ vec(vec−1(K)∗) to both the columns and rows of the above matrix and set
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3.6. Sparsity in levels and blocks of measurements

p′ := R(p) to get

∥D√
p(Φ

∗
k,:Φk,: ⊗ I)D√

p∥ =

∥∥∥∥∥∥∥D√
p′

Φ∗
k,:Φk,: . . . 0
...

. . .
...

0 . . . Φ∗
k,:Φk,:

D√
p′

∥∥∥∥∥∥∥ (3.18)

= max
1≤ℓ≤

√
K
∥Φk,:D

1/2
Wℓ,:
∥22 = max

1≤ℓ≤
√
K

√
K∑

i=1

|Φk,i|2Wℓ,i. (3.19)

So we look for the row v of the matrix W , such that ∥Φk,:D√
v∥22 is maximised. This encapsu-

lates the relationship between the structure of the blocks of measurements and the structure

of the sparse signals via their distribution. By the same argument as above we also see that

∥B∗
kBk∥∞,1 = ∥Φk∥2∞. (3.20)

Plugging this into our formula for blocks (3.6) yields

ωk :=
max

{
max1≤ℓ≤

√
K

∑√
K

i=1 |Φk,i|2Wℓ,i, ∥Φk∥2∞
}

L
, (3.21)

where L is the normalisation constant. If instead of vertical lines one would take horizontal

lines

Bk := Φ⊗ Φk,:, (3.22)

we would get

B∗
kBk =

Φ∗
k,:Φk,: . . . 0
...

. . .
...

0 . . . Φ∗
k,:Φk,:

 , (3.23)

without any reordering. Hence in this case

∥D√
pB

∗
kBkD√

p∥ = max
1≤ℓ≤

√
K

√
K∑

i=1

|Φk,i|2Wi,ℓ, (3.24)

which amounts to taking the maximum over all columns of the matrix W . Plugging this back

into our formula for blocks (3.6) yields

ωk :=
max

{
max1≤ℓ≤

√
K

∑√
K

i=1 |Φk,i|2Wi,ℓ, ∥Φk∥2∞
}

L
, (3.25)

where L is again the normalisation constant.

Vertical Fourier-Haar lines

We now apply the above analysis to the special case where Φ = FH∗ is the 1D Fourier-Haar

transform. This yields that A0 is the separable 2D Fourier-Haar transform2. Let p ∈ RK again

be our weight vector and define the matrix W ∈ R
√
K×

√
K such that vec(W ) = p. We again

2. In all other experiments we use non-separable 2D wavelet transforms.

46



Chapter 3. Adapted variable density subsampling

denote by Mℓ the frequency bands of the one dimensional Fourier transform and by Ωℓ the

dyadic partition (see previous subsection). In the 2D setting we define the average sparsity

in level ℓ as

Sℓ := max
k
∥Wk,Ωℓ

∥1. (3.26)

This is equivalent to the 1D case up to taking the maximum over all rows of the matrix W .

Using (3.10) and assuming that Sℓ > 1 for all 1 ≤ ℓ ≤ J , the above analysis yields for k ∈Mj

∥B∗
kDpBk∥ = max

1≤ℓ≤
√
K

√
K∑

i=1

|Φk,i|2Wℓ,i ≤

√
K∑

i=1

max
1≤ℓ≤

√
K
|Φk,i|2Wℓ,i (3.27)

≲ 2−jSj + 2−j
∑
p ̸=j

2|j−p|Sp, (3.28)

and thus by using ω as defined in (3.21) our main result yields the sufficient condition

m ≳

∑
j

Sj +
∑
p ̸=j

2|j−p|Sp

 log3(K/ε), (3.29)

in line with results in [3]. Note that the first inequality in (3.27) is rather crude and potentially

loses a lot of information about the relationship between the matrix W and the structure of

the 2D Fourier-Haar matrix A0 = FΨ∗. This is why in our experiments we will stick with the

quantity ∥B∗
kDpBk∥ = max1≤ℓ≤

√
K

∑√
K

i=1 |Φk,i|2Wℓ,i.

Numerical experiments of blocks of measurements Fourier - DB4

In this subsection we will use blocks of measurements in numerical experiments— Figure 3.5.

We conduct two experiments, first by measuring along horizontal lines in the 2D k-space (left

column) and then by measuring square blocks of size 16×16 in the 2D k-space (middle column).

We again use the Brain dataset with a threshold of around 0.023 to generate a estimate of

the matrix W in the separable 2D DB4 wavelet basis (top right). Plugging these estimated

weights into Formula (3.6) we get an adapted sampling distribution on the vertical lines (top

left) and on the square blocks (top middle). Sampling 20% of measurements from the 2D k-

space (middle row) we get good reconstruction of the reference image (bottom right) for both

measurement techniques (bottom left and middle). This shows how our results also apply to

the setting of blocks of measurements.
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Figure 3.5: Adapted variable density sampling schemes with vertical lines (left column) and

squares (middle column). Matrix W of sparse support distribution in the separable 2D DB4

wavelet basis (top right), test image (bottom right) and reconstructions (bottom left and

middle). The resulting PSNR values are: Lines - 29.9 and Squares - 33.9.

3.7. Proof of Theorem 3.2

Now we turn to proving Theorem 3.2. Note that we have three sources of randomness: the

signs σ, the set of random measurements J and the random supports I. Strictly speaking,

we are working on the product measure of the three, but in slight abuse of notation, we will

write Pσ, PJ and PS to indicate the probability measure that we use for the corresponding

concentration inequalities. The exact statement of Theorem 3.2 reads as

Theorem 3.5 Assume that the signals follow the model in 3.1, where the support I ⊆ K
is chosen according to the rejective sampling model with probabilities p1, · · · , pK such that∑K

k=1 pk = S and 0 < pk ≤ 1. If the measurements Bk are sampled according to probabilities

ωk and if

m ≥ max
k

∥B∗
kBk∥∞,1

ωk
128 log(216 · 6K2/ε) log2(168K/ε), and

m ≥ max
k

∥BkDpB
∗
k∥2,2

ωk
128e2 log2(168K/ε), (3.30)

then (3.1) recovers the sparse signal with probability 1− ε.

Before beginning with the proof, we state 5 concentration inequalities. Recall the definition of

the matrices DI = II ∈ RK×K , where I ⊆ {1, · · · ,K} with |I| = S. Define the quantities

ΛI := max
k

∥DIB
∗
kBkDI∥2,2
ωkm

and κ := max
k

∥B∗
kBk∥∞,1

ωkm
.
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For a fixed support I, the Matrix Bernstein inequality [84] applied to the random matrices

A∗
IAI − I yields

Lemma 3.6 (Lemma 2.1 [19], Lemma C.1 [14]) Let I be a fixed support of cardinality S

and let A depend on the draw of the jℓ. Then for all t ≥ 0, we have

PJ (∥A∗
IAI − I∥ ≥ t) ≤ 2S exp

(
− t2/2

ΛI(1 + t)/3

)
.

Proof First note that by zero-padding the matrix A∗
IAI − I ∈ CS×S , we get ∥A∗

IAI − I∥ =
∥DIA

∗ADI − I∥. So to keep the notation uncluttered, we will bound ∥DIA
∗ADI − I∥ as in

Chapter 2. Write

DIA
∗ADI − I =

m∑
k=1

DIB
∗
jk
BjkDI

ωjkm
− I =

m∑
k=1

1

m

(
DIB

∗
jk
BjkDI

ωjk

− I
)

=

m∑
k=1

Xk,

where Xk := 1
m

(
DIB

∗
jk

Bjk
DI

ωjk
− I
)
. By definition of the jk, we have E[Xk] = 0. Further

∥Xk∥2,2 ≤
1

m
max

(
max
k

∥DIB
∗
kBkDI∥2,2
ωk

− 1, 1

)
≤ ΛI .

To bound the variance, we note

0 ⪯ E[X2
k ] = E

[(
DIB

∗
jk
BjkDI

ωjkm

)2
]
− 1

m2
I

⪯ ΛIE
[
DIB

∗
jk
BjkDI

ωjkm

]
⪯ ΛI

1

m
I,

which leads to σ2 = ∥
∑m

k=1 E[X2
k ]∥2,2 ≤ ΛI . An application of the Matrix Bernstein inequality

yields the result.

Further, for I fixed, and i ∈ Ic, we are going to apply the vector Bernstein inequality [52] to

∥A∗
IAi∥2. Together with a union bound this yields

Lemma 3.7 Let I be a fixed support of cardinality S and let A depend on the draw of the jℓ.

Then for all t > 0, we have

PJ

(
max
i∈Ic
∥A∗

IAi∥2 ≥ t
)
≤ 28K exp

(
− t2/2

ΛI +
√
ΛIκ · t/3

)
.

Proof Fix i ∈ Ic. Again by zero-padding, we have

∥A∗
IAei∥2 = ∥

m∑
k=1

1

m

DIB
∗
jk
Bjkei

ωjk

∥2 = ∥
m∑
k=1

Xk∥2,

where Xk := 1
m

DIB
∗
jk

Bjk
ei

ωjk
. Since i ∈ Ic, we have E[Xk] =

1
mDI

∑M
ℓ=1BℓB

∗
ℓ ei =

1
mPIei = 0.

Further

max
k
∥Xk∥2 = max

k

∥∥∥∥DIB
∗
kBkei

ωkm

∥∥∥∥
2

≤
√
ΛIκ
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To bound the variance, note that

E[∥Xk∥22] = E

[∥∥∥∥DIB
∗
jk
Bjkei

ωjkm

∥∥∥∥2
2

]
≤

≤ ΛIE

[∥∥∥∥ Bjkei√
ωjkm

∥∥∥∥2
2

]
= ΛI∥ei∥22

1

m
=

ΛI

m
.

This leads to σ2 =
∑m

k=1 E[∥Xk∥22] ≤ ΛI . A union bound finishes the proof.

We further use the following Hoeffding-like tail bound for sums of centered complex random

variables — see ([35] Corollary 7.21 and Corollary 8.10).

Lemma 3.8 LetM ∈ CK×S be a matrix and x ∈ RS such that sign(xi) ∈ RS is an independent

Rademacher sequence. Then, for all t ≥ 0

Pσ (∥Mx∥∞ ≥ t) ≤ 2K exp

(
− t2

2∥M∥2∞,2∥x∥2∞

)
.

The key ingredient to prove Theorem 3.2 is the following concentration inequality for the

operator norm of random submatrices with non-uniformly distributed supports which can be

found in [67] and Chapter 2. This is what allows us to go one step further than existing results

in analysing the underlying relationship between the sensing matrix and the distribution of

sparse supports. For convenience, we restate the result.

Lemma 3.9 ([67]) Let H ∈ CK×K be a matrix with zero diagonal. Assume that the support

I ⊆ K is chosen according to the rejective sampling model with probabilities p1, . . . , pK such

that
∑K

i=1 pi = S. Further let p denote the corresponding weight vector. If t ≥ 2e2∥D√
pHD√

p∥
and

∥H∥∞,1 ≤
t

2 log(216K/ε)

∥HD√
p∥2∞,2 ≤

t2

4e2 log(216K/ε)
,

then PS(∥DIHDI∥ ≥ t) ≤ ε.

Now we are finally able to state the proof of Theorem 3.2.

Proof From [81, 36] we know that if ∥A∗
IcAI(A

∗
IAI)

−1σI∥∞ < 1, then x is the unique solution

of the ℓ1-minimisation problem (3.1). Set M := A∗
IcAI(A

∗
IAI)

−1 and assume that ϑI :=

∥A∗
IAI − I∥ ≤ 1/2. Then

∥M∥∞,2 = ∥A∗
IcAI(A

∗
IAI)

−1∥∞,2 ≤ ∥A∗
IcAI∥∞,2∥(A∗

IAI)
−1∥2,2 ≤ 2∥A∗

IcAI∥∞,2.

Noting that ∥A∗
IcAI∥∞,2 = maxi∈Ic ∥A∗

IAi∥2 we have

P (∥Mσ∥∞ ≥ 1) ≤ Pσ (∥Mσ∥∞ ≥ 1 | ∥M∥∞,2 ≤ 2γ)

+ P (∥A∗
IAI − I∥ ≥ 1/2) + P

(
max
i∈Ic
∥A∗

IAi∥2 ≥ γ
)
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Setting γ2 = 1
8 log(6K/ε) and applying Lemma 3.8 to Mσ yields that the first term on the right

hand side is bound by ε/3. Further

P (∥A∗
IAI − I∥ ≥ 1/2) + P

(
max
i∈Ic
∥A∗

IAi∥2 ≥ γ
)

≤ PJ

(
∥A∗

IAI − I∥ ≥ 1/2
∣∣∣ΛI ≤ v

)
+ PS(ΛI ≥ v)

+ PJ

(
max
i∈Ic
∥A∗

IAi∥2 ≥ γ
∣∣∣∣ΛI ≤ v

)
+ PS (ΛI ≥ v)

Setting v := 1
32 log2(168K/ε)

and using that by the assumptions in Theorem 3.2

κ ≤ 1

128 log(256 · 6K2/ε) log2(168K/ε)
,

an application of Lemma 3.6 and Lemma 3.7 together with the observation that v+
√
vκ·γ/3 ≤

γ2 yields

PJ

(
∥A∗

IAI − I∥ ≥ 1/2
∣∣∣ΛI ≤ v

)
+ PJ

(
max
i∈Ic
∥A∗

IAi∥2 ≥ γ
∣∣∣∣ΛI ≤ v

)
≤ 2S exp

(
− 1/8

v(1 + 1/2)/3

)
+ 28K exp

(
− γ2/2

v +
√
vκ · γ/3

)
≤ 2S exp

(
− 1

4v

)
+ 28K exp

(
−γ

2

4v

)
≤ ε/3.

So to finish the proof we have to show that P(ΛI ≥ v) ≤ ε/6. To that end define the matrices

Hk :=
B∗

kBk − diag(B∗
kBk)

ωkm
.

Recall that by definition,

ΛI := max
k

∥DIB
∗
kBkDI∥2,2
ωkm

and κ := max
k

∥B∗
kBk∥∞,1

ωkm
.

By our assumptions, we have

ΛI ≤ max
k
∥DIHkDI∥+ ∥ diag

(
DIB

∗
kBkDI

ωkm

)
∥ ≤ max

k
∥DIHkDI∥+ κ ≤ max

k
∥Hk∥+ v/2.

So we have to show that P(maxk ∥DIHkDI∥ ≥ v/2) ≤ ε/6, which we will do by showing that

P(∥DIHkDI∥ ≥ v/2) ≤ ε/(6K) together with a union bound. By applying 3.9 to each Hk this

is satisfied, if

∥HkD√
p∥2∞,2 ≤

(v/2)2

4e2 log(216 · 6K2/ε)

∥Hk∥∞,1 ≤
v/2

2 log(216 · 6K2/ε)
,

and v ≥ 2e2∥D√
pHkD√

p∥. Using that

∥HkD√
p∥2∞,2 ≤

∥B∗
kBkD√

p∥2∞,2

ωkm
≤
∥B∗

k∥2∞,2∥BkD√
p∥22,2

ω2
km

2
≤ κmax

k

∥BkDpB
∗
k∥

ωkm
,

and ∥Hk∥∞,1 ≤ κ, this follows from the assumptions in Theorem 3.2.
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3.8. Discussion

Remark 3.10 The proof of our main result relies heavily on the random signs of our signals.

One could remove this assumption by instead employing the so-called ”golfing scheme” proposed

in [40]. Following the argument in [19] one should be able to derive similar results in the case

of deterministic sign patterns. Since this would not have any impact on the optimal sampling

distribution we opted for the shorter proof presented here.

3.8. Discussion

The above results showed that the optimal variable density subsampling strategy in a com-

pressed sensing setup should not only depend on the structure of the sensing and sparsity

matrices, but also on the distribution of sparsity patterns of the signals to be measured. We

derived lower bounds on the number of measurements to ensure recovery of the sparse sig-

nals with high probability and derived a simple formula for the optimal subsampling strategy.

We showed that this distribution can be estimated from a training set and that the resulting

adapted subsampling scheme provides state of the art performance in a range of situations.

For future work it would be interesting to analyse different settings of blocks of measurements,

where explicit lower bounds on the number of measurements can be derived. One of the main

assumptions in the chapter is the existence of a basis such that the signals can be sparsely

represented. How to learn such a basis from data for a general signal class will be the topic of

the next chapter.
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Chapter 4

Dictionary learning convergence

In the previous chapter we have seen that the assumption of a sparsifying basis is crucial

for compressed sensing. In some applications such a basis is unknown and thus has to be

learned from data via dictionary learning. In this chapter we derive sufficient conditions for

convergence of two of the most popular dictionary learning algorithms - Method of Optimal

Directions (MOD) and Approximate K-SVD (aK-SVD). We show that given a well-behaved

initialisation that is either within distance at most 1/ log(K) to the generating dictionary

or has a special structure ensuring that each element of the initialisation only points to one

generating element, then they will converge with geometric convergence rate to the generating

dictionary.

4.1. Introduction

Dictionary learning tries to find structure in data by decomposing a data matrix Y = (y1, · · · , yN ),

where yi ∈ Rd, into the product of a dictionary matrix Φ = (ϕ1, · · · , ϕK) ∈ Rd×K and a sparse

coefficient matrix X = (x1, · · · , xN ) ∈ RK×N such that

Y ≈ ΦX and X sparse. (4.1)

There exist many algorithms to choose from when trying to tackle the above problem [34, 6,

33, 72, 47, 49, 50, 76, 51, 68, 54] and a growing number of theoretical results to accompany

them [38, 77, 4, 7, 69, 70, 39, 9, 8, 72, 78, 78, 5, 20, 61]. We point the interested reader

to the surveys [65, 71] for easy access into the world of dictionary learning. The common

starting point of many dictionary learning algorithms is to formulate the problem in 4.1 as a

minimisation problem,

argminΨ,X ∥Y −ΨX∥2F s.t. ∥ψk∥2 = 1 and ∥xn∥0 ≤ S., (4.2)

where S is a prescribed sparsity level and the condition ∥ψk∥2 = 1 prevents scaling ambiguities

between the dictionary and the sparse codes xx. Since the problem is highly non-convex

with many equivalent global minima corresponding to different orderings and signs of the

dictionary and even the full gradient cannot be calculated explicitly, one usually one tries to

find a solution by alternate minimisation — meaning iteratively fixing the sparse codes X and

updating the dictionary Ψ and vice versa. Popular alternate minimisation algorithms include

MOD (Method of Optimal Directions) [33], K-SVD (K Singular Value Decompositions) [6]

and ITKrM (Iterative Thresholding and K residual Means) [72]. Despite their popularity,
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4.1. Introduction

the main drawback of these algorithms is the relative lack of theoretical results underpinning

their empirical success. To the best of our knowledge, there exist no recovery guarantees for

the K-SVD algorithm. For MOD the situation is a little different as local convergence for

an alternate minimisation algorithm identical to MOD was proven in [5]. The only difference

between their proposed algorithm and the original MOD is the sparse approximation step,

which uses ℓ1-minimisation instead of OMP. The main drawback of this result is that it works

only for initialisations with maximal atom-wise ℓ2-distance 1/S
2 from the ground truth, which

limits its practical relevance considerably. For ITKrM a recent result showed contraction

under very relaxed conditions [56]. While the result does not guarantee convergence it shows

that the algorithm contracts towards the generating dictionary, if the current guess it is either

in a ball of radius 1/
√
log(K) around the solution or has a special type of structure where each

atom corresponds only to one atom of the ground truth meaning that no two estimated atom

point to the same generating atom and there is sufficient separation. In this case the distance

between ground truth and initialisation might be close to the theoretical limit
√
2, improving

considerably upon previous theoretical results.

The holy grail in dictionary learning theory are global convergence guarantees, but the highly

non-convex nature of the dictionary learning problem makes such results prohibitively hard

and most likely impossible for practically usable algorithms based on alternating minimisation,

which in simulations can get trapped in spurious saddle points, 5. There do exist algorithms

with global recovery guarantees [29, 4, 9], but either their prohibitively high computational

complexity or numerical sensitivity make them rather hard to recommend in a practise.

4.1.1 Our Contribution

In this chapter we will analyse a slight adaptation of the approximate K-SVD (aK-SVD) [64],

which exchanges the costly SVD in the dictionary update step of the original K-SVD algorithm

for a power iteration and OMP in the sparse approximation step for the computationally lighter

Thresholding algorithm. We will also analyse the MOD where we again use Thresholding as

the sparse approximation step. We show that both algorithms converge to the generating

dictionary under very general assumptions similar in spirit to the conditions in [56] meaning

that for a well-behaved initialisation it either has to be in a ball of radius 1/
√
log(K) or have

such a structure that each element of the initialisation only points to one generating element,

ensuring sufficient separation for the sparse approximation step not to mix things up. If these

criteria on the structure are met, the distance may be close to the theoretical limit of
√
2

while convergence is still guaranteed by our result. Further we will make use of the same

non-uniform signal model used throughout this thesis, allowing us to use model situations,

where some atoms in the generating dictionary are used more frequently than others. This in

itself represents a great generalisation of existing results, where the sparse supports are usually

assumed to be chosen uniformly at random among all possible subsets of cardinality S.

4.1.2 Organisation

In the first section, we define the signal model and special notation that will be used in this

chapter. In Section 4.3 we will recall the dictionary learning algorithms that will be analysed

in this chapter. We state our main result in Section 4.4 and prove it in Section 4.5. To make

the proof more accessible, we defer the technical results it relies on to Section 4.6, Section 4.7,

Section 4.8 and, in particular, Section 4.9, which contains the results necessitated by the

non-uniform support model.
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Chapter 4. Dictionary learning convergence

4.2. Setting

We define the following model for our signals.

Definition 4.1 (Signal model) Given a generating dictionary Φ ∈ Rd×K consisting of K

normalized atoms, we model our signals as

y = ΦIxI =
∑
i∈I

ϕixi, xi = ciσi, (4.3)

where the support I = {i1, . . . iS} ⊆ K is chosen according to the rejective sampling model

with probabilities p1, . . . , pK such that
∑K

i=1 pi = S and 0 ≤ pk ≤ 1/6, the coefficient sequence

c = (ci)i ∈ RK consists of i.i.d. bounded random variables ci with 0 ≤ cmin ≤ ci ≤ cmax ≤ 1

and the sign sequence σ ∈ {−1, 1}K is a Rademacher sequence, i.e. its entries σi are i.i.d with

P(σi = ±1) = 1/2. Supports, coefficients and signs are modeled as independent and we can

write x = 1I ⊙ c⊙ σ.

The assumption pi ≤ 1/6 is to ensure that pi and the corresponding inclusion probabilities of

the rejective sampling model πi are not too different (see Theorem 4.17). We define the vectors

α, β ∈ RK via

αi := ⟨ϕi, ψi⟩ βi := E[c2i ]

and the corresponding diagonal matrices Dα, Dβ. We define the distance between the gener-

ating dictionary Φ and a guess Ψ as

δ(Ψ,Φ) := max
{
∥(Ψ− Φ)D√

π∥2,2, ∥Ψ− Φ∥2,1
}
.

This might not seem intuitive at first glance, but if we are able to show convergence of this

distance we are able to also control the weighted operator norm of the error in each step.

Sometimes we will also need just the ℓ2-distance between two dictionary elements

ε(Ψ,Φ) := ∥Ψ− Φ∥2,1 = max
i
∥ψi − ϕi∥2.

If it is clear from context, we will sometimes write ε and δ instead of ε(Ψ,Φ) and δ(Ψ,Φ). A

very important variable which will be used very frequently throughout this chapter is

Z := Φ−Ψ,

which is the difference matrix between the generating dictionary Φ and our current dictionary

Ψ.

4.3. Algorithms

We will analyse the convergence of two algorithms, K-SVD and MOD, or more accurately

slightly modified versions that use Thresholding in the sparse approximation step rather that

OMP.

We start with a detailed description of the K-SVD version we will analyse. In the original

K-SVD algorithm the dictionary is updated atom by atom with the goal of reducing the part

of current error ∥Y −ΨX̂∥, which is related to the atom at hand. Concretely to update the k-th

atom, based on the current guess for dictionary and coefficients (Ψ, X̂), it first sets ψk = 0,

J := {n : x̂n(k) ̸= 0} and E := YJ −ΨX̂J , (4.4)
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solves via singular value decomposition

argminv,g ∥E − vg∗∥F . (4.5)

and updates ψ̂k = v/∥v∥ and X̂new
k,J = ∥v∥ · g∗. One drawback of this update is that finding

the largest left-singular vector of E for each atom in each update step is computationally quite

expensive. This is why an approximate version, called aK-SVD, of the popular algorithm was

proposed in [64]. There the singular value decomposition in each step is replaced with a simple

power iteration using as initial guess for g = (X̂k,J)
∗. This means that

ψ̂k := E(X̂k,J)
∗/∥E(X̂k,J)

∗∥2, (4.6)

while the sparse codes in X̂k,J are updated by (ψ̂k)
∗E. Looking more closely at the atom

update, we can write the updated atom before normalisation as

ψ̃k = E(X̂k,J)
∗ = (Y −ΨX̂)J(X̂

∗)J,k

=
∑
n∈J

(yn −Ψx̂n)x̂n(k) =
N∑

n=1

[ynx̂n(k)−Ψx̂nx̂n(k)],

where in the last inequality we used that x̂n(k) = 0 for k /∈ J . Recall that first step in the

atom update was to set ψk = 0. Alternatively, if we do not set ψk = 0, we can write

ψ̃k =

N∑
n=1

[
ynx̂n(k)−Ψx̂nx̂n(k) + ψkx̂n(k)

2
]
. (4.7)

Now whether the atoms are updated according to (4.5) or (4.3.1) an important part of all K-

SVD variants is that the atoms are updated consecutively and together with the corresponding

sparse codes. This makes them prohibitively difficult to analyse, as it is not clear how one

should order the atoms and each ordering will result in a slightly different learned dictionary. In

order to get a more analysable algorithm with less dependencies we therefore propose a slightly

simplified version of this algorithm, which we again call approximate K-SVD (aK-SVD), where

the sparse codes stay unaltered during the dictionary update step. This comes with the added

benefit of the resulting algorithm being parallelisable since each atom update is independent

of the others. Further, it allows us to write the unnormalised dictionary update step in closed

form as

aK-SVD: Ψ̃ =

N∑
n=1

[ynx̂
∗
n −Ψx̂nx̂

∗
n +Ψdiag(x̂nx̂

∗
n)]

= Y X̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗). (4.8)

A detailed description of the aK-SVD algorithm with Thresholding, that we are going to anal-

yse, can be found in Algorithm 4.3.1.

As can be seen there apart from using Thresholding rather than OMP in the sparse approxi-

mation step and updating all atoms at once, we have included another small modification. To

avoid instability due to thresholding recovering an incorrect and very ill conditioned support

we use a cut-off that sets coefficients that are very large compared to the signal size to zero.

We can also see that aK-SVD is remarkably similar to the ITKrM algorithm, [72]. We only

need to replace [an + ψkx̂n(k)] · x̂n(k) by [an + ψk(y
∗
nψk)] · sign(y∗nψk) to arrive at the update
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Chapter 4. Dictionary learning convergence

Algorithm 4.3.1: Approximate K-SVD (one iteration)

Input : Ψ, Y, S, κ

foreach n do

Initialise Ψ̃ = 0, X̂ = 0;

În = argmaxI:|I|=S ∥Ψ∗
Iyn∥1 ; // thresholding

x̂n(În) = Ψ†
În
yn ; // coefficient estimation

if ∥x̂n∥2 ≥ κ∥yn∥2 then

x̂n = 0 ; // set pathological estimates to zero

end

an = yn −Ψx̂n;

foreach k ∈ În do

ψ̃k ← ψ̃k + [an + ψkx̂n(k)] · x̂n(k) ; // dictionary update

end

end

Ψ̂← (ψ̃1/∥ψ̃1∥2, · · · , ψ̃K/∥ψ̃K∥2) ; // atom normalisation

Output: Ψ̂

step of the ITKrM algorithm.

The second dictionary learning algorithm we will analyse in this chapter is a variant of the

MOD algorithm 4.3.2. As in the aK-SVD algorithm, we will employ the Thresholding algorithm

rather than FOCUS in the sparse approximation step. The justification for this can be found

in Chapter 5. Now the dictionary update step is where it differs from the above algorithm.

Even though both of them try to minimise the ℓ2-cost of the minimisation problem (4.2), MOD

updates all atoms at once, by solving a simplified minimisation problem, where Ψ need not

have normalised columns,

Ψ̃ = argminΨ ∥Y −ΨX̂∥2F , (4.9)

and normalising afterwards. The advantage is that the problem above has a closed form

solution Ψ̃ = Y X̂†, which in case X̂X̂∗ has full rank simplifies further to

MOD: Ψ̃ = Y X̂∗(X̂X̂∗)−1 =
N∑

n=1

ynx̂
∗
n

(
N∑

n=1

x̂nx̂
∗
n

)−1

. (4.10)

A detailed description of the MOD algorithm with Thresholding can be found in Algorithm 4.3.2.

As we can see the dictionary update of both aK-SVD and MOD involves the matrices X̂X̂∗

and Y X̂∗ or taking into account that Y = ΦX, rather the matrices X̂X̂∗ and XX̂∗,

aK-SVD: Ψ̃ = Y X̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗) = ΦXX̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗),

MOD: Ψ̃ = Y X̂∗(X̂X̂∗)−1 = ΦXX̂∗(X̂X̂∗)−1.

Now the key to proving convergence is to show that both these matrices or scaled versions of

them are essentially diagonal matrices, that is, we define

A :=
1

N
XX̂∗ =

1

N

N∑
n=1

xnx̂
∗
n and B :=

1

N
X̂X̂∗ =

1

N

N∑
n=1

x̂nx̂
∗
n. (4.11)
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Algorithm 4.3.2: Method of Optimal Directions (one iteration)

Input : Ψ, Y, S, κ

foreach n do

În = argmaxI:|I|=S ∥Ψ∗
Iyn∥1; // thresholding

x̂n(În) = Ψ†
În
yn ; // coefficient estimation

if ∥x̂n∥2 ≥ κ∥yn∥2 then

x̂n = 0 ; // kill pathological estimates

end

end

X̂ ← (x̂1, · · · , x̂N ) ;

Ψ̃← (Y X̂†) ; // dictionary update

Ψ̂← (ψ̃1/∥ψ̃1∥2, · · · , ψ̃K/∥ψ̃K∥2); // atom normalisation

Output: Ψ̂

We first take a closer look at the terms within the sums above, where for simplicity we drop

the index n. Assuming that Thresholding finds the correct support, we can write xx̂∗ using

the zero-padding operator R∗
I as,

xx̂∗ = x(R∗
IΨ

†
Iy)

∗ = xx∗Φ∗(Ψ†
I)

∗RI ,

Further assuming that ΨI is well conditioned meaning, Ψ∗
IΨI ≈ I, we can next approximate

Ψ†
I ≈ Ψ∗

I leading to

xx̂∗ ≈ xx∗Φ∗ΨIRI = xx∗Φ∗ΨR∗
IRI = xx∗Φ∗Ψdiag(1I).

As we modelled the generating coefficients as x = c⊙ σ⊙ 11, using the independence of c, σ, I

we get that in expectation over c, σ,

Ec,σ[xx
∗] = Ec[cc

∗]⊙ Eσ[σσ
∗]⊙ (1I1

∗
I) = Dβ diag(1I).

So A the empirical estimator for E[xx̂] should we well approximated by

A =
1

N

N∑
n=1

xnx̂
∗
n ≈ E[xx̂∗] ≈ EDβ diag(1I)Φ

∗Ψdiag(1I) = (DβΦ
∗Ψ)⊙ E[1I1∗I ].

The matrix E[1I1∗I ] simply stores as ij-th entry how often {i, j} ⊆ I, meaning the diagonal

entries ar far larger than the off-diagonal ones, and we can approximate E[1I1∗I ] ≈ Dπ+ππ
∗ ≈

Dπ. Finally using that Dα = diag(Φ∗Ψ) we see that the matrix A should be very close to

A ≈ E[xx̂∗] ≈ (DβΦ
∗Ψ)⊙Dπ = Dπ·α·β (4.12)

Using similar arguments as above we get that B the empirical estimator for E[x̂x̂∗] should be

close to

B =
1

N

N∑
n=1

x̂nx̂
∗
n ≈ E[x̂x̂∗] ≈ Dπ·α2·β. (4.13)

So before normalisation the dictionary updated via aK-SVD should be approximately

Ψ̃ = ΦXX̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗) = ΦA−Ψ[B − diag(B)] ≈ ΦDπ·α·β
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and the dictionary updated via MOD

Ψ̃ = ΦXX̂∗(X̂X̂∗)−1 = ΦAB−1 ≈ ΦD−1
α . (4.14)

This means that the output of both dictionary update steps after normalisation should be a

dictionary, which is very close to the generating dictionary, and the work to be done in the

proof essentially boils down to quantifying the error in the approximation steps outlined above.

Concretely, we will prove the following main result.
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4.4. Main results

We are finally in a position to state our main result. After that, we will analyse each condition

and explain the intuition behind some of the assumptions.

Theorem 4.2 Assume our signals follow the signal model in 4.1 with probabilities p1, · · · , pK
such that

∑
i pi = S and 0 ≤ pi ≤ 1

6 . Let πi := PS(i ∈ I) and denote by Φ the generating

dictionary and by Ψ the initial guess. Set

α := min
k
|⟨ψk, ϕk⟩| = 1− ε2

2
and γ :=

cmin

cmax
and ρ := 2κ2∥Φ∥2Sγ−2α−2π−3/2.

We denote by δ⋆ the desired recovery accuracy and assume δ⋆ log (Kρ/δ⋆) ≤ γ2/(8C). If

max

{
∥ΦD√

π∥2, ∥ΨD√
π∥2, µ(Φ), µ(Ψ,Φ)2, µ(Ψ)

}
≤ α2γ2

C2 log (Kρ/δ⋆)
(4.15)

for a universal constant C, and if we are given N fresh signals each iteration, then with high

probability both MOD and aK-SVD converge with geometric rate up to precision δ⋆ to the

generating dictionary Φ. The failure probability in each step is bounded by

60K exp

(
− N(δ⋆/32)

2

2ρ2 + ρδ⋆/32

)
. (4.16)

This theorem might seem overwhelmingly complicated at first glance, which is why we will

provide some explanations as to what the different conditions and bounds actually mean in

practice.

Initialisation: The above result depends on the distance ε between the generating dictionary

Φ and the initialisation Ψ via the quantity α = 1− ε2/2 and the structure of the initialisation

via the cross-coherence µ(Ψ,Φ) = maxi ̸=j |⟨ψi, ϕj⟩|. Assuming for a moment that we are

in a uniform support model, i.e. pi = πi = S
K , that both Φ and Ψ are very incoherent

(µ(Φ), µ(Ψ) ≪ 1) and well-conditioned (∥Ψ∥ ≈ ∥Φ∥ ≈
√
K/d). Then condition (4.15) is

equivalent to α2 ≈ SK log(K)
Kd . By the relation ε2 = 2− α this yields the sufficient condition

ε = ∥Ψ− Φ∥2,1 ≲

(
2− 2

√
S log(K)

d

)1/2

.

As the maximal distance between two dictionaries is
√
2, this is a huge improvement over

existing results. The price we pay for this is that the cross-coherence µ(Ψ,Φ) has to be very

small in comparison to α. This is encapsulated by the following condition

max
i ̸=j
|⟨ψi, ϕj⟩| · log(K) ≲ min

k
|⟨ψk, ϕk⟩| .

Intuitively, one can think of this as ensuring that no two estimated atoms point to the same

generating atom which might lead to errors in the sparse approximation algorithm. So if it

is clear in some sense, which estimated atom belongs to which generating atom, then the

admissible distance can be very close to
√
2.

Another set of conditions arise, if one has no information about the cross-coherence µ(Ψ,Φ) but

access to an incoherent and well-conditioned initialisation and generating dictionary, meaning

max
{
∥ΦD√

π∥2, ∥ΨD√
π∥2, µ(Φ), µ(Ψ)

}
≲

1

log(K)
.
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In this setting we see that since µ(Ψ,Φ)2 ≲ µ(Φ)2+ε2, the condition ε ≲ 1/
√
log(K) is sufficient

for (4.15) to be satisfied. So as long as the generating dictionary and the initialisation are nice

in some sense, the radius of convergence is 1/
√

log(K) as stated in the introduction.

If one has no information at all about the structure or well-behavedness of the initialisation Ψ

(via the coherence or cross-coherence), then one can always bound ∥ΨD√
π∥ ≤ ∥ΦD√

π∥+∥ZD√
π∥

and µ(Ψ) ≲ µ(Φ) + ε. Thus we see that as long as the generating dictionary is well-behaved,

we have that δ = max {∥ZD√
π∥, ε} ≲ 1

log(K) is sufficient to ensure convergence. In the case

of MOD even this last regime is a large improvement over the convergence radius ε ≲ 1/S2

derived in [5].

Attainable accuracy: Analysing the above conditions and assuming access to an arbitrarily

close initialisation, i.e. Ψ ≈ Φ and arbitrarily many signals N , we see that the attainable

accuracy δ⋆ depends on Φ via condition (4.15) which in approximation reduces to

δ⋆ ≈ SKγ−2max
i
π
−2/3
i exp

(
− α2

max {∥ΦD√
π∥2, µ(Φ)}

)
.

This shows nicely how the precision one can attain depends inversely on the frequency of the

atom that appears rarest and on the properties of the generating dictionary via the weighted

operator norm and coherence. So even with unlimited fresh samples in each iteration and an

arbitrarily close initialisation, if the generating dictionary is not ’well-behaved’, we might be

limited in the accuracy up to which we can recover it.

Number of signals: From the probability bound in (4.16) we see that in order for the failure

probability in each step to be small, the number of the fresh signals per iteration has to be

approximately

N ≈ ρ2

δ2⋆
· log(K) =

4κ4∥Φ∥4S2γ−4α−4π−3

δ2⋆
· log(K)

ensuring that even the most rarely appearing atoms are seen often enough to learn them

properly. For uniformly distributed supports where every atom is equally likely to be in the

support, i.e. πi = S/K, this means that N should be of order K3 log(K)/δ2⋆ . We are quite

convinced that this bound can be reduced using more sophisticated variance bounds in the

matrix and vector Bernstein inequalities later in the proof, however, we leave the endeavour

to those still motivated after reading the current proof.

Conditioning of submatrices: The conditions

max
{
∥ΦD√

π∥2, µ(Φ)
}
≲

1

log(K)
and max

{
∥ΨD√

π∥2, µ(Ψ)
}
≲

1

log(K)

are quite standard assumptions in the theory of sparse approximation and dictionary learning

since they ensure that most submatrices ΦI and ΨI are well-behaved in the sense that ∥Φ∗
IΦI−

I∥ ≤ ϑ < 1 for most supports I. This allows us to work with the pseudo-inverse Φ†
I without

worrying too much about too small or large singular values. Checking that this condition

is still satisfied for the updated dictionary after each step is one of the main hurdles of the

proof and the reason why we need to control also the weighted operator norm of the difference

between Φ and the updated dictionary Ψ̂.
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4.5. Proof

To prove our main result we proceed as follows. We show that under the conditions of our main

Theorem we have contraction in each iteration and that the conditions for this contraction are

then again satisfied in the next step. For that recall that we defined the distance between the

generating dictionary Φ and a guess Ψ as

δ(Ψ,Φ) := max
{
∥(Ψ− Φ)D√

π∥2,2, ∥Ψ− Φ∥2,1
}
.

Proposition 4.3 Assume our signals follow the signal model in 4.1 with probabilities p1, · · · , pK
such that

∑
i pi = S and 0 ≤ pi ≤ 1

6 . Let πi := PS(i ∈ I) and define

α := min
k
|⟨ψk, ϕk⟩| = 1− ε2/2 and γ :=

cmin

cmax
and ρ := 2κ2∥Φ∥2Sγ−2α−2π−3/2.

We denote by δ⋆ the desired recovery accuracy and assume δ⋆ log (Kρ/δ⋆) ≤ γ2/(8C). If the

generating dictionary Φ satisfies

max

{
∥ΦD√

π∥2, µ(Φ)
}
≤ 1

8C2

α2γ2

log (Kρ/δ⋆)
(4.17)

and the current guess Ψ satisfies either

max

{
∥ΨD√

π∥2, µ(Ψ,Φ)2, µ(Ψ)

}
≤ 1

8C2

α2γ2

log (Kρ/δ⋆)
(4.18)

or

δ(Ψ,Φ) ≤ 1

8C

γ2

log (Kρ/δ⋆)
, (4.19)

for a universal constant C > 1, then the updated and normalised dictionary Ψ̂ satisfies

δ(Ψ̂,Φ) ≤ 1

2
δ⋆ +

1

2
min

{
γ2

8C log(Kρ/δ⋆)
,

γ

8
√
log(Kρ/δ⋆)

· δ(Ψ,Φ)

}
, (4.20)

except with probability

60K exp

(
− N(∆/2)2

2ρ2 + ρ∆/2

)
. (4.21)

where

∆ :=
1

16
δ⋆ +min

{
γ2

128C log(Kρ/δ⋆)
,

γ

128
√
log(Kρ/δ⋆)

· δ(Ψ,Φ)

}
. (4.22)

Remark 4.4 A few remarks are in order. In contrast to the main theorem we have two sets

of sufficient conditions on the current guess Ψ to ensure contraction. We will call (4.18) the

first regime and (4.19) the second regime. The above proposition states that in the first regime

— in which the distance between the generating dictionary and the initialisation may be close

to
√
2 — we contract by a factor ≈ 1/ log(K), allowing us to jump into the second regime.

Once in the second regime, (4.20) implies δ(Ψ̂,Φ) ≤ η · δ(Ψ,Φ) for some η < 5
8 , as long as

δ(Ψ,Φ) ≥ δ⋆, so we converge with geometric rate up to the minimal attainable distance δ⋆.
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Proof We show that under the following 4 claims, both dictionary learning algorithms contract

towards the generating dictionary (in the maximum column norm and the weighted operator

norm). For that define

q := K exp

(
− N(∆/2)2

2ρ2 + ρ∆/2

)
.

Claim 1 Under the conditions of the proposition, we have

∥ΦA(D√
π·α·β)

−1 − ΦD√
π∥2,2 ≤ α∆, (C1)

except with probability 2q.

Claim 2 Under the conditions of the proposition, we have

∥(D√
π·α)

−1B(D√
π·α·β)

−1 − I∥2,2 ≤ ∆, (C2)

except with probability 2q.

Claim 3 Under the conditions of the proposition, we have for all ℓ ∈ {1, · · · ,K}

∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥2 ≤ α∆, (C3)

except with probability 28q.

Claim 4 Under the conditions of the proposition, we have for all ℓ ∈ {1, · · · ,K}

γα

C
√
log(Kρ/δ⋆)

· ∥Iℓc(D√
π·α)

−1B(D√
π·α·β)

−1eℓπ
− 1

2
ℓ ∥2 ≤ ∆, (C4)

except with probability 28q.

We will show that a properly scaled version of the updated dictionary, which we will denote

by Ψ̄, contracts towards the generating dictionary under the above claims. Concretely

∥(Ψ̄− Φ)D√
π∥ ≤ 4∆ and ∥Ψ̄− Φ∥2,1 ≤ 4∆, (4.23)

So we have contraction towards the generating dictionary in the weighted operator norm and

the maximum column norm simultaneously.

aK-SVD: Recall that for aK-SVD, the updated dictionary before normalisation can be writ-

ten in a concise way as

Ψ̃ = ΦXX̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗) = ΦA−ΨB +Ψdiag(B).

In order to show that one dictionary update step decreases the distance to the generating

dictionary Φ, we introduce a scaled dictionary update which we denote by Ψ̄

Ψ̄ := Ψ̃(Dπ·α·β)
−1 = [ΦA−ΨB +Ψdiag(B)] (Dπ·α·β)

−1, (4.24)

i.e., we multiply the dictionary update step of the K-SVD algorithm with the diagonal matrix

(Dπ·α·β)
−1 to ensure that, on average, this matrix concentrates around Φ. This does not change
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4.5. Proof

the underlying algorithm, since we have a normalisation step at the end of each iteration, which

will be analysed at the end of this section.

We make the following decomposition

Ψ̄ = ΦA(Dπ·α·β)
−1 −Ψ(B − diag(B))(Dπ·α·β)

−1

= ΦA(Dπ·α·β)
−1 −ΨD√

π·α
[
(D√

π·α)
−1B(Dπ·α·β)

−1 −D−1√
π

]
+ΨD√

π·α
[
(D√

π·α)
−1 diag(B)(Dπ·α·β)

−1 −D−1√
π

]
. (4.25)

Recall from above that we want to have concentration in the weighted operator norm and the

maximal ℓ2-distance. We begin by showing concentration in the weighted operator norm under

claims C1-C4 and the assumptions on ∥ΨD√
π∥ (or ∥ΦD√

π∥+ ∥(Ψ−Φ)D√
π∥). With the above

expression for the updated dictionary Ψ̄ we can bound the operator norm of the difference

(Ψ̄− Φ)D√
π as

∥(Ψ̄− Φ)D√
π∥ ≤ ∥ΦA(D√

π·α·β)
−1 − ΦD√

π∥︸ ︷︷ ︸
≤ α∆ (C1)

+2 ∥ΨD√
π·α∥︸ ︷︷ ︸

≤ αγ

C
√

log(Kρ/δ⋆)

∥(D√
π·α)

−1B(D√
π·α·β)

−1 − I∥︸ ︷︷ ︸
≤ ∆ (C2)

≤ 4∆,

meaning that the scaled dictionary update step contracts towards the generating dictionary in

the weighted operator norm.

Next, we are going to show that for each atom the ℓ2-distance also decreases with each iteration.

As for the operator norm we use the scaled version of the updated dictionary and access the

ℓ-th dictionary atom ψ̄ℓ simply by multiplying Ψ̄ with the standard basis vector eℓ. This yields

ψ̄ℓ = Ψ̄eℓ = ΦA(Dπ·α·β)
−1eℓ +Ψ(B − diag(B))(Dπ·α·β)

−1eℓ

= ΦA(Dπ·α·β)
−1eℓ +ΨD√

π·α
[
(D√

π·α)
−1(B − diag(B))(D√

π·α·β)
−1
]
eℓπ

− 1
2

ℓ

= ΦA(Dπ·α·β)
−1eℓ +ΨD√

π·α · Iℓc ·
[
(D√

π·α)
−1B(D√

π·α·β)
−1
]
eℓπ

− 1
2

ℓ . (4.26)

Again using this decomposition together with claims C3 and C4 and the assumptions on

∥ΨD√
π∥ resp. ∥ΦD√

π∥+ ∥(Ψ− Φ)D√
π∥ we get

∥ψ̄ℓ − ϕℓ∥ ≤ ∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥︸ ︷︷ ︸

≤ α∆ (C3)

+ ∥ΨD√
π·α∥︸ ︷︷ ︸

≤ γα

C
√

log(Kρ/δ⋆)

∥Iℓc(D√
π·α)

−1B(D√
π·α·β)

−1eℓπ
− 1

2
ℓ ∥

︸ ︷︷ ︸
≤ ∆ (C4)

≤ 4∆.

So putting the above together we have shown that under Claims 1-4, we get that

∥(Ψ̄− Φ)D√
π∥2,2 ≤ 4∆ and ∥Ψ̄− Φ∥2,1 ≤ 4∆, (4.27)

i.e., that we have contraction in the weighted operator norm and in the maximum column

norm. This does not finish the proof since we have to also take into account the normalisation

step. We postpone the analysis of the normalising step to after the analysis of the MOD algo-

rithm, since it is the same for both algorithms.

MOD: Turning to the MOD algorithm we recall that, if the estimated coefficient matrix X̂

has full row rank K or equivalently X̂X̂∗ has full rank, which is guaranteed by Claim 2, we

can write the dictionary update step before normalisation as

Ψ̃ = ΦXX̂∗
(
X̂X̂∗

)−1
= ΦAB−1.
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Chapter 4. Dictionary learning convergence

This dictionary update step — though conceptually very easy — is harder to analyse theo-

retically due to the inverse of the matrix B. Since at the end of each iteration the current

dictionary is normalised such that each atom has norm one, instead of analysing the actual

dictionary update step before normalisation we look at a scaled version. This does not change

anything, as the normalisation step simply cancels out this scaling, but it makes life much

easier when analysing the dictionary update step. So we show that

Ψ̄ := ΦAB−1Dα ≈ Φ. (4.28)

So as above we start by showing that the weighted operator norm of the difference Ψ̄ − Φ

contracts under our 4 claims from above. We have to be very careful with the inverse matrix

B−1. We will show that this matrix concentrates around Dπ·α2·β. Concretely, we will split

(Φ̄− Φ)D√
π as follows

(Ψ̄− Φ)D√
π = ΦAB−1D√

π·α − ΦD√
π

= ΦA(D√
π·α·β)

−1 − ΦD√
π +ΦA

[
B−1 − (Dπ·α2·β)

−1
]
D√

π·α

= ΦA(D√
π·α·β)

−1 − ΦD√
π +ΦA(D√

π·α·β)
−1
[[
(D√

π·α)
−1B(D√

π·α·β)
−1
]−1 − I

]
.

(4.29)

Before bounding the operator norm of the above terms we will have a closer look at the

expression in the last bracket. For ease of notation set

C := (D√
π·α)

−1B(D√
π·α·β)

−1. (4.30)

To analyse the inverse in last bracket of (4.29) we will make use of the Neumann series ex-

pansion. For that note that by (C2) we have that ∥C − I∥ ≤ 1/2, hence we can apply the

Neumann series expansion on the matrix C−1. This amounts to

(C−1 − I) =

∞∑
k=0

(C − I)k − I =

∞∑
k=1

(C − I)k =

∞∑
k=0

(C − I)k(C − I) (4.31)

So by (C2) we get for the operator norm of the above

∥C−1 − I∥ = ∥
∞∑
k=0

(C − I)k(C − I)∥ ≤
∞∑
k=0

∥C − I∥k∥C − I∥ ≤
∞∑
k=0

1/2k∥C − I∥ ≤ 2∥C − I∥.

Note also that by (C1), we have

∥ΦA(D√
π·α·β)

−1∥ ≤ ∥ΦA(D√
π·α·β)

−1 − ΦD√
π +ΦD√

π∥

≤ α∆+ ∥ΦD√
π∥ ≤

αγ

4C
√

log(Kρ/δ⋆)
. (4.32)

Putting all of these observations back into (4.29) and using the triangle inequality repeatedly

we get

∥(Ψ̄− Φ)D√
π∥ ≤ ∥ΦA(D√

π·α·β)
−1 − ΦD√

π∥︸ ︷︷ ︸
≤ α∆ (C1)

+ ∥ΦA(D√
π·α·β)

−1∥︸ ︷︷ ︸
≤ αγ

4C
√

log(Kρ/δ⋆)
(4.32)

·2 · ∥C − I∥︸ ︷︷ ︸
≤ ∆ (C2)

≤ 3∆. (4.33)

This shows that under the assumptions of the proposition, the weighted operator norm of the

distance between the generating dictionary and the scaled update decreases in each iteration.
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Now to the contraction of every atom in the ℓ2-norm. We will show this contraction only

for the first atom, as all the others are analogous. The next step makes use of the Schur-

decomposition and the separation of the inverse into different parts. First we again split our

updated dictionary atom ψ̄ℓ into two parts

ψ̄ℓ − ϕℓ = Ψ̄eℓ − ϕℓ =
[
ΦA(Dπ·α·β)

−1eℓ − ϕℓ
]
+ΦA(D√

π·α·β)
−1(C−1 − I)eℓπ

− 1
2

ℓ . (4.34)

Here (as in the previous section) the first term is well-behaved and makes no problems. (C3)

implies

∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥ ≤ ∆. (4.35)

The second term of (4.34) needs more work, as we have to control the ℓ-th column of the

matrix C−1 − I. The trick is to see that we have to split the inverse C−1 into an off-diagonal

term, which is small enough to control the term 1/
√
πℓ and an on-diagonal term, which only

uses the ℓ-th column of the matrix A(D√
π·α·β)

−1 ≈ ΦD√
π, which is small enough to control the

term 1/
√
πℓ. To formalise this argument, we write

∥ΦA(D√
π·α·β)

−1(C−1 − I)eℓπ
− 1

2
ℓ ∥

≤ ∥ΦA(D√
π·α·β)

−1eℓe
∗
ℓ (C

−1 − I)eℓπ
− 1

2
ℓ ∥+ ∥ΦA(D√

π·α·β)
−1IℓcC−1eℓπ

− 1
2

ℓ ∥

≤ ∥ΦA(D√
π·α·β)

−1eℓπ
− 1

2
ℓ ∥ · ∥e

∗
ℓ

[
C−1 − I

]
eℓ∥+ ∥ΦA(D√

π·α·β)
−1Iℓc∥ · ∥IℓcC−1eℓπ

− 1
2

ℓ ∥

≤ ∥ΦA(Dπ·α·β)
−1eℓ∥ · ∥C−1 − I∥+ ∥ΦA(D√

π·α·β)
−1∥ · ∥IℓcC−1eℓ∥ · π

− 1
2

ℓ , (4.36)

effectively splitting this operator norm into two parts which will be dealt with separately.

The last norm term of the above, ∥IℓcC−1eℓ∥ still needs some special treatment before we can

effectively bound it with our claims. Taking a closer look we see that we have to bound the

ℓ-th column — without the ℓ-th row — of the matrix C−1. For this we will use Schur’s formula

for matrix inversion.

Lemma 4.5 For a square matrix C ∈ RK×K , if

C =

[
a c∗

c D

]
then C−1 =

[
a c∗

c D

]−1

=

[
a−1 + a−1c∗Mca−1 −a−1c∗M

−Mca−1 M

]
, (4.37)

where M := (D − ca−1c∗)−1 is the Schur complement of a in the above matrix.

In our case, after rearranging and remembering the restriction matrices RI with AI = ARI ,

we have a := e∗ℓCeℓ, c := R∗
ℓc · C · eℓ and M := R∗

ℓc · C−1 · Rℓc with ∥M∥ ≤ ∥C−1∥. Since for

any matrix V the vector IℓcV eℓ differs from R∗
ℓcV eℓ only by an extra zero entry their norms

coincide and Schur’s decomposition lemma implies

∥IℓcC−1eℓ∥ = ∥R∗
ℓcC

−1eℓ∥ = ∥a−1Mc∥ ≤ ∥(Cℓ,ℓ)
−1∥︸ ︷︷ ︸

≤ 1
1−∆

(C2)

· ∥R∗
ℓcC

−1Rℓc∥︸ ︷︷ ︸
≤ 2 (C2), (4.31)

·∥R∗
ℓcCeℓ∥ ≤ 4∥IℓcCeℓ∥.

Also by (C3)

∥ΦA(Dπ·α·β)
−1eℓ∥ ≤ 1 + ∆ ≤ 3

2
. (4.38)
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Putting all these observations together

∥ΦA(D√
π·α·β)

−1(C−1 − I)eℓπ
− 1

2
ℓ ∥

≤ ∥ΦA(Dπ·α·β)
−1eℓ∥︸ ︷︷ ︸

≤ 3
2
(4.38)

∥C−1 − I∥︸ ︷︷ ︸
≤ ∆ (C2)

+4∥ΦA(D√
π·α·β)

−1∥︸ ︷︷ ︸
≤ γα

C
√

log(Kρ/δ⋆)
(4.32)

∥IℓcCeℓπ
− 1

2
ℓ ∥

︸ ︷︷ ︸
≤ ∆ (C4)

≤ 3∆, (4.39)

Plugging (4.35) and (4.39) into (4.34) finally yields the ℓ2-norm bound on the distance between

the ℓ-th atom of the generating dictionary and the scaled updated dictionary

∥ψ̄ℓ − ϕℓ∥ ≤ ∥ΦA(Dπ·α·β)
−1eℓ − ϕℓ∥+ ∥ΦA(D√

π·α·β)
−1(C−1 − I)eℓπ

− 1
2

ℓ ∥ ≤ 4∆. (4.40)

Normalisation Combining the above results shows that with high probability, the dictionary

update step of each algorithm (with scaling) satisfies

δ(Ψ̄,Φ) = max
{
∥(Ψ̄− Φ)D√

π∥2,2, ∥Ψ̄− Φ∥2,1
}
≤ 4∆. (4.41)

So what is left to show is that the normalisation step at the end of iteration does not interfere

with convergence. Let F := diag(∥ψ̄i∥2)−1 be the square diagonal normalization matrix and

denote by Ψ̂ := Ψ̄F the normalized dictionary of the current update step. Since ∥ϕi∥2 = 1 we

have

∥F∥2,2 ≤
1

1− ε(Ψ̄,Φ)
and ∥I− F∥ ≤ ε(Ψ̄,Φ)

1− ε(Ψ̄,Φ)
. (4.42)

Hence the weighted operator norm of the difference of the generating dictionary Φ and the

normalised update Ψ̂ can be bounded as

∥(Ψ̂− Φ)D√
π∥ = ∥(Ψ̄F − Φ)D√

π∥ ≤ ∥(Ψ̄− Φ)D√
πF +ΦD√

π(I− F )∥
≤ ∥(Ψ̄− Φ)D√

πF∥+ ∥ΦD√
π(I− F )∥

≤ ∥(Ψ̄− Φ)D√
π∥∥F∥+ ∥ΦD√

π∥∥(I− F )∥

≤ ∥(Ψ̄− Φ)D√
π∥

1

1− ε(Ψ̄,Φ)
+ ∥ΦD√

π∥
ε(Ψ̄,Φ)

1− ε(Ψ̄,Φ)

≤ 1 + ∥ΦD√
π∥

1− ε(Ψ̄,Φ)
·max

{
∥(Ψ̄− Φ)D√

π∥, ∥Ψ̄− Φ∥2,1
}
≤ 8∆. (4.43)

The ℓ2-norm can be bounded in a similar fashion

∥Ψ̂− Φ∥2,1 = ∥Ψ̄F − Φ∥2,1 ≤ ∥Ψ̄− Φ∥2,1
1

1− ε(Ψ̄,Φ)
+

ε(Ψ̄,Φ)

1− ε(Ψ̄,Φ)
≤ 8∆. (4.44)

Thus we get by definition of ∆ for the normalised dictionary Ψ̂

δ(Ψ̂,Φ) ≤ 8∆ =
1

2
δ⋆ +

1

2
min

{
γ2

8C log(Kρ/δ⋆)
,

γ

8
√
log(Kρ/δ⋆)

· δ(Ψ,Φ)

}
.

Combining the probability estimates of Claims 1-4 finishes the proof.
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Proof [Theorem 4.2] To proof our main Theorem 4.2 we only have to show that we are

able to repeatedly apply Proposition 4.3. But this follows immediately from the speed of

convergence (4.20) and the conditions of regime 2 (4.19) together with the assumption of

δ⋆ ≤ 1
8C

γ2

log(Kρ/δ⋆)
. This ensures that δ converges to δ⋆ geometrically and thus finishes the

proof.
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4.6. Technical results

Since we are going to apply the matrix and vector Bernstein inequalities repeatedly, we have

to have good control over the operator norm of expectations of products of random matrices.

A crucial technical result to do so is the following, which can be found in [27], [43].

Lemma 4.6 (Sum of random matrices [27], [43]) Let An ∈ Rd1×d2, Bn ∈ Rd2×d3, Cn ∈
Rd3×d4. Then ∥∥∥∥∥

N∑
n=1

AnBnCn

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
n=1

AnA
∗
n

∥∥∥∥∥
1/2

max
n
∥Bn∥

∥∥∥∥∥
N∑

n=1

C∗
nCn

∥∥∥∥∥
1/2

.

Proof Write

N∑
n=1

AnBnCn =


A1 A2 A3 .

. .

. .

. .



B1 . . .

. B2

. B3

. .



C1 . . .

C2 .

C3 .

. .

 . (4.45)

Now the result immediately follows by applying the following properties of the operator norm

∥ABC∥ ≤ ∥A∥∥B∥∥C∥, ∥A∥ = ∥AA∗∥1/2 and ∥C∥ = ∥C∗C∥1/2.

This result immediately translates to expectations of products of random matrices with the

following nice little trick.

Lemma 4.7 [black magic box 2.0] Let A(I) ∈ Rd1×d2, B(I) ∈ Rd2×d3, C(I) ∈ Rd3×d4 be

random matrices, where I is a discrete random variable taking values in I. Then for any

G ⊆ I

∥E [A(I)B(I)C(I)1G(I)] ∥ ≤ ∥E [A(I)A(I)∗] ∥1/2 ·max
I∈G
∥B(I)∥ · ∥E [C(I)∗C(I)] ∥1/2

Proof Rewriting the expectation as a sum and applying the lemma above yields

∥E [A(I)B(I)C(I)1G(I)] ∥ = ∥
∑
I∈G

P[I]1/2A(I)B(I)C(I)P[I]1/2∥

≤ ∥
∑
I∈G

P[I]A(I)A(I)∗∥1/2 ·max
I∈G
∥B(I)∥ · ∥

∑
I∈G

P[I]C(I)∗C(I)∥1/2

≤ ∥E [A(I)A(I)∗] ∥1/2 ·max
I∈G
∥B(I)∥ · ∥E [C(I)∗C(I)] ∥1/2,

where in the last inequality we have used that the matrices A(I)A(I)∗ and C(I)∗C(I) are

positive semidefinite and that P [I] ≥ 0.

Since all of our proofs rely on either the vector or matrix Bernstein inequality or the Chernoff

inequality, we recall them here for convenience.

Theorem 4.8 (Matrix resp. Vector Bernstein [84, 52]) Consider a sequence Y1, ..., YN
of independent, random matrices (resp. vectors) with dimension d×K (resp. d). Assume that

each random matrix (resp. vector) satisfies

∥Yn∥ ≤ R a.s. and ∥E[Yn]∥ ≤ m.
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Then, for all t > 0,

P

(
∥ 1
N

N∑
n=1

Yn∥ ≥ m+ t

)
≤ κ exp

(
−Nt2

2R2 + (R+m)t

)
, (4.46)

where κ = d + K for the matrix Bernstein inequality and κ = 28 for the vector Bernstein

inequality.

Theorem 4.9 (Matrix Chernoff Inequality [84]) Let X1, ..., XN be independent random

positive semi-definite matrices taking values in Rd×d. Assume that for all n ∈ {1, ..., N},
∥Xn∥ ≤ η a.s. and ∥

∑N
n=1 E[Xn]∥ ≤ µmax. Then, for all r ≥ eµmax,

P

(
∥

N∑
n=1

Xn∥ ≥ r

)
≤ K

(eµmax

r

) r
η
.
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Chapter 4. Dictionary learning convergence

4.7. Sparse approximation and conditioning of subdictionaries

A major hurdle in analysing the above dictionary learning algorithms is that each update of

the sparse coefficients involves projecting onto submatrices of the current guess Ψ. For the

remainder of this chapter we will write

FΦ := {I : ∥Φ∗
IΦI − I∥ ≤ ϑ} and FΨ := {I : ∥∥Ψ∗

IΨI − I∥ ≤ ϑ}

for the set of index sets where the random variables ΦI resp. ΨI are well conditioned. We

further write

FZ :=
{
I : ∥ZI∥ ≤ δ · e

√
2 log(320Kρ/δ⋆)

}
.

for the set of index sets, where the norm of the random variable ZI is comparable to δ. Finally,

set

G := FΦ ∪ FΨ ∪ FZ . (4.47)

To control P(Fc
Φ) and P(Fc

Ψ) we use Theorem 2.1 from Chapter 2 which we recall here for

convenience.

Theorem 4.10 (Operator norm of a random submatrix 2.1) Let Ψ be a dictionary and

assume I ⊆ K is chosen according to the rejective sampling model with probabilities p1, . . . , pK
such that

∑K
i=1 pi = S. Recall that πi := PS(i ∈ I). Further let Dπ denote the diagonal matrix

with the vector π on its diagonal. Then

P (∥Ψ∗
IΨI − I∥ > r) ≤ 216K exp

(
−min

{
r2

4e2∥ΨDπΨ∗∥
,

r

2µ(Ψ)

})
.

Further we need to control the sparse approximation step in each iteration. Recall that thresh-

olding works by finding the indices corresponding to the S largest values of |⟨ψi, y⟩|, i.e.

find Î ∈ argmax|I|=S ∥Ψ∗
Iy∥1 and

reconstruct x̂Î = Ψ†
Î
y.

In [74], average case results for thresholding were derived for the uniform case. There, a

sufficient condition for thresholding to work with high probability was Sµ2 log(K) ≲ γ2. The

recent work [67] extended upon these results. Note that these results only apply for the case

where one has knowledge of the generating dictionary Φ which is not the case in dictionary

learning. This setting, where knowledge of the generating dictionary is not give, was covered

in the recent work [57]. We adapt their result to our setting. For the remainder of this chapter,

we write

H :=
{
(I, σ, c) | Î = I

}
(4.48)

for the set of index, sign and coefficient triplets, where thresholding is guaranteed to recover

the correct support. With all the necessary notation in place, we finally show that under the

assumptions of our Proposition 4.3, the failure probability of Thresholding and the probability

that our submatrices are ill-conditioned can be bound by approximately δ⋆/ρ. This will be

used repeatedly by the Lemmas thereafter.

Lemma 4.11 Under the assumptions of Proposition 4.3 we have

P(Hc) · 2ρ+ P(Gc) · ρ ≤ 1

32
δ⋆. (4.49)
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4.7. Sparse approximation and conditioning of subdictionaries

Proof We begin with bounding the failure probability of Thresholding, P(Hc). Set I :=

Ψ∗Φ − diag(Ψ∗Φ). By definition of the algorithm, thresholding recovers the full support of a

signal y = ΦIxI , if

∥Ψ∗
Icy∥∞ < ∥Ψ∗

Iy∥min.

Note that the signals have two sources of randomness, σ and I. Recall α = mini |⟨ψi, ϕi⟩|.
Plugging in the definition of y we derive a bound on the failure probability

Py(∥Ψ∗
Iy∥min < ∥Ψ∗

Icy∥∞) = Py (∥Ψ∗
IΦIxI∥min < ∥Ψ∗

IcΦIxI∥∞)

≤ Py (cmin∥diag(Ψ∗
IΦI)∥min − ∥(Ψ∗

IΦI − diag(Ψ∗
IΦI))xI∥∞ < ∥Ψ∗

IcΦIxI∥∞)

≤ Py (cmin · α < 2∥IIxI∥∞) . (4.50)

Next we use that for k ∈ I, we have xk = σkck, where σ ∈ RS is an independent Rademacher

sequence. Now as the signs σ are independent from the support I, we can apply Hoeffding’s

inequality to each entry of IIxI to get

Py(∥Ψ∗
Iy∥min < ∥Ψ∗

Icy∥∞)

≤ Py

(
∥IIxI∥∞ ≥

cmin

2
· α
∣∣∣ ∥II∥∞,2 < η

)
+ PS

(
∥II∥∞,2 ≥ η

)

≤ 2K exp

(
− c2min

8c2maxη
2
· α2

)
+ 2K

(
e
∥ID√

p∥2∞,2

η2

) η2

µ(Ψ,Φ)2

≤ 2K exp

(
− γ2

8η2
· α2

)
+ 2K

(
2e
∥ID√

π∥2∞,2

η2

) η2

µ(Ψ,Φ)2

, (4.51)

where we used that by Theorem 4.17(a) we have pk ≤ 2πk which implies ∥ID√
p∥2∞,2 ≤

2∥ID√
π∥2∞,2. Further we can bound ∥ID√

π∥2∞,2 as

∥ID√
π∥2∞,2 = ∥(Ψ∗Φ− diag(Ψ∗Φ))D√

π∥2∞,2 ≤ ∥ΦD√
π∥22,2 = ∥ΦDπΦ

∗∥2,2 (4.52)

and thus by setting η2 := γ2

8 log(4K/ε) · α
2 we get

P (Hc) ≤ 4K exp

(
−min

{
γ2α2

16e2∥ΦD√
π∥22,2

,
γ2α2

8µ(Φ,Ψ)2

})
. (4.53)

Now we turn to bounding the quanitity P(Fc
Z). Setting t = 2e2δ2 log(320Kρ/δ⋆) we have by

the Poissonisation trick 2, Lemma 2.5

PS(Fc
Z) = PS

(
∥ZI∥2 > t

)
= PS

(
∥ZIZ

∗
I ∥ > t

)
≤ 2PB

(
∥ZIZ

∗
I ∥ > t

)
,

where PB is the Poisson sampling model corresponding to the p1, · · · , pK . Now a simple

application of the Matrix Chernoff Inequality 4.9 together with 4.17(a) in the last inequality

yields

PS

(
∥ZIZ

∗
I ∥ > t

)
≤ 2PB

(
∥ZIZ

∗
I ∥ > t

)
≤ 2K

(
e∥ZDpZ

∗∥
t

)t/ε2

≤ 2K

(
2e∥ZDπZ

∗∥
t

)t/ε2

≤ 2K

(
2eδ2

t

)t/δ2
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Chapter 4. Dictionary learning convergence

Plugging in t = 2e2δ2 log(320Kρ/δ⋆) we get

PS(Fc
Z) = PS

(
∥ZI∥2 ≥ 2e2δ2 log(320Kρ/δ⋆)

)
≤ δ⋆

160ρ
. (4.54)

Applying Theorem 4.10 to to bound P(Fc
Φ) and P(Fc

Ψ) and collecting all constants into universal

constants m1 to m3 yields thus

P(Hc) ≤ m1K exp

(
−min

{
γ2α2

∥ΦD√
π∥2

,
γ2α2

µ(Φ,Ψ)2

})
P(Gc) ≤ m2K exp

(
−min

{
1

∥ΨD√
π∥2

,
1

µ(Ψ)

})
+m3K exp

(
−min

{
1

∥ΦD√
π∥2

,
1

µ(Φ)

})
+

δ⋆
160ρ

. (4.55)

So if we have for a universal constant C > 0 that

max
{
∥ΦD√

π∥2, ∥ΨD√
π∥2, µ(Φ), µ(Ψ,Φ)2, µ(Ψ)

}
≤ 1

C

α2γ2

log (Kρ/δ⋆)
, (4.56)

then the claim follows. In the first regime of the Theorem, this follows immediately from the

assumptions on the generating dictionary Φ and the current guess Ψ. In the second regime we

again see that the conditions on ∥ΦD√
π∥ and µ(Φ) are satisfied by assumption. What is left to

show is that max{µ(Ψ,Φ)2, µ(Ψ), ∥ΨD√
π∥2} ≤ 1

C
α2γ2

log(Kρ/δ⋆)
. For this recall that the assumption

reads as

δ(Ψ,Φ) = max {∥(Ψ− Φ)D√
π∥, ∥Ψ− Φ∥2,1} ≤

1

8C

γ2

log (Kρ/δ⋆)
. (4.57)

So splitting Ψ into Φ and Ψ− Φ yields

∥ΨD√
π∥2 ≤ 2∥ΦD√

π∥2 + 2∥(Ψ− Φ)D√
π∥2 ≤

1

2C

γ2

log (Kρ/δ⋆)
≤ 1

C

α2γ2

log (Kρ/δ⋆)
, (4.58)

where the last inequality follows from α2 = (1−ε2/2)2 ≥ 1
2 since we are in the regime ε ≲ 1

log(K) .

Further the coherence µ(Ψ) can be decomposed as

µ(Ψ) = max
i ̸=j
|⟨ψi, ψj⟩| ≤ max

i ̸=j
|⟨ϕi, ϕj⟩|+ 2ε+ ε2

≤ µ(Φ) + 3ε ≤ 1

2C

γ2

log (Kρ/δ⋆)
≤ 1

C

α2γ2

log (Kρ/δ⋆)
. (4.59)

Since µ(Ψ,Φ)2 can in the same manner be decomposed into µ(Φ)2 and ε2, the assump-

tions (4.56) are also satisfied in the second regime and the claim follows.

With this result we are finally able to proof Lemmas 4.12- 4.15 — corresponding to Claims

1-4.

4.8. Proof of Claims 1-4

Lemma 4.12 (proof of Claim 1) Under the assumptions of Proposition 4.3 we have

P
(
∥ΦA(D√

π·α·β)
−1 − ΦD√

π∥ > α∆

)
≤ (d+K) exp

(
− N(∆/2)2

2ρ2 + ρ∆/2

)
, (4.60)

where

ρ = 2κ2∥Φ∥2Sγ−2α−2π−3/2.
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Proof The idea is to write ΦA(D√
π·α·β)

−1 −ΦD√
π as a sum of independent random matrices

and apply matrix Bernstein to show that we indeed have concentration. Since we assumed in

the algorithm that the estimated coefficients can never have larger norm than the signal times

κ we first define for v ∈ Rd the set of possible stable supports as B(v) := {I : ∥Ψ†
Iv∥ ≤ κ∥v∥}.

Based on this definition we further define the following random matrices for n ∈ [N ]

Ŷn : = yny
∗
n(Ψ

†
În
)∗RÎn

(D√
π·α·β)

−1 · 1B(yn)(În)− ΦD√
π,

where as always, În denotes the set found by the thresholding algorithm. As each matrix Ŷn
only depends on the signal yn they are independent and we have

1

N

∑
n

Ŷn = ΦA(D√
π·α·β)

−1 − ΦD√
π,

so we can use the matrix Bernstein inequality to bound the left hand side of (4.12). For that

we have to find an upper bound for the operator norm. Since we assumed in the algorithm that

the estimated coefficients can never have larger norm than the signal - i.e. ∥x̂n∥ = ∥Ψ†
În
yn∥2 ≤

κ∥yn∥2 and ∥yn∥ ≤ ∥Φ∥ we get

∥Ŷn∥ ≤ κ∥Φ∥2Sc2max∥D−1√
π ∥∥D−1

β ∥∥D
−1
α ∥+ ∥ΦD√

π∥ ≤
3

4
ρα =: R. (4.61)

Bounding ∥E[Ŷn]∥ for some n is a little more involved. Recall that H is the set of signals y,

meaning support, sign and coefficient triplets (I, σ, c), where thresholding recovers the correct

support from the corresponding signal. Further G is the set of supports I where ϑI is small -

i.e. the corresponding subdictionary ΨI is well-conditioned. Therefore for each n we define a

new random matrix Yn, for which the estimated support În is replaced with the correct support

In and ΦD√
π is replaced by Φdiag(1In)D

−1√
π .

Yn : = yny
∗
n(Ψ

†
In
)∗RIn(D√

π·α·β)
−1 · 1B(yn)(In)− Φdiag(1In)D

−1√
π

Note that with the same argument as above Yn is bounded by R. Further, by definition of H
the first terms of the two random matrices coincide on H, while the second terms coincide in

expectation, meaning E[Φ diag(1I)D
−1√
π ] = ΦD√

π. So dropping the index n for convenience, as

each signal has the same distribution, e.g., writing I for In, we get

∥E[Ŷ ]∥ ≤ ∥E[Ŷ − Y ]∥+ ∥E[Y ]∥
≤ P(Hc) · 2ρα+ ∥E[1Gc(I)Y ]∥+ ∥E[1G(I)Y ]∥
≤ P(Hc) · 2ρα+ P(Gc) · ρα+ ∥E[1G(I)Y ]∥ (4.62)

Next note that whenever I ∈ G we have for any sign and coefficient pair (σ, c) that the

corresponding signal y satisfies ∥Ψ†
Iy∥ ≤ (1 − ϑI)

− 1
2 · ∥y∥ ≤ κ∥y∥, so we have G ⊆ B(y).

Remembering that y = ΦIxI = ΦI(σI ⊙ cI), we can therefore take the expectation over (σ, c).

Using the shorthand EG [f(I)] := EI [1G(I)f(I)] this yields

∥E[1G(I)Y ]∥ = ∥EI [1G(I) · Eσ,c[ΦIxIx
∗
IΦ

∗
IΨ

†∗
I RI(D√

π·α·β)
−1 − Φdiag(1I)D

−1√
π ]]∥

= ∥EG [ΦIΦ
∗
IΨ

†∗
I RI(D√

π·α)
−1 − Φdiag(1I)D

−1√
π ]∥

≤ ∥ΦD√
π∥ · ∥EG [D

−1√
π R

∗
IΦ

∗
IΨ

†∗
I RI(D√

π·α)
−1 −D−1√

π diag(1I)Dα(D√
π·α)

−1]∥

≤ ∥D−1
α ∥ · ∥ΦD√

π∥ ·
∥∥∥EG

[
D−1√

π R
∗
I

(
Φ∗
IΨ

†∗
I − (Dα)I,I

)
RID

−1√
π

]∥∥∥ . (4.63)
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To simplify further note that for I ∈ G we can write

Ψ†
I = (Ψ∗

IΨI)
−1Ψ∗

I = (Ψ∗
IΨI − IS + IS)

−1Ψ∗
I =

∞∑
k=0

(Ψ∗
IΨI − IS)

kΨ∗
I =

∞∑
k=0

Hk
I,IΨ

∗
I , (4.64)

and have maxI∈G ∥
∑∞

k=0H
k
I,I∥ ≤

1
1−ϑ . Also since Z = Ψ− Φ we have by definition of Dα

(Dα)I,I = IS − diag(Ψ∗
IZI). (4.65)

Further, on G the columns of ΨI are linearly independent, meaning we have Ψ†
IΨI = IS and

hence we get for the expression inside the expectation above

Φ∗
I(Ψ

†
I)

∗ − (Dα)I,I = (Ψ∗
I − Z∗

I )(Ψ
†
I)

∗ − (Dα)I,I

= IS − Z∗
IΨ

†∗
I − (Dα)I,I = Z∗

IΨI

∞∑
k=0

Hk
I,I − diag(Z∗

IΨI). (4.66)

Further we will use the decomposition II,I := Z∗
IΨI − diag(Z∗

IΨI) = Z∗
IΨI − EI,I . Plugging

this back into the expression (4.63) we see that we have to control the operator norms of the

expectations of the terms in (4.66). By using that ∥ΨD√
π∥ ≤ 1

8 , Corollary 4.20(c) implies the

following inequalities which will be used multiple times

∥E[D−1√
π R

∗
IHI,IH

∗
I,IRID

−1√
π ]∥ ≤

9

2
∥D√

πHD√
π∥2 +

3

2
∥ΨD√

π∥2 ≤ 2∥ΨD√
π∥2 (4.67)

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥ ≤ 18∥ΨD√

π∥2∥ZD√
π∥2 +

3

2
ε2∥ΨD√

π∥2 (4.68)

∥E[D−1√
π R

∗
II

∗
I,III,IRID

−1√
π ]∥ ≤ 18∥ΨD√

π∥2∥ZD√
π∥2 +

3

2
∥ZD√

π∥2 ≤ 2∥ZD√
π∥2. (4.69)

Further recall that ϑ ≤ 1/4 and ε ≤
√
2. With this we get

∥EG [D
−1√
π R

∗
I

(
Z∗
IΨI

∞∑
k=0

Hk
I,I − EI,I

)
RID

−1√
π ]∥

= ∥EG [D
−1√
π R

∗
I

(
II,I

∞∑
k=0

Hk
I,I + EI,I

∞∑
k=1

Hk
I,I

)
RID

−1√
π ]∥

≤ ∥EG [D
−1√
π R

∗
III,I ·

∞∑
k=0

Hk
I,I ·RID

−1√
π ]∥+ ∥EG [D

−1√
π R

∗
IHI,I ·

∞∑
k=0

Hk
I,I ·RID

−1√
π ]∥ · ∥E∥

≤ ∥EG [D
−1√
π R

∗
III,IRID

−1√
π ]∥+ ∥EG [D

−1√
π R

∗
IHI,IRID

−1√
π ]∥ ·

ε2

2
(4.70)

+ ∥E[D−1√
π R

∗
IHI,IH

∗
I,IRID

−1√
π ]∥1/2max

I∈G
∥

∞∑
k=0

Hk
I,I∥·(

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥1/2 + ∥E[D−1√

π R
∗
IHI,IH

∗
I,IRID

−1√
π ]∥1/2 ·

ε2

2

)
⋆
≤ 6∥ΨD√

π∥∥ZD√
π∥+ 3∥ΨD√

π∥2 ·
ε2

2

+
√
2∥ΨD√

π∥ ·
1

(1− ϑ)
·
(

6

8
√
2
∥ZD√

π∥+
3

2
ε∥ΨD√

π∥+
√
2∥ΨD√

π∥
ε2

2

)
≤ 7∥ΨD√

π∥∥ZD√
π∥+ 7∥ΨD√

π∥2ε, (4.71)
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where in (⋆) we used 4.20(b), (4.67) and (4.68). Collecting all of the above and putting it back

into (4.63) and (4.62) yields

∥E[Ŷ ]∥ ≤ P(Hc)2ρα+ P(Gc)ρα+ ∥D−1
α ∥ · ∥ΦD√

π∥ ·
[
7∥ΨD√

π∥∥ZD√
π∥+ 7∥ΨD√

π∥2ε
]

≤ 1

32
δ⋆α+ 14∥D−1

α ∥ · ∥ΦD√
π∥ · ∥ΨD√

π∥ · δ, (4.72)

where the bound on the probabilities follows from Lemma 4.11. Thus by the assumptions of

our Proposition we have

∥E[Ŷ ]∥ ≤ 1

32
δ⋆α+m4

αγ2

C2 log(Kρ/δ⋆)
· δ. (4.73)

Also due to our assumption we always have δ ≤
√
2 and so for C ≥

√
2 · 256m4 we get

∥E[Ŷ ]∥ ≤ 1

32
δ⋆α+

1

2
min

{
αγ2

128C log(Kρ/δ⋆)
,

αγ2

128C log(Kρ/δ⋆)
· δ
}
≤ α∆/2 =: m. (4.74)

Finally an application of the matrix Bernstein inequality for t = α∆/2 with R = 3
4αρ and

m = α∆/2, and some simplifications yield the desired bound.

The next lemma is going to show that the matrix B =
∑N

n=1 x̂nx̂
∗
n essentially behaves like a

diagonal matrix. Together with the appropriate diagonal scaling matrices D√
π, Dβ and Dα we

are going to show that

(D√
π·α)

−1B(D√
π·α·β)

−1 ≈ I. (4.75)

For that we are again going to invoke the matrix Bernstein inequality. And again the main

difficulty lies in calculating the expected value of the involved quantities.

Lemma 4.13 (proof of Claim 2) Under the assumptions of Proposition 4.3 we have

P
(
∥(D√

π·α)
−1B(D√

π·α·β)
−1 − I∥ > ∆

)
≤ (d+K) exp

(
− N(∆/2)2

2ρ2 + ρ∆/2

)
(4.76)

where

ρ = 2κ2∥Φ∥2Sγ−2α−2π−3/2.

Proof To show the above statement, we are going to follow the approach in the result

above very closely. The idea is to again write (D√
π·α)

−1B(D√
π·α·β)

−1 − I as a scaled sum of

independent random matrices Ŷn and apply matrix Bernstein to show that we indeed have

concentration. Recalling that În denotes the set found by the thresholding and that B(v) :=
{I : ∥Ψ†

Iv∥ ≤ κ∥v∥} denotes the set of possible stable supports for v, we define for n ∈ [N ] the

matrices Ŷn as well as their auxiliary counterparts Yn as

Ŷn : = (D√
π·α)

−1R∗
În
Ψ†

În
yny

∗
nΨ

†∗
În
RÎn

(D√
π·α·β)

−1
1B(yn)(În)− I

and Yn : = (D√
π·α)

−1R∗
InΨ

†
In
yny

∗
nΨ

†∗
In
RIn(D√

π·α·β)
−1
1B(yn)(In)− diag(1In)D

−1
π .

Both matrices can be bounded as

max{∥Ŷn∥, ∥Yn∥} ≤ κ2∥y∥2∥D−2
α ∥∥D−1

β ∥∥D
−1
π ∥+ ∥D−1

π ∥ ≤
3

4
ρ =: R. (4.77)
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Further on H, meaning whenever thresholding succeeds, the first terms of Ŷn and Yn again

coincide while the second terms are the same in expectation, that is E[diag(1In)D−1
π ] = I. So

with the same argument as in (4.62) and as usual dropping the index n for convenience, we

get

∥E[Ŷ ]∥ ≤ 2ρ · P(Hc) + ρ · P(Gc) + ∥E[1G(I)Y ]∥. (4.78)

Similarly as in (4.63) we next use that all well conditioned supports are stable for any signal y,

meaning G ⊆ B(y). Taking the expectation over (σ, c) therefore yields

∥E[1G(I)Y ]∥ = ∥EI [1G(I)Eσ,c[(D√
π·α)

−1R∗
IΨ

†
IΦIxIx

∗
IΦ

∗
IΨ

†
IRI(D√

π·α·β)
−1 − diag(1I)D

−1
π ]]∥

= ∥EG [(D√
π·α)

−1R∗
IΨ

†
IΦIΦ

∗
IΨ

†
IRI(D√

π·α)
−1 − (D√

π·α)
−1R∗

IRID
2
α(D√

π·α)
−1]∥

≤ ∥D−2
α ∥ ·

∥∥∥EG

[
D−1√

π R
∗
I

(
Ψ†

IΦIΦ
∗
IΨ

†∗
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−1√
π

]∥∥∥ . (4.79)

We next recall the shorthands I := Z∗Ψ− E and H = Ψ∗Ψ− I, the identity Dα = I− E and

that on G we have Ψ†
IΨI = IS , which allows us to rewrite the expression inside the expectation

above using again a Neumann series, (4.64), as

Ψ†
IΦIΦ

∗
I(Ψ

†
I)

∗ − (D2
α)I,I = Ψ†

I(ΨI − ZI)(Ψ
∗
I − Z∗

I )(Ψ
†
I)

∗ − (Dα)
2
I,I

= IS −Ψ†
IZI − Z∗

IΨ
†∗
I +Ψ†

IZIZ
∗
IΨ

†∗
I − (Dα)

2
I,I

= EI,I −
∑∞

k=0H
k
I,IΨ

∗
IZI︸ ︷︷ ︸
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k=0H

k
I,I︸ ︷︷ ︸
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+
∑∞
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k
I,IΨ

∗
IZIZ

∗
IΨI

∑∞
k=0H

k
I,I − E2I,I︸ ︷︷ ︸

II

. (4.80)

Due to the triangle inequality it suffices to estimate for each of the three terms the correspond-

ing operator norm of its expectation as in (4.79). Since Term Ia is the transpose of Term Ib,

it has the same corresponding operator norm, already bounded in (4.71) as

∥EG [D
−1√
π R

∗
I

(
Z∗
IΨI

∞∑
k=0

Hk
I,I − EI,I

)
RID

−1√
π ]∥ ≤ 14∥D−1

α ∥∥ΦD√
π∥∥ΨD√

π∥ · δ. (4.81)

Term II has to be further decomposed into

II = Ψ∗
IZIZ

∗
IΨI − E2I,I︸ ︷︷ ︸
IIa

+
∑
k≥1

Hk
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∗
IZIZ

∗
IΨI︸ ︷︷ ︸

IIb

+Ψ∗
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∑
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I,I︸ ︷︷ ︸
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+
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I,IΨ

∗
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∗
IΨI

∑
k≥1

Hk
I,I︸ ︷︷ ︸

IId

.

The norm term corresponding to IIa can be straightforwardly bounded using (4.69), Corol-

lary 4.20(b) and ε ≤
√
2 we get
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∗
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∗
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The terms IIb and IIc are again each other’s transpose, so we only need to bound the corre-

sponding norm for IIb. In order to do so we split

Ψ∗
IZIZ

∗
IΨI = Ψ∗

IZIII,I +I ∗
I,IEI,I + E2I,I .

Theorem 4.7 together with the bounds in (4.67-4.69) and the fact that on G we have ∥ZI∥ ≤
∥ΦI∥+ ∥ΨI∥ ≤ 2

√
1 + ϑ then yields
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·
√
2∥ZD√

π∥, (4.83)

as well as
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·
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π∥ · ε2/2, (4.84)

and finally using also Corollary 4.20(b)
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π∥2 · (1− ϑ)−1 · ε4/4. (4.85)

Combining (4.83-4.85) and assuming that ϑ ≤ 1/4 yields the following bound for the norm

term corresponding to IIb

∥EG [D
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∗
IΨIRID
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4
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π∥+ 5∥ΨD√
π∥2ε. (4.86)

Before we bound the norm term corresponding to IId, note that on G we have two possibilities

to bound ∥ZIZ
∗
I ∥ = ∥ZI∥2, either via ∥ZI∥ ≤ ∥ΨI∥+ ∥ΦI∥ ≤ 2

√
1 + ϑ or simply using that by

definition ∥ZI∥ is close to δ on G, cp. (4.47). Combining both estimates we get

max
I∈G
∥ZIZ

∗
I ∥ ≤ 2

√
1 + ϑ ·min

{
2
√
1 + ϑ,

√
2e2 log(320Kρ/δ⋆) · δ

}
. (4.87)
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Applying this together with Theorem 4.7 yields
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2e2 log(320Kρ/δ⋆) · δ

}
. (4.88)

Combining the bounds for the norm terms corresponding to Ia/b and IIa-d collected from

(4.81), (4.82),(4.86) and (4.88) into a bound for ∥E[1G(I)Y ]∥ in (4.79), which in turn is sub-

stituted into (4.78) with the same bound for P (Hc) 2ρ+ P (Gc) ρ ≤ 1
32δ⋆ as in the last Lemma

finally yields

∥E[Ŷ ]∥ ≤ 1

32
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. (4.89)

We can use either ∥ZD√
π∥ ≤ ∥ΨD√

π∥ + ∥ΦD√
π∥ or ∥ZD√

π∥ + ∥ΨD√
π∥ε ≲ δ together with
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π∥ ≤ 1

C
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to get
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Recall that α = 1 − ε2/2 ≤ 1. The second term of this minimum will be attained only if

δ ≲ 1

C
√

log(Kρ/δ⋆)
in which case we surely have α ≥ 1/2. Thus the inequality gets weaker if we

multiply the second term by 2α to get

∥E[Ŷ ]∥ ≤ 1

32
δ⋆ +m7min

{
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C2 log(Kρ/δ⋆)
,

γ

C
√
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}
. (4.91)

So for C ≥ 256m7,

∥E[Ŷ ]∥ ≤ 1

32
δ⋆ +

1

2
min

{
γ2

128C log(Kρ/δ⋆)
,

γ

128
√
log(Kρ/δ⋆)

· δ

}
=

1

2
∆ =: m. (4.92)

As before an application of the matrix Bernstein inequality for t = ∆/2 with R = 3
4ρ and

m = ∆/2, and some simplifications yield the desired bound.

Now we turn to bounding individual columns of the random matrices we have to deal with.

This will again be done by applying a Bernstein-type inequality. The main difficulty again lies

in calculating the expected value of the involved terms.

Lemma 4.14 (proof of Claim 3) Assume the conditions of Proposition 4.3, then

P
(
∥ΦA(Dπ·α·β)

−1eℓ − ϕℓ∥ > α∆
)
≤ 28 exp

(
− N(∆/2)2

2ρ2 + ρ∆/2

)
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where

ρ = 2κ2∥Φ∥2Sγ−2α−2π−3/2.

Proof As in the matrix case before the idea is to write the vector whose norm we want to

estimate as sum of independent random vectors based on the signals yn and use Bernstein

inequality. To this end we define for a fixed index ℓ the random vectors

Ŷn :=
(
yny

∗
nΦ

∗
InΨ

†
În
RÎn

(Dπ·α·β)
−1
1B(yn)(În)− Φ

)
eℓ,
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(
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∗
n(Ψ

†
In
)∗RIn(Dπ·α·β)

−1 · 1B(yn)(In)− Φdiag(1In)D
−1
π

)
eℓ

Note that we can obtain Ŷn, Yn by multiplying the analogue matrices in the proof of Lemma 4.12

(Claim 1) from the left by D−1√
π eℓ. Following the proof strategy of Lemma 4.12 with the

necessary changes, we first bound the ℓ2-norm of the random vectors Ŷn, Yn as

max{∥Ŷn∥, ∥Yn∥} ≤ κ∥Φ∥2Sc2max∥∥D−1
π ∥∥D−1

β ∥∥D
−1
α ∥+ 1 ≤ 3

4
αρ =: R,

while, repeating the procedures in (4.62) and (4.63), we get for the expectation,
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Using the decomposition I = Iℓc + eℓe
∗
ℓ we split the norm into two parts∥∥ΦEG
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By the same decomposition as in (4.66) we have

Φ∗
I(Ψ

†
I)

∗ − (Dα)I,I = Z∗
IΨI

∑
k≥0

Hk
I,I − EI,I .

Note that for any diagonal matrix D we have IℓcDeℓ = 0. So using the decomposition above,

Theorem 4.7 and Corollary 4.20(d/k/f) together with ϑ ≤ 1
4 , and πℓ ≤ 1

3 we can bound the

first expectation in (4.94) as
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80



Chapter 4. Dictionary learning convergence

To bound the second expectation in (4.94), we proceed very similarly, this time using Corol-

lary 4.20 (e/f/i)
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Plugging these bounds back into (4.94) and (4.93) yields

∥E[Ŷ ]∥ ≤ P (Hc) 2ρα+ P (Gc) ρα
+ ∥D−1

α ∥ ·
(
∥ZD√

π∥∥ΦD√
π∥+ 3ε · ∥ΨD√

π∥2 + 5 · ∥ΦD√
π∥∥ΨD√

π∥ · δ
)
.

Using Lemma 4.11 to bound the first two terms involving the probabilities and using either

∥ZD√
π∥ ≤ ∥ΨD√

π∥ + ∥ΦD√
π∥ or ∥ZD√

π∥ ≤ δ yields together with the assumptions of the

proposition

∥E[Ŷ ]∥ ≤ 1

32
δ⋆α+m8∥D−1

α ∥min
{
max

{
∥ΨD√

π∥2, ∥ΦD√
π∥2
}
,max {∥ΨD√

π∥, ∥ΦD√
π∥} · δ

}
≤ 1

32
δ⋆α+m9min

{
αγ2

C2 log(Kρ/δ⋆)
,

γ

C
√
log(Kρ/δ⋆)

· δ

}
.

Recall that α = 1 − ε2/2 ≤ 1. The second term of this minimum will be attained only if

δ ≲ 1

C
√

log(Kρ/δ⋆
in which case we surely have α ≥ 1/2. thus the inequality gets weaker if we

multiply the second term by 2α to get
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where we used that C ≤ 256m10. Finally an application of the vector Bernstein inequality for

t = α∆/2 with R = 3
4αρ and m = α∆/2, and some simplifications yield the desired bound.

Now to the grand final, showing that Claim C4 is satisfied with high probability.

Lemma 4.15 (proof of Claim 4) Assume the conditions of Proposition 4.3 then for Λ :=
αγ

C
√

log(Kρ/δ⋆)

P
(
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)
, (4.97)

where

ρ = 2κ2∥Φ∥2Sγ−2α−2π−3/2.
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Proof As usual we rewrite the vector to bound as sum of random vectors based on the signals

yn and use Bernstein’s inequality. Thus we define

Ŷn : = Λ · Iℓc (D√
π·α)

−1R∗
În
Ψ†

În
yny

∗
nΨ

†∗
În
RÎn

(Dπ·α·β)
−1
1B(yn)(În) eℓ

and its counterpart Yn by simply replacing in the above În by In. Since for any diagonal

matrix D we have Iℓc D eℓ = 0 we can again obtain Ŷn, Yn from the corresponding matrices in

the proof of Lemma 4.13 (Claim 2), this time by multiplying from the right by Iℓc and from the

left by D−1√
π eℓ. Following the usual proof strategy we first bound the ℓ2-norm of the random

vectors Ŷn, Yn as
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4
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while for the expectation we get similar to (4.79) and (4.93)
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Using a decomposition as in (4.80) and recalling that Iℓc Deℓ = 0, we get
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The expectation corresponding to Term Ia has already been bounded in (4.95) so we move on

to Term Ib. Using Theorem 4.7 and Corollary 4.20 (d/h) we get

∥EG [D
−1√
π Iℓc R∗

I

∑
k≥0

Hk
I,IΨ

∗
IZIRI eℓ]∥

≤ ∥EG [D
−1√
π IℓcR∗

IΨ
∗
Izℓ · 1I(ℓ)]∥+ ∥EG [D

−1√
π IℓcR∗

IHI,I

∑
k≥0

Hk
I,IΨ

∗
Izℓ · 1I(ℓ)]∥

≤ ∥EG [D
−1√
π IℓcR∗

IΨ
∗
I · 1I(ℓ)]∥ · ∥zℓ∥

+ ∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥
1
2 ·max

I∈G
∥
∑
k≥0

Hk
I,IΨ

∗
I∥ · ∥E[z∗ℓ zℓ · 1I(ℓ)]∥

1
2

≤ πℓ · ∥ΨD√
π∥ · ε+ 3 ·

√
πℓ ·max{µ(Ψ), ∥ΨD√

π∥} ·
√
1 + ϑ

1− ϑ
·
√
πℓ · ε

≤ 6 · πℓ ·max{µ(Ψ), ∥ΨD√
π∥} · ε.

As probably feared Term II requires further decomposition

II = Ψ∗
IZIZ

∗
IΨI︸ ︷︷ ︸

IIa

+
∑
k≥1

Hk
I,IΨ

∗
IZIZ

∗
IΨI︸ ︷︷ ︸

IIb

+Ψ∗
IZIZ

∗
IΨI

∑
k≥1

Hk
I,I︸ ︷︷ ︸

IIc

+
∑
k≥1

Hk
I,IΨ

∗
IZIZ

∗
IΨI

∑
k≥1

Hk
I,I︸ ︷︷ ︸

IId

.
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Looking at the first of the four terms above, Term IIa, we get using Z∗
I = RIZ

∗ = RI(eℓe
∗
ℓ +

Iℓc)Z∗ and Corollary 4.20 (d,k,g)

∥EG [D
−1√
π IℓcR∗

IΨ
∗
IZIZ

∗
IΨIRI eℓ]∥

= ∥EG [D
−1√
π IℓcR∗

IΨ
∗
IZIRI(eℓe

∗
ℓ + Iℓc)Z∗ψℓ · 1I(ℓ)]∥

≤ ∥EG [D
−1√
π IℓcR∗

IΨ
∗
Izℓz

∗
ℓψℓ · 1I(ℓ)]∥+ ∥EG [D

−1√
π IℓcR∗

IΨ
∗
IZIRIIℓcZ∗ψℓ · 1I(ℓ)]∥

≤ ∥EG [D
−1√
π IℓcR∗

IΨ
∗
I · 1I(ℓ)]∥ · ∥zℓz∗ℓψℓ∥+ ∥EG [D

−1√
π IℓcR∗

IΨ
∗
IZI ·RIIℓcZ∗ · 1I(ℓ)]∥ · ∥ψℓ∥

≤ πℓ · ∥ΨD√
π∥ ·

ε3

2
+ ∥E[D−1√

π IℓcR∗
IΨ

∗
IZIZ

∗
IΨIIℓcD−1√

π 1I(ℓ)]∥
1
2 · ∥E[ZIℓcR∗

IRIIℓcZ∗
1I(ℓ)]∥

1
2

≤ πℓ · ∥ΨD√
π∥ ·

ε3

2
+
√
πℓ ·max{ε, ∥ZD√

π∥}
√
12 ·
√
πℓ · ∥ZD√

π∥

≤ πℓ ·
(
∥ΨD√

π∥ ·
ε3

2
+
√
12 · δ · ∥ZD√

π∥
)
,

where we applied Corollary 4.20 (g) to V = ZIℓc , meaning VI = ZIℓcR∗
I and vℓ = 0.

Term IIb will be treated the same way. We apply Theorem 4.7 and Corollary 4.20(h,g) together

with ϑ ≤ 1
4 and the fact that on G we have ∥ZI∥ ≤ ∥ΨI∥+ ∥ΦI∥ ≤ 2

√
1 + ϑ to get

∥EG [D
−1√
π IℓcR∗

I

∑
k≥1

Hk
I,IΨ

∗
IZIZ

∗
IΨIRI eℓ]∥

= ∥EG [D
−1√
π IℓcR∗

IHI,I ·
∑
k≥0

Hk
I,IΨ

∗
IZI · Z∗

Iψℓ1I(ℓ)]∥

≤ ∥EG [D
−1√
π IℓcR∗

IHI,I ·
∑
k≥0

Hk
I,IΨ

∗
IZI · Z∗

I1I(ℓ)]∥

≤ ∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥
1
2 ·max

I∈G
∥
∑
k≥0

Hk
I,IΨ

∗
IZI∥ · ∥E[ZIZ

∗
I1I(ℓ)]∥

1
2

≤
√
9πℓ ·max{µ(Ψ), ∥ΨD√

π∥} ·
2(1 + ϑ)

1− ϑ
·
√
2πℓ ·max{ε, ∥ZD√

π∥}

≤ 15 · πℓ ·max{µ(Ψ), ∥ΨD√
π∥} · δ.

Using the same tools as above with Corollary 4.20(j,f) we get for Term IIc

∥EG [Iℓc ·D−1√
π R

∗
IΨ

∗
IZIZ

∗
IΨI

∑
k≥1

Hk
I,IRI · eℓ]∥

= ∥EG [IℓcD−1√
π R

∗
IΨ

∗
IZI1I(ℓ) · Z∗

IΨI

∑
k≥0

Hk
I,I ·HI,ℓ1I(ℓ)]∥

≤ ∥E[D−1√
π IℓcR∗

IΨ
∗
IZIZ

∗
IΨ

∗
IRIIℓcD−1√

π 1I(ℓ)]∥
1
2 ·max

I∈G
∥Z∗

IΨI

∑
k≥0

Hk
I,I∥ · ∥E[Hℓ,IHI,ℓ1I(ℓ)]∥

1
2

≤ 3
√
πℓ ·max{ε, ∥ZD√

π∥} ·
2(1 + ϑ)

1− ϑ
·
√
πℓ · ∥ΨD√

π∥ ≤ 10 · πℓ · ∥ΨD√
π∥ · δ.

To bound the norm term corresponding to IId, we again combine the bound ∥ZI∥ ≤ ∥ΨI∥ +
∥ΦI∥ ≤ 2

√
1 + ϑ with the bound due to the definition of G, cp. (4.47), ensuring that ∥ZI∥ is

close to δ on G, and get for ϑ ≤ 1/4

max
I∈G
∥ZIZ

∗
I ∥ ≤ 2

√
1 + ϑ ·

√
2e2 log(320Kρ/δ⋆) · δ ≤

√
10e2 log(320Kρ/δ⋆) · δ.
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Thus by applying Theorem 4.7 and Corollary 4.20(h,f) together with ϑ ≤ 1/4 we have

∥EG [Iℓc ·D−1√
π R

∗
I

∑
k≥1

Hk
I,IΨ

∗
IZIZ

∗
IΨI

∑
k≥1

Hk
I,IRI · eℓ]∥

= ∥EG [IℓcD−1√
π R

∗
IHI,I1I(ℓ) ·

∑
k≥0

Hk
I,IΨ

∗
IZIZ

∗
IΨI

∑
k≥0

Hk
I,I ·HI,ℓ1I(ℓ)]∥

≤ ∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥
1
2

·max
I∈G
∥
∑
k≥0

Hk
I,IΨ

∗
IZIZ

∗
IΨI

∑
k≥0

Hk
I,I∥ · ∥E[Hℓ,IHI,ℓ1I(ℓ)]∥

1
2

≤
√
9πℓ ·max{µ(Ψ), ∥ΨD√

π∥} ·
(1 + ϑ)

(1− ϑ)2
·
√

10e2 log(320Kρ/δ⋆) · δ ·
√
πℓ · ∥ΨD√

π∥

≤ m11 · πℓ ·max{µ(Ψ), ∥ΨD√
π∥} · δ,

where in the last step we used the assumptions ∥ΨD√
π∥ ≤ C−1/

√
log(Kρ/δ⋆). Plugging

everything back into (4.98) and using that by Lemma 4.11 P (Hc) 2ρ+ P (Gc) ρ ≤ 1
32δ⋆ we get

∥E[Ŷ ]∥ ≤ 1

32
δ⋆ +m12∥D−2

α ∥ · Λ ·
(
∥ZD√

π∥ · (1 + δ) + max{µ(Ψ), ∥ΨD√
π∥} · δ

)
.

Using again that ∥ZD√
π∥ ≤ min{δ, ∥ΦD√

π∥+ ∥ΨD√
π∥} and our assumptions that

max{µ(Ψ), ∥ΨD√
π∥, ∥ΦD√

π∥} ≤
αγ

C
√
log (Kρ/δ⋆)

,

together with the definition of Λ = αγ

C
√

log(Kρ/δ⋆)
, we get for C ≥ 256m13

∥E[Ŷ ]∥ ≤ 1

32
δ⋆ +m13∥D−2

α ∥
αγ

C
√

log (Kρ/δ⋆)
min

{
αγ

C
√
log(Kρ/δ⋆)

, δ

}

≤ 1

32
δ⋆ +

1

2
min

{
γ2

128C log(Kρ/δ⋆)
,

γ

128
√

log(Kρ/δ⋆)
· δ

}
=

1

2
∆ := m.

As before an application of the vector Bernstein inequality for t = ∆/2 with R = 3
4ρ and

m = ∆/2, and some simplifications yield the desired bound.

Remark 4.16 Here we collect all lower bounds on C. C has to be big enough to ensure that

the probabilities in (4.55) are small. Further also the conditions

C ≥
√
2 · 256max{m4,m7,m10,m13}

have to be satisfied. We defer calculating the exact constants to those brave enough.
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4.9. How to calculate expectations in the rejective sampling model

In this section we establish the probabilistic estimates used to prove Claims 1-4. In the case of

supports chosen uniformly at random, equivalent to rejective sampling with uniform weights

pi = S/K most estimates are trivial since we have PS(i ∈ I) = S/K and

PS({i, j} ⊆ I) =
S(S − 1)

K(K − 1)
= c · PS(i ∈ I) · PS(j ∈ I),

so for instance ∥ES [R
∗
IHI,IRI ]∥ = ∥H ⊙ ES [1I1

∗
I ]∥ =

S
K ∥Ψ

∗Ψ − I∥ ≤ S
K ∥Ψ∥

2. Unfortunately,

in the rejective sampling model with non-uniform weights pi, these estimates become much

more involved. For instance the appearance probabilities π(i) = PS(i ∈ I) differ from pi
and higher order appearance probabilities cannot simply be obtained as scaled product of low

order appearance probabilities, i.e. there is no constant c such that PS(i, j ∈ I) = cπ(i)π(j)

for all i, j. However, we can show that for well behaved pi, the generating and appearance

probabilities are close, and that also higher order appearance probabilities are close to products

of lower ones, which will allow us to bound quantities such as ∥ES [ΨIΨ
∗
I ]∥ later on.

We first establish several inequalities for appearance probabilities in the rejective sampling

model.

Theorem 4.17 Let PB be the probability measure corresponding to the Poisson sampling model

(1.2) with weights pi < 1 and PS be the probability measure corresponding to the associated

rejective sampling model with parameter S, PS(I) = PB(I | |I| = S), as well as ES the

expectation with respect to PS. Denote by πS the vector of first order inclusion probabilities of

level S, meaning πS(i) = PS(i ∈ I) or equivalently πS = ES(1I). We have

(1− ∥p∥∞) · pi ≤ πS(i) ≤ 2 · pi, if
∑

k pk = S, (a)

πS−1(i) ≤ πS(i), (b)

PS(i ∈ I, L ⊆ I) ≤ πS(i) · PS(L ⊆ I), if |L| < S, i /∈ L, (c)

[1− πS−1(i)] · PS({i, j} ⊆ I) = πS(i) · [πS−1(j)− PS−1({i, j} ⊆ I)] , if i ̸= j. (d)

Further, defining for L ⊆ [K] with |L| < S the set L = {I ⊆ [K] : L ⊆ I}, we have

ES

[
1I\L1

∗
I\L · 1L(I)

]
·
∏
ℓ∈L

[1− πS(ℓ)] ⪯ ES−|L|[1I1
∗
I ] ·
∏
ℓ∈L

πS(ℓ). (e)

Proof (a) We first show that (1− ∥p∥∞)pi ≤ πS(i). By definition, we have

πS(i) = PB(i ∈ I | |I| = S) =
PB({i ∈ I} ∩ {|I| = S})

PB(|I| = S)
=

∑
I:|I|=S,i∈I PB(I)∑
I:|I|=S PB(I)

∑
J

PB(J)︸ ︷︷ ︸
= 1

.

Since pi =
∑

J :i∈J PB(J) and abbreviating c := (1− ∥p∥∞) ≤ 1 the desired inequality

c
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I PB(I)∑
I:|I|=S PB(I)

∑
J

PB(J),

is equivalent to

c
∑

I:|I|=S

PB(I)
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I

PB(I)
∑
J

PB(J).
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Splitting the sums on both sides into two parts this becomes

c
∑

I:|I|=S,i/∈I

PB(I)
∑
J :i∈J

PB(J) + c
∑

I:|I|=S,i∈I

PB(I)
∑
J :i∈J

PB(J)

≤
∑

I:|I|=S,i∈I

PB(I)
∑
J :i∈J

PB(J) +
∑

I:|I|=S,i∈I

PB(I)
∑
J :i/∈J

PB(J),

which is implied by

c
∑

I:|I|=S,i/∈I

PB(I)
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I

PB(I)
∑
J :i/∈J

PB(J). (4.100)

Note that for any set I not containing the index i we have

pi
1− pi

· PB(I) =
pi

1− pi

∏
k∈I

pk
∏
k/∈I

(1− pk) =
∏

k∈I∪{i}

pk
∏

k/∈I∪{i}

(1− pk) = PB(I ∪ {i}).

Multiplying both sides in 4.100 with pi/(1− pi) we get

c
∑

I:|I|=S+1,i∈I

PB(I)
∑
J :i∈J

PB(J) ≤
∑

I:|I|=S,i∈I

PB(I)
∑
J :i∈J

PB(J),

so it suffices to show that

c
∑

I:|I|=S+1,i∈I

PB(I) ≤
∑

I:|I|=S,i∈I

PB(I).

Indeed we have

c
∑

I:|I|=S+1,i∈I

PB(I) = c
∑

I:|I|=S+1,i∈I

PB(I)
∑

k:k∈I,k ̸=i

1

S

= c
∑

I:|I|=S+1,i∈I

1

S

∑
k:k∈I,k ̸=i

PB(I \ {k})
pk

1− pk

≤ c

S(1− ∥p∥∞)

∑
(I,k):|I|=S+1,i∈I

k∈I,k ̸=i

PB(I \ {k}) · pk

scary
=

1

S

∑
(J,k):|J |=S,
i∈J,k/∈J

PB(J) · pk

=
1

S

∑
J :|J |=S,i∈J

PB(J)
∑
k/∈J

pk ≤
∑

J :|J |=S,i∈J

PB(J),

where we used that
∑

k/∈J pk ≤
∑

k pk = S.

To get πS(i) ≤ 2pi we define the function f : P([K]) → {0, 1} with f(I) = 1I(i). Since

f(I) ≤ f(J) whenever I ⊆ J , applying Lemma 2.5 from Chapter 2 yields PS(f(I) = 1) ≤
2PB(f(I) = 1). Since f(I) = 1 simply means that i ∈ I, we get

πS(i) = PS(i ∈ I) ≤ 2PB(i ∈ I) = 2pi,

which completes the proof of (a). (a)✓
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(b) Using the definition of PS we can rewrite πS−1(i) = PS−1(i ∈ I) ≤ PS(i ∈ I) = πS(i) as∑
J :|J |=S−1 1J(i) · PB(J)∑

J :|J |=S−1 PB(J)
≤
∑

I:|I|=S 1I(i) · PB(I)∑
I:|I|=S PB(I)

,

which is equivalent to∑
(I,J):|J |=S−1,|I|=S

1J(i) · PB(J)PB(I) ≤
∑

(I,J):|J |=S−1,|I|=S

1I(i) · PB(J)PB(I).

Now the crucial step, which we will use several times also in the subsequent proofs, is to see

that we can partition these sums in a special way. For a pair (I, J), by definition of the Poisson

sampling model, we can write PB(I)PB(J) in the following way

PB(I)PB(J) =
∏
i∈I

pi
∏
j /∈I

(1− pj)
∏
i∈J

pi
∏
j /∈J

(1− pj) =
∏

i∈I∩J
p2i

∏
i∈I△J

pi(1− pi)
∏

j /∈I∪J

(1− pj)2,

where I△J denotes the symmetric difference of I, J . This implies that if for two pairs (I, J),

(I ′, J ′) we have

I ∩ J = I ′ ∩ J ′ and I△J = I ′△J ′ then PB(I)PB(J) = PB(I
′)PB(J

′).

This allows us to define natural partitions on the set of pairs (I, J) such that the probability

PB(I)PB(J) is constant on each partition. Concretely, for any integer T ∈ {1, . . . , S}, together
with a set A ⊆ K with |A| = S − T and a set B ⊆ K \ A with |B| = 2T − 1, we look at the

collection of pairs (I, J) with intersection A and symmetric difference B, that is

QA,B := {(I, J) : I, J ⊆ K, |I| = S, |J | = S − 1, I ∩ J = A, I△J = B} .

Since each pair (I, J) with |I| = S, |J | = S − 1 can be uniquely assigned to a collection QA,B

and P(I)P(J) is constant for all (I, J) ∈ QA,B, it is sufficient to show that∑
(I,J)∈QA,B

1J(j) ≤
∑

(I,J)∈QA,B

1I(j)

or equivalently that

|{(I, J) ∈ QA,B : j ∈ J}| ≤ |{(I, J) ∈ QA,B : j ∈ I}. (4.101)

If j ∈ A = I ∩ J both sides in (4.101) are equal to |QA,B| so the inequality trivially holds. In

case j ∈ B, we distinguish between T = 1, meaning |A| = S − 1 and T ≥ 2. For T = 1 the

only possible configuration where |J | = S − 1 and |I| = S is J = A and I = A ∪ {j}, so the

left hand side is zero while the right hand side is one, again satisfying the inequality. Finally,

for T ≥ 2 we have

|{(I, J) ∈ QA,B : j ∈ J}| =
(

2T

T − 1

)
≤
(
2T

T

)
= |{(I, J) ∈ QA,B : j ∈ I}|,

which completes the proof of (b). (b)✓

(c) We define L = {I ⊆ [K] : L ⊆ I}. Using this together with the definition of PS we can

rewrite PS(i ∈ I, L ⊆ I) ≤ πS(i) · PS(L ⊆ I) as∑
I:|I|=S 1I(i) · 1L(I) · PB(I)∑

I:|I|=S PB(I)
≤
∑

J :|J |=S 1J(i) · PB(J)∑
J :|J |=S PB(J)

·
∑

I:|I|=S 1L(I) · PB(I)∑
I:|I|=S PB(I)

,
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which is equivalent to∑
(I,J):|I|=|J |=S

1I(i) · 1L(I) · PB(I)PB(J) ≤
∑

(I,J):|I|=|J |=S

1J(i) · 1L(I) · PB(I)PB(J).

We now use a similar decomposition as before. For T ∈ {0, . . . , S}, A ⊆ K with |A| = S − T
and B ⊆ K \ A with |B| = 2T , we again let A be the intersection and B the symmetric

difference of the sets I and J respectively and for any combination A,B define

QA,B := {(I, J) : I, J ⊆ K, |I| = |J | = S, I ∩ J = A, I△J = B} .

Since P(I)P(J) is constant for all (I, J) ∈ QA,B and every pair (I, J) is contained in exactly

one of those sets, it is sufficient to show that∑
(I,J)∈QA,B

1I(i) · 1L(I) ≤
∑

(I,J)∈QA,B

1J(i) · 1L(I)

or equivalently that

|{(I, J) ∈ QA,B : i ∈ I, L ⊆ I}| ≤ |{(I, J) ∈ QA,B : i ∈ J, L ⊆ I}|.

If L is not contained in A ∪B there is no valid pair (I, J) ∈ QA,B and the inequality trivially

holds. If L ⊆ A ∪ B we abbreviate LA = L ∩ A and LB = L ∩ B. Since LA ⊆ A, all pairs in

(I, J) ∈ QA,B automatically satisfy LA ⊆ I so we can rewrite the inequality we want to show

as

|{(I, J) ∈ QA,B : i ∈ I, LB ⊆ I}| ≤ |{(I, J) ∈ QA,B : i ∈ J, LB ⊆ I}|. (4.102)

In case i ∈ A all pairs further satisfy i ∈ I as well as i ∈ J so both sides in (4.102) correspond

to |{(I, J) ∈ QA,B : LB ⊆ I}| and the inequality trivially holds. In case i ∈ B \ L, we need to

keep track of how many elements of I are already fixed. Since we need to have A ∪ LB ⊆ I,

in case |A∪LB| = |A|+ |LB| = S there is no pair which additionally satisfies i ∈ I, so the left

hand side in (4.102) is zero and the inequality holds. Finally, if k = |LB| < S − |A| = T , we

can still choose T − k − 1 out of the 2T − k − 1 resp. T − k out of the 2T − k − 1 remaining

elements in B to fill I resp. J and create a valid pair. Since(
2T − k − 1

T − k − 1

)
≤
(
2T − k − 1

T − k

)
the inequality in (4.102) is again satisfied, which completes the proof of (c). (c)✓
(d) We want to show that [1− πS−1(i)] · PS({i, j} ⊆ I) = πS(i) · [πS−1(j)− PS−1({i, j} ⊆ I)].
If πS−1(i) < 1 this is equivalent to pi < 1, so for any set J not containing the index i we have

pi
1− pi

· PB(J) = PB(J ∪ {i}).

PS({i, j} ⊆ I) =
∑

I:|I|=S 1I(i)1I(j) · PB(I)∑
I:|I|=S PB(I)

·
∑

I:|I|=S,i∈I PB(I)∑
I:|I|=S,i∈I PB(I)

=

∑
I:|I|=S,i∈I 1I(j) · PB(I)∑

|I|=S,i∈I PB(I)
· πS(i)

=
pi

1− pi
· 1− pi

pi
·
∑

J :|J |=S−1,i/∈J 1J(j) · PB(J)∑
J :|J |=S−1,i/∈J PB(J)

· πS(i) ·
∑

J :|J |=S−1 PB(J)∑
J :|J |=S−1 PB(J)

= πS(i) ·
∑

J :|J |=S−1,i/∈J 1J(j) · PB(J)∑
J :|J |=S−1 PB(J)

·
∑

J :|J |=S−1 PB(J)∑
J :|J |=S−1,i/∈J PB(J)

.

88



Chapter 4. Dictionary learning convergence

Further rewriting the fractions in the expression above yields∑
J :|J |=S−1,i/∈J 1J(j) · PB(J)∑

J :|J |=S−1 PB(J)
=

∑
J :|J |=S−1 1J(j) · PB(I)∑

J :|J |=S−1 PB(J)︸ ︷︷ ︸
πS−1(j)

−
∑

J :|J |=S−1 1J(i)1J(j) · PB(J)∑
J :|J |=S−1 PB(J)︸ ︷︷ ︸
PS−1({i,j∈I})

as well as∑
J :|J |=S−1 PB(J)∑

J :|J |=S−1,i/∈J PB(J)
=

∑
J :|J |=S−1 PB(J)∑

J :|J |=S−1 PB(J)−
∑

J :|J |=S−1,i∈J PB(J)
=

1

1− πS−1(i)
,

which completes the proof of (d). (d)✓

(e) We will prove the statement by induction. Let L̂ be a set of size T ≤ S − 2 and L̂ = {I ⊆
[K] : L̂ ⊆ I}. We first show that for k /∈ L̂ and L = L̂ ∪ {k} we have

(1− πS(k)) · ES

[
1I\L1

∗
I\L · 1L(I)

]
⪯ πS(k) · ES−1

[
1I\L̂1

∗
I\L̂ · 1L̂(I)

]
. (4.103)

Note that if πS(k) = 1 the inequality is trivially true. If on the other hand πS(k) < 1 this is

equivalent to pk < 1, so for any set J not containing the index k we have

pk
1− pk

· PB(J) = PB(J ∪ {k}).

Thus expanding the expectation we get

ES

[
1I\L1

∗
I\L · 1L(I)

]
=

∑
I:|I|=S,L⊆I PB(I)(1I\L1

∗
I\L)∑

I:|I|=S PB(I)
·
∑

I:|I|=S,k∈I PB(I)∑
I:|I|=S,k∈I PB(I)

=

∑
I:|I|=S,L⊆I PB(I)(1I\L1

∗
I\L)∑

I:|I|=S,k∈I PB(I)
·
∑

I:|I|=S,k∈I PB(I)∑
I:|I|=S PB(I)

=

∑
J :|J |=S−1,k /∈J,L̂⊆J PB(J)(1J\L̂1

∗
J\L̂)∑

J :|J |=S−1,k /∈J PB(J)
· πS(k)

⪯

∑
J :|J |=S−1,L̂⊆J PB(J)(1J\L̂1

∗
J\L̂)∑

J :|J |=S−1,k /∈J PB(J)
·
∑

I:|I|=S−1 PB(I)∑
I:|I|=S−1 PB(I)

· πS(k)

=

∑
J :|J |=S−1,L̂⊆J PB(J)(1J\L̂1

∗
J\L̂)∑

I:|I|=S−1 PB(I)
·

∑
I:|I|=S−1 PB(I)∑

J :|J |=S−1,k /∈J PB(J)
· πS(k)

= ES−1

[
1I\L̂1

∗
I\L̂ · 1L̂(I)

]
·

∑
I:|I|=S−1 PB(I)∑

J :|J |=S−1,k /∈J PB(J)
· πS(k).

Now all that remains to do in order to prove (4.103) is to bound the fraction above. Writing

out the expression in the denominator we get∑
I:|I|=S−1 PB(I)∑

J :|J |=S−1,k /∈J PB(J)
=

∑
I:|I|=S−1 PB(I)∑

I:|I|=S−1 PB(I)−
∑

I:|I|=S−1,k∈I PB(I)

=
1

1− PS−1(k ∈ I)
(b)

≤ 1

1− PS(k ∈ I)
=

1

1− πS(k)
.
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By induction and using the bound from (b) that πS−1(k) ≤ πS(k) we finally get

ES

[
1I\L1

∗
I\L · 1L(I)

]∏
ℓ∈L

(1− πS(ℓ)) ⪯ ES−|L|[1I1
∗
I ] ·
∏
ℓ∈L

πS(ℓ).

which completes the proof of (e) and thus the theorem. (e)✓

We next note that several of the quantities we want to bound can be conveniently rewritten

using the entry-wise product between matrices, ie. (A ⊙ B)ij = Aij · Bij , also known as

Hadamard product. For instance the zero padded K ×K version of the S×S matrix AI,I can

be written as R∗
IAI,IRI = A ⊙ (1I1

∗
I). Therefore the following inequality will be an essential

tool.

Theorem 4.18 (Hadamard Product Matrix Norm Inequality) Let A and B be two square

matrices of the same dimension. If A is positive-semidefinite, then

∥A⊙B∥2,2 ≤ ∥A∥∞,1∥B∥2,2.

Proof The matrix(
∥B∥2,2(I⊙A) A⊙B
(A⊙B)∗ ∥B∥2,2(I⊙A)

)
=

(
A A

A A

)
⊙
(
∥B∥2,2 · I B

B∗ ∥B∥2,2 · I

)
is psd, since the right hand side of the equation is a Hadamard product of two psd matrices

which is by the Schur product Theorem also psd. By Theorem 7.7.9 in [44] there thus exists a

contraction C, meaning ∥C∥2,2 ≤ 1, such that

A⊙B = ∥B∥2,2(I⊙A)1/2C(I⊙A)1/2.

Hence

∥A⊙B∥2,2 ≤ ∥(I⊙A)1/2∥2∥B∥2,2 ≤ ∥I⊙A∥2,2∥B∥2,2 ≤ ∥A∥∞,1∥B∥2,2. (4.104)

We can now provide a bound for terms of the form ∥ES [R
∗
IAI,IRI ]∥ = ∥A⊙ ES [1I1

∗
I ]∥, which

is the key result we need for most estimates used in the proofs of Claims 1-4.

Theorem 4.19 Let ES be the expectation according to the rejective sampling probability PS

and πS ∈ RK be the first order inclusion probabilities of level S. If ∥πS∥∞ < 1 then for any

K ×K matrix A we have

∥A⊙ ES [1I1
∗
I ]∥ ≤

1 + ∥πS∥∞
(1− ∥πS∥∞)2

· ∥DπS [A− diag(A)]DπS∥+ ∥ diag(A)DπS∥.

Proof We first note that since ES [1I1
∗
I ] has πS on the diagonal, a simple application of the

triangle inequality yields

∥A⊙ ES [1I1
∗
I ]∥ ≤ ∥(A− diag(A))⊙ ES [1I1

∗
I ]∥+ ∥ diag(A)⊙ ES [1I1

∗
I ]∥

= ∥(A− diag(A))⊙ ES [1I1
∗
I ]∥+ ∥ diag(A)DπS∥,
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which already proves the theorem for S = 1, where all off-diagonal entries of ES [1I1
∗
I ] are zero,

meaning the first norm term is zero. In case S ≥ 2 it remains to show that for I = A−diag(A)
we have ∥I ⊙ES [1I1

∗
I ]∥ ≤ c · ∥DπSIDπS∥ with constant c as above. For two vectors v, w with

entries in (0, 1) and function f : R2 → R, let diag(f(v, w)) be the diagonal matrix with i-th

diagonal entry f(v(i), w(i)). From Theorem 4.17 we know that

(I ⊙ ES [1I1
∗
I ])ij = Iij · PS({i, j} ⊆ I)

=
πS(i)

1− πS−1(i)
·Aij · [πS−1(j)− PS−1({i, j} ⊆ I)]

=
(
diag

(
πS

1−πS−1

)
·I · diag(πS−1)− diag

(
πS

1−πS−1

)
·I ⊙ ES−1[1I1

∗
I ]
)
ij

=
(
diag(πS−1) ·I · diag

(
πS

1−πS−1

)
−I · diag

(
πS

1−πS−1

)
⊙ ES−1[1I1

∗
I ]
)
ij
,

where for the last equality we have used the symmetry of PS({i, j} ⊆ I) in i, j. Using the

relation between inclusion probabilities πS−1 and πS from Theorem 4.17(b) we further get

∥I ⊙ ES [1I1
∗
I ]∥ ≤ ∥diag

(
πS

1−πS−1

)
·I · diag(πS−1)∥+ ∥diag

(
πS

1−πS−1

)
·I ⊙ ES−1[1I1

∗
I ]∥

≤ ∥diag
(

1
1−πS−1

)
∥ · ∥ diag(πS) ·I · diag(πS)∥ · ∥ diag(πS−1

πS
)∥

+ ∥ diag
(

1
1−πS−1

)
∥ · ∥ diag(πS) ·I ⊙ ES−1[1I1

∗
I ]∥

≤ (1− ∥πS∥∞)−1 · (∥DπSIDπS∥+ ∥DπSI ⊙ ES−1[1I1
∗
I ]∥)

as well as

∥I ⊙ ES [1I1
∗
I ]∥ ≤ (1− ∥πS∥∞)−1 · (∥DπSIDπS∥+ ∥IDπS ⊙ ES−1[1I1

∗
I ]∥) .

For S = 2, the matrix ES−1[1I1
∗
I ] is again a diagonal matrix, meaning the second norm term

vanishes and we are done. For S > 2, observe that

(IDπS ⊙ ES−1[1I1
∗
I ])

∗ = DπSI
∗ ⊙ ES−1[1I1

∗
I ]

so we simply apply the inequality above to Ī ⊙ ES−1[1I1
∗
I ] with Ī = DπSI

∗, leading to

∥IDπS ⊙ ES−1[1I1
∗
I ]∥ = ∥DπSI

∗ ⊙ ES−1[1I1
∗
I ]∥

≤ (1− ∥πS−1∥∞)−1 ·
(
∥DπS−1DπSI

∗DπS−1∥+ ∥DπSI
∗DπS−1 ⊙ ES−2[1I1

∗
I ]∥
)

≤ (1− ∥πS∥∞)−1 · (∥πS∥∞ · ∥DπSIDπS∥+ ∥DπSIDπS ⊙ ES−2[1I1
∗
I ]∥) .

Combining the estimates we get

∥I ⊙ ES [1I1
∗
I ]∥ ≤ (1− ∥πS∥∞)−2 · (∥DπSIDπS∥+ ∥DπSIDπS ⊙ ES−2[1I1

∗
I ]∥) .

The final result follows from the fact that for a positiv semi-definite matrix P and any matrix

B we have ∥B ⊙ P∥ ≤ ∥B∥ ·maxij |Pij |, Theorem 4.18, and that due to Theorem 4.17(c) with

L = {k} and 4.17(b) all entries of ES−2[1I1
∗
I ] are smaller than ∥πS∥∞.

With the last result in hand we can finally prove the following corollary, which collects the

inequalities used in the proofs Claims 1-4.
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Corollary 4.20 Denote by ES the expectation according to the rejective sampling probability

with level S and by π ∈ RK the first order inclusion probabilities of level S and let RI be the

restriction matrix to the index set I, meaning AI = AR∗
I . If ∥π∥∞ ≤ 1/3, we have for any

matrix I ∈ RK×K with zero diagonal,

∥E[D−1√
π R

∗
IRID

−1√
π ]∥ ≤ 1 (a)

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ ≤ 3 · ∥D√

πID√
π∥ (b)

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥ ≤ 9

2 · ∥D√
πID√

π∥2 + 3
2 ·max

k
∥e∗kID√

π∥2 (c)

Further, let Ψ ∈ Rd×K be a dictionary and H = Ψ∗Ψ− IK the associated hollow Gram matrix.

For any d×K matrix V = (v1, . . . , vK) and any subset G be of all supports of size S, meaning

G ⊆ {I : |I| = S}, we have

∥E[D−1√
π IℓcR∗

IV
∗
I · 1I(ℓ) · 1G(I)]∥ ≤ πℓ · ∥V D√

π∥ (d)

∥E[ΨIHI,ℓ · 1I(ℓ) · 1G(I)]∥ ≤ πℓ · ∥ΨD√
π∥2 (e)

∥E[(HI,ℓ)
∗HI,ℓ · 1I(ℓ)]∥ ≤ πℓ · ∥ΨD√

π∥2. (f)

∥E[VIV ∗
I · 1I(ℓ)]∥ ≤ πℓ ·

(
∥V D√

π∥2 + ∥vℓ∥2
)

(g)

Finally, if Ψ satisfies µ(Ψ) ≤ 1/8 and ∥ΨD√
π∥ ≤ 1/8 then for any d×K matrix Z =

(z1, . . . , zK) with ∥zk∥ = εk ≤ ε ≤
√
2 and |⟨zk, ψk⟩| = ε2k/2 we have

∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 9 · πℓ ·max{µ(Ψ), ∥ΨD√
π∥}2, (h)

∥E[ΨIHI,IH
∗
I,IΨ

∗
I · 1I(ℓ)]∥ ≤ 2 · πℓ · ∥ΨD√

π∥2, (i)

∥E[D−1√
π IℓcR∗

IΨ
∗
IZIZ

∗
IΨIRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 9 · πℓ ·max{ε, ∥ZD√
π∥}2, (j)

∥E[D−1√
π IℓcR∗

IZ
∗
IΨIΨ

∗
IZIRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 12 · πℓ ·max{ε, ∥ZD√
π∥}2. (k)

Proof

(a/b) Using the identities AI,I = RIAR
∗
I and R∗

IRI = diag(1I), we can rewrite for a

general matrix A and a diagonal matrix D

DR∗
IAI,IRID = DR∗

IRIAR
∗
IRID = D diag(1I)Adiag(1I)D

= diag(1I)DAD diag(1I) = (DAD)⊙ (1I1
∗
I).

Using Theorem 4.19 and ∥π∥∞ ≤ 1/3 we therefore get

∥E[D−1√
π R

∗
IAI,IRID

−1√
π ]∥ = ∥E[(D−1√

π AD
−1√
π )⊙ (1I1

∗
I)]∥

= ∥(D−1√
π AD

−1√
π )⊙ E[1I1∗I ]∥

≤ 3∥DπD
−1√
π [A− diag(A)]D−1√

π Dπ∥+ ∥D−1√
π diag(A)D−1√

π Dπ∥
= 3∥D√

π[A− diag(A)]D√
π∥+ ∥ diag(A)∥.

Setting A = I resp. A = I yields the inequalities in (a) and (b). (a/b)✓

(c) We again rewrite the expression, whose expectation we need to estimate.

R∗
III,II ∗

I,IRI = R∗
IRI ·I ·R∗

IRI ·I ∗ ·R∗
IRI

= diag(1I) ·I · diag(1I) ·I ∗ · diag(1I)
= [I · diag(1I) ·I ∗]⊙ (1I1

∗
I)

=
(∑
k∈I

IkI ∗
k

)
⊙ (1I1

∗
I) =

∑
k∈I

(IkI ∗
k )⊙ (1I1

∗
I).
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Since the k-th entry of Ik and therefore both the k-th row and k-th column of IkI ∗
k are zero,

we have (IkI ∗
k )⊙ (1I1

∗
I) = (IkI ∗

k )⊙ (1I\{k}1
∗
I\{k}), yielding

R∗
III,II ∗

I,IRI =
∑
k∈I

(IkI ∗
k )⊙ (1I\{k}1

∗
I\{k})

=
∑
k

(1I(k) ·IkI ∗
k )⊙ (1I\{k}1

∗
I\{k})

=
∑
k

(IkI ∗
k )⊙ (1I\{k}1

∗
I\{k} · 1I(k)). (4.105)

Using the Schur Product Theorem, which says that for p.s.d matrices A,P, P̄ , with Pij , P̄ij ≥ 0

and P ⪯ P̄ we have A⊙ P ⪯ A⊙ P̄ , together with Theorem 4.17(e) further leads to

ES

[
R∗

III,II ∗
I,IRI

]
=
∑
k

(IkI ∗
k )⊙ ES

[
1I\{k}1

∗
I\{k} · 1I(k)

]
⪯
∑
k

(Ik
πS(k)

1−πS(k)
I ∗

k )⊙ ES−1[1I1
∗
I ]

=
(∑

k

Ik
πS(k)

1−πS(k)
I ∗

k

)
⊙ ES−1[1I1

∗
I ]

= (I diag( πS
1−πS

)I ∗)⊙ ES−1[1I1
∗
I ].

AbbreviatingM := I diag( πS
1−πS

)I ∗, and applying Theorem 4.19 and Theorem 4.17(b) we get

∥ES

[
D−1√

π R
∗
III,II ∗

I,IRID
−1√
π

]
∥ = ∥D−1√

π ES

[
R∗

III,II ∗
I,IRI

]
D−1√

π ∥
≤ ∥(D−1√

π MD−1√
π )⊙ ES−1[1I1

∗
I ]∥

≤ 3∥DπS−1 [D
−1√
π MD−1√

π − diag(D−1√
π MD−1√

π )]DπS−1∥
+ ∥ diag(D−1√

π MD−1√
π )DπS−1∥

≤ 3∥D√
πMD√

π − diag(D√
πMD√

π)∥+ ∥ diag(M)∥
≤ 3∥D√

πMD√
π∥+ ∥ diag(M)∥,

where in last inequality we have used that D√
πMD√

π is positive semidefinite. Combining the

inequality above with the bounds

∥D√
πMD√

π∥ = ∥D√
πID√

π diag(
1

1−π )D
√
πI ∗D√

π∥ ≤ (1− ∥π∥∞)−1∥D√
πID√

π∥2,
∥ diag(M)∥ = max

k
e∗kID√

π diag(
1

1−π )D
√
πI ∗ek ≤ (1− ∥π∥∞)−1max

k
∥e∗kID√

π∥2.

leads to (c). (c)✓

(d-g) Using the identity IℓcR∗
IV

∗
I = IℓcR∗

IRIV
∗ = diag(1I\{ℓ})V

∗ we get

∥E
[
D−1√

π IℓcR∗
IV

∗
I · 1I(ℓ)1G(I)

]
∥ = ∥D−1√

π E
[
1G(I)1I(ℓ) · diag(1I\{ℓ})

]
D−1√

π D√
πV

∗∥
≤ ∥D−1√

π E
[
1I(ℓ) · diag(1I\{ℓ})

]
D−1√

π ∥ · ∥D√
πV

∗∥
= max

k ̸=ℓ

(
E [1I(ℓ)1I(k)] · π−1

k

)
· ∥V D√

π∥

≤ πℓ · ∥V D√
π∥,

where in the last inequality E [1I(ℓ)1I(k)] ≤ πℓπk from Theorem 4.17(c) was used.

Next observe that H has a zero diagonal, so for any AI = AR∗
I we have

AIHI,ℓ = AR∗
I ·RIHeℓ = Adiag(1I)Hℓ = Adiag(1I\{ℓ})Hℓ,
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and the same argument as above leads to

∥E[AIHI,ℓ · 1I(ℓ)1G(I)]∥ = ∥AE[1G(I)1I(ℓ) · diag(1I\{ℓ})]Hℓ∥
≤ ∥AD√

π∥ · ∥D−1√
π E[1I(ℓ) · diag(1I\{ℓ})]D−1√

π ∥ · ∥D√
πHℓ∥

≤ πℓ · ∥AD√
π∥ · ∥D√

πHℓ∥.

For H = Ψ∗Ψ− IK we have the bound

∥D√
πHℓ∥ = ∥D√

π(Ψ
∗ψℓ − eℓ)∥ ≤ ∥D√

πΨ
∗ψℓ∥ ≤ ∥D√

πΨ
∗∥ = ∥ΨD√

π∥,

so setting A = Ψ yields (e) while setting A = (Hℓ)
∗ = (Heℓ)

∗ together with G = {I : |I| = S}
yields (f). Finally, we can write VIV

∗
I = V R∗

IRIV
∗ = V [diag(1I\{ℓ}) + eℓe

∗
ℓ ]V

∗, to get

∥E[VIV ∗
I · 1I(ℓ)]∥ ≤ ∥V D√

πE[D−1√
π diag(1I\{ℓ})D

−1√
π · 1I(ℓ)]D√

πV
∗∥+ ∥vℓv∗ℓE[1I(ℓ)]∥

≤ πℓ · ∥V D√
π∥2 + πℓ · ∥vℓ∥2,

which completes the proof of (g). (d-g) ✓

(h) We first prove that for a general matrix I with zero diagonal we have

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥

≤ πℓ
1− πℓ

(
3∥D√

πI eℓ∥2 +max
k

I 2
kℓ +

9
2∥D√

πID√
π∥2 + 3

2 max
k
∥e∗kID√

π∥2
)
. (4.106)

Using (4.105) and the identity Iℓc = diag(1[K]\{ℓ}), we first rewrite

IℓcR∗
III,II ∗

I,IRIIℓc · 1I(ℓ) = (R∗
III,II ∗

I,IRI)⊙ (1[K]\{ℓ}1
∗
[K]\{ℓ}) · 1I(ℓ)

=
∑
k

(IkI ∗
k )⊙

(
1I\{k,ℓ}1

∗
I\{k,ℓ} · 1I(ℓ)1I(k)

)
.

As before an application of the Schur Product Theorem and Theorem 4.17(e) leads to

ES [IℓcR∗
III,II ∗

I,IRIIℓc · 1I(ℓ)] =
∑
k

(IkI ∗
k )⊙ ES

[
1I\{k,ℓ}1

∗
I\{k,ℓ} · 1I(ℓ)1I(k)

]
⪯ πS(ℓ)

1− πS(ℓ)
(IℓI ∗

ℓ )⊙ ES−1[1I1
∗
I ] +

∑
k ̸=ℓ

πS(ℓ)

1− πS(ℓ)

(
Ik

πS(k)

1− πS(k)
I ∗

k

)
⊙ ES−2[1I1

∗
I ]

⪯ πS(ℓ)

1− πS(ℓ)

(
(IℓI ∗

ℓ )⊙ ES−1[1I1
∗
I ] +M ⊙ ES−2[1I1

∗
I ]
)
,

where again M = I diag( πS
1−πS

)I ∗. Finally, Theorem 4.19, Theorem 4.17(b) and similar

simplifications to above yield

∥ES [D
−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥

≤ πℓ
1− πℓ

(
∥(D−1√

π IℓI ∗
ℓ D

−1√
π )⊙ ES−1[1I1

∗
I ]∥+ ∥(D−1√

π MD−1√
π )⊙ ES−2[1I1

∗
I ]∥
)

≤ πℓ
1− πℓ

(3∥D√
πIℓI ∗

ℓ D√
π∥+ ∥diag(IℓI ∗

ℓ )∥+ 3∥D√
πMD√

π∥+ ∥ diag(M)∥)

≤ πℓ
1− πℓ

(
3∥D√

πI eℓ∥2 +max
k

I 2
kℓ +

9
2∥D√

πID√
π∥2 + 3

2 max
k
∥e∗kID√

π∥2
)
,
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which completes the proof of (4.106). To prove (h) note that for I = H = Ψ∗Ψ− IK we have

∥D√
πHek∥ = ∥e∗kHD√

π∥ = ∥(ψ∗
kΨ− ek)D√

π∥ ≤ ∥ψ∗
kΨD√

π∥ ≤ ∥ΨD√
π∥

and ∥D√
πHD√

π∥ ≤ ∥D√
πΨ

∗ΨD√
π∥ ≤ ∥ΨD√

π∥2

Since for k ̸= ℓ we have H2
kℓ = |⟨ψk, ψℓ⟩|2 ≤ µ(Ψ)2 whenever ∥ΨD√

π∥ ≤ 1/3 we have

∥E[D−1√
π IℓcR∗

IHI,IH
∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥ ≤ 3
2 · πℓ ·

(
µ(Ψ)2 + ∥ΨD√

π∥2 · 92(1 +
1
9)
)

≤ 9 · πℓ ·max{µ(Ψ), ∥ΨD√
π∥}2,

which completes the proof of (h). (h) ✓

(i-k) We first observe that using Theorem 4.7, we get the bound

∥E[
(
A(I) +B(I)

)(
A(I) +B(I)

)∗
]∥

≤ ∥E[A(I)A(I)∗]∥+ 2∥E[A(I) · I ·B(I)∗]∥+ ∥E[B(I)B(I)∗]∥

≤ ∥E[A(I)A(I)∗]∥+ 2∥E[A(I)A(I)∗]∥
1
2 ∥E[B(I)B(I)∗]∥

1
2 + ∥E[B(I)B(I)∗]∥

=
(
∥E[(A(I)A(I)∗]∥

1
2 + ∥E[(B(I)B(I)∗]∥

1
2

)2
. (4.107)

Applying this to ∥E[ΨIHI,IH
∗
I,IΨ

∗
I · 1I(ℓ)]∥ for the split

ΨIHI,I = ΨR∗
IHI,I = Ψ(eℓe

∗
ℓ + Iℓc)R

∗
IHI,I = ψℓHℓ,I +ΨIℓcR

∗
IHI,I ,

and using the symmetry of H, meaning Hℓ,I = (HI,ℓ)
∗, we get using (g) and (h) and the

bounds µ(Ψ), ∥ΨD√
π∥ ≤ 1/8

∥E[ΨI
∗HI,IH

∗
I,IΨ

∗
I · 1I(ℓ)]∥

1
2

≤ ∥ψℓE[(HI,ℓ)
∗HI,ℓ · 1I(ℓ)]ψ

∗
ℓ ∥

1
2 + ∥ΨE[IℓcR∗

IHI,IH
∗
I,IRIIℓc · 1I(ℓ)]Ψ

∗∥
1
2

≤
√
πℓ · ∥ΨD√

π∥+ ∥ΨD√
π∥ · ∥E[D−1√

π IℓcR
∗
IHI,IH

∗
I,IRIIℓcD

−1√
π · 1I(ℓ)]∥

1
2

≤
√
πℓ · ∥ΨD√

π∥+ ∥ΨD√
π∥ · 3 ·

√
πℓ ·max{µ(Ψ), ∥ΨD√

π∥}
≤
√
2πℓ · ∥ΨD√

π∥.

To prove (j) we set E = diag(Ψ∗Z), I = Ψ∗Z − diag(Ψ∗Z), and apply (4.107) to the split

D−1√
π IℓcR∗

IΨ
∗
IZI = D−1√

π IℓcR∗
IEI,I +D−1√

π IℓcR∗
III,I

which using (4.106) yields

∥E[D−1√
π IℓcR∗

IΨ
∗
IZIZ

∗
IΨIRIIℓcD−1√

π · 1I(ℓ)]∥
1
2

≤ ∥E[D−1√
π IℓcR∗

IE2I,IRIIℓcD−1√
π · 1I(ℓ)]∥

1
2 + ∥E[D−1√

π IℓcR∗
III,I(II,I)

∗RIIℓcD−1√
π · 1I(ℓ)]∥

1
2

≤
√
πℓ · ∥E∥+

√
πℓ

1−πℓ
·
(
3∥D√

πI eℓ∥2 +max
k

I 2
kℓ +

9
2∥D√

πID√
π∥2 + 3

2 max
k
∥e∗kID√

π∥2
) 1

2

≤
√
πℓ · ε

2

2 +
√

πℓ
1−πℓ

·
(
3∥D√

πΨ
∗zℓ∥2 +max

k ̸=ℓ
|⟨ψk, zℓ⟩|2

+ 9
2(∥D√

πΨ
∗ZD√

π∥+ ∥D√
πED√

π∥)2 + 3
2 max

k
∥ψ∗

kZD√
π∥2
) 1

2

≤
√
πℓ · ε

2

2 +
√

πℓ
1−πℓ

·
(
3∥ΨD√

π∥2ε2 + ε2 + 9
2(∥ΨD√

π∥∥ZD√
π∥+ ∥π∥∞ ε2

2 )
2 + 3

2∥ZD√
π∥2
) 1

2
.
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Inserting the bounds ε ≤
√
2, ∥ΨD√

π∥ ≤ 1/8 and ∥π∥∞ ≤ 1/3 we finally arrive at

∥E[D−1√
π IℓcR∗

IΨ
∗
IZIZ

∗
IΨIRIIℓcD−1√

π · 1I(ℓ)]∥
1
2

≤
√
πℓ ·max{ε, ∥ZD√

π∥} ·
[

1√
2
+
√

3
2 ·
(

3
82

+ 1 + 9
2(

1
8 + 1

3
√
2
)2 + 3

2

) 1
2

]
≤
√
πℓ ·max{ε, ∥ZD√

π∥} · 3

Reversing the roles of Z and Ψ in the inequalities above and simplifications using the same

bounds ε, ∥ΨD√
π∥, ∥π∥∞ straightforwardly leads to (k). (i-k)✓

4.10. Discussion

We have shown that both aK-SVD and MOD converge to the generating dictionary under

very general conditions and a non-uniform sparse supports signal model. Even though these

algorithms arise from different approaches to solving the minimisation problem that is dictio-

nary learning, they surprisingly share the same structure in the dictionary update step. We

also suspect that the ideas of this proof could be reused to show convergence of the ITKrM

algorithm as well.
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The following chapter essentially is a reprint of the article
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In the previous chapter we derived sufficient conditions that the dictionary learning algorithms

MOD and A-K-SVD recover a generating dictionary with high probability. The keen reader

might have noticed that we only looked at Thresholding for the sparse approximation step and

might ask him or herself why OMP was not included in the analysis. This nevertheless is not

without good reason, and in this chapter we provide the theoretical and numerical justification

for this choice.

5.1. Introduction

For convenience we recall the ideas of dictionary learning, OMP and Thresholding in order to

make the results more accessible. Recall that in dictionary learning the goal is to decompose

a data matrix Y = (y1, . . . , yN ) ∈ Rd×N into a dictionary matrix Φ = (ϕ1, . . . , ϕK) ∈ Rd×K ,

where each column (also called atom) is normalised, i.e., ∥ϕk∥2 = 1, and a sparse coefficient

matrix X = (x1, . . . , xN ) ∈ RK×N such that Y ≈ ΦX and X is column-wise sparse. This

problem can be formulated as an optimisation program

min
Φ∈DK

N∑
n=1

min
∥xn∥0≤S

∥yn − Φxn∥22, (5.1)
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5.1. Introduction

where DK denotes the set of all dictionaries with K normalised atoms and ∥x∥0 counts the

number of non-zero entries of a vector x. While sparse representations are important for

performing many signal processing tasks such as denoising [32] or data reconstruction from

incomplete information [51], solving a highly non-convex minimisation problem as in (5.1) is

notoriously difficult [79]. Some of the most used dictionary learning algorithms belong to the

class of alternating optimisation algorithms, which alternate between updating the sparse co-

efficient matrix X while fixing the dictionary Φ and updating the dictionary Φ while fixing X.

Popular examples include K-SVD [6], MOD [33], ITKrM [72] or the neural algorithms in [8].

Even updating the sparse coefficient matrix X, meaning finding the best sparse approxima-

tion of each signal yn in Φ, is generally NP-hard unless the dictionary forms an orthonormal

system [37, 53]. In particular, in sparse approximation we want to approximate a given signal

y ∈ Rd by a linear combination of only a small number S ≪ d of elements ϕi ∈ Rd out of

some given dictionary Φ = (ϕ1, . . . , ϕK). This means, denoting the restriction of Φ and x to

the columns resp. entries indexed by some set I by ΦI and xI , we want to find

y ≈
∑
k∈I

ϕkxk = ΦIxI such that |I| = S ≪ d. (5.2)

The problem of finding the best S-sparse approximation of y in Φ, meaning the best S-support

I and coefficient vector x, however, is combinatorial. To approximate its solution efficiently,

suboptimal routines that avoid searching through all possible sets I are typically used. One

of the most practically used sparse approximation algorithms is Orthogonal Matching Pursuit

(OMP) [59]. OMP finds the support iteratively by adding the index of the atom which has

the largest absolute inner product with the residual and updating the residual. In particular,

initialising with rJ = y and J = ∅, it

finds i ∈ argmax
k
|⟨ϕk, rJ⟩| and

updates J ← J ∪ {i} resp. rJ = y − P (ΦJ)y,

where P (ΦJ) denotes the projection onto the span of atoms indexed by J , iterating until a

stopping criterion is met. As the projection can be calculated iteratively the computational

cost is determined by the K inner products ⟨ϕk, rJ⟩ in each iteration, combining to an overall

cost of O(SdK) [64].

On the other hand Thresholding or S-Thresholding with fixed sparsity level S finds the

support by calculating

I ∈ arg max
J :|J |=S

∥Φ⊤
J y∥1, (5.3)

meaning it simply chooses those atoms which yield the S largest inner products in absolute

value with the signal. Together with the projection this combines to a much reduced compu-

tational complexity of O(dK + S3).

Over the years, quite a few results about sufficient conditions for OMP and Thresholding to

recover the correct support emerged [80, 74]. Most recently, in [73] average case results for

OMP were derived. However, these results assume exact knowledge of the generating dic-

tionary, whereas in practice only an approximation might be available. Hence, they do not

apply directly. In dictionary learning, for example, the initial guess (and also the subsequent

updates) are naturally quite different from the signal generating dictionary. Thus results for

Thresholding under dictionary mismatch can be found implicitly in several dictionary learning

papers [8, 72, 56]. Further, a similar problem known as basis mismatch is studied in compressed
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sensing [24, 11]. There the dictionary rather than the signal coefficients is usually assumed to

be random.

Contribution: In this work we provide a theoretical analysis of the average performance of

OMP for the case in which we do not have the signal generating dictionary itself but only a

perturbed version of it. Our theoretical results, confirmed by numerical simulations, indicate

that Thresholding provides a viable and computationally cheaper alternative to OMP in case

of dictionary mismatch. Finally, additional experiments show that on top of cost efficiency

Thresholding also provides recovery advantages over OMP in dictionary learning.

5.2. Setting

Definition 5.1 (Signal model) Given a d×K dictionary Φ, we assume that our noisy sig-

nals are generated as

y = ΦIxI + η =
∑
i∈I

ϕiσicp(i) + η, (5.4)

where I ⊂ {1, · · · ,K} is a subset of size S chosen uniformly at random, p is some permutation

satisfying p(I) = {1, . . . , S} and (σi)i is a Rademacher sequence. The coefficients c are S-

sparse and non-increasing, meaning ci = 0 for i > S and ci ≥ ci+1 for i ≤ S. The vector

η denotes a sub-Gaussian noise vector with parameter ρ. In particular, this means that we

have E(η) = 0 and for all vectors v with ∥v∥2 = 1 and θ > 0 the marginals ⟨v, η⟩ satisfy
E(eθ⟨v,η⟩) ≤ eθ2ρ2/2.

This signal model is quite general. Using Rademacher signs σi simply ensures that the co-

efficients xi are centered, which together with boundedness is a quite common assumption

[8, 21]. Further, we want to point out that sub-Gaussian noise includes both bounded and

Gaussian noise. Choosing I uniformly at random among all sets of size S allows us to con-

clude that for any dictionary Ψ with small operator norm ∥Ψ∥2,2 and small coherence µ(Ψ)

we have ϑ(ΨI) ≤ 1/2 with high probability [25, 83]. This could be replaced by a more general

non-uniform sampling scheme, where similar conditions on Ψ including suitable weights again

lead to ϑ(ΦI) ≤ 1/2 with high probability - see Chapter 2.

We recall some notation from Chapter 1, which will be used throughout this chapter. For a

perturbed version Ψ of a generating dictionary Φ, we set Z := Φ − Ψ and define its distance

to Φ as ε := maxi ∥zi∥2. The perturbation parameter ν := maxi,j |⟨ψi, zj⟩| measures how cor-

related the perturbation of one atom is with the other perturbed atoms. Finally, for a vector

v ∈ RK and an index ℓ, we define v≥ℓ := vI for I = {ℓ, . . . ,K}.

5.3. Main results

Here we provide (partial) support recovery conditions for OMP and thresholding for the case

in which the given input dictionary is not the signal generating dictionary but a perturbed

version of it.

Theorem 5.2 Assume the signals are generated following the model in (5.4) with signal gen-

erating dictionary Φ and let Ψ be a perturbed version of Φ with parameter ν.

OMP: Let ℓ ≤ S. If Ψ satisfies

µ(Ψ) ≤ 1

4n logK
and ∥Ψ∥22,2 ≤

K

16ne2S logK
, (5.5)
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and for γ ∈ (0, 1) we have

1− γ
2

> µ(Ψ)

(
max
i≤ℓ

∥c≥i∥1
ci

+
√
ℓmax

i≤ℓ
·∥c≥i∥2

ci

)
(5.6)

+ (1 + 2ℓµ(Ψ))
√
2n logK

(
ν∥c∥2 + ρ

cℓ

)
,

then, except with probability 220K1−n, OMP using Ψ will recover a different atom from the

support with coefficient size at least γcℓ in each of the first ℓ iterations.

Thresholding: Let ℓ ≤ S. If for γ ∈ (0, 1) we have

1− γ
2
≥
(
µ(Ψ) · ∥c∥2

cℓ
+
ν∥c∥2 + ρ

cℓ

)√
2n logK, (5.7)

then ℓ-Thresholding will recover ℓ atoms from the support with coefficient size at least γcℓ,

except with probability 4K1−n.

Proof We will show that OMP always picks a correct atom, whose coefficient is comparable

to that with the largest coefficient still available. For J the current support we set L := I \ J
and let ℓ be the index of the largest remaining coefficient, i.e., |xℓ| = ∥xL∥∞. Further for

γ ∈ (0, 1) we define R := {i /∈ J : |xi| < γ|xℓ|}. We will show that for rJ = y − P (ΨJ)y we

have

|⟨ψℓ, rJ⟩| > max
i∈R
|⟨ψi, rJ⟩| . (5.8)

Rewriting y = ΦIxI + η = ΨIxI + ZIxI + η, and abbreviating Q(ΨJ) = I− P (ΨJ) we get

rJ = Q(ΨJ)ΨLxL +Q(ΨJ)ZIxI +Q(ΨJ)η,

so in order to bound |⟨ψℓ, rJ⟩| from below, we need to bound the inner products of ψℓ with the

terms on the r.h.s above. First note that by [25, Theorem 3.1] and (5.5) ϑ(ΨJ) ≤ ϑ(ΨI) ≤ 1/2

except with probability 216K1−n. So for L̄ = L \ {ℓ} we have

|⟨ψℓ,ΨLxL − P (ΨJ)ΨLxL⟩|

≥ |xℓ| −
∣∣∣⟨Ψ⊤

L̄ψℓ, xL̄⟩
∣∣∣− ∣∣∣⟨Ψ⊤

J ψℓ, (Ψ
⊤
J ΨJ)

−1Ψ⊤
J ΨLxL⟩

∣∣∣
≥ ∥xL∥∞ − ∥Ψ⊤

L̄∥∞∥xL̄∥1
− ∥Ψ⊤

J ψℓ∥2∥(Ψ⊤
J ΨJ)

−1∥2,2∥Ψ⊤
J ΨL∥2,2∥xL∥2

≥ ∥xL∥∞ − µ(Ψ)∥xL∥1 − µ(Ψ)
√
|J | ϑ(ΨI)

1− ϑ(ΨI)
∥xL∥2.

Analogue to above we get for i ∈ R

|⟨ψℓ,ΨLxL − P (ΨJ)ΨLxL⟩|

≤ γ∥xL∥∞ + µ(Ψ)∥xL∥1 + µ(Ψ)
√
|J |∥xL∥2.

Expanding again the projection we can bound the inner products of atoms with the perturba-

tion term as ∣∣∣⟨ψi, ZIxI −ΨJ(Ψ
⊤
J ΨJ)

−1Ψ⊤
J ZIxI⟩

∣∣∣
≤ |⟨ψi, ZIxI⟩|+

∥Ψ⊤
J ψi∥2

1− ϑ(ΨJ)
·
√
|J | · ∥Ψ⊤

J ZIxI∥∞

≤ max
i
|⟨ψi, ZIxI⟩| · (1 + 2|J |µ(Ψ)) . (5.9)
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Since xj = cp(j)σj we get via Hoeffding’s inequality

P(|⟨ψi, ZIxI⟩| > t) = P
(
|
∑

j⟨ψi, zj⟩cp(j)σj | > t
)

≤ 2 exp

(
−t2

2
∑

j⟨ψi, zj⟩2x2j

)
≤ 2 exp

(
−t2

2ν2∥xI∥22

)
.

Setting t = tν := ν∥xI∥2
√
2n logK we get via a union bound that maxi |⟨ψi, ZIxI⟩| < tν except

with probability 2K1−n.

Simply replacing ZIxI by η in (5.9) we further get

|⟨ψi, Q(ΨJ)η⟩| ≤ max
i
|⟨ψi, η⟩| · (1 + 2|J |µ(Ψ)) .

Since η is sub-Gaussian, Markov’s inequality leads to P(|⟨ψi, η⟩| > t) ≤ 2e−t2/(2ρ2). Setting

t = tρ := ρ
√
2n logK and a union bound yield that maxi |⟨ψi, η⟩| ≤ tρ except with probability

2K1−n.

After collecting all our bounds into (5.8) and rearranging, we get the following sufficient con-

dition for OMP to pick another correct atom except with probability (216 + 2 + 2) ·K1−n

1− γ
2

> µ(Ψ)

(
∥xL∥1
∥xL∥∞

+
√
|J | ∥xL∥2
∥xL∥∞

)
+

(
ν∥xI∥2 + ρ

∥xL∥∞

)
(1 + 2|J |µ(Ψ))

√
2n logK.

To get the final result observe that ∥xI∥2 = ∥c∥2 and that in the ℓ-th step |J | = ℓ − 1 and

∥xL∥∞ ≥ cℓ. If ∥xL∥∞ = ci for the smallest possible i, then ∥xL∥p ≤ ∥c≥i∥p and

∥xL∥p
∥xL∥∞

≤ max
i≤ℓ

∥c≥i∥p
ci

.

To get the statement for thresholding, observe that

⟨ψi, y⟩ = xi + ⟨ψi,ΨI\{i}xI\{i}⟩+ ⟨ψi, ZIxI⟩+ ⟨ψi, η⟩.

Hoeffding’s inequality, the sub-Gaussianity of η and several union bounds, yield that except

with probability 6Kn−1

|⟨ψi, y⟩| ≤ |xi|+ (µ(Ψ)∥x∥2 + ν∥x∥2 + ρ)
√

2n logK,

for all i as well as the corresponding lower bound, so (5.7) ensures that the inner products of

atoms having coefficients ci ≥ cℓ are larger than those having coefficients ci ≤ γcℓ.

5.4. Comparison of OMP and Thresholding

In the perturbation and noise-free case our result reduces to that from [73], showing that the

recovery condition for OMP becomes easier to fulfill if we have decaying coefficients. So for

constant coefficients, we need µ(Ψ)S ≲ 1, while for coefficients forming a geometric sequence,

meaning ci = αi for α ∈ (0, 1) and i ≤ S, we only need µ(Ψ) ≲ 1−α as well as µ2(Ψ)S ≲ 1−α2

for full recovery. Unfortunately, in the case of perturbations, as ν grows, this advantage turns
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into a disadvantage, since the term ∥c∥2/cS grows with faster decay, e.g. equaling
√
S for

constant coefficients and α−S/
√
1− α2 for the geometric sequence.

For thresholding on the other hand the term scaled by ν, which grows with coefficient de-

cay, already appears in the perturbation- and noise-free recovery-condition. This means that

thresholding never performs well with large coefficient decay but also that its performance does

not degrade dramatically with perturbations.

To better judge the influence of the perturbation parameter ν, we have a look at its ex-

treme and typical size. For reasonable perturbation sizes, ε := maxk ∥zk∥2 ≤ 0.7, we have

ν = maxi,j |⟨ψi, zj⟩| ≈ maxi ̸=j |⟨ϕi, zj⟩|, so at worst, if zj ≈ εϕk, we have ν ≈ ε. On the other

hand for random (rescaled Gaussian) perturbations we have ν ≈ ε
√

logK/d. Also a more

involved analysis – beyond the scope of this chapter – for uniformly distributed supports, leads

to a result corresponding to the above with ν ≈ ∥Z∥2,2/
√
K [58].

To see how accurate our conditions are, we next conduct some numerical simulations in Rd, for

d = 128, for the case of geometric coefficient sequences and random perturbations. We assume

that the signals follow the model in (5.4), where the support I is chosen uniformly at random.

For α ∈ [0.75, 1] and S ∈ {2, . . . , 54} we set ci = αi for i ≤ S and ci = 0 for all i > S. As

generating dictionary Φ we use the concatenation of the Dirac and DCT bases. We obtain a

perturbed dictionary Ψ with distance ε to Φ by setting ψk =
(
1− ε2/2

)
ϕk+

(
ε2 − ε4/4

)1/2
vk,

where vk is drawn uniformly at random from the unit sphere orthogonal to ϕk. For our ex-

periments we use N = 1000 signals per sparsity level and decay parameter. The results in

Figure 5.1 show that OMP outperforms Thresholding — but only for very small perturba-

tions. This performance gap closes with growing levels of perturbation. In order to compare

the sufficient conditions in Theorem 5.2 to our empirical results we plot the following bound-

aries

6 = µ ·
(
maxi≤S

∥c≥i∥1
ci

+
√
Smaxi≤S ·

∥c≥i∥2
ci

)
(red)

6 = ν · (1 + Sµ)∥c∥2cS

√
logK (black)

6 = (ν + µ) · ∥c∥2cS

√
logK (magenta)

for µ = 1
8 = µ(Φ) ≈ µ(Ψ) and ν = ε/

√
d. These results confirm the behaviour discussed above

and show that the conditions in Theorem 5.2 are rather tight (up to constants).

5.5. Dictionary learning using OMP and Thresholding

Next we have a look at the implications of our results for the the motivating application of

dictionary learning and compare the performance of Thresholding and OMP together with the

atom update rules of K-SVD, MOD and ITKrM. We again generate signals in Rd, for d = 128,

using the concatenation of the Dirac and DCT bases as generating dictionary, meaning K = 2d

and µ(Φ) = 0.125. We set S = 6, with the sparse coefficients forming a geometric sequence

with decay factor α = 0.9. This means ci = κSα
i for i ≤ S and ci = 0 for all i > S, where κS

denotes some constant ensuring that ∥c∥2 = 1. In case of noise, the noise vector is assumed to

follow a normal distribution with variance ρ2r = (256d)−1, resulting in a signal to noise ratio

of SNR = 256. Each iteration uses N = 20 000 fresh signals and the results are averaged over

10 runs.

As can be seen in Figure 5.2, all combinations of algorithms were able to fully recover

the dictionary. Interestingly, the increased complexity of OMP does not seem to provide an

advantage over Thresholding in the first few iterations. In the noiseless case OMP starts
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Chapter 5. OMP vs Thresholding under dictionary mismatch

Figure 5.1: Average percentage of correctly recovered atoms via OMP (left column) and

Thresholding (right column) with perturbed dictionary Ψ where ε = 0 (top), ε = 0.2 (middle)

and ε = 0.5 (bottom), for noiseless signals with generating dictionary Φ, various sparsity levels

and coefficient decay parameters. The red, black and magenta lines indicate the theoretical

decision boundaries.

to outperform Thresholding only once the learned dictionary atoms are very close to their

corresponding atoms in the generating dictionary, while in the noisy case, they perform nearly

on par with each other. Taking into account that the Thresholding is computationally far less
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Figure 5.2: Average distance of atoms to the generating dictionary for various dictionary

learning algorithms using OMP (full lines) and Thresholding (dashed lines) for a well-behaved

initialisation with ε = 1 (Section 5.4), using noiseless (left) resp. noisy training signals (right).

The red line indicates the error at which the inner products between learned atoms and gen-

erating atoms would equal 0.98.
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Figure 5.3: (left) Percentage of atoms not found and (right) average distance to the generating

atoms on found atoms, both using OMP (full lines) and Thresholding (dashed lines).

demanding than OMP there might not be a benefit in employing OMP in dictionary learning

— in the early stages.

Obviously an initialisation as defined in Section 5.4 is quite unrealistic, which is why we repeat

the same experiment using the noisy signals with a fully random initialisation. The results in

Figure 5.3 paint a far more accurate picture of reality. It can be seen that, contrary to the

previous experiment, OMP is not able to find all atoms of the generating dictionary (left),

whereas Thresholding is able to find almost all atoms. Note that we used the convention that

ϕi is found if for a recovered ψk we have |⟨ϕi, ψk⟩| ≥ 0.99, however the plot looks the same

using 0.90 instead. Moreover, looking at the average distance of found atoms, we see that

OMP is not able to outperform Thresholding either (right).
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Chapter 5. OMP vs Thresholding under dictionary mismatch

5.6. Discussion

In this chapter we have studied OMP and Thresholding in the case in which the generating

dictionary is not known (or only a perturbed version of it is known). We compared sufficient

conditions for OMP and Thresholding to find the correct support. It was shown that for small

levels of perturbation, OMP does indeed outperform Thresholding, but that this gap closes

with increasing levels of perturbation. This suggests that due to its computational efficiency

Thresholding might be preferable to OMP in applications, where only an estimate of the

generating dictionary is available, the prime example being dictionary learning.
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Chapter 6

Discussion and Outlook

Now it is time to wrap things up. In Chapter 2 we have derived concentration inequalities for

the operator norms of non-uniformly selected random submatrices. This has allowed us to de-

rive sufficient conditions for sparse approximation algorithms to recover the sparse coefficients

in a very general signal model. Building upon these results, in Chapter 3 we have derived

optimal subsampling strategies in a compressed sensing setup. These subsampling strategies

depend on the distribution of sparse supports, which can be estimated from data, yielding

state of the art performance in numerical experiments. In Chapter 4, sufficient conditions for

convergence of two popular dictionary learning algorithms were derived. It was shown that

convergence happens under much more relaxed conditions as previous results suggested. In

Chapter 5 we have argued that in settings where one only has access to a perturbed version

of a dictionary, Thresholding is a viable alternative to OMP and that in some settings, like

dictionary learning, Thresholding might even be preferable.

Together with the answers it provides, this thesis also opens up many fresh and challenging

research directions. In Chapter 3 it was pointed out that it should be possible to weaken the

assumptions on the random signs of the signal model by employing the so called golfing-scheme.

This would generalise the result and maybe lead to improved constants in the conditions.

The most interesting questions regarding Chapter 3 come to mind when analysing the intricate

relationship between the sampling density π and the probabilities p. Deriving lower bounds

on the number of measurements in a blocks of measurements setting for a fixed underlying

distribution p of the sparse supports would be very interesting and of practical relevance. As

in the Fourier-Haar cases with measurements along vertical lines, other special cases of sens-

ing matrices and block designs could be analysed together with different assumptions on the

distribution p.

Recall that one of the main results of this chapter reads as πk =
max{akDωa∗k,∥ak∥

2
∞}

L . Forgetting

about the second term in the maximum, we see that we can write the vector π as a matrix

vector product. Defining the matrix Ā as the entry-wise conjugate of A we have

π = (A⊙ Ā)p.

In Chapter 3 we usually estimated p from data and derived π via the given formulas. But

one can also turn this argument on its head and try to guess the underlying distribution p

from a subsampling strategy π, since in practice it is very common to use some heuristically

inspired subsampling density π. By solving the above system of linear equations (recall that

the matrices A and Ā are known) one can get information about the implicit assumptions

on the prior distribution p for any given subsampling density π. This information can then

107



be checked against the data and decisions about the applicability of a heuristically inspired

subsampling strategy π can be made.

Other possible research directions emerged during the study of the dictionary learning algo-

rithms in Chapter 4. We looked at two dictionary learning algorithms and essentially proved

convergence of both of them with the help of the same technical lemmas and concentration

inequalities. We therefore strongly suspect that results could easily be extended to other dic-

tionary learning algorithms like the ITKrM or gradient descent schemes.

Another big step for theoretical dictionary learning would be partial support recovery. What

do we mean by that? In general the true sparsity level of a certain signal or signal class is

unknown and what we see in simulations is that both MOD and K-SVD do not rely too much

on S. So a big step forward would be to show that even if the sparsity level is estimated smaller

than the ground truth, the algorithms still recover the generating dictionary — or recover it

at least partially.

108



List of Figures

2.1 Left: Original image from which the patches are extracted. Middle: Relative

frequency of wavelet coefficients above threshold (blue) – average frequency (red)

on a log scale. Right: Locations of non-zeros coefficients in the 2D Haar-Wavelet

basis – the higher the row or column index the smaller the corresponding wavelet. 16

2.2 From left to right: The K-space {(k1, k2) : −
√
K/2 + 1 ≤ k1, k2 ≤

√
K/2} with

the frequencies used for the measurement matrix A1. The frequencies used for

the measurement matrix A2. Locations of non-zero coefficients of patches in the

2D-Haar Wavelet Basis. Expectation of each atom to be in the support (blue)

and average expectations for comparison (red) on a log scale. . . . . . . . . . . 26

2.3 Left: Expectations of the Bernoulli random variables employed in our distribu-

tion models. Right: The same plot with the relative frequency of the wavelet

coefficients from 2.1 for comparison. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Percentage of recovered supports (y-axis) for Thresholding with different sensing

dictionaries for various sizes of sparse supports (x-axis). Blue corresponds to

no sensing dictionary, red to the uniform average case sensing dictionary and

orange to the distribution specific average case sensing dictionary. . . . . . . . 29

2.5 Percentage of recovered supports (y-axis) for OMP with different sensing dic-

tionaries for various sizes of sparse supports (x-axis). Blue corresponds to no

sensing dictionary, red to the uniform average case sensing dictionary and orange

to the distribution specific average case sensing dictionary. . . . . . . . . . . . . 30

2.6 Percentage of recovered supports (y-axis) for BP with different preconditioning

strategies for various sizes of sparse supports (x-axis). Blue corresponds to the

original ℓ1-minimisation problem, red to preconditioning with uniform weights

and orange to preconditioning with the correct weights. . . . . . . . . . . . . . 30

3.1 Subsampling densities (top row) and corresponding samples (bottom row) for

the adapted variable density sampling scheme (left column), the uniform dis-

tribution (middle right) and the coherence based subsampling scheme (right

row). The resulting average PSNR are: Adapted - 133.5, Uniform - 105.6 and

Coherence - 62.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Adapted variable density sampling scheme (left column) vs polynomial decay

(middle column). Matrix W of sparse support distribution in the DB4 wavelet

basis (top right) and test image (bottom right). The resulting PSNR values are:

Adapted - 32.8 and Polynomial - 32.0. . . . . . . . . . . . . . . . . . . . . . . . 43

109



List of Figures

3.3 Adapted variable density sampling scheme (left column) vs polynomial decay

(middle column). Matrix W of sparse support distribution in the DB4 wavelet

basis (top right) and test image (bottom right). The resulting PSNR values are:

Adapted - 27.9 and Polynomial - 26.8. . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Adapted variable density sampling scheme (left column) vs polynomial decay

(middle column). Matrix W of sparse support distribution in the DB4 wavelet

basis (top right) and test image (bottom right). The resulting PSNR values are:

Adapted - 22.9 and Polynomial - 11.6. . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Adapted variable density sampling schemes with vertical lines (left column)

and squares (middle column). Matrix W of sparse support distribution in the

separable 2D DB4 wavelet basis (top right), test image (bottom right) and

reconstructions (bottom left and middle). The resulting PSNR values are: Lines

- 29.9 and Squares - 33.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Comparison of correctly recovered atoms via OMP and Thresholding . . . . . . 103

5.2 Comparison of average distance of atoms via OMP and Thresholding . . . . . . 104

5.3 Comparison of average distance of atoms via OMP and Thresholding . . . . . . 104

110



List of Tables

2.1 Reconstruction error for two different sensing matrices . . . . . . . . . . . . . . 27

111



List of Tables

112



Bibliography

[1] B. Adcock, A.C. Hansen, and B. Roman. A note on compressed sensing of structured

sparse wavelet coefficients from subsampled fourier measurements. IEEE Signal Processing

Letters, 23(5):732–736, 2016.

[2] B. Adcock, A.C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: A

new theory for compressed sensing. Forum of Mathematics, Sigma, 5:e4, 2017. doi:

10.1017/fms.2016.32.

[3] B. Adcock, C. Boyer, and S. Brugiapaglia. On oracle-type local recovery guarantees in

compressed sensing. Information and Inference: A Journal of the IMA, 10(1):1–49, 2020.

[4] A. Agarwal, A. Anandkumar, and P. Netrapalli. Exact recovery of sparsely used over-

complete dictionaries. In COLT 2014 (arXiv:1309.1952), 2014.

[5] A. Agarwal, A. Anandkumar, P. Jain, and P. Netrapalli. Learning sparsely used over-

complete dictionaries via alternating minimization. SIAM Journal on Optimization, 26

(4):2775–2799, 2016.

[6] M. Aharon, M. Elad, and A.M. Bruckstein. K-SVD: An algorithm for designing overcom-

plete dictionaries for sparse representation. IEEE Transactions on Signal Processing., 54

(11):4311–4322, November 2006.

[7] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcomplete

dictionaries. In COLT 2014 (arXiv:1308.6273), 2014.

[8] S. Arora, R. Ge, T. Ma, and A. Moitra. Simple, efficient, and neural algorithms for sparse

coding. In COLT 2015 (arXiv:1503.00778), 2015.

[9] B. Barak, J.A. Kelner, and D. Steurer. Dictionary learning and tensor decomposition via

the sum-of-squares method. In STOC 2015 (arXiv:1407.1543), 2015.

[10] S. Becker, J. Bobin, and E. Candès. Nesta: A fast and accurate first-order method for

sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.
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