Research site Neustift

The research site Neustift is embedded in an agricultural landscape at the bottom of Stubai valley at 970 m a.s.l. The site is equipped with a container supplied with electricity, wlan and air conditioning, containing measuring instruments and data storage devices. Sensors in the field measure biogeochemical cycles (i.a. eddy covariance) and other environmental parameters.

Current research projects at this site are about changes in the biogeochemical cycles mentioned above and in the resulting physiological and taxonomical adaptations of the vegetation, but there is also socioecological research on agricultural driven changes in landscape and ecosystem services.

The research site Neustift is part of the LTER (Long-Term Ecosystem Research) site Stubai and the LTSER platform Tyrolean Alps and is incorporated in the global FLUXNET network (FLUXNET ID: AT-Neu).

Links

Recent projects

  • LUCSES - Forecasting impacts of land-use and climate change on ecosystem services from shrub-encroached mountain grassland (FWF)
  • Constraining terrestrial gross primary productivity by joint measurements of the carbonyl sulfide exchange and sun-induced fluorescence (FWF)
  • Soil carbonyl sulfide consumption, production and exchange with the atmosphere (FWF)
  • Cycling of carbon and water in mountain ecosystems under changing climate and land use (Provinz Südtirol)
  • Carbonyl sulfide and sun-induced fluorescence as joint constraints on terrestrial carbon cycling (EU Marie Curie)
  • COS emission by vascular plants under biotic and abiotic stress (TWF)

Recent publications

  • ALBRICH K., RAMMER W. SEIDL R. (2020): Climate change causes critical transitions and irreversible alterations of mountain Forests. Global Change Biology 26:7, 4013–4027, https://doi.org/10.1111/gcb.15118
  • ELLER C., ROWLAND L., MENUCCINI M., ROSAS T., MEDLYN B., WILLIAMS K., HARPER A., WAGNER Y., KLEIN TEODORO G., OLIVEIRA R., WOHLFAHRT G., MONTAGNANI L., SITCH S. & COX P. (2020): Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist, doi: 10.1111/nph.16419
  • HAYNES K.D., BAKER I.T., DENNING A.S., WOLF S., WOHLFAHRT G., KIELY G., MINAYA R.C., & HAYNES J.M. (2020): Representing grasslands using dynamic prognostic phenology based on biological growth stages: Part 2. Carbon cycling. Journal of Advances in Modeling Earth Systems 12, 4440-4465
  • IMRAN H.A., GIANELLE D., ROCCHINI D., DALPONTE M., MARTÍN M.P., SAKOWSKA S., WOHLFAHRT G. & VESCOVO L. (2020): VIS-NIR, Red-Edge and NIR-Shoulder based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands. Remote Sensing 12/14: 2254, http://dx.doi.org/10.3390/rs12142254
  • JÄGER H.; SCHIRPKE U. & TAPPEINER U. (2020): Assessing conflicts between winter recreational activities and grouse species. Journal of Environmental Management 26, https://doi.org/10.1016/j.jenvman.2020.111194
  • KNOX S.H., JACKSON R.B., POULTER B., McNICOL G., FLUET-CHOUINARD E., ZHANG Z., HUGELIUS G., BOUSQUET P., CANADELL J.G., SAUNOIS M., PAPALE D., CHU H., KEENAN T.F., BALDOCCHI D., TORN M., MAMMARELLA I., TROTTA C., AURELA M., BOHRER G., CAMPBELL D., CESCATTI A., CHAMBERLAIN S., CHEN J., DENGEL S., DESAI A.R., EUSKIRCHEN E., FRIBORG T., GODED I., GOECKEDE M., HEIMANN M., HELBIG M., HIRANO T., HOLLINGER D., IWATA H., KANG M., KLATT J., KRAUSS K.W., KUTZBACH L., LOHILA A., MAGLIULO V., MITRA B., MORIN T.H., NILSSON M.B., NIU S., NOORMETS A., OECHEL W.C., PEICHL M., PELTOLA O., REBA M.L., RICHARDSON A.D., RUNKLE B.R.K., RYU Y., SACHS T., SCHÄFER K.V.R, SCHMID H.-P., SHURPALI N., SONNENTAG O., TANG A.C.I., UEYAMA M., VARGAS R., VESALA T., WARD E.J., WINDHAM-MYERS L., WOHLFAHRT G. & ZONA D. (2019): FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions. Bulletin of the American Meteorological Society, 100, 2607-2632
  • NELSON J., PEREZ-PRIEGO O., ZHOU S., POYATOS R., ZHANG Y., BLANKEN P.D., GIMENO T.E., WOHLFAHRT, G. et al. (2020): Ecosystem transpiration and evaporation: insights from three water flux partitioning methods across FLUXNET sites. Global Change Biology 26:12, 6916–6930, http://dx.doi.org/10.1111/gcb.15314
  • PASTORELLO G., TROTTA C., CANFORA E., [...], HAMMERLE A., [...], WOHLFAHRT G., et al. (2020): The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data 7/1, No. 225, http:​/​/dx.doi.org​/10.1038​/s41597-020-0534-3 
  • SCHEIDL C., HEISER M., KAMPER S., THALER T., KLEBINDER K., NAGL F., LECHNER V., MARKART G., RAMMER W. & SEIDL R. (2020): The influence of climate change and canopy disturbances on landslide susceptibility in headwater catchments. Science of The Total Environment 742, https://doi.org/10.1016/j.scitotenv.2020.140588
  • SPIELMANN F.M., HAMMERLE A., KITZ F., GERDEL K., WOHLFAHRT G. (2020): Seasonal dynamics of the COS and CO2 exchange of a managed temperate grassland. Biogeosciences Discussions, doi: 10.5194/bg-2020-27
  • TELLO-GARCÍA E., HUBER L., LEITINGER G., PETERS A., NEWESELY C., RINGLER M.-E. & TASSER E. (2020): Drought- and heat-induced shifts in vegetation composition impact biomass production and water use of Alpine grasslands. Environmental and Experimental Botany 169, No. 103921, https://doi.org/10.1016/j.envexpbot.2019.103921
  • ZHANG Y., BASTOS A., MAIGNAN F., GOLL D., BOUCHER O., LI L., CESCATTI A., VUICHARD N., CHEN X., AMMANN C., ARAIN M.A., BLACK T., CHOJNICKI B., KATO T., Mammarella, I.; Montagnani, L.; Roupsard, O.; Sanz, M.J.; Siebicke, L.; Urbaniak, M.; Vaccari, F.; Wohlfahrt, G.; Woodgate, W.; Ciais, P. (2020): Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface mode. In: Geoscientific Model Development 13/11, S. 5401 - 5423. http://dx.doi.org/10.5194/gmd-13-5401-2020

For more publications please click here.

Nach oben scrollen