Project Lime


Welcome to the wiki page of

Project Lime
Perturbation theory of C0-semigroups (the Miyadera theorem)

coordinated by Jürgen Voigt (Dresden)

The group members are:

  • Orif Ibrogimov (Bern)
  • Matthias Lang (Tübingen)
  • Chin Pin (Oxford)
  • Dmitry Polyakov (Voronezh)

The project description can be downloaded from here.

The material can downloaded from here:

Discussion of Project Lime.


  1. A. Batkai and S. Piazzera: Semigroups for delay equations. A.K. Peters, Wellesley, Mass., 2005.
  2. K.-J. Engel and R. Nagel: One-parameter semigroups for linear evolution equations. Springer, New York, 1999.
  3. T. Kato: On the semi-groups generated by Kolmogoroff's difffferential equations, J. Math. Soc. Japan 6 (1954), 1-15.
  4. I. Miyadera: On perturbation theory for semi-groups of operators. Tohoku Math. J. 18, 299{310 (1966).
  5. I. Miyadera: On perturbation for semigroups of linear operators (Japanese). Scientific Researches, School of Education, Waseda Univ. 21, 21{24 (1972).
  6. H.R. Thieme and J. Voigt: Stochastic semigroups, their generation by perturbation and approximation. Proceedings Positivity-IV,
  7. J. Voigt: On the perturbation theory for strongly continuous semigroups. Math. Ann. 229, 163{171 (1977).
  8. J. Voigt: Absorption semigroups, their generators and Schrödinger semigroups, J. Funct. Anal. 67 (1986), 167{205.
  9. J. Voigt: On substochastic C0-semigroups and their generators, Transp. Theory Stat. Phys. 16 (1987), 453-466.
  10. J. Voigt: Absorption semigroups, Feller property, and Kato class. Operator Theory: Advances and Applications, vol. 78, Birkhauser, Basel, 1995.
  11. J. Voigt: Semigroups for Schrödinger operators. Course at Marrakech, 2000.
Nach oben scrollen