Universität Innsbruck

Master’s Programme Physics

You want to create answers to challenges of the present and the future?

Apply online

All areas of high technology in our modern society are built on physics. A deep understanding of natural physical processes together with the pursuit of knowledge form the basis for numerous applications: Computers, satellites, GPS navigation, lasers, modern imaging in medicine and the Internet are a direct result of basic research in physics.

Physics provides and develops answers to many challenges we face in the present and the future, such as climate, environment and energy and also to fundamental topics, such as the origin of the universe or the wondrous world of quanta. 

FAQ

Graduates possess highly specialized knowledge in one of the in-depth studies (Quantum Sciences, Quantum Engineering, Ion- and Applied Physics, Many-body Physics, Computational Physics, Astro- and Particle Physics). They are able to apply their knowledge at the intersections of related sciences by independently formulate and substantiate scientific arguments and to find innovative solutions to problems.

The Master's Programme Physics prepares for a highly qualified occupation in industry and in research as well as for the Doctor of Philosophy Programme Physics. It deepens and widens the abilities and the knowledge in the field of physics that have been acquired during the Bachelor's Programme Physics, and mainly deepens the ability for independent scientific working. Within the context of research-oriented teaching, in-depth study in six different areas is offered:

  • Quantum Sciences,
  • Quantum Engineering,
  • Ion- and Applied Physics,
  • Many-body Physics,
  • Computational Physics as well as
  • Astro- and Particle Physics.

These specialisations can be deepened by a wide range of elective offers. The study programme is concluded with a master's thesis, a resarch paper in a relevant field of physics mentioned, which is included in one of the approx. 30 working groups.

The career fields of the graduates of the Master's Programme Physics are in particular natural science and technology, both in industry and research. Occupational profiles of graduates of the bachelor's programme can be found in fields of science and technolgy where problem-solving capacities and independent implementation of projects are required. Moreover, these activities are also demanded in other fields (e.g. project management, consulting and banking).

Graduates tracking: Shows which occupational fields students enter after graduation

Faculty of Mathematics, Computer Science and Physics Examination Office Information for students with disabilities

 

 

Curriculum

https://www.uibk.ac.at/en/programmes/ma-physics/2020w/
curriculum

From the field

Stu­dent Advi­sory Ser­vice

We are the first point of contact for all questions about studying for pupils, prospective students and students as well as parents and teachers.

Quan­tum tool opens door to uncharted phe­nom­ena

Scientists led by Peter Zoller have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials. The work has now been published in Nature.

Inter­act­ing polarons

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now, for the first time, Austrian scientists led by Rudolf Grimm have been able to observe in experiments how Fermi polarons – a special type of quasiparticle – can interact with each other. Their findings have been published in Nature Physics.

Deep look into the dipo­lar quan­tum world

In a groundbreaking collaboration, two world-leading research groups, one led by Francesca Ferlaino and one by Markus Greiner, have joined force to develop an advanced quantum gas microscope for magnetic quantum matter. This state-of-the-art instrument reveals intricate dipolar quantum phases shaped by the interactions as reported in Nature.

Related studies

Nach oben scrollen