
COMPRESSED SENSING, SPARSITY
AND RELATED TOPICS

Dissertation in Mathematics

SUBMITTED BY

MICHAEL SANDBICHLER

to the Faculty of Mathematics, Computer Science
and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Advisor: Univ.-Prof. Dr. Markus Haltmeier
Co-Advisors: Univ.-Prof. Dr. Felix Krahmer and

Univ.-Prof. Dr. Alexander Ostermann

Innsbruck, 26th February 2018





Abstract

One of the major insights that enabled the development of many modern tools in signal pro-

cessing was that most data that is encountered in practice admits some kind of sparse represent-

ation. This means, that given a suitable basis, a given signal can be approximated by a linear

combination of only very few of the basis vectors. Sparsity will be a guiding theme of this thesis.

In the first part of this thesis, we will explore the application of modern signal processing

techniques, namely compressed sensing and sparse recovery, to photoacoustic tomography. We

will consider possible randomized measurement setups and derive recovery guarantees. Futher,

we will take a look at transformations that sparsify the data while maintaining the derived recov-

ery guarantees. In these works, we will use total variation minimization to recover the signals

and in the subsequent chapter, we will provide an overview over total variation minimization to

recover undersampled signals and in addition give recovery guarantees for subgaussian meas-

urements. Finally, the last chapter is devoted to the study of how such sparse representations

can be obtained. We will explore the possibility of learning sparsifying transformations directly

from the data without having any additional knowledge about the class of signals. The only

prior information we have is that there exists some operator that sparsifys the given data. We

will derive algorithms to learn such operators and establish theoretical results.
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1 Introduction and Motivation

”The question is - what is the question?”

- HP Baxxter

Let us start our journey by taking a look at the title of this dissertation and define its ingredi-

ents. The first part of the title is ’Compressed Sensing’ [Don06a, CRT06a, FR13], which is an

area of signal processing built on the insight that ’sparsity’, the second part of the title, is an

invaluable prior for a large class of signals.

Perhaps one of the prime examples, in which sparse representations have led to significant

improvements is the field of image compression. The JPEG and JPEG2000 standards both

rely on transformations into bases that are well known to sparsify large classes of images -

the discrete cosine transform (DCT) and waveletbases. By storing only the largest coefficients,

often significant reduction of storage space can be achieved. With .jpeg-compression, file sizes

of 1/10 of the original can quite easily be achieved without significant compression artifacts.

In Figure 1.1, the resulting images when choosing different levels of .jpeg-compression are

depicted. One can clearly see that using 40% of the available coefficients still results in a high

quality image. Using 10% of the coefficients already exhibits clear compression artifacts and

when using only 5% of the image’s DCT coefficients the undersampling artifacts are really

severe. Note however that one can still quite clearly make out the content of the image, although

only very few nonzero coefficients are used. The square undersampling artifacts are produced,

because .jpeg-compression performs the DCT on 8×8 blocks of the image and afterwards pieces

them back together.

Let us define some of the terminology. When we use the term ’signal’, we will always assume

that it is given as a vector x ∈ Rd.

A signal is called sparse, if only few of its entries are nonzero. This means that, although

typically the ambient dimension is large, the intrinsic dimension and also the information content

of signals is small. Most of the time, sparsity will only be achieved after a suitable change of

basis. Finding such a basis for a given class of data is a nontrivial task and subject to the field of

dictionary learning [AEB06, Sch15b, Sch16, SQW15], see also Chapter 5.

If a signal is known to be sparse, its information content is much smaller than the Nyquist

sampling rate would indicate. The Nyquist rate specifies the required rate at which equidistant
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1 Introduction and Motivation

Figure 1.1: The Mandrill test image (1st) compressed using 40% (2nd), 10% (3rd) and 5% (4th)
of the largest DCT coefficients.

samples of a bandlimited signal have to be taken, such that these samples determine the signal

uniquely. ’Bandlimited’ means that the Fourier transform of the signal is compactly supported.

It seems like a waste of resources to actually sample a sparse signal at the Nyquist rate -

however there is a caveat. Because the locations of the nonzero entries are not known, simple

equispaced sub-Nyquist sampling might fail to recover the signal. For example if the signal

is very sparse, sub-Nyquist sampling will very likely return just the zero vector, because the

sampling points will hardly ever coincide with the locations of the nonzero entries.

This indicates that regular subsampling is not the way to go for sparse signals and that it is

necessary to use special sampling strategies in order to be able to do as few measurements as

possible according to the signal’s information content. When we use the term ’measurements’,

we mean a linear map A ∈ Rm×d, which takes a signal in d dimensions and produces a vector

in Rm. The goal is that m � d, while still being able to perfectly recover the signal from the

measurements.

In Compressed Sensing, it has been shown that for s-sparse signals,m = O(s log d
s ) measure-

ments are enough to achieve perfect recovery in the noiseless setting and random measurement

strategies have been used in order to achieve this optimal number of measurements [FRon].

From this point of view, namely we are given an underdetermined linear equation Ax = y

and a sparsity prior for x, we are solvinge an ill-posed problem. In such problems either the

solution is not unique, does not exist or is not stable with respect to the data. In our case, the

main problem is that the solution is not unique - but we know that the solution is sparse. If we

now resort to finding the sparsest solution of the given underdetermined system of equations,

we can hope to restore uniqueness of the solution. Of course this alone is not enough, we also

need additional assumptions on the measurement matrix, but a bigger problem is that finding

such a sparse solution is, in general, NP hard. The realization that such sparse recovery can

also be done via simple convex regularization with the `1-norm (again, if certain conditions on

the measurement matrix A are fulfilled) has initiated a large interest in sparsity-based signal

processing during the last decade [DE03, Don06b]. In particular in the field of inverse problems
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this has sparked a lot of developments and improvements.

Inverse problems are, as their name suggests, the inverse question to a direct or forward prob-

lem. So when in a forward problem, a typical question would be to compute the solution of

a differential equation given initial conditions and boundary data, the corresponding inverse

problem would for example be: compute the initial conditions given the solution of the dif-

ferential equation on the boundary. Naturally, inverse problems tend to be much more sens-

itive to noise and perturbations of the data. This is why regularization techniques are often

necessary [EHN96, GHS08, GHS11]. Prominent examples of inverse problems are Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI). In this thesis we will mostly focus

on Photoacoustic Imaging, a hybrid imaging method combining the advantages of optical and

ultrasonic imaging.

In Photacoustic Tomography, soft tissue is heated using pulsed electromagnetic radiation.

This heating triggers expansion of the tissue, which subsequently emits a sound wave. These

sound waves are then measured outside the sample. In Figure 2.1 this principle is illustrated.

This means that the governing equation for this problem is the wave equation describing the

propagation of pressure waves through the tissue. Mathematically, the setting is as follows,

∂2
t p(t, x) = c(x) ·∆p(t, x), such that p(0, x) = f(x) and ∂tp(0, x) = 0, (1.1)

where f is compactly supported (typically within a ball of radius R). The speed of sound c may

vary in space, but we exclude the case where it can vary in time. In Chapter 2, we will just

consider the case of constant speed of sound, where in Chapter 3 also spatially varying speed of

sound is admissible. The goal of photoacoustic tomography is to reconstruct the initial function

f , given measurements at some hypersurface.

The standard way of performing such a reconstruction is via filtered backprojection [HSS05,

HSB+07, Kun07, FPR04, Hal14], but also methods based on variational principles have been

examined and shown to work very well in practice.

However, as soon as the number of measurements is decreased, filtered backprojection pro-

duces severe artifacts. This is due to the fact that it is not able to take additional structure of the

data, as for instance sparsity, into account. In order to be able to produce better results in such

undersampling scenarios, we will use iterative schemes to solve an optimization problem suited

for sparse recovery. One example of such minimization targets, that has been used frequently in

imaging is total variation (TV) minimization. In TV minimization, the regularization functional

is ‖∇ · ‖1, which is enforcing sparsity of the gradient of a signal in a similar fashion as the regu-

larizer used for basis pursuit, ‖ ·‖1, enforces sparsity of the signal. We will see in Chapter 4 that,

at least for one dimensional signals, however, the number of measurements cannot be reduced

3



1 Introduction and Motivation

as much as in the standard Compressed Sensing scenario mentioned above.

Such gradient sparse structure is ubiquitous for example in images, but in many classes of

data, we do not know a ’good’ representation for our data a priori. This is where dictionary

learning techniques come into play.

Gradient sparsity is a special case of cosparsity in a so-called analysis operator Ω, which

means that for a given signal y, one has that Ωy is sparse. Such analysis operators can be used

for the solution of underdetermined systems in a similar fashion as in TV minimization by using

the regularization functional ‖Ω · ‖1. Finding a suitable operator can be done for example with

a minimization approach. Given a sample of Ω-cosparse signals y1, y2, . . . , yN ∈ Rd (possibly

corrupted with some noise), we can arrange them in a big matrix Y = (y1, y2, . . . , yN ) ∈ Rd×N .

Then the operator Ω is a global minimizer of

Ω̂ = arg min
Γ∈A,X∈X`

‖ΓY −X‖2F , (1.2)

where A consists of all matrices in RK×d with normalized rows and X` is the set of all matrices

in RK×N , with ` zeros in each column. However, this optimization problem is highly nonconvex

and a lot of local minima are typically possible. The target function in (1.2) has been used for ex-

ample for Analysis K-SVD [RPE13], Analysis SimCo [DWD+16] and more recently in [SS17].

Modern developments in machine learning suggest to tackle such optimization problems using

stochastic gradient methods, however, without any additional postprocessing we cannot expect

to end up at a global minimum. This approach to learn analysis operators is somewhat ’dual’

to learning dictionaries for sparse data, which can also be seen from the used optimization prin-

ciple, which is very similar to the one used for K-SVD [AEB06] or ITKM [Sch15a]. We will

explore this topic in more depth in Chapter 5.

1.1 Outline

We will start with two chapters on the use of Compressed Sensing in Photoacoustic Tomography.

There the measurement setup puts clear limitations on the kinds of random measurements we

are able to consider and also the sparse structure is not apparent in the data a priori. We will

nevertheless present positive results concerning subsampled reconstruction and also show trans-

formations that sparsify the data.

In Chapter 2, we will use a sparsity prior to use `1-norm regularization for photoacoustic

tomography with integrating line detectors. In order to decrease the necessary number of meas-

urements, an approach based on lossless expander matrices is used to give theoretical results. In

the experimental section, we observe that by using total variation minimization, we can improve
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1.1 Outline

the quality of recovery, while maintaining the low number of measurements. We will revisit

this in Chapter 3. One key feature to obtain the recovery results is the concept of a sparsifying

temporal transform, which allowed us to sparsify the data without compromising the restricted

isometry property of the compressed sensing measurements.

Chapter 3 improves over the results presented in Chapter 2 by considering a different op-

timization target and by using the second derivative as a temporal transform. Via the wave

equation that is used to describe the propagation of the acoustic wave, the second time derivative

of the pressure data corresponds (up to a constant) to the Laplacian of the initial data. Under

the assumption that the Laplacian of the initial data is sparse, this can be used to get recovery

guarantees when sparse recovery techniques are employed.

Chapter 4 is a bookchapter treating total variation minimization for Compressed Sensing. TV

Minimization uses the sparsity of the gradient of a signal, so instead of minimizing ‖x‖1, as

in basis pursuit, one minimizes ‖∇x‖1. This approach has been pioneered by Rudin, Osher

and Fatemi for image denoising, but has recently also been used in compressed sensing. In the

chapter, we give a review over existing results, introduce a geometric perspective and provide

some new results concerning reconstruction from subgaussian measurements.

While in Chapter 4, we were interested in recovery guarantees for reconstruction when we

know that a signal x is sparse when we apply the gradient operator, in Chapter 5 we assume that

we are given some signals, from which we know they are sparse when we apply some unknown

operator Ω. Our aim is to find said operator as fast and accurately as possible. We derive four

algorithms each suited for different application scenarios.

Finally, in Chapter 6 we conclude with an outlook on possible future research directions and

a discussion of open problems.
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Interlude

In this chapter, we take a first look at the possibility of speeding up data acquisition in pho-

toacoustic tomography using compressed sensing techniques. Decreasing measurement time

serves two primary purposes. On the one hand, it reduces motion artifacts due to undesired

movements, and on the other hand it decreases examination time for the patient. In this chapter,

we propose a new scheme for speeding up the data collection process in photoacoustic tomo-

graphy. As measurement data we use random combinations of pressure values that we use to

recover a complete set of pressure data prior to the actual image reconstruction. Sparsity of

the data is obtained via a temporal transformation, which commutes with the random measure-

ment matrix and does not perturb its restricted isometry property. We obtain theoretical recovery

guarantees based on existing theory on expander graphs and support the theory by reconstruction

results on simulated data as well as on experimental data.
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2 A Novel Compressed Sensing Scheme for Photoacoustic Tomography

2.1 Introduction

Photoacoustic tomography (PAT) is a recently developed non-invasive medical imaging tech-

nology whose benefits combine the high contrast of pure optical imaging with the high spatial

resolution of pure ultrasound imaging [Bea11, Wan09, XW06a]. In order to speed up the meas-

urement process, in this paper we propose a novel compressed sensing approach for PAT that

uses random combinations of the induced pressure as measurement data. The proposed strategy

yields recovery guarantees and furthermore comes with an efficient numerical implementation

allowing high resolution real time imaging. We thereby focus on a variant of PAT using integ-

rating line detectors proposed in [BHP+05, PNHB07b, BVG+12]. Our strategy, however, can

easily be adapted to more classical PAT setups using arrays of point-like detectors.

Optical illumination Acoustic pressure wave Boundary measurements

Figure 2.1: BASIC PRINCIPLE OF PAT. A semi-transparent sample is illuminated with a short
optical pulse that induces an acoustic pressure wave. The induced pressure is meas-
ured outside of the sample and used to recover an image of the interior.

Our proposal is based on the main components of compressed sensing, namely randomness

and sparsity. Compressed sensing is one of the most influential discoveries in applied mathem-

atics and signal processing of the past decade [CRT06a, Don06a]. By combining the benefits of

data compression and data acquisition it allows to recover a signal from far fewer linear meas-

urements than suggested by Shannon’s sampling theorem. It has led to several new proposed

sampling strategies in medical imaging, for example for speeding up MRI data acquisition (see

[LDP07, LDSP08]) or completing under-sampled CT images [CTL08]. Another prominent ap-

plication of compressed sensing is the single pixel camera (see [DDT+08]) that circumvents the

use of several expensive high resolution sensors in digital photography.
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2.1 Introduction

2.1.1 Photoacoustic tomography (PAT)

PAT is based on the generation of acoustic waves by illuminating a semi-transparent sample

with short optical pulses (see Figure 2.1). When the sample is illuminated with a short laser

pulse, parts of the optical energy become absorbed. Due to thermal expansion a subsequent

pressure wave is generated depending on the structure of the sample. The induced pressure

waves are recorded outside of the sample and used to recover an image of the interior, see

[BBMG+07, KK08, XW06a, Wan09].

Line detectors

Figure 2.2: PAT WITH INTEGRATING

LINE DETECTORS. An array
of integrating line detectors
measures integrals of the
induced acoustic pressure over
a certain number of parallel
lines. These data are used
to recover a linear projection
of the object in the first step.
By rotating the array of line
detectors around a single axis
several projection images are
obtained and used to recover
the actual three dimensional
object in a second step.

In this paper, we consider a special variant of photoacoustic tomography that uses integrat-

ing line detectors for recording the pressure waves, as proposed in [BHP+05]. As illustrated

in Figure 2.2, an array of line detectors is arranged around the investigated sample and meas-

ures integrals of the pressure wave over a certain number of parallel lines. Assuming constant

speed of sound, the pressure integrated along the direction of the line detectors satisfies the two

dimensional wave equation
∂2
t p(x, t)−∆p(x, t) = 0 , for (x, t) ∈ R2 × (0,∞)

p(x, 0) = f(x) , for x ∈ R2

∂tp(x, 0) = 0 , for x ∈ R2 ,

(2.1)

where the time scaling is chosen in such a way that the speed of sound is normalized to one. The

initial datum f in (2.1) is the two dimensional projection image of the actual, three dimensional

initial pressure distribution.

Image reconstruction in PAT with integrating line detectors can be performed via a two-stage
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2 A Novel Compressed Sensing Scheme for Photoacoustic Tomography

approach [BBMG+07, PNHB07a]. In the first step the measured pressure values correspond-

ing to values of the solution of (2.1) outside the support of f are used to reconstruct a linear

projection (the initial data in (2.1)) of the three dimensional initial pressure distribution. This

procedure is repeated by rotating the array of line detectors around a single axis which yields

projection images for several angles. In a second step these projection images are used to recover

the three dimensional initial pressure distribution by inverting the classical Radon transform. In

this work we focus on the first problem of reconstructing the (two dimensional) initial pressure

distribution f in (2.1).

Suppose that the integrating line detectors are arranged on the surface of a circular cylinder

of radius ρ > 0, and that the object is located inside that cylinder (see Figure 2.2). The data

measured by the array of line detectors are then modeled by

pj := p(zj , ·) : [0, 2ρ]→ R , (2.2)

zj :=

(
ρ cos(2π(j − 1)/N)

ρ sin(2π(j − 1)/N)

)
, for j = 1, . . . , N , (2.3)

where pj is the pressure signal corresponding to the j-th line detector. Since the two dimensional

initial pressure distribution f is supported in a disc of radius ρ and the speed of sound is con-

stant and normalized to one, no additional information is contained in data p(zj , t) for t > 2ρ.

This can be seen, for example by exploiting the explicit relations between the two dimensional

pressure signals p(zj , ·) and the spherical means (compare with Subsection 2.3.3) of the initial

pressure distribution; see [PNHB09].

Of course, in practice also the functions pj : [0, 2ρ] → R have to be represented by discrete

samples. However, temporal samples can easily be collected at a high sampling rate compared

to the spatial sampling, where each sample requires a separate sensor. It is therefore natural

to consider the semi-discrete data model (2.2). Our compressed PAT scheme could easily be

adapted to a fully discretized data model.

2.1.2 Compressed sensing PAT

When using data of the form (2.2), high resolution imaging requires the number N of detector

locations to be sufficiently large. As the fabrication of an array of parallel line detectors is

demanding, most experiments using integrating line detectors have been carried out using a

single line detector, scanned on circular paths using scanning stages [NHK+10, GBB+10]. Re-

cently, systems using arrays of 64 parallel line detectors have been demonstrated [GNW+14,

BMFB+15]. The most costly building blocks in such devices are the analog to digital converters

(ADC). For completely parallel readout, a separate ADC is required for every detector channel.
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In order to reduce costs, in these practical implementations two to four line detector channels

are multiplexed to one ADC. For collecting the complete pressure data, the measurements have

to be performed two (respectively four) times, because only 32 (respectively 16) of the 64 line

measurements can be read out in parallel. This, again, leads to an increased overall measurement

time. For example, using an excitation laser with a repetition rate of 10 Hz and two times mul-

tiplexing, a measurement time of 0.2 s for a projection image has been reported in [GNW+14].

Without multiplexing, this measurement time would reduce to the half.

In order to speed up the scanning process and to reduce system costs, in this paper we pro-

pose a novel compressed sensing approach that allows to perform a smaller number of random

measurements with a reduced number of ADCs, while retaining high spatial resolution. For

that purpose, instead of collecting individually sampled data pj(t) as in (2.2), we use random

combinations

yi(t) =
∑
j∈Ji

pj(t) for i ∈ {1, . . . ,m} and t ∈ [0, 2ρ] , (2.4)

where m � N is the number of compressed sensing measurements and Ji ⊂ {1, . . . , N}
corresponds to the random set of detector locations contributing to the i-th measurement. In

the reconstruction process the random linear combinations yi(t) are used to recover the full set

of pressure data p1(t), . . . , pN (t) using compressed sensing techniques. The initial pressure

distribution f in (2.1) is subsequently recovered from the completed pressure data by applying

standard PAT reconstruction algorithms such as time reversal [BMHP07, HKN08, TC10] or

filtered backprojection [BBMG+07, FHR07, FPR04, Hal14, Kun07, XW05].

A naive approach for recovering the pressure data from the random measurements yi(t) would

be to solve (2.4) for pj(t) separately for each t ∈ [0, 2ρ]. Since m � N , this is a severely un-

derdetermined system of linear equations and its solution requires appropriate prior knowledge

of the unknown parameter vector. Compressed sensing suggests to use the sparsity of the para-

meter vector in a suitable basis for that purpose. However, recovery guarantees for zero/one

measurements of the type (2.4) are basis-dependent and require the parameter to be sparse in the

standard basis rather than sparsity in a different basis such as orthonormal wavelets (see Subsec-

tion 2.2.2). However, for pressure signals (2.2) of practical relevance such sparsity assumption

in the original basis does not hold.

In this work we therefore propose a different approach for solving (2.4) by exploiting special

properties of the data in PAT. For that purpose we apply a transformation that acts in the tem-

poral variable only, and makes the transformed pressure values sufficiently sparse in the spatial

(angular) component. In Subsection 2.3.3 we present an example of such a transform. The ap-

plication of a sparsifying transform to (2.4) yields linear equations with unknowns being sparse

in the angular variable. It therefore allows to apply sparse recovery results for the zero/one

13
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measurements under consideration.

2.1.3 Relations to previous work

A different compressed sensing approach for PAT has been considered in [PL09, GLSW10].

In these articles, standard point samples (such as (2.2)) have been used as measurement data

and no recovery guarantees have been derived. Further, in [PL09, GLSW10] the phantom is

directly reconstructed from the incomplete data, whereas we first complete the data using sparse

recovery techniques. Our approach is more related to a compressed sensing approach for PAT

using a planar detector array that has been proposed in [HZB+14] and also uses random zero/one

combinations of pressure values and recovers the complete pressure prior to the actual image

reconstruction. However, in [HZB+14] the sparsifying transform is applied in spatial domain

where recovery guarantees are not available as noted above. We finally notice that our proposal

of using a sparsifying temporal transform can easily be extended to planar detector arrays in two

or three spatial dimensions; compare Section 2.5.

2.1.4 Outline

The rest of this paper is organized as follows. In Section 2.2 we review basic results from com-

pressed sensing that we require for our proposal. We therefore focus on recovery guarantees

for zero/one matrices modeled by lossless expanders; see Subsection 2.2.2. In Section 2.3 we

present the mathematical framework of the proposed PAT compressed sensing scheme. The

sparsity in the spatial variable, required for `1-minimization, is obtained by applying a trans-

formation acting in the temporal variable. An example of such a transformation is given in

Subsection 2.3.3. In Section 2.4 we present numerical results supporting our theoretical invest-

igations. The paper concludes with a short discussion in Section 2.5.

2.2 Background from compressed sensing

In this section we shortly review basic concepts and results of compressed sensing (sometimes

also termed compressive sampling). Our main focus will be on recovery results for lossless

expanders, which are the basis of our PAT compressed sensing scheme.

2.2.1 Compressed sensing

Suppose one wants to sense a high dimensional data vector x = (x1, . . . , xN ) ∈ RN , such as a

digital image. The classical sampling approach is to measure each component of xi individually.

Hence, in order to collect the whole data vector one has to perform N separate measurements,
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2.2 Background from compressed sensing

which may be too costly. On the other hand it is well known and the basis of data compression

algorithms, that many datasets are compressible in a suitable basis. That is, a limited amount of

information is sufficient to capture the high dimensional vector x.

Compressed sensing incorporates this compressibility observation into the sensing mechanism

[CRT06a, CT06, Don06a]. Instead of measuring each coefficient of the data vector individually,

one collects linear measurements

Ax = y , (2.5)

where A ∈ Rm×N is the measurement matrix with m � N , and y = (y1, . . . , ym) ∈ Rm

is the measurement vector. Any component of the data vector can be interpreted as a scalar

linear measurement performed on the unknown x, and the assumption m � N means that far

fewer measurements than parameters are available. As m � N , the system (2.5) is highly

underdetermined and cannot be uniquely solved (at least without additional information) by

standard linear algebra.

Compressed sensing overcomes this obstacle by utilizing randomness and sparsity. Recall

that the vector x = (x1, . . . , xN ) is called s-sparse if the support

supp(x) := {j ∈ {1, . . . , N} : xj 6= 0} (2.6)

contains at most s elements. Results from compressed sensing state that for suitable A, any

s-sparse x ∈ Rn can be found via the optimization problem

minimize
z∈RN

‖z‖1 =
N∑
j=1

|zj |

such that Az = y .

(2.7)

By relaxing the equality constraint Az = y, the optimization problem (2.7) can be adapted to

data which are only approximately sparse and noisy [CRT06b].

A sufficient condition to guarantee recovery is the so called restricted isometry property (RIP),

requiring that for any s-sparse vector x, we have

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 for some small δ ∈ (0, 1) .

The smallest constant δ satisfying this inequality is called the s-restricted isometry constant

of A and denoted by δs. Under certain conditions on δs, recovery guarantees for sparse and

approximately sparse data can be obtained, see for example [Can08, CZ14].

While the restricted isometry itself is deterministic, to date all constructions that yield near-
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optimal embedding dimensionsm are based on random matrices. Sub-gaussian random matrices

satisfy the RIP with high probability for an order-optimal embedding dimensionm = O(s log(N/s)),

see e.g. [BDDW08]. Partial random Fourier matrices (motivated by MRI measurements) and

subsampled random convolutions (motivated by remote sensing) have been shown to allow for

order-optimal embedding dimensions up to logarithmic factors, see [RV08, Rau07] and [RRT12a,

KMR14a], respectively.

The sparsity is often not present in the standard basis of RN , but in a special sparsifying basis,

such as wavelets. For matrices with subgaussian rows this does not cause a problem, as the rota-

tion invariance of subgaussian vectors ensures that after incorporating an orthogonal transform,

the resulting random matrix construction still yields RIP matrices with high probability. As a

consequence, the sparsifying basis need not be known for designing the measurement matrix A,

which is often referred to as universality of such measurements [BDDW08].

Many structured random measurement systems including the partial random Fourier and the

subsampled random convolution scenarios mentioned above, however, do not exhibit universal-

ity. For example, one can easily see that subsampled Fourier measurements cannot suffice if the

signal is sparse in the Fourier basis. While it has been shown that this problem can be overcome

by randomizing the column signs [KW11], such an alteration often cannot be implemented in the

sensing setup. Another way to address this issue is by requiring incoherence between the meas-

urement basis and the sparsity basis [CR07]. That is, one needs that inner products between

vectors of the two bases are uniformly small. If not all, but most of these inner products are

small, one can still recover, provided that one adjusts the sampling distribution accordingly; this

scenario includes the case of Fourier measurements and Haar wavelet sparse signals [KW14a].

Incoherence is also the key to recovery guarantees for gradient sparse signals. Namely, many

natural images are observed to have an approximately sparse discrete gradient. As a con-

sequence, it has been argued using a commutation argument that one can recover the signal

from uniformly subsampled Fourier measurements via minimizing the `1 norm of the discrete

gradient, the so-called total variation (TV) [CRT06a]. TV minimization had already proven to

be a favorable method in image processing, see, for example [ROF92, CL97]. A problem with

this approach is that the compressed sensing recovery guarantees then imply good recovery of

the gradient, not of the signal itself. Small errors in the gradient, however, can correspond to

substantial errors in the signal, which is why this approach can only work if no noise is present.

A refined analysis that allows for noisy measurements requires the incoherence of the meas-

urement basis to the Haar wavelet basis [NW13b]. Again, TV minimization is considered for

recovery. By adjusting the sampling distribution, these results have also been shown to extend

to Fourier measurements and other systems with only most measurement vectors incoherent to

the Haar basis [KW14a].
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For the measurement matrices considered in this work, namely zero/one matrices based on

expander graphs, recovery guarantees build on an `1-version of the restricted isometry property,

namely one requires that

(1− δ)‖x‖1 ≤ ‖Ax‖1 ≤ (1 + δ)‖x‖1

for all sufficiently sparse x and some constant δ > 0; see [BGI+08] and Subsection 2.2.2 below.

As the `1-norm is not rotation invariant, basis transformations typically destroy this property.

That is, not even incoherence based recovery guarantees are available; recovery results only

hold in the standard basis. Thus an important aspect of our work will be to ensure (approximate)

sparsity in the standard basis. This will be achieved by applying a particular transformation in

the time variable.

2.2.2 Recovery results for lossless expanders

Recall that we seek recovery guarantees for a measurement setup, where each detector is switched

on exactly d out of m times. That is, one obtains a binary measurement matrix A ∈ {0, 1}m×N

with exactly d ones in each column. It therefore can be interpreted as the adjacency matrix of

a left d-regular bipartite graph. Under certain additional conditions, such a bipartite graph is

a lossless expander (see Definition 2.2.1) which, as we will see, guarantees stable recovery of

sparse vectors. Expander graphs have been used since the 1970s in theoretical computer science,

originating in switching theory from modeling networks connecting many users, cf. [Kla84] for

further applications. They have also been useful in measure theory, where it was possible to

solve the Banach-Ruziewicz problem using tools from the construction of expander graphs,

see [Lub94] for a detailed examination of this connection. For a survey on expander graphs and

their applications, see for example [HLW06, Lub12].

Compressed sensing with expander graphs has been considered in [BGI+08, BIR08, IR08,

JXHC09, XH07], where also several efficient algorithms for the solution of compressed sensing

problems using expander graphs have been proposed. A short review of sparse recovery al-

gorithms using expander like matrices is given in [GI10]. In this subsection we recall main com-

pressed sensing results using lossless expanders as presented in the recent monograph [FR13],

where the proofs of all mentioned theorems can be found in Section 13.

Recall that a bipartite graph consists of a triple (L,R,E), where L is the set of left vertices,

R the set of right vertices, and E ⊂ L×R is the set of edges. Any element (j, i) ∈ E represents

an edge with left vertex j ∈ L and right vertex i ∈ R.

A bipartite graph (L,R,E) is called d-regular for some d ≥ 0, if for every given left vertex

j ∈ L, the number of edges (j, i) ∈ E emerging from j is exactly equal to d. Finally, for any

17



2 A Novel Compressed Sensing Scheme for Photoacoustic Tomography

1

2

3

4

5

6

7

1

2

3

4

5

N

m

Figure 2.3: Example of a left d-regular bipartite graph with d = 2, N = 7 left vertices, and
m = 5 right vertices. Here d = 2 because exactly 2 edges emerge at each left vertex.
For J = {2, 3} the set of right vertices connected to J is given by R(J) = {2, 3, 4}.

subset J ⊂ L of left vertices, let

R(J) := {i ∈ R : there exists some j ∈ J with (j, i) ∈ E}

denote the set of right vertices connected to J . Obviously, for any left d-regular bipartite graph

and any J ⊂ L, we have |R(J)| ≤ d|J |.

Definition 2.2.1 (Lossless expander). Let (L,R,E) be a left d-regular bipartite graph, s ∈ N,

and θ ∈ [0, 1]. Then (L,R,E) is called an (s, d, θ)-lossless expander, if

|R(J)| ≥ (1− θ)d|J | for all J ⊂ L with |J | ≤ s . (2.8)

For any left d-regular bipartite graph, the smallest number θ ≥ 0 satisfying (2.8) is called the

s-th restricted expansion constant and denoted by θs.

The following theorem states that a randomly chosen d-regular bipartite graph will be a

lossless expander with high probability.

Theorem 2.2.1 (Regular bipartite graphs are expanders with high probability). For every 0 <

ε < 1
2 , every θ ∈ (0, 1) and every s ∈ N, the proportion of (s, d, θ)-lossless expanders among

the set of all left d-regular bipartite graphs having N left vertices and m right vertices exceeds
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1− ε, provided that

d =

⌈
1

θ
ln

(
eN

εs

)⌉
and m ≥ cθs ln

(
eN

εs

)
. (2.9)

Here cθ is a constant only depending on θ, e is Euler’s constant, ln(·) denotes the natural

logarithm and dxe denotes the smallest integer larger or equal to x.

According to Theorem 2.2.1, any randomly chosen left d-regular bipartite graph is a lossless

expander with high probability, provided that (2.9) is satisfied. The following theorem states

that the adjacency matrix A ∈ {0, 1}m×N ,

Aij = 1 :⇐⇒ (j, i) ∈ E , (2.10)

of any lossless expander with left vertices L = {1, . . . , N} and right vertices R = {1, . . . ,m}
yields stable recovery of any sufficiently sparse parameter vector. The result was first established

in [BGI+08], we present the version found in [FR13].

Theorem 2.2.2 (Recovery guarantee for lossless expanders). Let A ∈ {0, 1}m×N be the adja-

cency matrix of a left d-regular bipartite graph having θ2s < 1/6. Further, let x ∈ CN , η > 0

and e ∈ Cm satisfy ‖e‖1 ≤ η, set b := Ax + e, and denote by x? a solution of

minimize
z∈CN

‖z‖1

such that ‖Az− b‖1 ≤ η .
(2.11)

Then

‖x− x?‖1 ≤
2(1− 2θ2s)

(1− 6θ2s)
σs(x)1 +

4

(1− 6θ2s)d
η .

Here the quantity σs(x)1 := inf{‖x − z‖1 : z is s-sparse} measures by how much the vector

x ∈ CN fails to be s-sparse.

Combining Theorems 2.2.1 and 2.2.2, we can conclude that the adjacency matrix A of a ran-

domly chosen left d-regular bipartite graph will, with high probability, recover any sufficiently

sparse vector x ∈ CN by basis pursuit reconstruction (2.11).

2.3 Mathematical framework of the proposed PAT
compressed sensing scheme

In this section we describe our proposed compressed sensing strategy. As mentioned in the

introduction, we focus on PAT with integrating line detectors, which is governed by the two di-
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mensional wave equation (2.1). In the following we first describe the compressed sensing meas-

urement setup in Subsection 2.3.1 and describe the sparse recovery strategy in Subsection 2.3.2.

As the used pressure data are not sparse in the original domain we introduce a temporal trans-

form that makes the data sparse in the spatial domain. In Subsection 2.3.3 we present an example

of such a sparsifying temporal transform. In Subsection 2.3.4 we finally summarize the whole

PAT compressed sensing scheme.

2.3.1 Compressed sensing PAT
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Figure 2.4: LEFT: Classical PAT sampling, where a single detector is moved around the object to
collect individual pressure signal pj . RIGHT: Compressed sensing approach where
each measurement consists of a random zero/one combination of individual pressure
values.

We define the unknown full sample pressure pj : [0, 2ρ] → R, for j ∈ {1, . . . , N} by (2.2),

(2.3), where p is the solution of the two dimensional wave equation (2.1). We suppose that the

(two dimensional) initial pressure distribution f is smooth and compactly supported in BR(0)

which implies that any pj is smooth and vanishes in a neighborhood of zero. Furthermore

we assume that the data (2.2) are sampled finely enough to allow for f to be reconstructed

from (p1, . . . , pN ) by standard PAT reconstruction algorithms such as time reversal [BMHP07,

HKN08, TC10] or filtered backprojection [BBMG+07, FHR07, FPR04, Hal14, Kun07, XW05].

Instead of measuring each pressure signal pj separately, we takem compressed sensing meas-

urements. For each measurement, we select sensor locations zj with j ∈ Ji at random and take

the sum of the corresponding pressure values pj . Thus the i-th measurement is given by

yi(t) :=
∑
j∈Ji

pj(t) for i ∈ {1, . . . ,m} , (2.12)
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where Ji ⊂ {1, . . . , N} corresponds to the set of all detector locations selected for the i-th

measurement, and m� N is the number of compressed sensing measurements.

In practice, the compressed sensing measurements could be realized by summation of sev-

eral detector channels, using a configurable matrix switch and a summing amplifier. Even more

simply, a summing amplifier summing over all N channels could be used, while individual de-

tector channels zj are turned on or off, using solid state relays. Thereby, only one ADC is

required for one compressed sensing measurement. Performing m compressed sensing meas-

urements in parallel is facilitated by using m ADCs in parallel, and the according number of

matrix switches, relays, and summing amplifiers.

In the following we write

p : (0,∞)→ RN : t 7→ p(t) = (p1(t), . . . , pN (t))T , (2.13)

y : (0,∞)→ Rm : t 7→ y(t) = (y1(t), . . . , ym(t))T , (2.14)

for the vector of unknown complete pressure signals and the vector of the corresponding meas-

urement data, respectively. Further, we denote by

A ∈ {0, 1}m×N with entries Aij :=

1, for j ∈ Ji
0, for j 6∈ Ji ,

the matrix whose entries in the i-th row correspond the sensor locations selected for the i-th

measurement. In order to apply the exact recovery guarantees from Subsection 2.2.2, we require

that each column of A contains exactly d ones, where d ∈ N is some fixed number. Practically,

this means that each detector location contributes to exactly d of the m measurements, which

also guarantees that the measurements are well calibrated and there is no bias towards some of

the detector locations.

Recovering the complete pressure data (2.2) from the compressed sensing measurements (2.4)

can be written as an uncoupled system of under-determined linear equations,

Ap(t) = y(t) for any t ∈ [0, 2ρ] , (2.15)

where Ap(t) := A(p(t)) for any t. From (2.15), we would like to recover the complete set

of pressure values p(t) for all times t ∈ [0, 2ρ]. Compressed sensing results predict that under

certain assumptions on the matrix A any s-sparse vector p(t) can be recovered from Ap(t) by

means of sparse recovery algorithms like `1-minimization.

Similar to many other applications (cf. Section 2.2 above), however, we cannot expect sparsity

in the original domain. Instead, one has p(t) = Ψx(t), where Ψ is an appropriate orthogonal
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transform and x(t) ∈ RN is a sparse coefficient vector. This yields a sparse recovery problem

for x(t) involving the matrix AΨ, which does not inherit the the recovery guarantees of Sub-

section 2.2.2. Hence we have to find a means to establish sparsity without considering different

bases. Our approach will consist of applying a transformation in the time domain that sparsi-

fies the pressure in the spatial domain. A further advantage of working in the original domain

is that the structure of A allows the use of specific efficient algorithms like sparse matching

pursuit [BIR08] or certain sublinear-time algorithms like [JXHC09, XH07].

2.3.2 Reconstruction strategy

We denote by G([0, 2ρ]) the set of all infinitely differentiable functions g : [0, 2ρ] → R that

vanish in a neighborhood of zero. To obtain the required sparsity, we will work with a sparsifying

transformation

T : G([0, 2ρ])→ G([0, 2ρ]) , (2.16)

that is, Tp(t) ∈ RN can be sufficiently well approximated by a sparse vector for any t ∈ [0, 2ρ]

and certain classes of practically relevant data p(t). Here we use the convention that T applied

to a vector valued function g = (g1, . . . , gk) is understood to be applied in each component

separately, that is,

Tg(t) := ((Tg1)(t), . . . , (Tgk)(t)) , for t ∈ [0, 2ρ] . (2.17)

We further require that T is an injective mapping, such that any g ∈ G([0, 2ρ]) can be uniquely

recovered from the transformed data Tg. See Subsection 2.3.3 for the design of such a sparsify-

ing transformation.

Since any temporal transformation interchanges with A, application of the sparsifying tem-

poral transformation T to the original system (2.15) yields

A(Tp(t)) = Ty(t) for any t ∈ [0, 2ρ] . (2.18)

So the clue is using a sparsifying transformation in the temporal direction, which preserves the

structure of the matrix A. As can be observed from Figure 2.5, due to the ’wavy’ nature of

the pressure data, sparsity in the temporal direction also yields sparsity in the angular direction.

Therefore, application of a sparsifying transform T yields an approximately sparse unknown

Tp(t) for equation (2.18), which therefore can be approached by standard methods for sparse

recovery.

According to the choice of the temporal transform, the transformed pressure Tp(t) can be

well approximated by a vector that is sparse in the spatial component. We therefore solve, for
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any t ∈ [0, T ], the following `1-minimization problem

minimize
q∈RN

‖q‖1

such that ‖Aq−Ty(t)‖1 ≤ η ,
(2.19)

for some error threshold η > 0. As follows from Theorem 2.2.2, the solution q?(t) of the `1-

minimization problem (2.19) provides an approximation to Tp(t) and consequently we have

T−1q?(t) ' p(t) for all t ∈ [0, 2ρ]. Note that the use of `1-norm ‖ · ‖1 for the constraint in

(2.19) is required for the stable recovery guarantees for our particular choice of the matrix A

containing zero/one entries using data that is noisy and only approximately sparse.

As a further benefit, compressed sensing measurements may show an increased signal to noise

ratio. For that purpose consider Gaussian noise in the pressure data, where instead of the exact

pressure data p(t), we have noisy data p̃(t) = p(t) + η. For the sake of simplicity assume that

the entries ηj ∼ N (0, σ2) of η are independent and identically distributed. The corresponding

noisy (and rescaled) measurements are then given by

1

|Ji|
∑
j∈Ji

(pj(t) + ηj) =
1

|Ji|
∑
j∈Ji

pj(t) +
1

|Jj |
∑
j∈Ji

ηj .

The variance in the compressed sensing measurements is therefore σ2/|Ji| compared to σ2 in

the individual data p̃j(t). Assuming some coherent averaging in the signal part this yields an

increased signal to noise ratio reflecting the inherent averaging of compressed sensing measure-

ments.

2.3.3 Example of a sparsifying temporal transform

As we have seen above, in order to obtain recovery guarantees for our proposed compressed

scheme, we require a temporal transformation that sparsifies the pressure signals in the angular

component. In this section, we construct an example of such a sparsifying transform.

Since the solution of the two dimensional wave equation can be reduced to the spherical

means, we will construct such a sparsifying transform for the spherical means

M f(z, r) :=
1

2π

∫
S1

f(z + rω)dσ(ω) for (z, r) ∈ ∂BR(0)× (0,∞) .

In fact, the solution of the two dimensional wave equation (2.1) can be expressed in terms of the

spherical means via p(z, t) = ∂t
∫ t

0 rM f(z, r)/
√
t2 − r2dr, see [Joh82]. By using standard

tools for solving Abel type equations, the last expression can be explicitly inverted, resulting
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in (M f)(z, r) = 2/π
∫ r

0 p(z, t)/
√
r2 − t2dt (see [BBMG+07, GV91]). Hence any sparsifying

transformation for the spherical means M f also yields a sparsifying transformation for the

solution of the wave equation (2.1), and vice versa.

We found empirically, that ∂rrHr ∂rM f is sparse in the spatial direction for any function

f that is the superposition of few indicator functions of regular domains. Here ∂rg denotes the

derivative in the radial variable,

Hr g(z, r) =
1

π

∫
R

g(z, s)

r − s
ds , for (z, r) ∈ ∂BR(0)× (0,∞) ,

the Hilbert transform of the function g : ∂BR(0) × R → R in the second component, and r the

multiplication operator that maps the function (z, r) 7→ g(z, r) to the function (z, r) 7→ rg(z, r).

Further, the spherical means M f : ∂BR(0) × R → R are extended to an odd function in the

second variable. For a simple radially symmetric phantom the sparsity of ∂rrHr ∂rM f is il-

lustrated in Figure 2.5. Thus we can choose T = ∂rrHr ∂r as a sparsifying temporal transform

for the spherical means. For that purpose we used a signal model consisting of superpositions of

indicator functions of regular domains. This can be seen as a substitute for the sparsity assump-

tion required for other compressed sensing techniques. Although in practice such a modelling

assumption is not always strictly justified, the initial pressure distribution can often be well ap-

proximated by such superpositions. Therefore, in future work we will address the robustness of

our compressed sensing technique with respect to such a signal model.
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Figure 2.5: SPARSITY INDUCED BY ∂r(rHr ∂r). The left image shows the simple disc-
like phantom f (characteristic function of a disc), the middle image shows the
filtered spherical means rHr ∂rM f and the right image shows the sparse data
∂r(rHr ∂rM f).

The function rHr ∂rM f also appears in the following formula for recovering a function

from its spherical means derived in [FHR07].

Theorem 2.3.1 (Exact reconstruction formula for spherical means). Suppose f ∈ C∞(R2) is
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2.3 Mathematical framework of the proposed PAT compressed sensing scheme

supported in the closure of BR(0). Then, for any x ∈ BR(0), we have

f(x) =
1

2πR

∫
∂BR(0)

(rHr ∂rM f)(z, |x− z|) ds(z) . (2.20)

Proof. See [FHR07, Corollary 1.2].

In the practical implementation the spherical means are given only for a discrete number

of centers zj ∈ ∂BR(0) yielding semi-discrete data similar to (2.2), (2.3). Formula (2.20)

can easily be adapted to discrete or semi-discrete data yielding a filtered backprojection type

reconstruction algorithm; compare [FHR07, Section 4]. So if we can find the filtered spherical

means

(rHr ∂rM f)(zj , ·) for all detector locations zj ∈ ∂BR(0) (2.21)

we can obtain the desired reconstruction of f by applying the backprojection operator (the outer

integration in (2.20)) to rHr ∂rM f .

2.3.4 Summary of the reconstruction procedure

In this section, we combine and summarize the compressed sensing scheme for photoacoustic

tomography as described in the previous sections. Our proposed compressed sensing and sparse

recovery strategy takes the following form.

(CS1) Create a matrix A ∈ {0, 1}m×N as the adjacency matrix of a randomly selected left d-

regular bipartite graph. That is, A is a random matrix consisting of zeros and ones only,

with exactly d ones in each column.

(CS2) Perform m measurements, whereby in the i-th measurement pressure signals correspond-

ing to the nonzero entries in i-th row of A are summed up, see Equations (2.4) and (2.15).

This results in measurement data Ap(t) = y(t) ∈ Rm for any t ∈ [0, 2ρ].

(CS3) Choose a transform T acting in the temporal direction, which sparsifies the pressure data

p along the spatial direction; compare Equation (2.17).

(CS4) For any t ∈ [0, 2ρ] and some given threshold η, perform `1-minimization (2.19) resulting

in a sparse vector q?(t) satisfying ‖Aq?(t)−Ty(t)‖1 ≤ η.

(CS5) Use p?(t) = T−1q?(t) as the input for a standard PAT inversion algorithm for complete

data, such as time reversal or filtered backprojection.

As we have seen in Subsection 2.2.2 the procedure (CS1)–(CS5) yields a close approximation

to the original function f if the transformed data Tp(t) are sufficiently sparse in the spatial
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2 A Novel Compressed Sensing Scheme for Photoacoustic Tomography

direction. The required sparsity level is hereby given by the expander-properties of the matrix

A. Note that for exact data and exactly sparse data, we can use the error threshold η = 0. In

the more realistic scenario of noisy data and Tp(t) being only approximately sparse, we solve

the optimization problem (2.19) to yield a near optimal solution with error level bounded by the

noise level.

2.4 Numerical results

To support the theoretical examinations in the previous sections, in this section we present some

simulations using the proposed compressed sensing method. We first present reconstruction

results using simulated data and then show reconstruction results using experimental data.

2.4.1 Results for simulated data

As in Subsection 2.3.3, we work with the equivalent notion of the spherical means instead of

directly working with the solution of the wave equation (2.1). In this case the compressed

sensing measurements provide data

yi(r) =
∑
j∈Ji

mj(r) for i ∈ {1, . . . ,m} and t ∈ [0, 2ρ] , (2.22)

where mj = (M f)(zj , ·) denote the spherical means collected at the j-the detector location zj .

We further denote by m(t) = (m1(t), . . . ,mN (t))T the vectors of unknown complete spherical

means and by y(t) = (y1(t), . . . , ym(t))T the vector of compressed sensing measurement data.

Finally, we denote by A ∈ {0, 1}m×N the compressed sensing matrix such that (2.22) can be

rewritten in the form Am = y.

As proposed in Subsection 2.3.3 we use T = ∂r(rHr ∂r) as a sparsifying transform for the

spherical means. An approximation to ∂rrHr ∂rM f can be obtained from compressed sensing

measurements in combination via `1-minimization. For the recovery of the original function

from the completed measurements, we use one of the inversion formulas of [FHR07] presented

given in Theorem 2.3.1. Recall that this inversion formulas can be implemented by applying the

circular back-projection to the filtered spherical means rHr ∂rM f .

In order to obtain an approximation to the data (2.21) from the sparse intermediate recon-

struction ∂r(rHr ∂rM f)(·, r), one has to perform one numerical integration along the second

dimension after the `1-minimization process. We found that this numerical integration intro-

duces artifacts in the reconstruction of rHr ∂rM f , required for application of the inversion

formula (2.20), see the middle image in Figure 2.6. These artifacts also yield some undesired
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2.4 Numerical results

blurring in the final reconstruction of f ; see the middle image in Figure 2.7.

Figure 2.6: RECONSTRUCTION OF FILTERED SPHERICAL MEANS FOR N = 200 AND m =
100. Left: Reconstruction of ∂rrHr ∂rM f using `1-minimization. Center: Result
of integrating the `1-reconstruction in the radial direction. Right: Result of directly
recovering rHr ∂rM f by TV-minimization.

In order to overcome the artifact introduced by the numerical integration, instead of applying

an additional radial derivative to rHr ∂r to obtain sparsity in the spatial direction, we will apply

one-dimensional total variation minimization (TV) for directly recovering (rHr ∂rM f)(·, r).

Thereby we avoid performing numerical integration on the reconstructed sparse data. Further-

more, this yields much better results in terms of image quality of the final image f . Clearly, by

performing TV-minimization, we solve a problem different to what is covered by the theory. For

measurement matrices possessing the 2-RIP recovery guarantees using TV minimization have

been established in [NW13b]. However, to the best of our knowledge, no such theory is cur-

rently available for 1-RIP measurement matrices, as it is required for our application. The better

numerical performance of TV-minimization suggests that such an analysis is possible which will

be addressed in future work.

In our interpretation, this performance discrepancy is comparable to the difference between

uniform and variable density samples for subsampled Fourier measurements. While [CRT06a]

proves recovery of the discrete gradient, this does not carry over to the signal in a stable way

– a refined analysis was required [NW13b, KW14a]. Similarly, we expect that a refined ana-

lysis to be provided in subsequent work can help explain the quality gap between `1 and TV

minimization that we observe in our scenario.

In order to approximately recover rHr ∂rM f from the compressed sensing measurements,

we perform, for any r ∈ [0, 2ρ], one-dimensional discrete TV-minimization

‖Aq− (rHr ∂ry)(r)‖22 + λ‖q‖TV → min
q∈RN

. (2.23)
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2 A Novel Compressed Sensing Scheme for Photoacoustic Tomography

Here ‖q‖TV = 2π/N
∑N

j=1 |qj+1 − qj | denotes the discrete total variation using the periodic

extension qN+1 := q1. The one-dimensional total variation minimization problem (2.23) can

be efficiently solved using the fast iterative shrinkage thresholding algorithm (FISTA) of Beck

and Teboulle [BT09]. The required proximal mapping for the total variation can be computed

in O(N) operation counts by the tautstring algorithm (see [MvdG+97, DK01, GO08]). The

approximate solution of (2.23) therefore only requires O(NmNiter) floating point operations,

with Niter denoting the number of iterations in the FISTA. Assuming the radial variable to be

discretized using O(N) samples, the whole data completion procedure by (2.23) only requires

O(N2mNiter) operation counts. Since we found that fewer than 100 iterations in the FISTA are

often sufficient for accurate results, the numerical effort of data completion is only a few times

higher than that of standard reconstruction algorithms in PAT.

Figure 2.7: RECONSTRUCTION RESULTS FOR DISC-LIKE PHANTOM USING N = 200 AND

m = 100. Left: Reconstruction from 100 standard measurements. Center: Com-
pressed sensing reconstruction using `1-minimization. Right: Compressed sensing
reconstruction using TV-minimization. The reconstruction from standard measure-
ments contains under-sampling artifacts which are not present in the compressed
sensing reconstructions. Further, the use of TV-minimization yields much less
blurred results than the use of `1-minimization.

Figures 2.6 and 2.7 show results of simulation studies for a simple phantom, where the initial

pressure distribution f is the characteristic function of a disc. For the compressed sensing recon-

struction, we used m = 100 random measurements instead of N = 200 standard point meas-

urements. As one can see from the right image in Figure 2.7, the completed data rHr ∂rM f ,

for this simple phantom, is recovered almost perfectly from the compressed sensing measure-

ments by means of TV-minimization. The reconstruction results in Figure 2.7 show that the

combination of our compressed sensing approach with TV-minimization yields much better res-

ults than the use of `1-minimization. Fur comparison purpose, the left image in Figure 2.7 shows

the reconstruction from 100 standard measurements. Observe that the use of m = 100 random

measurements yields better result than the use of the 100 standard measurements, where artifacts
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2.5 Discussion and outlook

due to spatial under-sampling are clearly visible.

2.4.2 Results for real measurement data

Experimental data have been acquired by scanning a single integrating line detector on a circular

path around a phantom. A bristle with a diameter of 120µm was formed to a knot and illumin-

ated from two sides with pulses from a frequency doubled Nd:YAG laser with a wavelength of

532 nm. The radiant exposure for each side was below 7.5 mJ/cm2. Generated photoacoustic sig-

nals have been detected by a graded index polymer optical fiber being part of a Mach-Zehnder

interferometer, as described in [GBB+10]. Ultrasonic signals have been demodulated using a

self-made balanced photodetector, the high-frequency output of which was sampled with a 12-

bit data acquisition device. A detailed explanation of the used photo-detector and electronics

can be found in [BMFH+13]. The polymer fiber detector has been scanned around the phantom

on a circular path with a radius of 6 mm and photoacoustic signals have been acquired on 121

positions. The scanning curve was not closed, but had an opening angle of π/2 rad. Hence

photoacoustic signals have been acquired between π/8 rad and 15π/8 rad.

Using these experimental data, compressed sensing data have been generated, where each

detector location was used d = 10 times and m = 60 measurements are made in total. The

reconstruction of the complete measurement data has been obtained by one-dimensional dis-

crete TV-minimization (2.23) as suggested in the Section 2.4.1. The measured and the recovered

complete pressure data are shown in the top row in Figure 2.8. The bottom row in Figure 2.8

shows the reconstruction results from 121 standard measurements (bottom left) and the recon-

struction from 60 compressed sensing measurements (bottom center). Observe that there is only

a small difference between the reconstruction results. This clearly demonstrates the potential

of our compressed sensing scheme (CS1)–(CS5) for decreasing the number of measurements

while keeping image quality. For comparison purpose we also display the reconstruction using

60 standard measurement (bottom right). Compared to the compressed sensing reconstruction

using the same number of measurements the use of standard measurements shows significantly

more artifacts which are due to spatial under-sampling.

2.5 Discussion and outlook

In this paper, we proposed a novel approach to compressive sampling for photoacoustic tomo-

graphy using integrating line detectors providing recovery guarantees for suitable datasets. In-

stead of measuring pressure data pj at any of the N individual line detectors, our approach uses

m random combinations of pj with m � N as measurement data. The reconstruction strategy
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Figure 2.8: RECONSTRUCTION RESULTS FOR PAT MEASUREMENTS. Top left: Measured pres-
sure data forN = 121 detector positions. Top right: Compressed sensing reconstruc-
tion of the full pressure data from m = 60 compressed measurements. Bottom left:
Reconstruction from the full measurement data using N = 121 detector positions.
Bottom center: Reconstruction from m = 60 compressed sensing measurements.
Bottom right: Reconstruction from half of the measurement data using 60 detector
positions.

consists of first recovering the pressure values pj for j ∈ {1, . . . , N} and then applying a stand-

ard PAT reconstruction for obtaining the final photoacoustic image. For recovering the individual

pressure data, we propose to apply a sparsifying transformation that acts in the temporal variable

and makes the data sparse in the angular component. After applying such a transform the com-

plete pressure data is recovered by solving a set of one dimensional `1-minimization problems.
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2.5 Discussion and outlook

This decomposition also makes our reconstruction algorithm numerically efficient.

Although we focused on PAT using integrating line detectors, we emphasize that a similar

framework can be developed for standard PAT based on the three dimensional wave equation

and a two dimensional array of point-like detectors. In such a situation, finding a sparsifying

transform is even simpler. Recalling that N -shaped profile of the thermoacoustic pressure sig-

nal induced by the characteristic function of a ball suggests to use p 7→ ∂2
t p as a sparsifying

transform.

Note that the recovery guarantees in this paper crucially depend on the choice of an appro-

priate sparsifying transform. In Subsection 2.3.3 we proposed a candidate for such a transform-

ation that works well in our numerical examples. A more theoretical study of such sparsifying

transforms and the resulting recovery guarantees for simple (piecewise constant) phantoms is

postponed to further research. In this context, we will also investigate the use of different sparsi-

fying temporal transforms, such as the 1D wavelet transform in the temporal direction. Further

research includes using a fixed number of detectors in each measurement process. This requires

novel results for right k-regular expander graphs and compressive sampling.
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Interlude

In the previous chapter, we took a first look at the possibility of using compressed sensing to

reduce the required number of measurements in photoacoustic imaging. However, where the

previous chapter introduced a two-step scheme, in this chapter we perform the reconstruction

in a single step. The two-step scheme had the drawback that first the measurement data was

reconstructed and then, still, a filtered backprojection step had to be employed. Combining

these two steps into one reduces the possibilty of an accumulation of errors of the individual

methods and yields higher quality results. We again collect random combinations of pressure

data at multiple detector locations, but this time we use the second derivative of the pressure data

as a sparsifying transformation. Based on the insight that this second derivative corresponds to

the Laplacian of the data in the spatial domain and that typical sources consist of flat regions and

singularities along boundaries, which means that the Laplacian is typically sparse, we derive a

single step scheme, which jointly recovers the initial data as well as its Laplacian. We present

reconstruction results with simulated as well as experimental data.
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3 A New Sparsification and Reconstruction Strategy for CS-PAT

3.1 Introduction

Photoacoustic tomography (PAT) is a non-invasive hybrid imaging technology, that beneficially

combines the high contrast of pure optical imaging and the high spatial resolution of pure ul-

trasound imaging (see [Bea11, Wan09, XW06b]). The basic principle of PAT is as follows (see

Fig. 3.1). A semitransparent sample (such as a part of a human body) is illuminated with short

pulses of optical radiation. A fraction of the optical energy is absorbed inside the sample which

causes thermal heating, expansion, and a subsequent acoustic pressure wave depending on the

interior absorbing structure of the sample. The acoustic pressure is measured outside of the

sample and used to reconstruct an image of the interior.

(a) (b) (c)

Figure 3.1: (a) An object is illuminated with a short optical pulse; (b) the absorbed light distri-
bution causes an acoustic pressure; (c) the acoustic pressure is measured outside the
object and used to reconstruct an image of the interior.

In this paper we consider PAT in heterogeneous acoustic media, where the acoustic pressure

satisfies the wave equation [WA11, XW06b]

∂2
t p(r, t)− c2(r)∆rp(r, t) = δ′(t) f(r) for (r, t) ∈ Rd × R . (3.1)

Here r ∈ Rd is the spatial location, t ∈ R the time variable, ∆r the spatial Laplacian, c(r) the

speed of sound, and f(r) the photoacoustic (PA) source that has to be recovered. The factor

δ′(t) denotes the distributional derivative of the Dirac δ-distribution in the time variable and the

product δ′(t) f(r) on right hand side of the equation represents the PA source due to the pulsed

optical illumination. The wave equation (3.1) is augmented with the initial condition p(r, t) = 0

on {t < 0}. The acoustic pressure is then uniquely defined and referred to as the causal solution

of (3.1). Both cases d = 2, 3 for the spatial dimension are relevant in PAT: The case d = 3

arises in PAT using classical point-wise measurements; the case d = 2 is relevant for PAT with

integrating line detectors [BMFB17, BBMG+07, PHKN17].

To recover the PA source, the pressure is measured with sensors distributed on a surface or

curve outside of the sample; see Fig. 3.1. Using standard sensing, the spatial sampling step size
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limits the spatial resolution of the measured data and therefore the spatial resolution of the final

reconstruction. Consequently, high spatial resolution requires a large number of detector loca-

tions. Ideally, for high frame rate, the pressure data are measured in parallel with a large array

made of small detector elements. However, producing a detector array with a large number of

parallel readouts is costly and technically demanding. In this work we use techniques of com-

pressed sensing (CS) to reduce the number of required measurements and thereby accelerating

PAT while keeping high spatial resolution [SKB+15, ABB+16, BCH+17, HBMB16].

CS is a novel sensing paradigm introduced in [CRT06a, CT06, Don06a] that allows to cap-

ture high resolution signals using much less measurements than advised by Shannon’s sampling

theory. The basic idea is to replace point samples by linear measurements, where each measure-

ment consists of a linear combination of sensor values. It offers the ability to reduce the number

of measurements while keeping high spatial resolution. One crucial ingredient enabling CS PAT

is sparsity, which refers to the requirement that the unknown signal is sparse, in the sense that

it has only a small number of entries that are significantly different from zero (possibly after a

change of basis).

3.1.1 Main contributions

In this work we develop a new framework for CS PAT that allows to bring sparsity into play.

Our approach is rooted in the concept of sparsifying temporal transforms developed for PAT

in [SKB+15, HBMB16] for two and three spatial dimensions. However, the approach in this

present paper extends and simplifies this transform approach considerably. First, it equally ap-

plies to any detection surface and arbitrary spatial dimension. Second, the new method can even

be applied to heterogenous media. In order to achieve this, we use the second time derivative

applied to the pressure data as a sparsifying transform. Opposed to [SKB+15, HBMB16], where

the transform was used to sparsify the measured signals, in the present work we exploit this for

obtaining sparsity in the original imaging domain.

Our new approach is based on the following. Consider the second time derivative ∂2
t p(r, t) of

the PA pressure. We will show that this transformed pressure again satisfies the wave equation,

however with the modified PA source c2(r)∆rf(r) in place of the original PA source f(r).

If the original PA source consists of smooth parts and jumps, the modified source consists of

smooth parts and sparse structures; see Fig. 3.2 for an example. This enables the use of efficient

CS reconstruction algorithms based on sparse recovery. One possible approach is based on the

following two-step procedure. First, recover an approximation h ' c2∆rf via `1-minimization.

In a second step, recover an approximation to f by solving the Poisson equation ∆rf = h/c2.

While the above two-stage approach very well recovers the singularities of the PA source

in our performed numerical tests, at the same time it showed disturbing low-frequency arti-
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original pressure

sparsi�ed PA source sparsi�ed 

original PA source

Figure 3.2: Top left: PA source f (circle indicates the detector locations). Top right: Corres-
ponding pressure p (detector locations are in horizontal direction and time varies
in vertical direction). Bottom right: Second derivative ∂2

t p Bottom left: Sparsified
source ∆rf .

facts. Therefore, in this paper we develop a completely novel strategy to jointly recovering f

as well as its Laplacian. Similarly to the two stage-procedure, the joint sparse reconstruction

approach aims at finding the sparsified PA source h, corresponding to the second derivative of

the measured data, via `1-minimization. Additionally, it requires the original PA source f to

be consistent with the original data. Finally, the two source terms are connected by adding the

constraint ∆rf = h/c2. The resulting optimization problem will be formally introduced in

Section 3.3.3. In the case of noisy data, we consider a penalized version that can be efficiently
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solved via various modern optimization techniques, such as forward backward splitting.

3.1.2 Outline

In Section 3.2 we describe PAT and existing CS approaches, wherein we focus on the role of

sparsity in PAT. The proposed framework for CS PAT will be presented in Section 3.3. This in-

cludes the sparsification of the PA source and the joint sparse reconstruction algorithm. Numer-

ical and experimental results are presented in Section 3.4. The paper concludes with a summary

and an outlook on future research presented in Section 3.5.

3.2 Compressed photoacoustic tomography

3.2.1 Photoacoustic tomography

Suppose that V ⊆ Rd is a bounded region and let ri for i = 1, . . . , n denote admissible detector

locations distributed on the boundary ∂V . We define the forward wave operator W that maps a

PA source f vanishing outside V to the corresponding pressure data by

(Wf)(r, t) , p(r, t) for r ∈ ∂V and t ∈ [0, T ] , (3.2)

where p(r, t) is the solution of (3.1). The inverse source problem of PAT is to recover the PA

source f from data Wf(ri, t), known for a finite number of admissible detector locations ri. The

measured data Wf is considered to be fully/completely sampled if the transducers are densely

located on the whole boundary ∂V , such that the function f can be stably reconstructed from

the data. Finding necessary and sufficient sampling conditions for PAT is still on-going research

[Hal16].

Let us mention that most of the theoretical works on PAT consider the continuous setting

where the transducer locations are all points of a surface or curve Γ ⊆ ∂V ; see [FPR04, XW05,

Kun07, Ngu09, Hal13]. On the other hand, most works on discrete settings consider both dis-

crete spatial and time variables [HWNW13, Hal16]. The above setting (3.2) has been considered

in a few works [SKB+15, HBMB16, CN17]. It well reflects the high sampling rate of the time

variable in many practical PAT systems.

3.2.2 Compressive measurements in PAT

The number n of detector positions in (3.2) is directly related to the resolution of the final

reconstruction. Namely, consider the case V being the disc of radius R and f being essentially

wavenumber limited with maximal wavenumber give by λ0. Then, Nϕ ≥ 2Rλ0 equally spaced

39



3 A New Sparsification and Reconstruction Strategy for CS-PAT

transducers are sufficient to recover f with small error; see [Hal16]. This condition, however,

requires a very high sampling rate, especially when the PA source contains narrow features,

such as blood vessels, or sharp interface. Consequently, full sampling in PAT is costly and time

consuming.

To reduce the number of measurements while preserving resolution, we use CS measurements

in PAT. Instead of collecting n individually sampled signals as in (3.2), we take CS measure-

ments

y(j, t) , (Mf)(j, t) , (AWf)(j, t) =
n∑
i=1

A[j, i]p(ri, t) for j ∈ {1, . . . ,m} , (3.3)

with m � n. [SKB+15, HBMB16] we proposed to take the measurement matrix A in (3.3)

as the adjacency matrix of a lossless expander graph. Hadamard matrices have been proposed

in [BCH+17, HZB+16]. In this work, we take A as a random Bernoulli matrix with entries

±1/
√
m with equal probability or a Gaussian random matrix consisting of i.i.d. N (0, 1/m)-

Gaussian random variables in each entry. These choices are validated by the fact that Gaussian

and Bernoulli random matrices satisfy the restricted isometry property (RIP) with high probab-

ility (see Section 3.2.3 below). Subsampling matrices, which do not satisfy the RIP, have have

be used in [PL09].

3.2.3 The role of sparsity

A central aspect in the theory of CS is sparsity of the given data in some basis or frame [CRT06a,

Don06a, FR13]. Recall that a vector x ∈ RN is called s-sparse if |{i | xi 6= 0}| ≤ s for some

number s� N , where | · | is used to denote the number of elements of a set. If the data is known

to have sparse structure, then reconstruction procedures using `1-minimization or greedy-type

methods can often be guaranteed to yield high quality results even if the problem is severely ill-

posed [CRT06a, GHS11]. If we are given measurements Mx = y, where x ∈ RN and y ∈ Rm

with m� N , the success of the aforementioned reconstruction procedures can, for example, be

guaranteed if the matrix M satisfies the restricted isometry property of order s (s-RIP), i.e. for

all s-sparse vectors z we have

(1− δs)‖z‖2 ≤ ‖Mz‖2 ≤ (1 + δs)‖z‖2 , (3.4)

for an RIP constant δs < 1/
√

2; see [FR13]. Gaussian and Bernoulli random matrices satisfy

the s-RIP with high probability, provided m ≥ Cs log(en/s) for some reasonable constant C

and with e denoting Euler’s number [BDDW08].

In PAT, the possibility to sparsify the data has recently been examined [SKB+15, HBMB16].
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In these works it was observed that the measured pressure data could be sparsified and the

sparse reconstruction methods were applied directly to the pressure data. As a second step, still

a classical reconstruction via filtered backprojection had to be performed. The sparsification of

the data was achieved with a transformation in the time direction of the pressure data. In two

dimensions, the transform is a first order pseudo-differential operator [SKB+15], while in three

dimensions the transform is of second order [HBMB16].

3.3 Proposed Framework

3.3.1 Sparsifying transform

The following theorem is the foundation of our CS approach. It shows that the required sparsity

in space can be obtained by applying the second time derivative to the measured data.

Theorem 3.3.1. Let f : Rd → R be a given smooth source term vanishing outside V , and let

p(r, t) denote the causal solution of (3.1). Then ∂2
t p(r, t) is the causal solution of

∂2
t p
′′ − c2(r)∆rp

′′(r, t) = δ′(t) c2(r)∆rf(r) . (3.5)

In particular, we have ∂2
tM[f ] = M[c2∆rf ], where M denotes the CS PAT forward operator

defined by (3.3).

Proof. The proof is split in two parts. First, we show that the causal solution of (3.1) is, for

positive times, equal to the solution of the initial value problem

(∂2
t − c2∆r)p(r, t) = 0 for (r, t) ∈ Rd × (0,∞) , (3.6)

p(r, 0) = f(r) for r ∈ Rd , (3.7)

∂tp(r, 0) = 0 for r ∈ Rd . (3.8)

Second, we take the second time derivative of the even extension and derive (3.5).

To see the equivalence of (3.6)-(3.8) and (3.1), denote by q the even extension of the solution

of (3.6)-(3.8) to Rd×R, which satisfied the homogeneous wave equation for all t ∈ R. By using

the characteristic function of the positive semiaxis, χ(r, t) := 1 if t > 0 and zero otherwise, we

obtain that χ · q is a causal function. By the product rule, we have

(∂2
t − c2∆r)(χq) = χ (∂2

t − c2∆r)q︸ ︷︷ ︸
=0

+ δ′q︸︷︷︸
=δ′f

+ δq′︸︷︷︸
=0

= δ′f . (3.9)

This shows that χq is the (unique) causal solution of (3.1) and establishes the equivalence of the
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3 A New Sparsification and Reconstruction Strategy for CS-PAT

two formalisms. Next notice that ∂2
t q satisfies the wave equation as well, (∂2

t−c2∆r)(∂
2
t q)(r, t) =

0. Therefore, a computation similar to (3.9) gives (∂2
t − c2∆r)(χ∂

2
t q) = δ′c2∆rf + δ∂3

t q(·, 0).

Because q is smooth and even in t, its third time derivative is continuous and odd in t, and thus

∂3
t q(r, 0) = 0. This shows that χ∂2

t q is the causal solution of (3.5) and concludes the proof.

3.3.2 Spatial discretization and sparse recovery

Throughout the following, we assume a semi-discrete setting, where the spatial variable r ∈
{0, . . . , Nr}d is already discretized. As we show in Theorem 3.6.1 in the appendix, an analog

of Theorem 3.3.1 for discrete sources f : {0, . . . , Nr}d → R holds as well, where the discrete

Laplacian ∆r may be defined in the spatial domain using finite differences or in the spectral do-

main using the Fourier transform. Working with discrete sources significantly simplifies treating

the sparsity of ∆rf . In the continuous setting applying the Laplacian to piecewise smooth func-

tions would require working with generalized functions (or distributions), which is completely

avoided by taking the discretized spatial variable (which is anyway required for the numerical

implementation).

Typical phantoms consist of smoothly varying parts and rapid changes at interfaces. For such

PA sources, the modified source c2∆rf is sparse or at least compressible. The theory of CS

therefore predicts that the modified source can be recovered by solving

min
h
‖h‖1 such that Mh = ∂2

t y , (3.10)

where M is the forward operator (including wave propagation and compressed measurements)

and ‖ · ‖1 denotes the `1-norm guaranteeing sparsity of h.

In the case the unknown is only approximately sparse or the data are noisy, one instead minim-

izes the penalized functional problem 1
2‖Mh−∂2

t y‖22 +β‖h‖1, where β > 0 is a regularization

parameter which gives trade-off between the data-fitting term ‖Mh − ∂2
t y‖22 and the regulariz-

ation term ‖h‖1. Having obtained an approximation of h by either solving (3.10) or the relaxed

version, one can recover the original PA source f by subsequently solving the Poisson equation

∆rf = h/c2 with zero boundary conditions.

While the above two-stage procedure recovers boundaries well, we observed disturbing low

frequency artifacts in the reconstruction of f . Therefore, below we introduce a new joint sparse

reconstruction approach based on Theorem 3.3.1 that jointly recovers f and h.

3.3.3 Joint sparse reconstruction approach

As argued above, the second derivative p′′ is well suited (via c2(r)∆rf ) to recover the singu-

larities of f , but hardly contained low-frequency components of f . On the other hand, the low
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frequency information is contained in the original data, which is still available to us. Therefore

we propose the following joint sparsity constrained optimization problem

min
(f,h)
‖h‖1 + IC(f)

such that
[
Mf,Mh,∆rf − h/c2

]
=
[
y, y′′, 0

]
.

(3.11)

Here IC is the indicator function of the positive coneC , {f | f(r) ≥ 0}, defined by IC(f) = 0

if f ∈ C and IC(f) =∞ and guaranteeing non-negativity.

We have the following result.

Theorem 3.3.2. Assume that f : {0, . . . , Nr}d → R is non-negative and that ∆rf is s-sparse.

Moreover, suppose that the measurement matrix M satisfies the RIP of order 2s with δ2s <

0.6246 (see (3.4)) and denote y = Mf . Then, the pair [f,∆rf ] can be recovered as the unique

solution of (3.11).

Proof. According to Theorem 3.6.1, the second derivative p′′(r, t) is the unique causal solu-

tion of the wave equation (3.5) with modified source term h = c2(r)∆rf . As a consequence

c2(r)∆rh satisfies Mh = y′′, which implies that the pair [f, h] is a feasible solution for (3.11).

It remains to verify that [f, h] is the only solution of (3.11). To show this, note that for any

solution [f∗, h∗] of (3.11) its second component h∗ is a solution of (3.10). Because M satisfies

the 2s-RIP, and h = c2(r)∆rf is s-sparse, CS theory implies that (3.10) is uniquely solvable

(see Theorem 6.12 in [FR13]) and therefore h = h∗. The constraint ∆rf = h/c2 then implies

that f∗ = f .

In the case the data only approximately sparse or noisy, we propose, instead of (3.11), to solve

the `2-relaxed version

1

2
‖Mf − y‖22 +

1

2
‖Mh− y′′‖22 +

α

2
‖∆rf − h/c2‖22 + β‖h‖1 + IC(f)→ min

(f,h)
. (3.12)

Here α > 0 is a tuning and β > 0 a regularization parameter. There are several modern meth-

ods to efficiently solve (3.12), for example, proximal or stochastic gradient algorithms[Ber11,

CP11]. In this work we use a proximal forward-backward splitting method with the quadratic

terms used in the explicit (forward) step and β‖h‖1 + IC(f) for the implicit (backward) step.

For an overview over proximal forward-backward splitting methods in signal processing, see for

example [CP11].
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3 A New Sparsification and Reconstruction Strategy for CS-PAT

3.3.4 Numerical minimization

We will solve (3.12) using a proximal gradient algorithm [CP11], which is an algorithm well

suited for minimizing the sum of a smooth and a non-smooth but convex part. In the case of

(3.12) we take the smooth part as

Φ(f, h) ,
1

2
‖Mf − y‖22 +

1

2
‖Mh− y′′‖22 +

α

2
‖∆rf − h/c2‖22 (3.13)

and the non-smooth part as Ψ(f, h) , β‖h‖1 + IC(f).

The proximal gradient algorithm then alternately performs an explicit gradient step for Φ and

an implicit proximal step for Ψ. For the proximal step, the proximity operator of a function

must be computed. The proximity operator of a given convex function F : Rd → R is defined

by [CP11]

proxF (f) , argmin{F (z) + 1
2‖f − z‖

2
2 | z ∈ Rd} .

The regularizers we are considering here have the advantage, that their proximity operators can

be computed explicitly and do not cause a significant computational overhead. The gradient

[∇fΦ,∇hΦ] of the smooth part can easily be computed to be

∇fΦ(f, h) = M∗(Mf − y)− α∆r(∆rf − h/c2)

∇hΦ(f, h) = M∗(Mh− y′′)− α

c2
(∆rf − h/c2) .

The proximal operator of the non-smooth part is given by

prox(f, h) := [proxIC (f),proxβ‖·‖1(h)] ,

proxIC (f)i = (max(fi, 0))i ,

proxβ‖·‖1(h)i = (max(|hi| − β, 0) sign(hi))i

With this, the proximal gradient algorithm is given by

fk+1 = proxIC

(
fk − µk∇fΦ(fk, hk)

)
(3.14)

hk+1 = proxβ‖·‖1

(
hk − µk∇kΦ(fk, hk)

)
, (3.15)

where (fk, hk) is the k-th iterate and µk the step size in the k-th iteration. We initialize the

proximal gradient algorithm with f0 = h0 = 0.

Remark 3.3.1. Note that the optimization problem (3.11) is further equivalent to the analysis-`1
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3.4 Experimental and numerical results

problem
min
f
‖c∆rf‖1 + IC(f)

such that Mf = y .
(3.16)

Implementation of (3.16) avoids taking the second time derivative of the data y. Because the

proximal map of f 7→ ‖c∆rf‖1 in not available explicitly, (3.16) and its relaxed versions cannot

be straightforwardly addressed with the proximal gradient algorithm. Therefore, in the present

paper we only use the model (3.12) and the algorithm (3.14), (3.15) for its minimization. Dif-

ferent models and algorithms will be investigated in future research.

3.4 Experimental and numerical results

3.4.1 Numerical results

For the presented numerical results, the two dimensional PA source term f : {0, . . . , Nr}2 → R
depicted in Figure 3.2 is used which is assumed to be supported in a disc of radius R. For

simplicity, we assume the speed of sound c to be constant. Additional results are presented

using an MRI image. The synthetic data is recorded on the boundary circle of radius R, where

the the time was discretized with 301 equidistant sampling points in the interval [0, 2R/c].

The phantom images were then used to compute the pressure data at n = 200 equispaced

detector locations in a circle around the source. For the simulated experiments, we assume

ideal detectors with δ(t) impulse response. The reconstruction of both phantoms via the filtered

backprojection algorithm of [FPR04] from the full measurements is shown in Figure 3.3.

CS measurements Mf (see (3.3)) have been generated in two random ways and one determin-

istic way. The random matrices A have be taken either as random Bernoulli matrix with entries

±1/
√
m with equal probability or a Gaussian random matrix consisting of i.i.d. N (0, 1/m)-

Gaussian random variables in each entry. The deterministic subsampling was performed by

choosing m equispaced detectors. In the joint sparse reconstruction with (3.14), (3.15), the step-

size and regularization parameters are chosen to be µk = 0.1, α = 0.1 and β = 0.005; 5000

iterations are performed. For the random subsampling matrices the recovery guarantees from the

theory of CS can be employed, but they do not provably hold for the deterministic subsampling

- although the results are equally convincing even for subsampling on the order of 10 % of the

full data, cf. Figure 3.4. All results are compared to the standard filtered backprojection (FBP)

reconstruction applied to AT (Mf).

If one increases the number of measurements to about 25 % of the data, the reconstruction

results become almost indistinguishable from the results obtained from FBP on the full data, cf.

Figure 3.5.
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3 A New Sparsification and Reconstruction Strategy for CS-PAT

Figure 3.3: RECONSTRUCTIONS FROM FULL DATA (CROSS PHANTOM AND MRI PHANTOM):
Reconstruction from 200 equispaced (fully sampled) measurements of the cross and
the MRI image used in the numerical experiments.

In Figure 3.6 the application of the method developed in this article to an MRI image is

presented. As the sparsity of the Laplacian is not as pronounced as in the synthetic example, the

MRI image requires more measurements to achieve high qualitative outcome.

For noisy data, the algorithm still produces good results, although more samples need to

be taken to achieve good results. For the synthetic phantom, Gaussian noise amounting to an

SNR of approximately 15 dB was added, as shown in Figures 3.7 and 3.8. The reconstruction

results using m = 20 and m = 50 measurements are depicted in Figure 3.9 and Figure 3.10,

respectively.

3.4.2 Experimental results

Experimental data have been acquired by an all-optical photoacoustic projection imaging (O-

PAPI) system as described in [BMFB17]. The system featured 64 integrating line detector

(ILD) elements distributed along a circular arc of radius 4 cm, covering an angle of 289 degree.

For an imaging depth of 20 mm, the imaging resolution of the O-PAPI system was estimated

to be between 100µm and 260µm; see [BMFB17]. PA signals were excited by illuminating

the sample from two sides with pulses from a frequency-doubled Nd:YAG laser (Continuum

Surelite, 20 Hz repetition rate, 6 ns pulse duration, 532 nm center wavelength) at a fluence of

21 mJ/cm2 and recorded by the ILD elements with a sample rate of 60 MS/s. The sample

consisted an approximately triangular shaped piece of ink-stained leaf skeleton, embedded in

a cylinder consisting of agarose gel with a diameter of 36 mm and a height of 40 mm. Int-

ralipid was added to the agarose to increase optical scattering. The strongest branches of the leaf
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Bernoulli measurements Sparse measurementsGaussian measurements

Figure 3.4: RECONSTRUCTIONS FROM 20 NOISEFREE MEASUREMENTS (CROSS PHANTOM):
Reconstruction from m = 20 noisefree CS measurements (i.e. 10 % of the fully
sampled data) using the method presented in this article (top) and FBP (bottom).

had diameters of approximately 160µm to 190µm and the smallest branches of about 50µm.

Results are only for 2D (projection imaging).

Reconstruction results for the leaf phantom from 60 sparsely sampled sensor locations after

500 iterations with the proposed joint sparse minimization algorithm are shown in Figure 3.11.

For this, the regularization and step-size parameters were chosen as in the previous section.

From the experimental data we also generated m = 30 random Bernoulli measurements. The

reconstruction results using this data are shown in Figure 3.12. For all results, the PA source is

displayed on a 1.6 cm × 1.33 cm rectangle with step size 26µm inside the detection arc.

3.4.3 Discussion

All numerical results presented in Figures (3.4)–(3.12) demonstrate that the proposed joint

sparse reconstruction method yields artifact-free reconstructions from a smaller number of spa-

tial measurements. In particular, our approach demonstrated robustness with respect to noise
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Bernoulli measurements Sparse measurementsGaussian measurements

Figure 3.5: RECONSTRUCTIONS FROM 50 NOISEFREE MEASUREMENTS (CROSS PHANTOM):
Reconstruction from m = 50 (i.e. 25 % of the fully sampled data) noisefree CS
measurements using the method presented in this article (top) and FBP (bottom).

(see Figures 3.9 and 3.10) and also good performance on experimental data (see Figures 3.12

and 3.11). In the case of the cross phantom we even obtained almost artifact free reconstructions

from only 20 spatial measurements (3.4).

We point out, that opposed to most existing reconstruction schemes for sparse data, our al-

gorithms come with a uniqueness result given in Theorem 3.3.2. Theorem 3.3.2 is based on

the RIP which is satisfied, for example, by Gaussian and Bernoulli measurements matrices. It

does not hold for the subsampling matrices and, therefore, it is surprising that even in this case,

the joint sparse reconstruction methods shows similar performance as for Gaussian or Bernoulli

matrices. This fact will be investigated theoretically and numerically in a future work. We also

will compare our approach with other standard methods such as TV minimization.
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Bernoulli measurements Sparse measurements

Figure 3.6: RECONSTRUCTIONS FROM 60 NOISEFREE MEASUREMENTS (MRI PHANTOM):
Reconstruction of an MRI image from m = 60 (i.e. 33 % of the fully sampled data)
synthetically generated noisefree measurements using the method presented in this
article (top) and FBP (bottom).

3.5 Conclusion

In order to achieve high spatial resolution in PAT, standard measurement and reconstruction

schemes require a large number of spatial measurements with high bandwidth detectors. In order

to speed up the measurement process, systems allowing a large number of parallel measurements

are desirable. However such systems are technically demanding and costly to fabricate. For

example, in PAT with integrating detectors, the required analog to digital converters are among

the most costly building blocks. In order to increase measurement speed and to minimize system

costs, CS aims to reduce the number of measurements while preserving high resolution of the

reconstructed image.
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Full measurements Noisefree CS measurements Noisy CS measurements

Figure 3.7: Measurements for the setup of Figure 3.10. The leftmost image shows the full meas-
urements for all 200 detector locations. The center image shows the 50 compressed
sensing measurements obtained by using a Gaussian random matrix, the right image
shows the CS measurements with added noise.
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Figure 3.8: Measurements at a single detector for all times in the setup of Figure 3.10. The blue
dash-dotted line shows the original data, the red solid line is the noisy data.

One main ingredient enabling CS in PAT is sparsity of the image to be reconstructed. To bring

sparsity into play, in this paper we introduced a new approach based on the commutation relation

∂2
tW[f ] = W[c2∆rf ] between the PAT forward operator W and the the Laplacian. We de-

veloped a new reconstruction strategy for jointly reconstructing the pair [f,∆rf ] by minimizing

(3.12) and thereby using sparsity of ∆rf . The commutation relation further allows to rigorously

50



3.6 Sparsifying concept in semi-discrete setting

Bernoulli measurements Sparse measurementsGaussian measurements

Figure 3.9: RECONSTRUCTIONS FROM 20 NOISY MEASUREMENTS (CROSS PHANTOM): Re-
construction from m = 20 (i.e. 10 % of the fully sampled data) noisy measurements
using the method presented in this article (top) and FBP (bottom).

study generalized Tikhonov regularization of the form 1
2‖Mf − y‖22 + β‖c∆rf‖1 + IC(f) for

CS PAT. Such an analysis as well as the development of more efficient numerical minimization

schemes are subjects of further research.

3.6 Sparsifying concept in semi-discrete setting

Suppose the discrete source is given by f : {0, . . . , Nr}d → R which we can identify with

f : Zd → R by assigning the value f(r) = 0 for r 6∈ {0, . . . , Nr}d. We consider the spatially

discretized wave equation

∂2
t p(r, t)− c2(r)∆rp(r, t) = δ′(t) f(r) for (r, t) ∈ Zd × R , (3.17)

together with the causality condition p(r, t) = 0 for t < 0. To be specific, we take the discrete

Laplacian ∆rp(r, t) to be defined via symmetric finite differences. However, we note that al-
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Bernoulli measurements Sparse measurementsGaussian measurements

Figure 3.10: RECONSTRUCTIONS FROM 50 NOISY MEASUREMENTS (CROSS PHANTOM): Re-
construction fromm = 50 (i.e. 25 % of the fully sampled data) noisy measurements
using the method presented in this article (top) and FBP (bottom).

ternatively, it may be also defined in the spectral domain via the time-discrete spatial Fourier

transform.

Note that we assume (3.17) to be satisfied for all r ∈ Zd (instead of finitely many sampling

points) in order not to suffer from boundary effects wich would be induced by considering a

finite spatial domain. The spatially discretized wave equation (3.17) is therefore an infinite

dimensional coupled system of second order differential equations that can be analyzed in an

abstract Hilbert space.

Remark 3.6.1 (Existence and uniqueness of (3.17)). Consider the (two-sided) initial value prob-
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Proposed joint  reconstruction Filtered backprojection

Figure 3.11: RECONSTRUCTION FROM EXPERIMENTAL DATA USING 60 SPARSE SAMPLES:
Left: PAT image reconstructed with the proposed method. Right: FBP
reconstruction.

Proposed joint  reconstruction Filtered backprojection

Figure 3.12: RECONSTRUCTION USING 30 BERNOULLI MEASUREMENTS: Left: PAT image
reconstructed with the proposed method. Right: FBP reconstruction.
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lem

(∂2
t − Lr)q(r, t) = 0 , for (r, t) ∈ Zd × R , (3.18)

q(r, 0) = f(r) for r ∈ Zd , (3.19)

∂tq(r, 0) = 0 for r ∈ Zd , (3.20)

where Lr : `2(Zd) → `2(Zd) is linear and bounded and f ∈ `2(Zd). From general theory of

evolution equations in Hilbert spaces [Sho10], it follows that (3.18)–(3.20) has a unique solution

p ∈ C∞(R, `2(Zd)). As in the case of a continuous spatial variable, this shows that χq solves

(3.17) for general Lr in place of c2(r)∆r, and therefore assures the existence of a causal solution

of (3.17). It uniqueness is implied by the uniqueness of a solution of (3.18)–(3.20).

The following Theorem establishes a discrete version of the Theorem 3.3.1 concerning the

sparsification of PA source.

Theorem 3.6.1. Suppose the discrete source f : Zd → R vanishes outside the set {0, . . . , Nr}d,

let Lr : `2(Zd) → `2(Zd) be a continuous linear operator and let p denote the unique causal

solution of (3.17). Then ∂2
t p is the unique causal solution of

∂2
t p
′′ − Lrp′′(r, t) = δ′(t)Lrf(r) for (r, t) ∈ Zd × R . (3.21)

Proof. Taking into account Remark 3.6.1, the conclusion can be shown in a similar fashion as

for the continuous version (Theorem 3.3.1).
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Interlude

In Chapter 2, we saw that some instability problems could be avoided when using TV minim-

ization instead of `1-minimization. This chapter gives an overview over recovery guarantees

for total variation minimization in compressed sensing for different measurement scenarios. In

addition to summarizing the results in the area, we illustrate why an approach that is common

for synthesis sparse signals fails and different techniques are necessary. Lastly, we discuss a

generalizations of recent results for Gaussian measurements to the subgaussian case.
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4.1 Introduction

The central aim of Compressed Sensing (CS) [CRT06a, Don06a] is the recovery of an unknown

vector from very few linear measurements. Put formally, we would like to recover x ∈ Rn from

y = Ax+ e ∈ Rm with m� n, where e denotes additive noise.

For general x, recovery is certainly not possible, hence additional structural assumptions are

necessary in order to be able to guarantee recovery. A common assumption used in CS is that

the signal is sparse. Here for x we assume

‖x‖0 := |{k ∈ [n] : xk 6= 0}| ≤ s,

that is, there are only very few nonzero entries of x. And say that x is s-sparse for some given

sparsity level s � n. We call a vector compressible, if it can be approximated well by a sparse

vector. To quantify the quality of approximation, we let

σs(x)q := inf
‖z‖0≤s

‖z − x‖q

denote the error of the best s-sparse approximation of x.

In most cases, the vector x is not sparse in the standard basis, but there is a basis Ψ, such that

x = Ψz and z is sparse. This is also known as synthesis sparsity of x. To find an (approximately)

synthesis sparse vector, we can instead solve the problem of recovering z from y = AΨz. A

common strategy in CS is to solve a basis pursuit program in order to recover the original vector.

For a fixed noise level ε, it is given by

minimize ‖z‖1 such that ‖Az − y‖2 ≤ ε. (4.1)

While this and related approaches of convex regularization have been studied in the inverse

problems and statistics literature long before the field of compressed sensing developed, these

works typically assumed the measurement setup was given. The new paradigm arising in the

context of compressed sensing was to attempt to use the remaining degrees of freedom of the

measurement system to reduce the ill-posedness of the system as much as possible. In many

measurement systems, the most powerful known strategies will be based on randomization, i.e.,

the free parameters are chosen at random.

Given an appropriate amount of randomness (i.e., for various classes of random matrices

A, including some with structure imposed by underlying applications), one can show that the
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Figure 4.1: The original Fabio image (left) and the absolute values after application of a discrete
gradient operator(right).

minimizer x̂ of (4.1) recovers the original vector x with error

‖x− x̂‖2 ≤ c
(
σs(x)1√

s
+ ε

)
, (4.2)

see, e.g., [BDDW08] for an elementary proof in the case of subgaussian matrices without struc-

ture, and [KR14] for an overview, including many references, of corresponding results for ran-

dom measurement systems with additional structure imposed by applications. Note that (4.2)

entails that if x is s-sparse and the measurements are noiseless, the recovery is exact.

For many applications, however, the signal model of sparsity in an orthonormal basis has

proven somewhat restrictive. Two main lines of generalization have been proposed. The first

line of work, initiated by [RSV08] is the study of sparsity in redundant representation systems,

at first under incoherence assumptions on the dictionary. More recently, also systems without

such assumptions have been analyzed [CENR10, KNW15]. The main idea of these works is that

even when one cannot recover the coefficients correctly due to conditioning problems, one may

still hope for a good approximation of the signal.

The second line of work focuses on signals that are sparse after the application of some trans-

form, one speaks of cosparsity or analysis sparsity [NDEG13], see, e.g., [KR15] for an analysis

of the Gaussian measurement setup in this framework. A special case of particular importance,

especially for imaging applications, is that of sparse gradients. Namely, as it turns out, natural

images often admit very sparse approximations in the gradient domain, see, e.g., Figure 4.1.

Here the discrete gradient at location i = (i1, . . . , in) is defined as the vector with its n entries

given by
(
(∇z)i

)
j

= zi+ej − zi, j = 1, . . . , n, where ej is the j-th standard basis vector.
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4 Total Variation Minimization in Compressed Sensing

A first attempt to recover a gradient sparse signal is to formulate a compressed sensing prob-

lem in terms of the sparse gradient. When this is possible (for instance in the example of Fourier

measurements [CRT06a]), applying (4.1) will correspond to minimizing ‖∇z‖1 =: ‖z‖TV , the

total variation seminorm. Then (under some additional assumptions) compressed sensing recov-

ery guarantees of the form (4.2) can apply. This proof strategy, however, only allows for showing

that the gradient can be approximately recovered, not the signal. When no noise is present and

the gradient is exactly sparse (which is not very realistic), this allows for signal recovery via

integrating the gradient, but in case of noisy measurements, this procedure is highly unstable.

Nevertheless, the success motivates to minimize the total variation seminorm if one attempts

to recover the signal directly, not the gradient. In analogy with (4.1), this yields the following

minimization problem.

minimize ‖z‖TV = ‖∇z‖1 such that ‖Az − y‖2 ≤ ε.

For A the identity (i.e., not reducing the dimension), this relates to the famous Rudin-Osher-

Fatemi functional, a classical approach for signal and image denoising [ROF92]. Due to its

high relevance for image processing, this special case of analysis sparsity has received a lot of

attention recently also in the compressed sensing framework where A is dimension reducing.

The purpose of this chapter is to give an overview of recovery results for total variation min-

imization in this context of compressed sensing (Section 4.2) and to provide some geometric

intuition by discussing the one-dimensional case under Gaussian or subgaussian measurements

(to our knowledge, a generalization to the latter case does not appear yet in the literature) with

a focus on the interaction between the high-dimensional geometry and spectral properties of the

gradient operator (Section 4.3).

4.2 An overview over TV recovery results

In this section, we will give an overview of the state of the art guarantees for the recovery of

gradient sparse signals via total variation minimization. We start by discussing in Section 4.2.1

sufficient conditions for the success of TV minimization.

Subsequently, we focus on recovery results for random measurements. Interestingly, the res-

ults in one dimension differ severely from the ones in higher dimensions. Instead of obtaining

a required number of measurements roughly on the order of the sparsity level s, we need
√
sn

measurements for recovery. We will see this already in Subsection 4.2.2, where we present the

results of Cai and Xu [CX15] for recovery from Gaussian measurements. In Section 4.3, we

will use their results to obtain refined results for noisy measurements as well as guarantees for

60



4.2 An overview over TV recovery results

subgaussian measurements, combined with an argument of Tropp [Tro15]. In Subsection 4.2.3

we will present results by Ward and Needell for dimensions larger or equal than two showing

that recovery can be achieved from Haar incoherent measurements.

4.2.1 Sufficient Recovery Conditions

Given linear measurements Ax = y for an arbitrary A ∈ Rm×n and a signal x with ‖∇x‖0 ≤ s,
a natural way to recover x is by solving

minimize ‖∇z‖1 such that Az = y. (4.3)

For I ⊂ [n] we denote AI as the columns of A indexed by I , and for a consecutive notation we

denote ITI ∇ as the rows of ∇ indexed by I and I as the identity matrix. The following results

can also be easily applied to analysis `1-minimization, where any arbitrary matrix D ∈ Rp×n

replaces∇ in (4.3), as well as to any real Hilbert space setting [Kru15].

In many applications it is important to verify whether there is exactly one solution of (4.3).

Since ∇ is not injective here, we cannot easily use the well-known recovery results in com-

pressed sensing [FR13] for the matrix A∇†. However, a necessary conditon can be given since

x can only satisfy Ax = y and (∇x)Ic = 0 if

ker(ITIc∇) ∩ ker(A) = {0}.

If ∇ is replaced by the identity, this is equivalent to AI being injective. Since this injectivity

condition is unavoidable, we assume for the rest of this section that it is satisfied.

The paper [NDEG13] provides sufficient and necessary conditons for uniform recovery via

(4.3). The conditions rely on the null space of the measurements and are hard to verify similar

to the classical compressed sensing setup [TP14]. The following result is a corollary of these

conditions. It no longer provides a necessary condition, but is more manageable.

Corollary 4.2.1. [NDEG13] For all x ∈ Rn with s := ‖∇x‖0, the solution of (4.3) with y = Ax

is unique and equal to x if for all I ⊂ [n] with |I| ≤ s it holds that

∀w ∈ ker(A)\{0} : ‖(∇w)I‖1 < ‖(∇w)Ic‖1.

To consider measurements for specific applications, where it is difficult to prove whether uni-

form recovery is guaranteed, one can empirically examine whether specific elements x solve

(4.3) uniquely. For computed tomography measurements, a Monte Carlo Experiment is con-

sidered in [JKL15] to approximate the fraction of all gradient s-sparse vectors to uniquely solve
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4 Total Variation Minimization in Compressed Sensing

(4.3). The results prompt that there is a sharp transition between the case that every vector with

a certain gradient sparsity is uniquely recoverable and the case that TV-minimization will find

a different solution than the desired vector. This behavior empirically agrees with the phase

transition in the classical compressed sensing setup with Gaussian measurements [Don04].

To efficiently check whether many specific vectors x can be uniquely recovered via (4.3),

one needs to establish characteristics of x which must be easily verifiable. Such a non-uniform

recovery condition is given in the following theorem.

Theorem 4.2.2. [JKL15] It holds that x ∈ Rn is a unique solution of (4.3) if and only if there

exists w ∈ Rm and v ∈ Rn−1 such that

∇T v = ATw, vI = sign(∇x)I , ‖vIc‖∞ < 1. (4.4)

The basic idea of the proof is to use the optimality condition for convex optimization problems

[Roc72]. Equivalent formulations of the latter theorem can be found in [ZMY16, KR15] where

the problem is considered from a geometric perspective. However, verifying the conditions in

Theorem 4.2.2 still requires solving a linear program where an optimal v for (4.4) needs to be

found. In classical compressed sensing, the Fuchs Condition [Fuc04] is known as a weaker

result as it suggests a particular w in (4.4) and avoids solving the consequential linear program.

The following result generalizes this result to general analysis `1-minimization.

Corollary 4.2.3. If x ∈ Rn satisfies

‖(ITIc∇(∇TIIcITIc∇+ATA)−1∇sign(∇x))I‖∞ < 1

then x is the unique solution of (4.3).

4.2.2 Recovery from Gaussian measurements

As discussed above, to date no deterministic constructions of compressed sensing matrices are

known that get anywhere near an optimal number of measurements. Also for the variation of

aiming to recover approximately gradient sparse measurements, the only near-optimal recovery

guarantees have been established for random measurement models. Both under (approximate)

sparsity and gradient sparsity assumptions, an important benchmark is that of a measurement

matrix with independent standard Gaussian entries. Even though such measurements are hard

to realize in practice, they can be interpreted as the scenario with maximal randomness, which

often has particularly good recovery properties. For this reason, the recovery properties of total

variation minimization have been analyzed in detail for such measurements. Interestingly, as
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shown by the following theorem, recovery properties in the one-dimensional case are signific-

antly worse than for synthesis sparse signals and also for higher dimensional cases. That is

why we focus on this case in Section 4.3, providing a geometric viewpoint and generalizing the

results to subgaussian measurements.

Theorem 4.2.4. [CX15] Let the entries of A ∈ Rm×n be i.i.d. standard Gaussian random

variables and let x̂ be a solution of (4.3) with input data y = Ax0. Then

1. There exist constants c1, c2, c3, c4 > 0, such that for m ≥ c1
√
sn(log n+ c2)

P(∀x0 : ‖∇x0‖0 ≤ s : x̂ = x0) ≥ 1− c3e−c4
√
m.

2. For any η ∈ (0, 1), there are constants c̃1, c̃2 > 0 and a universal constant c2 > 0, such

that for s ≥ c̃0 and (s+ 1) < n
4 . If m ≤ c̃1

√
sn− c̃2, there exist infinitely many x0 ∈ Rn

with ‖∇x0‖0 ≤ s, such that P(x̂ 6= x0) ≥ 1− η.

This scaling is notably different from what is typically obtained for synthesis sparsity, where

the number of measurements scales linearly with s up to log factors. Such a scaling is only

obtained for higher dimensional signals, e.g., images. Indeed, in [CX15], it is shown that for

dimensions at least two the number of Gaussian measurements sufficient for recovery is

m ≥

c2s log3 n, if d = 2

cds log n, if d ≥ 3,

where the constant cd depends on the dimension.

Furthermore, as we can see in Theorem 4.2.7 below, this is also the scaling one obtains for

dimensions larger than 1 and Haar incoherent measurements. Thus the scaling of
√
sn is a

unique feature of the 1-dimensional case. Also note that the square-root factor in the upper

bound makes the result meaningless for a sparsity level on the order of the dimension. This has

been addressed in [KRZ15], showing that a dimension reduction is also possible if the sparsity

level is a (small) constant multiple of the dimension.

The proof of Theorem 4.2.4 uses Gordon’s escape through the mesh Theorem [Gor88]. We

will elaborate on this topic in Section 4.3.

In case we are given noisy measurements y = Ax0 + e with ‖e‖2 ≤ ε, we can instead of

solving (4.3) consider

minimize ‖∇z‖1 such that ‖Az − y‖2 ≤ ε. (4.5)
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If ∇x0 is not exactly, but approximately sparse, and our measurements are corrupted with

noise, the following result can be established.

Theorem 4.2.5. [CX15] Let the entries of A ∈ Rm×n be i.i.d. standard Gaussian random

variables and let x̂ be a solution of (4.5) with input data y satisfying ‖Ax0− y‖2 ≤ ε. Then for

any α ∈ (0, 1), there are positive constants δ, c0, c1, c2, c3, such that for m = αn and s = δn

P

(
‖x0 − x̂‖2 ≤ c2

min|S|≤s ‖(∇x0)Sc‖1√
n

+ c3
ε√
n

)
≥ 1− c0e−c1n.

This looks remarkably similar to the recovery guarantees obtained for compressed sensing,

note however that the number of measurements needs to be proportional to n, which is not desir-

able. We will present a similar result with improved number of measurements in Section 4.3.5.

Theorem 4.2.6. (Corollary of Theorem 4.3.8) Let x0 ∈ Rn be such that ‖∇x0‖ ≤ s for s > 0

and A ∈ Rm×n with m ≥ C
√
ns log(2n) be a standard Gaussian matrix. Furthermore, set

y = Ax0 + e, where ‖e‖ ≤ ε denotes the (bounded) error of the measurement and for some

absolute constants c, c̃ > 0 the solution x̂ of (4.12) satisfies

P

(
‖x̂− x0‖ >

2ε

c 4
√
ns(
√

log(2n)− 1)

)
≤ e−c̃

√
ns.

Note, however that in contrast to theorem 4.2.5, this theorem does not cover the case of

gradient compressible vectors, but on the other hand Theorem 4.3.8 also incorporates the case

of special subgaussian measurement ensembles. Also, if we set s = δn, we reach a similar

conclusion as in Theorem 4.2.5.

4.2.3 Recovery from Haar-incoherent measurements

For dimensions d ≥ 2, Needell and Ward [NW13a, NW13b] derived recovery results for meas-

urement matrices having the restricted isometry property (RIP) when composed with the Haar

wavelet transform. Here we say that a matrix Φ has the RIP of order k and level δ if for every

k-sparse vector x it holds that

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1− δ)‖x‖22.

The results of [NW13a, NW13b] build upon a connection between a signal’s wavelet rep-

resentation and its total variation seminorm first noted by Cohen, Dahmen, Daubechies and

DeVore [CDDD03].
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Their theorems yield stable recovery via TV minimization for Nd dimensional signals. For

d = 2, notably these recovery results concern images of size N ×N .

Several definitions are necessary in order to be able to state the theorem. The d dimensional

discrete gradient is defined via ∇ : RCd → CNd×d and maps x ∈ CNd
to its discrete derivative

which, for each α ∈ [N ]d is a vector (∇x)α ∈ Cd composed of the derivatives in all d directions.

Up to now, we have always used the anisotropic version of the TV seminorm, which can be seen

as taking the `1 norm of the discrete gradient. The isotropic TV seminorm is defined via a

combination of `2 and `1 norms. It is given by ‖z‖TV2 :=
∑

α∈[N ]d ‖(∇z)α‖2. The result

in [NW13a] is given in terms of the isotropic TV seminorm but can also be formulated for the

anisotropic version.

Furthermore, we will need to concatenate several measurement matrices in order to be able

to state the theorem. This will be done via the concatenation operator ⊕ : Lin(Cn,Ck1) ×
Lin(Cn,Ck2)→ Lin(Cn,Ck1+k2), which ’stacks’ two linear maps.

Finally, we need the notion of shifted operators. For an operator B : CN l−1×(N−1)×Nd−l →
Cq, these are defined as the operators B0l : CNd → Cq and B0l : CNd → Cq concatenating a

column of zeros to the end or beginning of the l-th component, respectively.

Theorem 4.2.7 ([NW13a]). Let N = 2n and fix integers p and q. Let A : CNd → Cp be a map

that has the restricted isometry property of order 2ds and level δ < 1 if it is composed with the

orthonormal Haar wavelet transform. Furthermore let B1, . . . ,Bd with Bj : C(N−1)Nd−1 → Cq

be such that B = B1⊕B2⊕ · · ·⊕Bd has the restricted isometry property of order 5ds and level

δ < 1
3 . Consider the linear operatorM = A⊕ [B1]01 ⊕ [B1]01 ⊕ · · · ⊕ [Bd]0d ⊕ [Bd]0d . Then

M : CNd → Cm with m = 2dq + p and for all x ∈ CNd
we have the following. Suppose we

have noisy measurements y =M(x) + e with ‖e‖2 ≤ ε, then the solution to

x̂ = arg min
z
‖z‖TV2 such that ‖M(z)− y‖2 ≤ ε

satisfies

1. ‖∇(x− x̂)‖2 ≤ c1

(
‖∇x−(∇x)S‖1,2√

s
+
√
dε
)

,

2. ‖x− x̂‖TV2 ≤ c2

(
‖∇x− (∇x)S‖1,2 +

√
sdε
)

,

3. ‖x− x̂‖2 ≤ c3d logN
(
‖∇x−(∇x)S‖1,2√

s
+
√
dε
)
,

for some absolute constants c1, c2, c3.

From the last point of the previous theorem, we see that for noiseless measurements and

gradient sparse vectors x, perfect recovery can be achieved provided the RIP assumption holds.
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Subgaussian measurement matrices, for example, will have the RIP, also when composed with

the Haar wavelet transform H (this is a direct consequence of rotation invariance). Moreover,

as shown in [KW11], randomizing the column signs of an RIP matrix will, with high probab-

ility, also yield a matrix that has the RIP when composed with H . An important example is a

subsampled Fourier matrix with random column signs, which relates to spread spectrum MRI

(cf. [PMG+12]).

4.2.4 Recovery from subsampled Fourier measurements

Fourier measurements are widely used in many applications. Especially in medical applica-

tions as parallel-beam tomography and magnetic resonance imaging it is desirable to reduce the

number of samples to spare patients burden. In Section 4.2.1, this is a motivation for introdu-

cing algorithmic checks for unique solutions of (4.3). In this section, we consider a probabil-

istic approach where an incomplete measurement matrix A ∈ Cm×n chosen from the discrete

Fourier transform on CN is considered. Therefore we consider a subset Ω of the index set

{−bn/2c+ 1, ..., dn/2e}, where Ω consists of m integers chosen uniformly at random and, ad-

ditionally, 0 ∈ Ω. Hence, we want to recover a signal, sparse in the gradient domain, with a

measurement matrix A = (e2πikj/n)k∈Ω,j∈[n]. In [CRT06a] the optimal sampling cardinality

for s-sparse signals in the gradient domain was given and enables to recover one-dimensional

signals signals from O(k log(n)) Fourier samples. It naturally extends to two dimensions.

Theorem 4.2.8. [CRT06a] With probability exceeding 1 − η, a signal z, which is k-sparse in

the gradient domain is the unique solution of (4.3) if

m & k(log(n) + log(η−1)).

As already discussed in the introduction, the proof of this result proceeds via recovering the

gradient and then using that the discrete gradient (with periodic boundary conditions) is injective.

Due to the poor conditioning of the gradient, however, this injectivity results do not directly

generalize to recovery guarantees for noisy measurements. For two (and more) dimensions,

such results can be obtained via the techniques discussed in the previous subsection.

These techniques, however, do not apply directly. Namely, the Fourier (measurement) basis is

not incoherent to the Haar wavelet basis; in fact, the constant vector is contained in both, which

makes them maximally coherent. As observed in [PVW11], this incoherence phenomenon only

occurs for low frequencies, the high frequency Fourier basis vectors exhibit small inner products

to the Haar wavelet basis. This can be taken into account using a variable density sampling

scheme with sampling density that is larger for low frequencies and smaller for high frequencies.

For such a sampling density, one can establish the restricted isometry for the corresponding
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randomly subsampled discrete Fourier matrix combined with the Haar wavelet transform with

appropriately rescaled rows [KW14b]. This yields the following recovery guarantee.

Theorem 4.2.9. [KW14b] Fix integers N = 2p,m, and s such that s & log(N) and

m & s log3(s) log5(N). (4.6)

Select m frequencies {(ωj1, ω
j
2)}mj=1 ⊂ {−N/2 + 1, . . . , N/2}2 i.i.d. according to

P
[
(ωj1, ω

j
2) = (k1, k2)

]
= CN min

(
C,

1

k2
1 + k2

2

)
=: η(k1, k2), −N/2 + 1 ≤ k1, k2 ≤ N/2,

(4.7)

where C is an absolute constant and CN is chosen such that η is a probability distribution.

Consider the weight vector ρ = (ρj)
m
j=1 with ρj = (1/η(ωj1, ω

j
2))1/2, and assume that the noise

vector ξ = (ξj)
m
j=1 satisfies ‖ρ ◦ ξ‖2 ≤ ε

√
m, for some ε > 0. Then with probability exceeding

1−N−C log3(s), the following holds for all images f ∈ CN×N :

Given noisy partial Fourier measurements y = FΩf + ξ, the estimation

f# = arg min
g∈CN×N

‖g‖TV such that ‖ρ ◦ (FΩg − y)‖2 ≤ ε
√
m, (4.8)

where ◦ denotes the Hadamard product, approximates f up to the noise level and best s-term

approximation error of its gradient:

‖f − f#‖2 .
‖∇f − (∇f)s‖1√

s
+ ε. (4.9)

A similar optimality result is given in [Poo15], also for noisy data and inexact sparsity. In

contrast to the previous result, this result includes the one-dimensional case. The key to obtain-

ing such a result is showing that the stable gradient recover implies the stable signal recovery,

i.e.,

‖z‖2 . γ + ‖z‖TV with ‖Az‖2 ≤ γ. (4.10)

Again the sampling distribution is chosen as a combination of the uniform distribution and a

decaying distribution. The main idea is to use this sampling to establish (4.10) via the RIP. We

skip technicalities for achieving the optimality in the following theorem and refer to the original

article for more details.

Theorem 4.2.10. [Poo15] Let z ∈ Cn be fixed and x be a minimizer of (4.5) with ε =
√
mδ for

some δ > 0, m & k log(n)(1 + log(η−1)), and an appropriate sampling distribution. Then with
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probability exceeding 1− η, it holds that

‖∇z −∇x‖2 .

(
δ
√
k + C1

‖P∇z‖1√
k

)
,
‖z − x‖2√

n
. C2

(
δ√
s

+ C1
‖P∇z‖1

k

)
,

where P is the orthogonal projection onto a k-dimensional subspace,

C1 = log(k) log1/2(m), and C2 = log2(k) log(n) log(m).

In the two-dimensional setting the result changes to

‖∇z −∇x‖2 .

(
δ
√
k + C3

‖P∇z‖1√
k

)
, ‖z − x‖2 . C2

(
δ + C3

‖P∇z‖1
k

)
,

with remaining C2 and

C3 = log(k) log(n2/k) log1/2(n) log1/2(m).

These results are optimal since the best error one can achieve [NW13b] is ‖z − x‖2 . ‖P∇z‖1√
k

.

The optimality in the latter theorems is achieved by considering a combination of uniform

random samling and variable density sampling. Uniform sampling on its own can achieve robust

and stable recovery. However, the following theorem shows that the signal error is no longer

optimal but the bound on the gradient error is still optimal up to log factors. Here (4.10) is

obtained by using the Poincaré inequality.

Theorem 4.2.11. [Poo15] Let z ∈ Cn be fix and x be a minimizer of (4.5) with ε =
√
mδ

for some δ > 0 and m & k log(n)(1 + log(η−1)) with random uniform sampling. Then with

probability exceeding 1− η, it holds that

‖∇z −∇x‖2 .

(
δ
√
k + C

‖P∇z‖1√
k

)
,
‖z − x‖2√

n
. (δ
√
s+ C‖P∇z‖1),

whereP is the orthogonal projection onto a k-dimensional subspace andC = log(k) log1/2(m).

4.3 TV-recovery from subgaussian measurements in 1D

In this section, we will apply the geometric viewpoint discussed in [Ver15] to the problem, which

will eventually allow us to show the TV recovery results for noisy subgaussian measurements

mentioned in Section 4.2.2.

As in the original proof of the 1D recovery guarantees for Gaussian measurements [CX15],

the Gaussian mean width will play an important role in our considerations.
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Definition 4.3.1. The (Gaussian) mean width of a bounded subset K of Rn is defined as

w(K) := E sup
x∈K−K

〈g, x〉,

where g ∈ Rn is a vector of i.i.d. N (0, 1) random variables.

In [CX15], the mean width appears in the context of the Gordon’s escape through the mesh

approach [Gor88] (see Section 4.3.4 below), but as we will see, it will also be a crucial ingredient

in applying the Mendelson small ball method [KM15, Men14].

The mean width has some nice (and important) properties, it is for example invariant under

taking the convex hull, i.e.,

w(ch(K)) = w(K).

Furthermore, it is also invariant under translations of K, as (K − x0) − (K − x0) = K −K.

Due to the rotational invariance of Gaussian random variables, that is Ug ∼ g, we also have that

w(UK) = w(K). Also, it satisfies the inequalities

w(K) = E sup
x∈K−K

〈g, x〉 ≤ 2E sup
x∈K
〈g, x〉 ≤ 2E sup

x∈K
|〈g, x〉|,

which are equalities ifK is symmetric about 0, because thenK = −K and henceK−K = 2K.

4.3.1 M∗ bounds and recovery

In order to highlight the importance of the Gaussian mean width in signal recovery, we present

some arguments from [Ver15]. Thus in this section we present a classical result, the M∗ bound,

which connects the mean width to recovery problems, cf. [Ver15]. Namely, recall that due to

rotational invariance, the kernel of a Gaussian random matrix A ∈ Rm×n is a random subspace

distributed according to the uniform distribution (the Haar measure) on the Grassmannian

Gn,n−m := {V ≤ Rn : dim(V ) = n−m}.

Consequently, the set of all vectors that yield the same measurements directly correspond to

such a random subspace.

The average size of the intersection of this subspace with a set reflecting the minimization

objective now gives us an average bound on the worst case error.

Theorem 4.3.1 (M∗ bound, Theorem 3.12 in [Ver15]). Let K be a bounded subset of Rn and

E be a random subspace of Rn of drawn from the Grassmanian Gn,n−m according to the Haar
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measure. Then

Ediam(K ∩ E) ≤ Cw(K)√
m

, (4.11)

where C is absolute constant.

Given theM∗-bound it is now straightforward to derive bounds on reconstructions from linear

observations. We first look at feasibility programs - which in turn can be used to obtain recovery

results for optimization problems. For that, let K ⊂ Rn be bounded and x ∈ K be the vector

we seek to reconstruct from measurements Ax = y with a Gaussian matrix A ∈ Rm×n.

Corollary 4.3.2. [MPTJ07] Choose x̂ ∈ Rn, such that

x̂ ∈ K and Ax̂ = y,

then one has, for an absolute constant C ′,

E sup
x∈K
‖x̂− x‖2 ≤ C ′

w(K)√
m

.

This corollary directly follows by choosing C ′ = 2C, observing that x̂ − x ∈ K − K, and

that the side constraint enforces A(x̂− x) = 0.

Via a standard construction in functional analysis, the so called Minkowski functional, one

can now cast an optimization problem as a feasiblity program so that Corollary 4.3.2 applies.

Definition 4.3.2. The Minkowski functional of a bounded, symmetric set K ⊂ Rn is given by

‖ · ‖K : Rn → R : x 7→ inf{t > 0: x ∈ tK}.

So the Minkowski functional tells us, how much we have to ’inflate’ our given set K in order

to capture the vector x. Clearly, from the definition we have that if K is closed

K = {x : ‖x‖K ≤ 1}.

If a convex set K is closed and symmetric, then ‖ · ‖K defines a norm on Rn.

Recall that a set K is star shaped, if there exists a point x0 ∈ K, which satisfies that for all

x ∈ K we have {tx0 + (1 − t)x : t ∈ [0, 1]} ⊂ K. It is easy to see that convex sets are star

shaped, but for example unions of subspaces are not convex, but star shaped.

For bounded, star shaped K, the notion of ‖ · ‖K now allows to establish a direct correspond-

ence between norm minimization problems and feasibility problems. With this observation,

Corollary 4.3.2 translates to the following result.
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4.3 TV-recovery from subgaussian measurements in 1D

Corollary 4.3.3. For K bounded, symmetric and star-shaped, let x ∈ K and y = Ax. Choose

x̂ ∈ Rn, such that it solves

min ‖z‖K with Az = y,

then

E sup
x∈K
‖x̂− x‖2 ≤ C ′

w(K)√
m

.

Here x̂ ∈ K is due to the fact that the minimum satisfies ‖x̂‖K ≤ ‖x‖K ≤ 1, as x ∈ K by

assumption.

This result directly relates recovery guarantees to the mean width, it thus remains to calculate

the mean width for the sets under consideration. In the following subsections, we will discuss

two cases. The first one directly corresponds to the desired signal model, namely gradient sparse

vectors. These considerations are mainly of theoretical interest, as the associated minimization

problem closely relates to support size minimization, which is known to be NP hard in general.

The second case considers the TV minimization problem introduced above, which then also

yields guarantees for the (larger) set of vectors with bounded total variation.

Note, however, that the M∗-bound only gives a bound for the expected error. We can relate

this result to a statement about tail probabilities using Markov’s inequality, namely

P(sup
x∈K
‖x− x̂‖2 > t) ≤ t−1E sup

x∈K
‖x− x̂‖2 ≤ C ′

w(K)

t
√
m
.

In the next section we compute the mean width for the set of gradient sparse vectors, that is

we now specify the set K in Corollary 4.3.2 to be the set of all vectors with energy bounded by

one that only have a small number of jumps.

4.3.2 The mean width of gradient sparse vectors in 1d

Here [PV13] served as an inspiration, as the computation is very similar for the set of sparse

vectors.

Definition 4.3.3. The jump support of a vector x is given via

Jsupp(x) := {i ∈ [n− 1] : xi+1 − xi 6= 0}.

The jump support captures the positions, in which a vector x changes its values. With this,

we now define the set

Ks
0 := {x ∈ Rn : ‖x‖2 ≤ 1, |Jsupp(x)| ≤ s}.
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The set Ks
0 consists of all s-gradient sparse vectors, which have 2-norm smaller than one. We

will now calculate the mean width of Ks
0 in order to apply Corrolary 4.3.2 or 4.3.3.

Note that we can decompose the setKs
0 into smaller setsKJ∩Bn

2 withKJ = {x : Jsupp(x) ⊂
J}, |J | = s and Bn

2 = {x ∈ Rn : ‖x‖2 ≤ 1}. As we can’t add any jumps within the set KJ , it

is a subspace of Rn. We can even quite easily find an orthonormal basis for it, if we define

(e[i,j])k :=
1√

j − i+ 1

1, if k ∈ [i, j]

0, else
.

As we can align all elements of J = {j1, j2, . . . , js} with 1 ≤ j1 < j2 < . . . < js = n, we see

that {e[1,j1], e[j1+1,j2], e[j2+1,j3], . . . , e[js−1+1,js]} forms an ONB of KJ . Now, we can write all

elements x ∈ KJ ∩Bn
2 as x =

∑s
i=1 αie[ji−1+1,ji] by setting j0 := 0. The property that x ∈ Bn

2

now enforces (ONB) that ‖α‖2 ≤ 1. Now, note that Ks
0 = −Ks

0 , so we have

w(Ks
0) = E sup

x∈Ks
0−Ks

0

〈g, x〉 = 2E sup
x∈Ks

0

〈g, x〉.

Using the decomposition Ks
0 =

⋃
|J |=s (KJ ∩Bn

2 ), we get

w(Ks
0) = 2E sup

|J |=s
sup

x∈KJ∩Bn
2

〈g, x〉.

Now

sup
x∈KJ∩Bn

2

〈g, x〉 ≤ sup
α∈Bs

2

s∑
i=1

αi〈g, e[ji−1+1,ji]〉 = sup
α∈Bs

2

s∑
i=1

αi

ji∑
k=ji−1+1

gk√
ji − ji−1︸ ︷︷ ︸

=:GJ
i

.

Note that GJi is again a Gaussian random variable with mean 0 and variance 1. Furthermore, the

supremum over α is attained, if α is parallel to GJ , so we have supx∈KJ∩Bn
2
〈g, x〉 = ‖GJ‖2.

Also note that GJ has i.i.d. entries, but for different J1, J2, the random vectors GJ1 and GJ2

may be dependent. Our task is now to calculate E sup|J |=s ‖GJ‖2. As it has been shown for

example in [FR13], we have that √
2

π

√
s ≤ E‖GJ‖2 ≤

√
s

and from standard results for Gaussian concentration (cf. [PV13]), we get

P(‖GJ‖2 ≥
√
s+ t) ≤ P(‖GJ‖2 ≥ E‖GJ‖2 + t) ≤ e−t

2/2.
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By noting that |{J ⊂ [n] : |J | = s}| =
(
n
s

)
, we see by a union bound that

P( sup
|J |=s

‖GJ‖2 ≥
√
s+ t) ≤

(
n

s

)
P(‖GJ‖2 ≥

√
s+ t) ≤

(
n

s

)
e−t

2/2.

For the following calculation, setX := sup|J |=s ‖GJ‖2. By Jensen’s inequality and rewriting

the expectation, we have that

eλEX ≤ EeλX =

∫ ∞
0
P(eλX ≥ τ)dτ.

Now, the previous consideration showed, that

P(eλX ≥ eλ(
√
s+t)︸ ︷︷ ︸

=:τ

) = P(X ≥
√
s+ t) ≤

(
n

s

)
e−t

2/2 =

(
n

s

)
e−(log(τ)/λ−

√
s)2/2,

Computing the resulting integrals yields

eλEX ≤
(
n

s

)
e−s/2λ

√
2πe(

√
s+λ)2/2.

Using a standard bound for the binomial coefficients, namely
(
n
s

)
≤ es log(en/s), we see

eλEX ≤ es log(en/s)−s/2+(
√
s+λ)2/2+log(λ)+log(

√
2π),

or equivalently

λEX ≤ s log(en/s)− s/2 + (
√
s+ λ)2/2 + log(λ) + log(

√
2π)

By setting λ =
√
s log(en/s) and assuming (reasonably) large n, we thus get

EX ≤ 5
√
s log(en/s).

From this, we see that

w(Ks
0) ≤ 10

√
s log(en/s).

It follows that the Gaussian mean width of the set of gradient sparse vectors is the same as the

mean width of sparse vectors due to the similar structure. If we want to obtain accuracy δ for

our reconstruction, according to Theorem 4.3.2, we need to take

m = O
(
s log(en/s)

δ2

)
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measurements.

In Compressed Sensing, the squared mean width of the set of s-sparse vectors (its so called

statistical dimension) already determines the number of required measurements in order to re-

cover a sparse signal with basis pursuit. This is the case because the convex hull of the set of

sparse vectors can be embedded into the `1-ball inflated by a constant factor. In the case of

TV minimization, as we will see in the following section, this embedding yields a (rather large)

constant depending on the dimension.

4.3.3 The extension to gradient compressible vectors needs a new
approach

In the previous subsection, we considered exactly gradient sparse vectors. However searching

all such vectors x that satisfy Ax = y is certainly not a feasible task. Instead, we want to solve

the convex program

min ‖z‖TV with Az = y,

with ‖z‖TV = ‖∇z‖1 the total variation seminorm. Now if we have that x ∈ Ks
0 , we get that

‖x‖TV ≤ 2‖α‖1 ≤ 2
√
s‖α‖2 = 2

√
s,

with α as in section 4.3.2, so Ks
0 ⊂ K

2
√
s

TV := {x ∈ Bn
2 : ‖x‖TV ≤ 2

√
s}. As K2

√
s

TV is convex,

we even have ch(Ks
0) ⊂ K

2
√
s

TV . We can think of the set K2
√
s

TV as ’gradient- compressible’

vectors.

In the proof of Theorem 3.3 in [CX15], the Gaussian width of the set K4
√
s

TV has been cal-

culated via a wavelet-based argument. One obtains that w(K
2
√
s

TV ) ≤ C
√√

ns log(2n) with

C ≤ 20 being an absolute constant. In this section we illustrate, that proof techniques different

from the ones used in the case of synthesis sparsity are indeed necessary in order to obtain useful

results. In the synthesis case, the 1-norm ball of radius
√
s is contained in the set of s-sparse

vectors inflated by a constant factor. This in turn implies that the mean width of the compressible

vectors is bounded by a constant times the mean width of the s-sparse vectors.

We will attempt a similar computation, that is to find a constant, such that the set K2
√
s

TV

is contained in the ’inflated’ set cn,sch(Ks
0). Then w(K

2
√
s

TV ) ≤ cn,sw(Ks
0). Although this

technique works well for sparse recovery, where cn,s = 2, it pityably fails in the case of TV

recovery as we will see below.

Let us start with x ∈ K
2
√
s

TV . Now we can decompose J := Jsupp(x) = J1 ] J2 ] . . . Jp
with |Jk| ≤ s in an ascending manner, i.e., for all k ∈ Ji, l ∈ Ji+1, we have that αk < αl.
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4.3 TV-recovery from subgaussian measurements in 1D

Note that the number p of such sets satisfies p ≤ n
s . Similarly as above, we now write x =∑|J |

i=1 αie[ji−1+1,ji] =
∑p

k=1

∑
i∈Jk αie[ji−1+1,ji]. From this, we see that

x =

p∑
k=1

‖αJk‖2
∑
i∈Jk

αi
‖αJk‖2

e[ji−1+1,ji]︸ ︷︷ ︸
∈Ks

0

.

The necessary factor cn,s can be found by bounding the size of ‖αJk‖2, namely

max(‖αJk‖2) ≤
p∑

k=1

‖αJk‖2
C−S
≤ ‖α‖2︸ ︷︷ ︸

≤1

√
p ≤

√
n

s
.

From this, we see that K2
√
s

TV ⊂
√

n
s ch(Ks

0). To see that this embedding constant is optimal,

we construct a vector, for which it is needed.

To simplify the discussion, suppose that n and s are even and s|n. For even n, the vector

x1 = (

√
1−(−1)kε

n )k has unity norm, lies in K2
√
s

TV for ε < 2
√
s

n and has jump support on all of

[n]!

For a vector x ∈ Rn and an index set I ⊂ [n], we define the restriction of x to I by

(x|I)j :=

xj , if j ∈ I

0, else.

By splitting Jsupp(x1) into sets J1, . . . , Jn/s and setting ak =
√

n
sx1|Jk ∈ Ks

0 , we see that

x1 =
∑n/s

k=1

√
s
nak and in order for this to be elements of cn,sch(Ks

0), we have to set cn,s =
√

n
s .

This follows from

x1 =

n/s∑
k=1

x1|Jk =

n/s∑
k=1

√
s

n

p

p
ak =

n/s∑
k=1

1

p

(√
n

s
ak

)
︸ ︷︷ ︸
∈
√

n
s
Ks

0

∈
√
n

s
ch(Ks

0)

and no smaller inflation factor than
√

n
s can suffice.

So from the previous discussion, we get

Lemma 4.3.4. We have the series of inclusions

ch(Ks
0) ⊂ K2

√
s

TV ⊂
√
n

s
ch(Ks

0).

75



4 Total Variation Minimization in Compressed Sensing

In view of the results obtainable for sparse vectors and the `1-ball, this is very disappointing,

because Lemma 4.3.4 now implies that the width of K2
√
s

TV satisfies

w(K
2
√
s

TV ) ≤ w
(√

n

s
ch(Ks

0)

)
=

√
n

s
w(Ks

0) ≤ 10
√
n log(e(n− 1)/s),

which is highly suboptimal.

Luckily, the results in [CX15] suggest, that the factor n in the previous equation can be re-

placed by
√
sn. However, they have to resort to a direct calculation of the Gaussian width of

K
2
√
s

TV . The intuition why the Gaussian mean width can be significantly smaller than the bound

given in Lemma 4.3.4 stems from the fact, that in order to obtain an inclusion we need to capure

all ’outliers’ of the set - no matter how small their measure is.

4.3.4 Exact recovery

For exact recovery, the M∗-bound is not suitable anymore and, as suggested in [Ver15], we will

use ’Gordon’s escape through the mesh’ in order to find conditions on exact recovery. Exact

recovery for TV minimization via this approach has first been considered in [CX15].

Suppose, we want to recover x ∈ Ks
0 from Gaussian measurements Ax = y. Given, that we

want our estimator x̂ to lie in a set K, exact recovery is achieved, if K ∩ {z : Az = y} = {x}.
This is equivalent to requiring

(K − x) ∩ {z − x : Az = y}︸ ︷︷ ︸
=ker(A)

= {0}.

With the descent cone D(K,x) = {t(z − x) : t ≥ 0, z ∈ K}, we can rewrite this condition as

D(K,x) ∩ ker(A) = {0},

by introducing the set S(K,x) = D(K,x) ∩Bn
2 , we see that if

S(K,x) ∩ ker(A) = ∅,

we get exact recovery. The question, when a section of a subset of the sphere with a random

hyperplane is empty is answered by Gordon’s escape through a mesh.

Theorem 4.3.5 ([Gor88]). Let S ⊂ Sn−1 be fixed and E ∈ Gn,n−m be drawn at random

according to the Haar measure. Assume that ŵ(S) = E supu∈S〈g, u〉 <
√
m, then S ∩ E = ∅
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4.3 TV-recovery from subgaussian measurements in 1D

with probability exceeding

1− 2.5 exp

(
−(m/

√
m+ 1− ŵ(S))2

18

)
.

So we get exact recovery with high probability from a program given in Theorem 4.3.2

or 4.3.3, provided that m > ŵ(S(K,x0))2.

Let’s see how this applies to TV minimization. Suppose, we are given x ∈ Ks
0 and Gaussian

measurements Ax = y. Solving

min ‖z‖TV with Az = y,

amounts to using the Minkowski functional of the set K = {z ∈ Rn : ‖z‖TV ≤ ‖x‖TV }, which

is a scaled TV-Ball.

In [CX15], the null space property for TV minimization given in Corollary 4.2.1 has been

used in order to obtain recovery guarantees.

They consider the set, where this condition is not met

S := {x′ ∈ Bn
2 : ∃J ⊂ [n], |J | ≤ s, ‖(∇x′)J‖1 ≥ ‖(∇x′)Jc‖1},

and apply Gordon’s escape through the mesh to see that with high probability, its intersection

with the kernel of A is empty, thus proving exact recovery with high probability. Their estimate

to the mean width of the set S,

ŵ(S) ≤ c 4
√
ns
√

log(2n)

with c < 19 is essentially optimal (up to logarithmic factors), as they also show that w(S) ≥
C 4
√
ns. So uniform exact recovery can only be expected for m = O(

√
sn log n) measurements.

Let us examine some connections to the previous discussion about the descent cone.

Lemma 4.3.6. We have that for K = {z ∈ Rn : ‖z‖TV ≤ ‖x‖TV } defined as above and

x ∈ Ks
0 , it holds that S(K,x) ⊂ S.

Proof. Let y ∈ S(K,x). Then there exists a x 6= z ∈ K, such that y = z−x
‖z−x‖2 . Set J =

Jsupp(x), then, as z ∈ K, we have that ‖z‖TV ≤ ‖x‖TV , or∑
i∈J
|(∇x)i| ≥

∑
i∈J
|(∇z)i|+

∑
i 6∈J
|(∇z)i|
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Now, by the triangle inequality and this observation, we have∑
i∈J
|(∇x)i − (∇z)i| ≥

∑
i∈J
|(∇x)i| − |(∇z)i| ≥

∑
i 6∈J
|(∇z)i| =

∑
i 6∈J
|(∇x)i − (∇z)i|.

The last equality follows from the fact that ∇x is zero outside of the gradient support of x.

Multiplying both sides with 1
‖z−x‖2 gives the desired result

‖(∇y)J‖1 =
1

‖z − x‖2

∑
i∈J
|(∇x)i−(∇z)i| ≥ ≥

1

‖z − x‖2

∑
i 6∈J
|(∇x)i−(∇z)i| = ‖(∇y)Jc‖1.

The previous lemma shows that the recovery guarantees derived from the null space property

and via the descent cone are actually connected in a very simple way.

Clearly, now if we do not intersect the set S, we also do not intersect the set S(K,x), which

yields exact recovery for example with the same upper bounds on m as for S. Even more

specifically, in the calculation of ŵ(S) given in [CX15], an embedding into a slightly larger set

S̃ = {x ∈ Bn
2 : ‖x‖TV ≤ 4

√
s} is made. This embedding can also quite easily be done if we

note that ‖x‖TV ≤ 2
√
s, as we showed above and ‖z‖TV ≤ ‖x‖TV .

Note that the same discussion also holds for higher dimensional signals, such that the im-

proved numbers of measurements as given in Section 4.2.2 can be applied.

4.3.5 Subgaussian measurements

Up to this point, all our measurement matrices have been assumed to consist of i.i.d. Gaussian

random variables. We will reduce this requirement in this section to be able to incorporate also

subgaussian measurement matrices into our framework.

Definition 4.3.4. A real valued random variable X is called subgaussian, if there exists a num-

ber t > 0, such that EetX
2
< ∞. A real valued random vector is called subgaussian, if all of

its one dimensional marginals are subgaussian.

An obvious example of subgaussian random variables are Gaussian random variables, as the

expectation in Definition 4.3.4 exists for all t < 1. Also, all bounded random variables are

subgaussian.

Here, we rely on results given by Tropp in [Tro15] using the results of Mendelson [KM15,

Men14]. We will consider problems of the form

min ‖z‖TV such that ‖Az − y‖ ≤ ε, (4.12)

78



4.3 TV-recovery from subgaussian measurements in 1D

whereA is supposed to be a matrix with independent subgaussian rows. Furthermore, we denote

the exact solution by x0, i.e., Ax0 = y. We pose the following assumptions on the distribution

of the rows of A.

(M1) EAi = 0,

(M2) There exists α > 0, such that for all u ∈ Sn−1 it holds that E|〈Ai, u〉| ≥ α,

(M3) There is a σ > 0, such that for all u ∈ Sn−1 it holds thatP(|〈Ai, u〉| ≥ t) ≤ 2 exp(−t2/(2σ2)),

(M4) The constant ρ := σ
α is small.

Then the small ball methods yields the following recovery guarantee (we present the version

of [Tro15]).

Theorem 4.3.7. Let x0 ∈ Rn and A ∈ Rm×n be a subgaussian matrix satisfying (M1)-(M4)

above. Furthermore, set y = Ax0 + e, where ‖e‖ ≤ ε denotes the (bounded) error of the

measurement. Then the solution x̂ of (4.12) satisfies

‖x̂− x0‖ ≤
2ε

max{cαρ−2
√
m− Cσw(S(K,x0))− αt, 0}

with probability exceeding 1− e−ct
2
. D(K,x0) denotes the descent cone of the set K at x0, as

defined in the previous section.

From this we see that, provided

m ≥ C̃ρ6w2(S(K,x0)),

we obtain stable reconstruction of our original vector from (4.12). Note that the theorem is only

meaningful for t = O(
√
m), as otherwise the denominator vanishes.

In the previous section, we have shown the inclusion S(K,x0) ⊂ S for x0 ∈ K0
s and hence

we have that

w(S(K,x0) ≤ w(S) ≤ c 4
√
ns
√

log(2n).

So we see that for m ≥ C̃ρ6√ns log(2n), we obtain the bound

‖x̂− x0‖ ≤
2ε

max{cαρ−2
√
C̃ρ3 4
√
ns
√

log(2n)− Cσ 4
√
ns
√

log(2n)− αt, 0}

=
2ε

max{σ(c
√
C̃ − C) 4

√
ns
√

log(2n)− αt, 0}
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with high probability. We conclude that, given the absolute constants c, C, we need to set

C̃ ≥ C2

c2
in order to obtain a meaningful result. Combining all our previous discussions with

Theorem 4.3.7, we get

Theorem 4.3.8. Let x0 ∈ Rn, m ≥ C̃ρ6√ns log(2n) and A ∈ Rm×n be a subgaussian matrix

satisfying (M1)-(M4). Furthermore, set y = Ax0 + e, where ‖e‖ ≤ ε denotes the (bounded)

error of the measurement, constants c, C, C̃ > 0 as above and t ≤ σ(c
√
C̃−C) 4√ns

√
log(2n)

α . Then

the solution x̂ of (4.12) satisfies

P

(
‖x̂− x0‖ >

2ε

σ(c
√
C̃ − C) 4

√
ns
√

log(2n)− αt

)
≤ e−ct

2
.

We can for example set t = ρ(c
√
C̃ − C) 4

√
ns (for n ≥ 2) to obtain the bound

P

(
‖x̂− x0‖ >

2ε

σ(c
√
C̃ − C) 4

√
ns(
√

log(2n)− 1)

)
≤ e−c̃ρ

√
ns.

For example for i.i.d. standard Gaussian measurements, the constant ρ =
√

2
π .

Note that in the case of noisefree measurements ε = 0, Theorem 4.3.8 gives an exact recov-

ery result for a wider class of measurement ensembles with high probability. Furthermore with

a detailed computation of w(S(K,x0)) one may be able to improve the number of measure-

ments for nonuniform recovery. It also remains open, whether the lower bounds of Cai and Xu

for the case of Gaussian measurements can be generalized to the subgaussian case. In fact, our

numerical experiments summarized in Figure 4.2 suggest a better scaling in the ambient dimen-

sion, around N1/4, in the average case. We consider it an interesting problem for future work

to explore whether this is due to a difference between Rademacher and Gaussian matrix entries,

between uniform and nonuniform recovery, or between the average and the worst case. Also, it

is not clear whether the scaling is in fact N1/4 or if the observed slope is just a linearization of,

say, a logarithmic dependence.

4.4 Discussion and open problems

As the considerations in the previous sections illustrate, the mathematical properties of total vari-

ation minimization differ significantly from algorithms based on synthesis sparsity, especially

in one dimension. For this reason, there are a number of questions that have been answered for

synthesis sparsity, but which are still open for the framework of total variation minimization. For

example, the analysis provided in [RRT12b, KMR14b] for deterministically subsampled partial
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Figure 4.2: Average error of recovery from Rademacher measurements in 1d with m measure-
ments and ambient dimension N for fixed cosparsity level s = 5. Left: linear axis
scaling, Right: logarithmic axis scaling. The slope of the phase transition in the
log-log plot is observed to be about 1

4 .

random circulant matrices, as they are used to model measurement setups appearing in remote

sensing or coded aperture imaging, could not be generalized to total variation minimization. The

difficulty in this setup is that the randomness is encoded by the convolution filter, so it is not clear

what the analogy of variable density sampling would be.

Another case of practical interest is that of sparse 0/1 measurement matrices. Recently it has

been suggested that such meausurements increase efficiency in photoacoustic tomography, while

at the same time, the signals to be recovered (after a suitable temporal transform) are approx-

imately gradient sparse. This suggests the use of total variation minimization for recovery, and

indeed empirically, this approaches yields good recovery results [SKB+15]. Theoretical guaran-

tees, however, (as they are known for synthesis sparse signals via an expander graph construction

[BGI+08]) are not available to date for this setup.
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Interlude

The previous chapter was devoted to the study of total variation regularization, i.e. using the

regularizer ‖∇ · ‖1. This is a special case of analyisis-cosparse regularization, where one knows

that there is some operator Ω, such that its application on a given signal produces a sparse vector.

This means that regularization by ‖Ω · ‖1 would be a good choice. However, typically one does

not know, which operator Ω is suited for the given class of data. This is why in this chapter,

four iterative algorithms for learning such analysis operators are presented. They are built upon

the same optimization principle underlying both Analysis K-SVD and Analysis SimCO. The

Forward and Sequential Analysis Operator Learning (FAOL and SAOL) algorithms are based on

projected gradient descent with optimally chosen step size. The Implicit AOL (IAOL) algorithm

is inspired by the implicit Euler scheme for solving ordinary differential equations and does

not require to choose a step size. The fourth algorithm, Singular Value AOL (SVAOL), uses a

similar strategy as Analysis K-SVD while avoiding its high computational cost. All algorithms

are proven to decrease or preserve the target function in each step and a characterisation of their

stationary points is provided. Further, they are tested on synthetic and image data, compared

to Analysis SimCO and found to give better recovery rates and faster decay of the objective

function respectively. In a final denoising experiment the presented algorithms are again shown

to perform similar to or better than the state-of-the-art algorithm ASimCO.
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5 Online and Stable Learning of Analysis Operators

5.1 Introduction

Many tasks in high dimensional signal processing, such as denoising or reconstruction from

incomplete information, can be efficiently solved if the data at hand is known to have intrinsic

low dimension. One popular model with intrinsic low dimension is the union of subspaces

model, where every signal is assumed to lie in one of the low dimensional linear subspaces.

However, as the number of subspaces increases, the model becomes more and more cumbersome

to use unless the subspaces can be parametrised. Two examples of large unions of parametrised

subspaces, that have been successfully employed, are sparsity in a dictionary and cosparsity in

an analysis operator. In the sparse model the subspaces correspond to the linear span of just a

few normalised columns, also known as atoms, from a d×K dictionary matrix, Φ = (φ1 . . . φK)

with ‖φk‖2 = 1, meaning, any data point y can be approximately represented as superposition of

S � d dictionary elements. If we denote the restriction of the dictionary to the atoms/columns

indexed by I as ΦI , we have

y ∈
⋃
|I|≤S

colspan ΦI , or y ≈ Φx, with x sparse.

In the cosparse model the subspaces correspond to the orthogonal complement of the span

of some normalised rows, also known as analysers, from a K × d analysis operator Ω =

(ω?1 . . . ω
?
K)? with ‖ωk‖2 = 1. This means that any data point y is orthogonal to ` analysers

or in other words that the vector Ωy has ` zero entries and is sparse. If we denote the restriction

of the analysis operator to the analysers/rows indexed by J as ΩJ , we have

y ∈
⋃
|J |≥`

(rowspan ΩJ)⊥, or Ωy ≈ z, with z sparse.

Note that in this model it is not required that the signals lie in the span of Ω?, in particular Ω?Ω

need not be invertible. Before being able to exploit these models for a given data class, it is

necessary to identify the parametrising dictionary or analysis operator. This can be done either

via a theoretical analysis or a learning approach. While dictionary learning is by now an estab-

lished field, see [RBE10] for an introductory survey, results in analysis operator learning are still

countable, [YNGD11, RB13, NDEG13, YNGD13, HKD13, RPE13, DWD14, EB14, GNE+14,

SWGK16, DWD+16].

Most algorithms are based on the minimization of a target function together with various con-

straints on the analysis operator. In [YNGD11, YNGD13], an `1-norm target function together

with the assumption that the operator is a unit norm tight frame was used. In transform learn-

ing [RB13], in addition to the sparsity of ΩY , a regularisation term amounting to the negative
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log-determinant of Ω is introduced to enforce full rank of the operator. Note that due to the

nature of this penalty term overcomplete operators cannot be considered. The geometric ana-

lysis operator learning framework [HKD13] uses operators with unit norm rows, full rank and

furthermore imposes the restriction that none of the rows are linearly dependent. The last as-

sumption is an additional restriction only if the considered operators are overcomplete. These

assumptions admit a manifold structure and a Riemannian gradient descent algorithm is used in

order to find the operator. Analysis K-SVD [RPE13] uses an analysis sparse coding step to find

the cosupports for the given data and then computes the singular vector corresponding to the

smallest singular value of a matrix computed from the data. Finally, in [DWD14, DWD+16] a

projected gradient descent based algorithm with line search, called Analysis SimCO, is presen-

ted. There, the only restriction on the analysis operator is that its rows are normalised and the

target function enforces sparsity of ΩY .

Contribution: In this work we will contribute to the development of the field by developing

four algorithms for learning analysis operators, which improve over state of the art algorithms

such as Analysis K-SVD, [RPE13] and Analysis SimCo, [DWD14, DWD+16], in terms of con-

vergence speed, memory complexity and performance.

Outline: The paper is organised as follows. After introducing the necessary notation, in the next

section we will remotivate the optimization principle that is the starting point of A-KSVD and

ASimCO and shortly discuss the advantages and disadvantages of the two algorithms. We then

take a gradient descent approach similar to ASimCO, replacing the line search with an optimal

choice for the step size, resulting in the Forward Analysis Operator Learning algorithm (FAOL).

In order to obtain an online algorithm, which processes the training data sequentially, we devise

an estimation procedure for the quantities involved in the step size calculation leading to the Se-

quential Analysis Operator Learning algorithm (SAOL) and test the presented algorithms both

on synthetic and image data. Inspired by the implicit Euler scheme for solving ordinary differ-

ential equations and the analysis of some special solutions of these equations, in Section 5.3,

we gradually invest in the memory requirements and computational complexity per iteration of

our schemes in return for avoiding the stepsize altogether and overall faster convergence, lead-

ing to Implicit (IAOL) and Singular Vector Analysis Operator Learning (SVAOL). After testing

the new algorithms on synthetic and image data demonstrating the improved recovery rates and

convergence speed with respect to ASimCO, in Section 5.4 we apply them to image denoising

again in comparison to ASimCO. Finally, in the last section we provide a short discussion of our

results and point out future directions of research.

Notation: Before hitting the slopes, we summarise the notational conventions used throughout

this paper. The operators Ω and Γ will always denote matrices in RK×d and for a matrix A we

denote its transpose by A?. More specifically, we will mostly consider matrices in the manifold
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A := {Γ ∈ RK×d : ∀k ∈ [K] : ‖γk‖2 = 1}, where γk denotes the k-th row of the matrix Γ. By

[n], we denote the set {1, 2, . . . , n} and we adopt the standard notation |M | for the cardinality

of a set M . By ΓJ with J ⊂ [K] we denote the restriction of Γ to the rows indexed by J .

A vector y ∈ Rd is called `-cosparse with respect to Ω, if there is an index set Λ ⊂ [K] with

|Λ| = `, such that ΩΛy = 0. The support of a vector x ∈ RK is defined as supp(x) = {k ∈
[K] : xk 6= 0} and the cosupport accordingly as cosupp(x) = {k ∈ [K] : xk = 0}. Note that by

definition we have supp(x) ∪ cosupp(x) = [K]. For the runtime complexity R(n), we adopt

standard Landau notation, i.e. R(n) = O(f(n)) means, there is a constant C > 0, such that for

large n, the runtime R(n) satisfies R(n) ≤ Cf(n).

Finally, the Frobenius norm of a matrix A is defined by ‖A‖2F := tr(A?A).

5.2 Two explicit analysis operator learning algorithms - FAOL
and SAOL

Since optimization principles have already successfully led to online algorithms for diction-

ary learning, [Sch15a, Sch16], we will start our quest for an online algorithm by motivating a

suitable optimization principle for analysis operator learning. Suppose, we are given signals

yn ∈ Rd that are perfectly cosparse in an operator Ω, i.e. Ωyn has ` zero entries or equivalently

Ωyn − xn = 0 for some xn which has K − ` non-zero entries. If we collect the signals yn as

columns in the matrix Y = (y1 . . . yN ), then by construction we have ΩY − X = 0 for some

X ∈ X` with X` := {(x1, x2, . . . , xN ) ∈ RK×N : | supp(xn)| = K − `}. In the more realistic

scenario, where the signals are not perfectly cosparse, we should still have ΩY −X ≈ 0, which

naturally leads to the following minimization program to recover Ω,

arg min
Γ∈A,X∈X`

‖ΓY −X‖2F . (5.1)

Apart from additional side constraints on Γ, such as incoherence, the optimization program

above has already been used successfully as starting point for the development of two ana-

lysis operator learning algorithms, Analysis K-SVD [RPE13] and Analysis SimCO [DWD14,

DWD+16]. AKSVD is an alternating minimization algorithm, which alternates between finding

the best X ∈ X` for the current Γ and updating Γ based on the current X . The cosparse approx-

imation scheme used there is quite cumbersome and costly, which means that the algorithm soon

becomes intractable as d increases. ASimCO is a (gradient) descent algorithm with line search.

It produces results similar to AKSVD and has the advantage that it does so with a fraction of the

computational cost. Still, at closer inspection we see that the algorithm has some problematic

aspects. The line search cannot be realised resource efficiently, since in each step several evalu-
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ations of the target function are necessary, which take up a lot of computation time. Moreover,

for each of these function evaluations we must either reuse the training data, thus incurring high

storage costs, or use a new batch of data, thus needing a huge amount of training samples. Still,

if we consider the speedup of ASimCO with respect to AKSVD we see that gradient descent is

a promising approach if we can avoid the line search and its associated problems.

To see that a gradient descent based algorithm for our problem can also be sequential, let us

rewrite our target function, gN (Γ) = minX∈X`
‖ΓY −X‖2F . Abbreviating Λn = supp(xn) and

Λcn = cosupp(xn), we have

gN (Γ) =
N∑
n=1

min
xn:|Λn|=K−`

‖Γyn − xn‖22 =

=
N∑
n=1

min
xn:|Λn|=K−`

(‖ΓΛc
n
yn‖22 + ‖ΓΛnyn − xn‖22︸ ︷︷ ︸

=0

)

=
N∑
n=1

min
|J |=`

‖ΓJyn‖22 =: fN (Γ).

Since the gradient of a sum of functions is the sum of the gradients of these functions, from fN

we see that the gradient of our objective function can be calculated in an online fashion.

Before going into more details about how to avoid a line search and stay sequential, let us lose a

few words about the uniqueness of the minima of our objective function.

If the signals are perfectly cosparse in Ω, clearly there is a global minimum of fN at Ω. How-

ever, one can easily see that all permutations and sign flips of rows of Ω are also minimizers of

fN . We call these the trivial ambiguities. The more interesting question is whether there are

other global or local minima?

This question is best answered with an example. Assume that all our training signals are (per-

fectly) `-cosparse in Ω but lie in a subspace of Rd. In this case we can construct a continuum

of operators Γ, which also satisfy fN (Γ) = 0 by choosing a vector v with ‖v‖2 = 1 in the

orthogonal complement of this subspace, and by setting γk = akωk + bkv for some a2
k + b2k = 1.

This example indicates that isotropy in the data is important for our problem to be well posed.

On the other hand, in case the data has such a low dimensional structure, which can be found

via a singular value decomposition of Y ?Y , it is easy to transform the ill posed problem into a

well posed one. Armed with the non-zero singular vectors, we just have to project our data onto

the lower dimensional space spanned by these vectors and learn the analysis operator within

this lower dimensional space. In the following, we assume for simplicity that any such prepro-

cessing has already been done and that the data isotropically occupies the full ambient space Rd

or equivalently that Y ?Y is well conditioned.
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5.2.1 Minimzing fN

As mentioned above in order to get an online algorithm we want to use a gradient descent

approach but avoid the line search. Our strategy will be to use projected stochastic gradient-type

descent with carefully chosen stepsize. Given the current estimate of the analysis operator Γ,

one step of (standard) gradient descent takes the form

Γ̄ = Γ− α∇fN (Γ) .

Let us calculate the gradient ∇fN (Γ) wherever it exists. Denote by Jn the set1 for which

‖ΓJnyn‖22 = min|J |=` ‖ΓJyn‖22, then the derivative of fN with respect to a row γk of Γ is

∂fN
∂γk

(Γ) =
N∑
n=1

∑
j∈Jn

∂

∂γk
〈γj , yn〉2 =

N∑
n=1

∑
j∈Jn

2〈γj , yn〉y?nδkj =
∑

n : k∈Jn

2〈γk, yn〉y?n =: 2gk.

(5.2)

Note that as expected the vectors gk can be calculated online, that is given a continuous stream

of data yn, we compute Jn, update all gk for k ∈ Jn, and forget the existence of yn. After

processing all signals, we set

γ̄k = (γk − αkgk)βk. (5.3)

where βk = ‖γk −αkgk‖−1
2 is a factor ensuring normalisation of γ̄k. This normalisation corres-

ponds to a projection onto the manifold A and is necessary, since a standard descent step will

most likely take us out of the manifold. If we compare to dictionary learning, e.g. [Sch15a], it

is interesting to observe that we cannot simply choose αk by solving the linearised optimization

problem with side constraints using Lagrange multipliers, since this would lead to a zero-update

γ̄k = 0.

In order to find the correct descent parameter, note that the current value of the target function is

given by

fN (Γ) =
N∑
n=1

∑
k∈Jn

|〈γk, yn〉|2 =
K∑
k=1

∑
n : k∈Jn

|〈γk, yn〉|2.

1The careful reader will observe that the set Jn might not be unique for every yn and Γ. If for a given Γ at least
one Jn is not uniquely determined and min|J|=` ‖ΓJyn‖2

2 > 0, then the target function is not differentiable in
Γ. For simplicity we will continue the presentation as if the Jn where uniquely determined, keeping in mind that
the derived descent direction only coincides with the gradient where it exists.
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Defining Ak :=
∑

n : k∈Jn yny
?
n, we see that fN (Γ) =

∑K
k=1 γkAkγ

?
k and we can optimally

decrease the objective function by choosing αk, such that it minimizes γ̄kAkγ̄?k . Note also that

with this definition, the descent directions gk defined in Equation (5.2) are given by gk = γkAk.

First assume that gk 6= 0, or more generally gk 6= λkγk. In case gk = 0 the part of the objective

function associated to γk is already zero and cannot be further reduced, while in case gk = λkγk

any admissible stepsize not leading to the zero vector preserves the current analyser, that is

γ̄k = γk. To optimally decrease the target function, we need to solve

αk = arg min
α

(γk − αgk)Ak(γk − αgk)?

‖(γk − αgk)‖2
. (5.4)

Defining ak = γkAkγ
?
k , bk = γkA

2
kγ

?
k and ck = γkA

3
kγ

?
k a short computation given in Ap-

pendix 5.6 shows that whenever b2k 6= akck the optimal stepsize has the form,

αk =
akbk − ck +

√
(ck − akbk)2 − 4(b2k − akck)(a2

k − bk)
2(b2k − akck)

.

If b2k = akck and bk 6= 0, the optimal stepsize is αk = ak
bk

. Finally, if bk = ‖Akγ?k‖22 = 0 it

follows that Akγ?k = 0 and therefore also ak = ck = 0. In this case we set αk = 0, as γkAkγ?k
is already minimal.

We summarise the first version of our derived algorithm, called Forward Analysis Operator

Learning (FAOL) in Table 5.1. As input parameters, it takes the current estimate of the analysis

operator Γ ∈ RK×d, the cosparsity parameter ` and N training signals Y = (y1, y2, . . . , yN ).

As a result of the optimal stepsize choice we can prove the following theorem characterising the

behaviour of the FAOL algorithm.

Theorem 5.2.1. The FAOL algorithm decreases or preserves the value of the target function in

each iteration.

Preservation rather than decrease of the target function can only occur if all rows γk of the

current iterate Γ are eigenvectors of the matrix Ak(Γ).

Proof. To prove the first part of the theorem observe that

f(Γ) =
K∑
k=1

∑
n : k∈Jn

|〈γk, yn〉|2 ≥
K∑
k=1

∑
n : k∈Jn

|〈γ̄k, yn〉|2 ≥
K∑
k=1

∑
n : k∈J̄n

|〈γ̄k, yn〉|2 = f(Γ̄).

where J̄n denotes the minimizing set for yn based on Γ̄. The first inequality follows from the

choice of αk and the second inequality follows from the definition of the sets Jn and J̄n.

The second part of the theorem is a direct consequence of the derivation of αk given in Ap-
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FAOL(Γ, `, Y ) - (one iteration)

• For all n ∈ [N ]:

– Find Jn = arg min|J |=` ‖ΓJyn‖22.

– For all k ∈ [K] update Ak = Ak + yny
?
n if k ∈ Jn.

• For all k ∈ [K]:

– Set a = γkAkγ
?
k , b = γkA

2
kγ

?
k and c = γkA

3
kγ

?
k .

– If b2 − ac 6= 0, set αk :=
ab−c+

√
(c−ab)2−4(b2−ac)(a2−b)

2(b2−ac) .

– If b2 − ac = 0 and b 6= 0, set αk := a
b .

– If b2 − ac = 0 and b = 0, set αk := 0.

– Set γ̄k = γk(1− αkAk).

Output Γ̄ = ( γ̄1

‖γ̄1‖2 , . . . ,
γ̄K
‖γ̄K‖2 )?.

Table 5.1: The FAOL algorithm

pendix 5.6.

Let us shortly discuss the implications of Theorem 5.2.1. It shows that the sequence of values

of the target function vk = f(Γ(k)) converges. This, however, does not imply convergence

of the algorithm as suggested in [DWD+16], at least not in the sense that the sequence Γ(k)

converges. Indeed the sequence Γ(k) could orbit around the set L = {Γ ∈ A : f(Γ) = v},
where v = limk→∞ vk. If this set contains more than one element, there need not exist a limit

point of the sequence Γ(k). Nevertheless, due to compactness of the manifold A, we can always

find a subsequence, that converges to an element Γ ∈ L. In order to avoid getting trapped in

such orbital trajectories, in numerical experiments we draw a fresh batch of signals y1, . . . , yN

in each iteration of the algorithm.

We proceed with an analysis of the runtime complexity of the FAOL algorithm. The cost of

finding the support sets Sk = {n : k ∈ Jn} of average size N`/K in the FAOL algorithm is

O(dKN) amounting to the multiplication of the current iterate Γ with the data matrix Y and

subsequent thresholding. We can now either store the K matrices Ak of size d × d amounting

to a memory complexity of O(Kd2) or store the data matrix Y and the optimal cosupports Sk
requiring memory on the order of O(dN) and O(`N), respectively. Setting up all matrices Ak
takes O(d2N) multiplications and O(`d2N) additions, if done sequentially, and dominates the

cost of calculating ak, bk, ck. Denote by Yk the submatrix of the data matrix Y with columns
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indexed by Sk. Note that with this convention we have Ak = YkY
?
k . If we store the data

matrix Y and the sets Sk, we can also compute all necessary quantities via gk = (γkYk)Y
?
k ,

a = 〈gk, γk〉, b = 〈gk, gk〉 and c = 〈gkYk, gkYk〉 altogether amounting to O(`dN) floating

point operations, as in this case only matrix-vector products have to be computed. So while the

memory complexity of the first approach might be smaller depending on the amount of training

data, the second approach has a reduced computational complexity.

If we are now given a continuous stream of high dimensional data, it is not desirable to store

either the matrices Ak or the data matrix Y , so as a next step we will reformulate the FAOL

algorithm in an online fashion. Note, that with the exception of c, all quantities in the FAOL

algorithm can be computed in an online fashion. We will solve this issue by estimating c from

part of the data stream. First, note that if we exchange the matrix Ak in the FAOL algorithm

with the matrix Ãk := 1
|Sk|

∑
n∈Sk

yny
?
n, where Sk := {n ∈ [N ] : k ∈ Jn}, we do not alter

the algorithm. The numbers ck can be computed from the gradients gk and the matrix Ak via

ck = gkAkg
?
k = 1

|Sk|
∑

n∈Sk
|〈gk, yn〉|2. If we want to estimate ck, we need both, a good

estimate of the gradients gk, and a good estimate ofAkg?k. We do this by splitting the datastream

into two parts. The first part of the datastream is used to get a good estimate of the normalised

gradient gk. The second part is used to refine gk as well as to estimate 1
|Sk|

∑
n∈Sk

|〈gk, yn〉|2.

The parameter ε specifies the portion of the datastream used to estimate ck and refine gk. We

summarise all our considerations leading to the algorithm, referred to as Sequential Analysis

Operator Learning (SAOL), in Table 5.2.

Concerning the computation and storage costs, we see that, as for FAOL, the computationally

expensive task is determining the sets Jn. This has to be done for each of our N sample vectors

via determining the ` smallest entries in the product Γyn. The matrix-vector product takes (2d−
1)K operations and searching can be done in one run through theK resulting entries, yielding an

overall runtime complexity of O(dKN). However, compared to FAOL, the sequential version

has much lower memory requirements on the order of O(dK), corresponding to the gradients

gk and the current version of the operator Γ. In order to see how the two algorithms perform, we

will next conduct some experiments both on synthetic and image data.

5.2.2 Experiments on synthetic data

In the first set of experiments, we use synthetic data generated from a given (target) analysis op-

erator Ω. A data vector y is generated by choosing a vector z from the unit sphere and a random

subset Λ of ` analysers. We then project z onto the orthogonal complement of the chosen ana-

lysers, contaminate it with Gaussian noise and normalise it, see Table 5.3. The cosparse signals

generated according to this model are very isotropic and thus do not exhibit the pathologies we

described in the counterexample at the beginning of the section.
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SAOL(Γ, `, Y, ε) - (one iteration)

Initialize Ik, Ck, ck = 0 and gk = 0 for k ∈ [K].

• For all n ∈ [N ]:

– Find Jn = arg min|J |=` ‖ΓJyn‖22.

– For all k ∈ Jn update Ik → Ik + 1 and

gk →
Ik − 1

Ik
gk +

1

Ik
〈γk, yn〉y?n.

– If n > (1− ε)N and k ∈ Jn update Ck → Ck + 1 and

ck →
Ck − 1

Ck
ck +

1

Ck
|〈gk, yn〉|2.

• For all k ∈ [K]:

– Set a = 〈γk, gk〉, b = 〈gk, gk〉 and c = ck,

– Set αk =
ab−c+

√
(c−ab)2−4(b2−ac)(a2−b)

2(b2−ac) .

– Set γ̄k = (γk − αkgk).

• Output Γ̄ = ( γ̄1

‖γ̄1‖2 , . . . ,
γ̄K
‖γ̄K‖2 )?.

Table 5.2: The SAOL algorithm
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Signal model(Ω, `, ρ)
Input:

• Ω ∈ RK×d - target analysis Operator,

• ` - cosparsity level of the signals w.r.t. Ω,

• ρ - noise level.

Generation of the signals is done in the following way:

• Draw z ∼ N (0, Id), r ∼ N (0, ρ2Id) and Λ ∼ U(
([K]
`

)
).

• Set

y =
(1− Ω†ΛΩΛ)z + r

‖(1− Ω†ΛΩΛ)z + r‖
. (5.5)

The matrix (1− Ω†ΛΩΛ) is a projector onto the space of all cosparse signals
with cosupport Λ, so generating our signals in this way makes sure that they
are (up to some noise) cosparse.

Table 5.3: Signal model

Target operator: As target operator for our experiments with synthetic data, we used a random

operator of size 128× 64 consisting of rows drawn i.i.d. from the unit sphere S63.

Training signals: Unless specified otherwise, in each iteration of the algorithm, we use 217 =

131072 signals drawn according to the signal model in Table 5.3 with cosparsity level ` = 55

and noiselevel ρ = 0 for noisefree resp. ρ = 0.2/
√
d for noisy data. We also conducted ex-

periments with cosparsity level ` = 60, but the results are virtually indistinguishable from the

results for ` = 55, so we chose not to present them here. We refer the interested reader to the

AOL toolbox on the homepage of the authors2, which can be used to reproduce the experiments.

Initialisation & setup: We use both a closeby and a random initialisation of the correct size.

For the closeby initialisation, we mix the target operator 1:1 with a random operator and nor-

malise the rows, that is, our initialisation operator is given by Γ0 = Dn(Ω + R), where R is

a K × d matrix with rows drawn uniformly at random from the unit sphere Sd−1 and Dn is a

diagonal matrix ensuring that the rows of Γ0 are normalised. For the random initialisation we

simply set Γ0 = R. The correct cosparsity level ` is given to the algorithm and the results have

been averaged over 5 runs with different initialisations.

2All experiments can be reproduced using the AOL Matlab toolbox available at https://www.uibk.ac.at/
mathematik/personal/schnass/code/aol.zip.

95

https://www.uibk.ac.at/mathematik/personal/schnass/code/aol.zip
https://www.uibk.ac.at/mathematik/personal/schnass/code/aol.zip


5 Online and Stable Learning of Analysis Operators

Recovery threshold: We use the convention that an analyser ωk is recovered if maxj |〈ωk, γj〉| ≥
0.99.

Our first experiment is designed to determine the proportion of signals L = εN that SAOL

should use to estimate the values of ck. We make an exploratory run for FAOL and SAOL

with several choices of ε, using 16384 noiseless, 60-cosparse signals per iteration and a random

initialisation.
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Figure 5.1: Recovery rates of an exploratory run using FAOL and SAOL with different epsilons
for the recovery of a random 128×64 operator using 16384 samples in each iteration.

The recovery rates in Figure 5.1 indicate that in order for the SAOL algorithm to achieve the

best possible performance, ε should be chosen small, meaning one should first get a good estim-

ate of the gradients gk. This allocation of resources also seems natural since for small ε a large

portion of the data is invested into estimating the d-dimensional vectors gk, while only a small

portion is used to subsequently estimate the numbers ck. Based on these findings we from now

on set ε = 10% for the SAOL-algorithm.

In the next experiment we compare the recovery rates of FAOL, SAOL and Analysis-SimCO [DWD+16]

from random and closeby initialisations in a noiseless setting.

The first good news of the results, plotted in Figure 5.2, is that the sequential algorithm SAOL

with estimated stepsize performs as well as the one with explicitly calculated optimal stepsize.

We also see that with a closeby initialisation both algorithms recover the target operator (almost)

perfectly for both cosparsity levels, which indicates that locally our algorithms perform as expec-

ted. With a random initialisation the algorithms tend to saturate well below full recovery. This is

not surprising, as the nonconvex optimization we perform depends heavily on the initialisation.

In case of the closeby initialisation, we set each row of the starting operator near the desired row

of the target operator. In contrast, for the random initialisation it is very likely that two rows of

the initialised operator lie close to the same row of the target operator. Our algorithms then tend
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Figure 5.2: Recovery rates of SAOL, FAOL and ASimCo from signals with various cosparsity
levels ` in a noiseless setting, using closeby (left) and random (right) initialisations
for cosparsity level ` = 55.

Figure 5.3: Operator learned with FAOL from a random initialisation (left) vs the original Dirac-
DCT operator (right). The rows of the learned operator have been reordered and the
signs have been matched with the original operator for easier comparison. For the
learning 300 iterations with 8192 noiseless 12-cosparse signals, constructed accord-
ing to the model in Table 5.3 were used.
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to find the nearest row of the target operator and thus we get multiple recovery of the same row.

As we have prescribed a fixed number of rows, another row must be left out, which leads to the

observed stagnation of the recovery rates and means that we are trapped in a local minimum of

our target function. Figure 5.3 illustrates this effect for the Dirac-DCT operator in R40×20.

Since the phenomenon of recovering duplicates is not only as old as analysis operator learning

but as old as dictionary learning, [AEB06], there is also a known solution to the problem, which

is the replacement of coherent analysers or atoms.

5.2.3 Replacement

A straightforward way to avoid learning analysis operators with duplicate rows is to check after

each iteration, whether two analysers of the current iterate Γ are very coherent. Under the as-

sumption that the coherence of the target operator µ(Ω) = maxi 6=j∈[K] |〈ωi, ωj〉| is smaller than

some threshold µ(Ω) ≤ µ0, we know that two rows of γi, γj are likely to converge to the same

target analyser, whenever we have |〈γi, γj〉| > µ0.

In this case, we perform the following decorrelation procedure. During the algorithm, we mon-

itor the activation of the individual rows of the operator, that is, if the k−th row of the operator is

used for a set Jn, we increment a counter vk. If now two rows γi and γj have overlap larger than

µ0, we compare the numbers vi and vj and keep the row with larger counter. Without loss of

generality suppose vi > vj . We then subtract the component in direction of γi from γj , namely

γ̃j = γj − 〈γi, γj〉γi and renormalise.

This decorrelation is different from the one that is performed in [DWD+16], but has the merit

that correct rows that have already been found do not get discarded or perturbed. This is espe-

cially useful in the case we consider most likely, where one row already has large overlap with

a row of the target operator and another row slowly converges towards the same row. Then our

decorrelation procedure simply subtracts the component pointing in this direction.

Since, unlike dictionaries, analysis operators can be quite coherent and still perform very well,

for real data it is recommendable to be conservative and set the coherence threshold µ0 rather

high.

Figure 5.4 shows the recovery results of our algorithm with the added replacement step for

µ0 = 0.8, when using a random initialisation and the same settings as described at the beginning

of the section.

We see that in the noiseless case, after 10000 iterations almost 90% of the signals have been

recovered. If we introduce a small amount of noise, however, significantly fewer rows are re-

covered. To avoid repetition we postpone a thorough comparison of FAOL/SAOL to ASimCo on

synthetic data to Section 5.3.3 after the introduction of our other two algorithms in Section 5.3,
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Figure 5.4: Recovery rates of SAOL and FAOL with replacement from signals with cosparsity
level ` = 55 in a noiseless (left) and a noisy setting (right), using a random
initialisation.

however we can already observe now that both SAOL and FAOL perform better than IASimCO.

Next we take a look at how the optimal stepsize affects learning on image data.

5.2.4 Experiments on image data

To get an indication how our algorithms perform on real data, we will them to learn a quadratic

analysis operator on all 8× 8 patches of the 256× 256 Shepp Logan phantom, cf. Figure 5.11.

We initialise the analysis operator Γ ∈ R64×64 randomly as for the synthetic data and set the

cosparsity level ` = 57, the parameter ε = 10% and the replacement threshold µ0 = 0.99.

For each iteration we choose 16384 out of the available 62001 patches uniformly at random

as training signals. Since we do not have a reference operator for comparison this time, we

compare the value of target function after each iteration, as plotted in Figure 5.5. We can see

that the target function is only decreased very slowly by all algorithms, where ASimCO saturates

at a seemingly suboptimal value, which is also illustrated by the recovered operator shown in

Figure 5.5.

As we choose the optimal stepsize for FAOL, we further cannot hope to increase convergence

speed significantly using an explicit descent algorithm.

Still, if we look at the learned operator, we can see the merit of our method. After 100000

iterations, the learned operator seems to consist of pooled edge detectors, which are known to

cosparsify piecewise constant grayscale images. Note also that the d × d analysis operator is

naturally very different from any d × d dictionary we could have learned with corresponding

sparsity level S = d − `, see e.g [Sch16]. This is due to the fact that image patches are not

isotropic, but have their energy concentrated in the low frequency ranges. So while both the

99



5 Online and Stable Learning of Analysis Operators

d × d dictionary and the analysis operator will not have (stable) full rank, the dictionary atoms

will tend to be in the low frequency ranges, and the analysers will - as can be seen - tend to be

in the high frequency ranges.

We also want to mention that for image data the replacement strategy for µ0 = 0.99 is hardly

ever activated. Lowering the threshold results in continuous replacement and refinding of the

same analysers. This phenomenon is again explained by the lack of isotropy and the shift invari-

ant structure of the patch data, for which translated and thus coherent edge detectors, as seen in

Figure 5.5, naturally provide good cosparsity.

Encouraged by the learned operator we will explore in the next section how to stabilise the

algorithm and accelerate its convergence on image data.
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Figure 5.5: Shepp Logan phantom (top left), value of the target function for both algorithms (top
right), operator obtained by FAOL (bottom left) and by ASimCo (bottom right) after
100000(!) iterations.
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5.3 Two implicit operator learning algorithms - IAOL and
SVAOL

Due to the small optimal stepsize that has to be chosen on real data and the resulting slow

convergence, we need to rethink our approach and enforce stability of the algorithm even with

larger stepsizes.

5.3.1 The IAOL algorithm

In standard gradient descent, for each row of Γ, we have the iteration

γ̄k = γk − α∇fN (Γ)k. (5.6)

Rewriting yields

γ̄k − γk
α

= −∇fN (Γ)k, (5.7)

which can be interpreted as an explicit Euler step for the system of ordinary differential equations

γ̇k = −∇fN (Γ)k, k ∈ [K]. (5.8)

The explicit Euler scheme is the simplest integration scheme for ordinary differential equations

and known to have a very limited region of convergence with respect to the stepsize. In our case,

this means that we have to choose extremely small values for the descent parameter α in order

to achieve convergence.

The tried and tested strategy to overcome stability issues when numerically solving differential

equations is to use an implicit scheme for the integration, [HNW93, HW10]. We will use this as

an inspiration to obtain a more stable learning algorithm.

We briefly sketch the ideas behind an implicit integration scheme. Suppose we want to solve

the differential equation ẋ = f(x). If we discretise x(t) and approximate the derivative by

ẋ(tn) ≈ x(tn)−x(tn−1)
tn−tn−1

, we have to choose whether we use the approximation ẋ(tn) = f(x(tn))

or ẋ(tn) = f(x(tn−1)). Choosing f(x(tn−1)) yields the explicit Euler scheme, which in our

setting corresponds to the FAOL algorithm. If we choose f(x(tn)) we obtain the implicit Euler

scheme and need to solve

x(tn)− x(tn−1)

tn − tn−1
= f(x(tn)). (5.9)
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5 Online and Stable Learning of Analysis Operators

IAOL(Γ, `, Y, α) - (one iteration)

• For all n:

– Find Jn = arg min|J |=` ‖ΓJyn‖22.

– For all k ∈ Jn update Ak = Ak + yny
?
n.

• For all k ∈ [K] set γ̄k = γk (1+ αAk)
−1.

• Output Γ̄ = ( γ̄1

‖γ̄1‖2 , . . . ,
γ̄K
‖γ̄K‖2 )?.

Table 5.4: The IAOL algorithm

If f(x) = Ax is linear, this leads to the recursion

x(tn) = (1− (tn − tn−1)A)−1x(tn−1), (5.10)

and in each step we need to solve a system of linear equations. This makes implicit integration

schemes inherently more expensive than explicit schemes. However, in return we get additional

stability with respect to the possible stepsizes. If f is a nonlinear function, the inversion is more

difficult and can often only be approximated for example via a Newton method.

Mapping everything to our setting, we observe that the gradient ∇fN (Γ) is nonlinear because

the sets Jn depend on Γ. Still, due to the special structure of the gradient ∇fN (Γ), it has a

simple linearisation, ∇fN (Γ)k = 2γk
∑

n : k∈Jn yny
?
n. We can now use the current iterate of Γ

to compute the matrix Ak(Γ) :=
∑

n : k∈Jn yny
?
n and to linearise the equation. For our operator

learning problem, we get the following linearised variant of the implicit Euler scheme

γ̄k − γk
α

= −γ̄kAk(Γ), (5.11)

leading to the recursion

γ̄k = γk(1+ αAk(Γ))−1 (5.12)

Due to the unconditional stability of the implicit Euler scheme, [HW10], we can take α con-

siderably larger than in case of FAOL or SAOL. We only need to make sure that one step of

the algorithm does not take us too close to zero, which is a stable attractor of the unconstrained

system. In order to stay within the manifold A, we again have to renormalise after each step.

The final algorithm is summarised in Table 5.4.
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5.3 Two implicit operator learning algorithms - IAOL and SVAOL

Let us take a short look at the computational complexity of the implicit algorithm and the

price we have to pay for increased stability. As in the previous section, we need to compute all

products of the vectors yn with the current iterate Γ, costing O(NKd). Further, in each step

we need to solve K linear systems of size d × d, amounting to an additional cost of O(Kd2).

So, altogether for one step, we arrive at O(NKd + Kd2) = O(NKd). However, in contrast

to FAOL, the IAOL algorithm cannot be made sequential, unless we are willing to store the K

matricesAk in each step. This amounts to an additional spatial complexity ofO(Kd2), and only

pays off forN > Kd, since the storage cost of the data matrix isO(Nd). Note that in contrast to

FAOL, the explicit calculation of the matrices Ak is necessary, since we need to solve a system

of linear equations. As for the FAOL algorithm, we can guarantee decrease or preservation of

the target function by the IAOL algorithm.

Theorem 5.3.1. The IAOL algorithm decreases or preserves the value of the target function in

each step regardless of the choice of α > 0. Preservation rather than decrease of the objective

function can only occur if all rows γk of the current iterate Γ are eigenvectors of the matrices

Ak(Γ).

Proof. In order to simplify notation, we drop the indices and write Γ for the current iterate. As

we will do the computations only for a fixed row γk of Γ, we denote it by γ. We further write A

for the matrix corresponding to γ and γ̄ for the next iterate. We want to show

γ̄Aγ̄? − γAγ? =
γA(1+ αA)−2γ?

γ(1+ αA)−2γ?
− γAγ? ≤ 0,

which is implied by

γ(A(1+ αA)−2 −Aγ?γ(1+ αA)−2)γ? = γ(A(1− γ?γ)(1+ αA)−2)γ? ≤ 0,

as the denominator is positive. We now use the eigendecomposition of the symmetric, posit-

ive semidefinite matrix A, that is A =
∑

i λiuiu
?
i , where λi ≥ 0 for all i and (ui)i∈[d] is an

orthonormal basis.

Inserting this, a short computation shows that

γ(A(1− γ?γ)(1+ αA)−2)γ? =
∑
i

∑
l 6=i

λi
α(2 + α(λi + λl))|〈γ, ui〉|2|〈γ, ul〉|2

(1 + αλi)2(1 + αλl)2︸ ︷︷ ︸
=:ail

(λl − λi).

Note that ail = ali ≥ 0. Further, we can drop the condition l 6= i in the sums above, as the term

corresponding to the case i = l is zero.

In order to show that the sum S1 :=
∑

i,l λiail(λl − λi) is never positive, define a second
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sum S2 :=
∑

i,l λlail(λl − λi). Then, by antisymmetry, we have that S1 + S2 =
∑

i,l(λi +

λl)ail(λl−λi) = 0. Further, S2−S1 =
∑

i,l ail(λl−λi)2 ≥ 0, from which follows that S1 ≤ 0.

The whole discussion is independent of α > 0, so any viable choice of α results in a decrease of

the objective function.

Assume now that γ̄Aγ̄? − γAγ? = 0. Then also γ(A(1 − γ?γ)(1 + αA)−2)γ? = S1 = 0.

This in turn implies that S2 = 0 and S2 − S1 = 0. As every term in
∑

i,l ail(λl − λi)
2 is

positive or zero, we have that for all i 6= l also ail(λl − λi)2 must be zero. If all eigenvalues of

the matrix A are distinct this implies that ail = 0 for all i 6= l. This in turn implies that for all

i 6= l the product |〈γ, ui〉|2|〈γ, ul〉|2 = 0, so either the overlap of γk with ui or ul is zero. But

this means that γk must be equal to one of the eigenvectors. If not all eigenvalues of the matrix

A are distinct, then the previous discussion still holds for the eigenvalues which are distinct.

Assume that i 6= l and λi = λj . Then ail(λl − λi)2 = 0 regardless of the value of ail, so if

γ ∈ span{ui, ul}, we still have that S2 − S1 = 0. This shows that in all cases, where the target

function does not decrease, γ needs to be an eigenvector of A.

Note that the IAOL algorithm essentially performs a single step of an inverse iteration to

compute the eigenvectors corresponding to the smallest eigenvalues of the matrices Ak. We will

use this fact in the next section to introduce our last algorithm to learn analysis operators.

5.3.2 The SVAOL algorithm

Revisiting condition (5.4) suggests another algorithm for learning analysis operators. The step-

size choice essentially amounts to

γ̄k = arg min
v∈K2(γk,Ak)∩(Sd−1)?

vAkv
?

vv?
,

where K2(γk, Ak) = span{γk, γkAk}, the Krylov space of order 2. Removing the restriction

that γ̄k must lie in the Krylov space K2(γk, Ak) yields the update step

γ̄k = arg min
v∈(Sd−1)?

vAkv
?,

which means that γ̄k is the eigenvector corresponding to the smallest eigenvalue of the matrix

Ak. The resulting algorithm, called SVAOL, is summarised in Table 5.5.

The obtained SVAOL algorithm bears close resemblance to the ’Sequential Minimal Eigen-

values’ algorithm devised in [OEBP11]. However, a key difference is that the computation of

the rows of the target operator is not done sequentially in the SVAOL algorithm. Furthermore,

the following theorem concerning decrease of the target function can be established.
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SVAOL(Γ, `, Y ) - (one iteration)
For all k ∈ [K], set Ak = 0.

• For all n:

– Find Jn = arg min|J |=` ‖ΓJyn‖22.

– For all k ∈ [K] update Ak = Ak + yny
?
n if k ∈ Jn.

• For all k ∈ [K], set γ̄k = arg minv∈(Sd−1)? vAkv
?.

• Output Γ̄ = (γ̄1, . . . , γ̄K)?.

Table 5.5: The SVAOL algorithm

Theorem 5.3.2. The SVAOL algorithm decreases or preserves the value of the target function

in each step. The only case when it preserves the value of the target function is when the rows

γk are already eigenvectors corresponding to the smallest eigenvalues of the matrices Ak.

The results for SVAOL given in Theorem 5.3.2 improve the results obtained for IAOL in

Theorem 5.3.1. Now the decrease of the target function can be guaranteed if not all rows of the

current iterate Γ are already the eigenvectors corresponding to the smallest eigenvalues of the

matrices Ak.3

Proof. To show this, denote by (Ak)k∈[K] and (Āk)k∈[K] the matrices defined in Table 5.5 for

the operators Γ and Γ̄, respectively. Further denote by (σk)k∈[K] and (σ̄k)k∈[K] their smallest

singular values.

Then

f(Γ) =
K∑
k=1

γkAkγ
?
k ≥

K∑
k=1

σk =
K∑
k=1

γ̄kAkγ̄
?
k =

=

K∑
k=1

∑
n : k∈Jn

|〈γ̄k, yn〉|2 ≥
K∑
k=1

∑
n : k∈J̄n

|〈γ̄k, yn〉|2 =

=
K∑
k=1

γ̄kĀkγ̄
?
k = f(Γ̄)

3This means that if the target function is differentiable in Γ and cannot be decreased by the SVAOL algorithm, we
have already arrived at a local minimum. As we have stated previously, however, the target is not differentiable
everywhere and thus this cannot be used to derive a local optimality result.
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due to the definition of the sets Jn and J̄n. The first inequality is strict, except in the case when

γk are already eigenvectors of Ak corresponding to the smallest eigenvalues.

Finding the eigenvectors corresponding to the smallest eigenvalues of the matrices Ak is in-

deed the desired outcome, which can be seen as follows. First, note that the matrices Ak(Γ)

are (up to a constant) empirical estimators of the matrices Ak(Γ) := Eyy?χ{y : k∈JΓ(y)}, where

JΓ(y) = arg min|J |=` ‖ΓJy‖22. The rows ωk of the target operator Ω are (in the noisefree setting)

always eigenvectors to the eigenvalue zero for the matrix Ak(Ω), since according to the signal

model given in Table 5.3, we have

Ak(Ω) = Eyy?χ{y : k∈JΩ(y)}

= E(1− Ω†ΛΩΛ)zz?(1− Ω†ΛΩΛ)χ{(Λ,z) : k∈J(Λ,z)}

= EΛ(1− Ω†ΛΩΛ)Ezzz?(1− Ω†ΛΩΛ)χ{Λ: k∈Λ}

= EΛ(1− Ω†ΛΩΛ)χ{Λ: k∈Λ}

=

(
K

`

)−1 ∑
Λ: k∈Λ

(1− Ω†ΛΩΛ),

where J(Λ,z) = arg min|J |=` ‖ΩJ(1− Ω†ΛΩΛ)z‖22.

Multiplying this matrix with ωk yields zero, as k always lies in Λ and so every term in the

sum maps ωk to zero.

The Analysis K-SVD algorithm [RPE13] takes a similar approach as the SVAOL algorithm.

At first, cosupport sets are estimated and then the singular vector to the smallest singular value

of the resulting data matrix is computed. The notable difference, however, is how the cosupport

set is estimated. We use a hard thresholding approach, whereas for Analysis K-SVD an analysis

sparse-coding step is employed, which uses significantly more computational resources.

We see that the computation and storage complexity for the first steps (i.e. setting up and

storing the matrices Ak) of the SVAOL algorithm are the same as for IAOL. This means that

the spatial complexity of SVAOL is O(Kd2). For the runtime complexity, which is O(NKd)

for the setup of the matrices, we need to include the cost of computing the K smallest singular

values of the matrices Ak. This can be done for example using the SSVII algorithm presented

in [SS03], in which for each iteration a system of linear equations of size d+ 1 has to be solved.

We observed that typically 10 iterations of the algorithm are sufficient, so the computational

complexity for this step is 10 times higher than for IAOL.
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Figure 5.6: Recovery rates of IAOL and SVAOL in a noisefree (left) and a noisy (right) setting
compared to FAOL and ASimCO using cosparsity level ` = 55 using a random
initialisation.

5.3.3 Experiments on synthetic data

As for the explicit algorithms presented above, we first try our new algorithm on synthetic data.

For this, we again learn an operator from data generated from a random operator with normalised

rows in R128×64. The setup is the same as in Section 5.2.2 and the results are shown in Figure 5.6.

We use a large stepsize α = 100 in order to achieve fast convergence.

Note that IAOL and SVAOL saturate faster than FAOL, cf. Figure 5.2. However, IAOL and

SVAOL without replacement recover slightly fewer rows as FAOL, which is probably a result of

the faster convergence speed.

Finally, since the implicit algorithms per se, like FAOL, do not penalise the recovery of two

identical rows, cf. Figure 5.3, we again need to use the replacement strategy introduced in

Section 5.2.3.

The simulation results, using replacement with µ0 = 0.8 and the usual setup are shown

in Figure 5.7. We see that IAOL and SVAOL come closer to full recovery than their explicit

counterpart FAOL within the considered 10000 iterations. Again, for noisy data the algorithms

saturate well below full recovery.

5.3.4 Experiments on image data

Finally, we want to see how the stabilised algorithms perform on real data. We use the same

image (Shepp Logan) and setup as in Section 5.2.4 to learn a square analysis operator for 8× 8

patches, cf. Figure 5.5. We will not use the SAOL algorithm in the simulations from now on, as

the execution time in Matlab is considerably higher due to the required for-loops. However, as
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Figure 5.7: Recovery rates of IAOL, SVAOL, FAOL and IASimCo with replacement from sig-
nals with cosparsity level ` = 55 in a noiseless (left) and a noisy (right) setting, using
a random initialisation.

we have seen, it performs mostly like the FAOL algorithm.
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Figure 5.8: Decay of the target function using FAOL, IAOL and SVAOL for the Shepp Logan
phantom (left) and the operator recovered by IAOL after 100(!) iterations (right).

As can be seen in Figure 5.8, the training is much faster now, because the stepsize does not

have to be chosen as small as in the previous section. The decrease in the objective function is

very fast compared to FAOL, and we see that already after a few iterations the algorithm stabil-

ises and we, as expected, obtain combinations of discrete gradients as anlysers. As for FAOL we

observe that the replacement strategy for µ0 = 0.99 is hardly ever activated and that lowering

the threshold results in finding and replacing the same translated edge detectors.

In the remainder of this section, we will investigate the time complexity of the presented al-

gorithms numerically. Naturally, the explicit algorithms use significantly fewer computational

resources per iteration. We compare the average calculation times per iteration on a 3.1 GHz In-
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Figure 5.9: Recovery rates of FAOL, IAOL, SVAOL and IASimCo from 55-cosparse signals in
a noisy setting (left). Decay of the target function using IASimCO, FAOL, IAOL
and SVAOL to learn a 128 × 64 operator for the Shepp Logan image (right). The
figures depict the execution time of the algorithm on the x-axis. SAOL is omitted, as
the execution time is not comparable due to the Matlab implementation.

tel Core i7 Processor. For IASimCO the out-of-the-box version on the homepage of the authors

of [DWD+16] is used.

Figure 5.9 (left) shows the recovery rates of the four algorithms plotted against the cumulative

execution time. We can see that on synthetic data, the IAOL and SVAOL algorithms show a

similar performance to FAOL, followed by IASimCo. Using FAOL as a baseline, we see that

one iteration of ASimCo takes about twice as long, one iteration of IAOL takes about four times

as long and one iteration of SVAOL takes 5-6 times longer, but this significantly depends on the

number of iterations of the inverse iteration to find the smallest singular value.

In the experiment on image data, we learn an overcomplete operator with 128 rows from

the 8 × 8 patches of the 256 × 256 (unnormalised) Shepp Logan phantom contamined with

Gaussian noise with PSNR ≈ 20. We choose as cosparsity level ` = 120, initialise randomly

and in each iteration use 20000 randomly selected patches out of the available 62001. Since

for image data our replacement strategy is hardly ever activated, we directly omit it to save

computation time. IASimCo is again used in its out-of-the-box version. In Figure 5.9, one can

clearly observe that the IAOL and SVAOL algorithms indeed minimise the target function in a

fraction of the iterations necessary for the FAOL algorithm, which in turn is much faster than

IASimCO. Already after 10 seconds, IAOL and SVAOL have essentially finished minimizing

the objective function, whereas FAOL needs, as seen in the previous section, about 100000

iterations to get to approximately the same value of the objective function. IASimCo lags behind

severely and, as indicated by the shape of the curve, saturates at a highly suboptimal value of
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Figure 5.10: Analysis operators learned in 120 seconds with data drawn from the Shepp-Logan
phantom contaminated with Gaussian noise, by ASimco (top left), FAOL (top
right), IAOL (bottom left) and SVAOL (bottom right).

the target function. This fact can also be observed by looking at the learned analysis operators

in Figure 5.10.

Encouraged by this good performance we will in the next section apply our algorithms to image

denoising.

5.4 Image denoising

In this section we will compare the performance of analysis operators learned by the FAOL,

IAOL and SVAOL algorithms presented in this paper in combination with Tikhonov regularisa-

tion for image denoising to the performance of operators learned by (I)ASimCO. For easy com-

parison we use the same setup as in [DWD+16], where (I)ASimCo is compared to several other

major algorithms for analysis operator learning, [RB13, YNGD13, HKD13, RPE13, EB14], and

found to give the best performance.

Learning setup: We follow the setup for the Shepp-Logan image in the last section. Our

training data consists of all 8 × 8 patches of one of the 256 × 256 images from Figure 5.11

corrupted with Gaussian white noise of standard deviation σ = 12.8 and σ = 45 leading to a

PSNR of approximately 25dB and 15dB, respectively. The analysis operators of size 128 × 64

are initialised by drawing each row uniformly at random from the unit sphere, and then updated

using in each step 20000 randomly selected patches of the available 62001 and a cosparsity

level ` ∈ {70, 80, 90, 100, 110, 120}. The same initialisation is used for all algorithms. For
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Figure 5.11: Images used for learning and denoising. Top: Shepp-Logan, House, MRI; Bottom:
Cameraman, Einstein, Mandrill.

(I)ASimCo and FAOL we use 2000 and for IAOL and SVAOL 500 iterations. We perform the

optimization without replacement for FAOL, IAOL and SVAOL.

Denoising setup: For the denoising step we use a standard approach via Tikhonov regularisation

based on the learned analysis operator Γ, [EA06, EMR07]. For each noisy patch y we solve,

ŷ = arg min
z

λ‖Γz‖1 + ‖z − y‖2 (5.13)

for a regularisation parameter λ ∈ {0.002, 0.01, 0.05, 0.1, 0.3, 0.5}. We then reassemble the

denoised patches ŷ to the denoised image, by averaging each pixel in the full image over the

denoised patches in which it is contained. To measure the quality of the reconstruction for each

cosparsity level ` and regularisation parameter λ we average the PSNR of the denoised image

over 5 different noise realisations and initialisations. Table 5.6 shows the PSNR for optimal

choice of ` and λ for each of the algorithms. We can see that all five algorithms provide a

comparable denoising performance, mostly staying with 0.1dB of each other. However, while

FAOL, IAOL, SVAOL never lag more than 0.14dB behind, they do improve upon (I)ASimCo

for more than 1dB twice. The denoising results for one of these cases, that is the Shepp-Logan

phantom in the low-noise regime, are shown in Figure 5.12 .

After confirming that our algorithms indeed learn useful operators also on real data, we now

turn to a discussion of our results.
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Algorithm SL Cam Ein MRI Hou Man

σ
=

1
2.

8

ASimCO 32.57 30.36 31.30 31.69 31.78 28.52
IASimCO 32.49 30.32 31.19 31.77 31.60 28.28

FAOL 33.91 30.33 31.62 31.70 32.86 28.71
IAOL 33.39 30.24 31.54 31.71 32.66 28.64

SVAOL 33.49 30.22 31.57 31.73 32.77 28.70
σ

=
4
5

ASimCO 27.65 24.16 25.87 25.66 27.19 23.46
IASimCO 27.50 23.87 25.78 25.52 27.12 23.33

FAOL 28.33 24.17 25.82 25.66 27.21 23.50
IAOL 28.38 24.18 25.83 25.65 27.19 23.52

SVAOL 28.36 24.20 25.84 25.62 27.18 23.51

Table 5.6: Performance of FAOL, IAOL, SVAOL and (I)ASimCO for denoising for different
pictures and noise levels σ.

Figure 5.12: Denoised Shepp-Logan phantom using the optimal parameters for the various
presented algorithms for noise level σ = 12.8.
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5.5 Discussion

We have developed four algorithms for analysis operator learning based on projected stochastic

gradient-like descent, SAOL, FAOL, IAOL and SVAOL. The algorithms perform better than the

state-of-the-art algorithms (I)ASimCO, [DWD+16], which are similarly gradient descent based

and have slightly higher but comparable computational complexity per iteration, in terms of re-

covery rates resp. reduction of the objective function. Another advantage of SAOL is that it

is sequential with a memory requirement corresponding to the size of the operator, O(dK). In

contrast ASimCO either is non-sequential with a memory requirement of the order of the data

matrix, O(dN), or in a sequential setting needs O(LN) training samples corresponding to the

L evaluations of the objective function necessary for the line search. IAOL and SVAOL, which

are more stable than SAOL and FAOL, are sequential when accepting a memory requirement

O(d2K) and in a non-sequential setting have again memory requirement O(dN).

On synthetic data, the recovery of the target operator using the algorithms presented here is sig-

nificantly faster than with (I)ASimCo. On real data the implicit algorithms IAOL and SVAOL

minimize the objective function in a fraction of the time that is needed by the explicit algorithms

FAOL and ASimCo. Considering image denoising via Tikhonov regularisation as application of

analysis operator learning, we see that the operators presented in this paper give similar or better

results as the (I)ASimCo operators in the considered denoising setups.

A Matlab toolbox to reproduce all the experiments reported in this paper can be found at

http://homepage.uibk.ac.at/˜c7021041/code/AOL.zip.

While the good performance of the developed algorithms certainly justified the effort, one of

our main motivations for considering a projected gradient descent approach to analysis oper-

ator learning was to derive convergence results similar to those for dictionary learning, [Sch16].

However, even a local convergence analysis, turns out to be quite different and much more com-

plicated than for dictionary learning. The main reason for this is that sparsity is more robust to

perturbations than cosparsity. So for an S-sparse signal y = ΦIxI and a perturbed dictionary

Ψ with ‖ψk − φk‖2 < ε for balanced xI the best S-term approximation in Ψ will still use the

same support I . In contrast, if y is `-cosparse with respect to an analysis operator Ω, ΩΛy = 0,

then for a perturbed operator Γ with ‖γk − ωk‖2 < ε the smallest ` entries of Γy will not all be

located in Λ. In order to get a local convergence result one has to deal with the fact that only

part of the cosupport is preserved. We expect that for most signals containing k in the cosupport

with respect to Ω, k will also be in the cosupport with respect to Γ. Unfortunately the mathemat-

ical tools necessary to quantify these statements are much more involved than the comparatively

simple results necessary for the convergence of dictionary learning and so the local convergence

analysis remains on our agenda for future research. It is also possible that the analysis can be
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carried out from a dynamical systems perspective using the differential equations described in

the beginning of Section 5.3.

Another research direction we are currently pursuing is inspired by the shape of the analysis op-

erators learned on noiseless images. The translation invariance of the edge detector like analysers

suggests to directly assume translation invariance of the analysis operator. Such an operator has

two advantages, first, learning it will require less training samples and second, since it can be

reduced to several translated mother functions, it will be cost efficient to store and apply.
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5.6 Computation of the optimal stepsize

To find the optimal stepsize, we first compute the derivative of

F (α) =
(γk − αgk)Ak(γk − αgk)?

‖(γk − αgk)‖2
,

which is given by

F ′(α) = −2
(b− a2) + α(ab− c) + α2(ac− b2)

(1− 2αa+ α2b2)2
,

where we used the notation a = γkAkγ
?
k , b = γkA

2
kγ

?
k and c = γkA

3
kγ

?
k .

First, suppose that b2 6= ac. Setting the first derivative equal to zero and solving a quadratic

equation gives the results

α± =
ab− c±

√
(c− ab)2 − 4(b2 − ac)(a2 − b)

2(b2 − ac)
. (5.14)

The discriminant is always larger or equal than zero, as

(c− ab)2 − 4(b2 − ac)(a2 − b) = (c+ 2a3 − 3ab)2 − 4(a2 − b)3
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and a2− b = (γkAkγ
?
k)2− γkA2

kγ
?
k = γkAk(γ

?
kγk−1)Akγ

?
k ≤ 0, because the matrix γ?kγk−1

is negative semidefinite.

We can verify that α+ indeed minimizes F, by substituting it into the second derivative

F ′′(α) = −2 (ab−c+2α(ac−b2))(1−2αa+α2b2)2−4(1−2αa+α2b2)(αb−a)(b−a2+α(ab−c)+α2(ac−b2))
(1−2αa+α2b2)4 .

We see that

F ′′(α+) = −2
(ab−c+2α+(ac−b2))(1−2α+a+α2

+b
2)2

(1−2α+a+α2
+b

2)4 = −2ab−c+2α+(ac−b2)
(1−2α+a+α2

+b
2)2 .

The denominator of the fraction above is positive, so we need to show that the numerator is

negative. Inserting the expression for α+ from Equation (5.14) into the numerator yields

ab− c− 2(b2 − ac)ab−c+
√

(c−ab)2−4(b2−ac)(a2−b)
2(b2−ac) =

= −
√

(c− ab)2 − 4(b2 − ac)(a2 − b) ≤ 0,

so F ′′(α+) ≥ 0 and α+ is indeed the desired minimum.

If F ′′(α+) is zero, then α+ need not be a minimum. However, this is only the case if√
(c− ab)2 − 4(b2 − ac)(a2 − b) = 0.

The computation showing the positivity of the discriminant suggests that in this case (c−ab)2−
4(b2 − ac)(a2 − b) = (c + 2a3 − 3ab)2 + 4(b − a2)3 = 0. This is a sum of two nonnegative

numbers, so both numbers must be zero. However, b − a2 has been shown to vanish only if γk
is an eigenvector of Ak. In this case also c+ 2a3 − 3ab = 0, which shows that for b2 6= ac, we

have that F ′′(α+) > 0, unless γk is an eigenvector of Ak.

Now suppose that b2 = ac. If b = 0, it follows that gk = 0 and hence F (α) is zero every-

where, so regardless of the choice of α, we cannot further decrease the objective function. In

this case we choose α+ = 0. If b 6= 0, we have

F ′(α) = −2
b− a2 + α(ab− c)
(1− 2αa+ α2b2)2

,

which vanishes for α+ = a
b . The second derivative in α+ is given by

F ′′(α+) = −2
ab− c

(1− 2a
2

b + a2)2
.

Again, the denominator is positive and the numerator can be shown to be negative using a similar
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symmetrisation argument as in the proof of Theorem 5.3.1. This argument also shows that

F ′′(α+) = 0 if and only if γk is an eigenvector of Ak.
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6 Outlook

I may not have gone where I intended to
go, but I think I have ended up where I
needed to be.

- Douglas Adams

Wrapping up the thesis, in Chapters 2 and 3, we proposed two different methods to reduce

the number of needed measurements in photoacoustic imaging using a sparsity prior. Due to the

fact that the data itself was not sparse, sparsifying transformations have been derived in order to

be able to use Compressed Sensing reconstruction guarantees. In Chapter 4, we examined the

geometric structure of total variation minimization in more detail and derived recovery results

for subgaussian measurement ensembles. Finally, in Chapter 5, we presented four optimization-

based algorithms to learn operators that sparsify a given class of data. In addition, theorems

were presented that show that these algorithms indeed decrease the given target function.

Figure 6.1: Reconstruction via FBP from 200 sensors (left) and reconstruction from 66 Bernoulli
measurements after 1000 iterations using the proposed method (right).

From the presented results, several research topics emerge. First, consider a question raised

in Chapter 3, namely the problem stated in Remark 3.3.1. As we have mentioned, instead of

solving the joint reconstruction problem given in Equation (3.11), we can instead solve
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6 Outlook

Figure 6.2: The target function generated from the first standard basis vector as target for d = 3
with cosparsity level ` = 2 (left) and ` = 1 (right). One can clearly see how for low
cosparsity levels local minima emerge.

min
f
‖c∆rf‖1 + IC(f)

such that Mf = y .

A relaxed formulation also incorporating possible noise is given by

min
f
‖c∆rf‖1 + IC(f) + λ

2‖Mf − y‖22 .

For this problem, one of the simplest approaches is a proximal subgradient algorithm. The

subgradient of ‖c∆rf‖1 with respect to f is c∆
∑

i sign(c∆f)i, the gradient of λ
2‖Mf − y‖22

is given by λM∗(Mf − y). The proximal projection on the positive cone C is componentwise

given by proxC(y)i = max(yi, 0). So one step of the proximal subgradient algorithm is given

by

f̄ = max

(
0, f − µ

(
c∆
∑
i

sign(c∆f)i + λM∗(Mf − y)

))
,

where f̄ is the update and µ is some stepsize. Preliminary experiments suggest that this program

also works very well at least for synthetic data, cf. Figure 6.1.

Another possible research direction was pointed out in Chapter 5. In images, translation

invariant structure appears quite naturally. Such a structure is for example exhibited in convolu-

tional analysis operators, which consist of few atoms, which are convolved with the data. It can

again be seen as the cosparse analogon to convolutional dictionary learning [PRSE17, GCW17].

This bears close resemblance to blind deconvolution and blind demixing problems, where one

is given a single signal, which can be decomposed in a sum of one or more unknown sparse vec-
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tors convolved with unknown atoms and possibly corrupted with noise. For blind deconvolution

and blind demixing several theoretical results are known, cf. [JKS17, LS17a, LS17b]. In our

setting, we are not just given a single signal but a sample of several different signals or perhaps

even an online stream of data. So in a similar spirit as in Chapter 5, we can solve the empirical

minimization problem

minimize
N∑
n=1

min
|J |=`

‖((x1 ∗ yn)∗, (x2 ∗ yn)∗, . . . , (xK ∗ yn)∗)∗J‖22

with respect to x1, . . . , xK ∈ Sd−1. For K = 1, this problem is again dual to the problem

of finding a convolutional dictionary. It seems furthermore that in this case, the optimization

problem has, up to the trivial ambiguities, no spurious local minima if the cosparsity level is

chosen large enough.

Note that the application of these operators is now significantly cheaper as the convolutions

can be implemented efficiently via an FFT.

For the minimization again as in Chapter 5, explicit or implicit projected gradient methods

can be used.
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