Alpine garden on Mount Patscherkofel

The alpine garden of the University of Innsbruck is situated on the north-western exposed slope of Mount Patscherkofel at the forest line between 1,890 and 1,950 m a.s.l. The area is about 2 hectares large and contains a research station, a public area and restricted space for scientific experiments. The research station was built in 1997, it is equipped with laboratories, a kitchen, bedrooms, sanitary installations and stowage space.

The station is used for university courses and research on survival mechanisms and adaptation strategies of alpine plants facing extreme conditions like frost and drought.

.

Links

Recent projects

Recent publications

  • GANTHALER A. & MAYR S. (2021): Subalpine dwarf shrubs differ in vulnerability to xylem cavitation: an innovative staining approach enables new insights. Physiologia Plantarum, https://doi.org/10.1111/ppl.13429
  • PESKOLLER A., SILBERNAGL L., HÜLBER K., SONNLEITNER M. & SCHÖNSWETTER P. (2021): Do pentaploid hybrids mediate gene flow between tetraploid Senecio disjunctus and hexaploid S. carniolicus s. str. (S. carniolicus aggregate, Asteraceae)? Alpine Botany, https://doi.org/10.1007/s00035-021-00254-x
  • TELAGATHOTI A., PROBST M., KHOMENKO I., BIASIOLI F. & PEINTNER U. (2021): High-Throughput Volatilome Fingerprint Using PTR–ToF–MS Shows Species-Specific Patterns in Mortierella and Closely Related Genera. J. Fungi 7:66, https://doi.org/10.3390/jof7010066
  • BUCHNER O., STEINER P., ANDOSCH A.; HOLZINGER A., STEGER M., NEUNER G & LÜTZ-MEINDL, U. (2020): A new technical approach for preparing frozen biological samples for electron microscopy. Plant Methods 16/1, No. 48
  • HUANG J.-G., QIANQIAN M., ROSSI S., BIONDI F., DESLAURIERS A., FONTI P., LIANG E., MÄKINEN H., OBERHUBER W. & GRUBER A. et al (2020): Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences 117/34: 20645–20652, (SCIE-IF 2019: 9,412)
  • NEUNER G., HUBER B., PLANGGER A., POHLIN J.-M. & WALDE J. (2020): Low temperatures at higher elevations require plants to exhibit increased freezing resistance throughout the summer months. Environmental and Experimental Botany 169, No. 103882, https://doi.org/10.1016/j.envexpbot.2019.103882
  • OBERHUBER W., BENDLER U., GAMPER V., GEIER J., HÖLZL A., KOFLER W., KRISMER H., WALDBOTH B. & WIESER G. (2020): Growth trends of coniferous species along altitudinal transects in the Central European Alps indicate decreasing sensitivity to climate warming. Forests 11:2, No. 132, https://doi.org/10.3390/f11020132
  • STEGNER M., LACKNER B., SCHÄFERNOLTE T., BUCHNER O., XIAO N., GIERLINGER N., HOLZINGER A. & NEUNER G. (2020): Winter nights during summer time: stress physiological response to ice and facilitation of freezing cytorrhysis by elastic cell wall components in leaves of a nival species. International Journal Of Molecular Sciences 21(19) 7042. https://doi.org/10.3390/ijms21197042
  • STEGNER M., WAGNER J., & NEUNER G. (2020): Ice accommodation in plant tissues pinpointed by cryo-microscopy in reflected-polarised-light. Plant Methods 16(1), 73
  • NEUNER G., MONITZER K., KAPLENIG D. & INGRUBER J. (2019): Frost Survival Mechanism of Vegetative Buds in Temperate Trees: Deep Supercooling and Extraorgan Freezing vs. Ice Tolerance. Front. Plant Sci. 10:537
  • NEUNER G., KREISCHE B., KAPLENIG D., MONITZER K. & MILLER R. (2019): Deep supercooling enabled by surface impregnation with lipophilic substances explains the survival of overwintering buds at extreme freezing. Plant Cell Environ, 42, 2065-2074

For more publications please click here.

Nach oben scrollen