Master’s Programme Physics

You want to create answers to challenges of the present and the future?

Apply online

All areas of high technology in our modern society are built on physics. A deep understanding of natural physical processes together with the pursuit of knowledge form the basis for numerous applications: Computers, satellites, GPS navigation, lasers, modern imaging in medicine and the Internet are a direct result of basic research in physics.

Physics provides and develops answers to many challenges we face in the present and the future, such as climate, environment and energy and also to fundamental topics, such as the origin of the universe or the wondrous world of quanta. 

FAQ

Graduates possess highly specialized knowledge in one of the in-depth studies (Quantum Sciences, Quantum Engineering, Ion- and Applied Physics, Many-body Physics, Computational Physics, Astro- and Particle Physics). They are able to apply their knowledge at the intersections of related sciences by independently formulate and substantiate scientific arguments and to find innovative solutions to problems.

The Master's Programme Physics prepares for a highly qualified occupation in industry and in research as well as for the Doctor of Philosophy Programme Physics. It deepens and widens the abilities and the knowledge in the field of physics that have been acquired during the Bachelor's Programme Physics, and mainly deepens the ability for independent scientific working. Within the context of research-oriented teaching, in-depth study in six different areas is offered:

  • Quantum Sciences,
  • Quantum Engineering,
  • Ion- and Applied Physics,
  • Many-body Physics,
  • Computational Physics as well as
  • Astro- and Particle Physics.

These specialisations can be deepened by a wide range of elective offers. The study programme is concluded with a master's thesis, a resarch paper in a relevant field of physics mentioned, which is included in one of the approx. 30 working groups.

The career fields of the graduates of the Master's Programme Physics are in particular natural science and technology, both in industry and research. Occupational profiles of graduates of the bachelor's programme can be found in fields of science and technolgy where problem-solving capacities and independent implementation of projects are required. Moreover, these activities are also demanded in other fields (e.g. project management, consulting and banking).

Graduates tracking: Shows which occupational fields students enter after graduation

Faculty of Mathematics, Computer Science and Physics Examination Office Information for students with disabilities

 

 

Curriculum

https://www.uibk.ac.at/en/programmes/ma-physics/2020w/
curriculum

From the field

Bak­te­rien in Bewe­gung

Forscher:innen der Universität Innsbruck haben gemeinsam mit einem internationalen Team die Bewegungsmuster des Bakteriums Escherichia coli beschrieben. Dafür nutzten sie einen genmodifizierten Bakterienstamm, Experimente unter dem Mikroskop und komplizierte Funktionen.

Ein­zig­ar­ti­ger Teil­chen­be­schleu­ni­ger in der Milch­straße

Ein internationales Team unter Beteiligung von Wissenschaftler:innen der Universität Innsbruck um Anita Reimer und Olaf Reimer haben die Jets des galaktischen Mikroquasars SS 433 mit den Gammastrahlen-Teleskopen H.E.S.S. in Namibia vermessen. Wie die Forscher:innen in der Fachzeitung Science berichten, handelt es sich demnach bei diesem Objekt um einen der effektivsten Teilchenbeschleuniger in unserer Milchstraße.

Kom­pri­mie­ren kann küh­len

Ein internationales Forschungsteam aus Innsbruck und Genf hat eine neue Methode zur Messung der Temperatur von niedrigdimensionalen Quantengasen entwickelt. Mit dieser Methode konnten die Forscher nun nachweisen, dass die Verdichtung eines Gases zu dessen Abkühlung führen kann. Die Ergebnisse zu diesem kontraintuitiven Phänomen wurden soeben in der renommierten Zeitschrift Science Advances veröffentlicht.

„Superradianz“ neu betrach­tet

Der theoretische Physiker Farokh Mivehvar hat die Wechselwirkung zwischen zwei Ansammlungen von Atomen untersucht, die in einem aus zwei winzigen Spiegeln bestehenden Hohlraum Licht aussenden, das über einen längeren Zeitraum darin gefangen bleibt. Sein Modell und die Vorhersagen können in modernen Hohlraum-/Wellenleiter-Quantenelektrodynamik-Experimenten umgesetzt und beobachtet werden und könnten in einer neuen Generation von sogenannten „superradianten“ Lasern Anwendung finden.

Related studies

Nach oben scrollen