Diaz-Coello, S.; Winkler, D.; Moser, T.; Rodriguez, J.L.;  Kunze-Liebhäuser, J.; Garcia, G.; Pastor, E., Highly Active W2C-Based Composites for the HER in Alkaline Solution: the Role of Surface Oxide Species. In: ACS Applied Materials and Interfaces 2024 16, 17, 21877-21884. (DOI: 10.1021/acsami.4c01612)


Winkler, D.; Leitner, M.; Auer, A.; Kunze-Liebhäuser, J., The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals. In: ACS Catalysis 2024 14, 2, 1098-1106. (DOI: 10.1021/acscatal.3c02700)


Shakibi Nia, N.; Griesser, C.; Mairegger, T.; Wernig, E.-M.; Bernardi, J.; Portenkirchner, E.; Kunze-Liebhäuser, J. Titanium Oxycarbide as Platinum-Free Electrocatalyst for Ethanol Oxidation. In: ACS Catalysis 2024 14, XXX, 324-329. (DOI: 10.1021/acscatal.3c04097)



Thurner, C.W.; Haug, L.; Winkler, D.; Griesser, C.; Leitner, M.; Moser, T.; Werner, D.; Thaler, M.; Scheibel, L.A.; Götsch, T.; Carbonio, E.; Kunze-Liebhäuser, J.; Portenkirchner, E.; Penner, S.; Klötzer, B., Electrocatalytic Enhancement of CO Methanation at the Metal–Electrolyte Interface Studied Using In Situ X-ray Photoelectron Spectroscopy. In: C: Journal of Carbon Research 2023 9, 106. (DOI: 10.3390/c9040106)

Laboratory apparatus


Haug, L.; Griesser, C.; Thurner, C.W.; Winkler, D.; Moser, T.; Thaler, M.; Bartl, P.; Rainer, M.; Portenkirchner, E.; Schumacher, D.; Dierschke, K.; Köpfle, N.; Penner, S.; Beyer, M.K.; Lörting, T.; Kunze-Liebhäuser, J.; Klötzer, B., A laboratory-based multifunctional near ambient pressure X-ray photoelectron spectroscopy system for electrochemical, catalytic, and cryogenic studies. In: Review of Scientific Instruments 2023 94, 065104. (DOI: 10.1063/5.0151755)

Electrolyte effect in organic electrolytes


Mairegger, T.; Li, H.; Griesser, C.; Winkler, D.; Filser, J.; Hörmann, N.G.; Reuter, K.; Kunze-Liebhäuser, J., Electroreduction of CO2 in a Non-aqueous Electrolyte – The Generic Role of Acetonitrile. In: ACS Catalysis 2023 13 (9), S. 5780–5786. (DOI: 10.1021/acscatal.3c00236)

Electrochemical XPS


Griesser, C.; Winkler, D.; Moser, T.; Haug, L.; Thaler, M.; Portenkirchner, E.; Klötzer, B.; Diaz-Coello, S.; Pastor, E.; Kunze-Liebhäuser, J., Lab-based electrochemical X-ray photoelectron spectroscopy for in-situ probing of redox processes at the electrified solid/liquid interface. In: Electrochemical Science Advances 2023, e2300007. (DOI: 10.1002/elsa.202300007)

de-NOx reactions over perovskites


Thurner, C. W.; Drexler, X.; Haug, L.; Winkler, D.; Kunze-Liebhäuser, J.; Bernardi, J.; Klötzer, B.; Penner, S., When copper is not enough: Advantages and drawbacks of using copper in de-NOx reactions over lanthanum manganite perovskite structures. In: Applied Catalysis B: Environmental 2023 331, 122693. (DOI:10.1016/j.apcatb.2023.122693)

Limiting potential window


Winkler, D.; Stüwe, T.; Werner, D.; Griesser, C.; Thurner, C. W.; Stock, D.; Kunze-Liebhäuser, J.; Portenkirchner, E., What is limiting the potential window in aqueous sodium-ion batteries? Online study of the hydrogen-, oxygen- and CO2-evolution reactions at NaTi2(PO4)3 and Na0.44MnO2 electrodes. In: Electrochemical Science Advances 2022, e2200012. (DOI: 10.1002/elsa.202200012)

Sodium-Ion and Sodium-Oxygen Batteries


Szabados, L.; Winkler, D.; Stock, D.; Thöny, A.; Lörting, D.; Kunze-Liebhäuser, J.; Portenkirchner, E., Sodium-Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium-Ion and Sodium–Oxygen Batteries. In: Advanced Energy & Sustainability Research 2022, 3 (12), S. 2200104. (DOI:10.1002/aesr.202200104)

Pervasive presence of oxygen


Hauser, D.; Griesser, C.; Wernig, E.-M.; Götsch, T.; Bernardi, J.; Kunze-Liebhäuser, J.; Penner, S., The pervasive presence of oxygen in ZrC. In: Surfaces and Interfaces 2022 34, S. 102373. (DOI: 10.1016/j.surfin.2022.102373)

Mo2C catalyst


Winkler, D.; Dietrich, V.; Griesser, C.; Shakibi-Nia, N.; Wernig, E.-M.; Tollinger, M.; Kunze-Liebhäuser, J., Formic acid reduction and CO2 activation at Mo2C: The important role of surface oxide. In: Electrochemical Science Advances 2022 2 (3), e2100130. (DOI:10.1002/elsa.202100130)

Substrate Dependent Charge Transfer Kinetics


Werner, D.; Thöny, A.; Winkler, D.; Apaydin, D. H.; Lörting; T.; Portenkirchner, E.,  Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon-Based Electrodes with Potential Application for Organic Na-Ion Batteries. In: Israel Journal of Chemistry 2022, 62 (5-6), e202100082. (DOI: 10.1002/ijch.202100082)

Copper-Mixed Oxide Interfaces


Thurner, C.W.; Bonmassar, N.; Winkler, D.; Haug, L.; Ploner, K.; Kheyrollahi Nezhad, P. D.; Drexler, X.; Mohammadi, A.; van Aken, P. A.; Kunze-Liebhäuser, J.; Niaei, A.; Bernardi, J.; Klötzer, B.; Penner, S., Who Does the Job? How Copper Can Replace Noble Metals in Sustainable Catalysis by the Formation of Copper–Mixed Oxide Interfaces. In: ACS Catalysis 2022 12 (13), S. 7696-7708. (DOI: 10.1021/acscatal.2c01584)


Auer, A.; Kunze-Liebhäuser, J., Structure–activity relations of Cu-based single-crystal model electrocatalysts. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2022. (DOI: 10.1016/B978-0-323-85669-0.00006-4)


Auer, A.; Sarabia, F.J.; Griesser, C.; Climent, V.; Feliu, J. M.; Kunze-Liebhäuser, J., Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis. In: Electrochimica Acta 2021 396, S. 139222. (DOI:10.1016/j.electacta.2021.139222)

Interfacial Water Structure


Auer, A.; Sarabia, F.J.; Winkler, D.; Griesser, C.; Climent, V.; Feliu, J. M.; Kunze-Liebhäuser, J., Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH)2-Modified Cu(111). In: ACS Catalysis 2021 11 (16), S. 10324-10332. (DOI: 10.1021/acscatal.1c02673)

Reactivity of TM Carbides


Griesser, C.; Li, H.; Wernig, E.-M.; Winkler, D.; Shakibi Nia, N.; Mairegger, T.; Götsch, T.; Schachinger, T.; Steiger-Thirsfeld, A.; Penner, S.; Wielend, D.; Egger, D.; Scheurer, C.; Reuter, K.; Kunze-Liebhäuser, J., True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity. In: ACS Catalysis 2021 11 (8), S. 4920-4928. (DOI: 10.1021/acscatal.1c00415)

Potential of zero charge


Auer, A.; Ding, X.; Bandarenka, A.S.; Kunze-Liebhäuser, J., The Potential of Zero Charge and the Electrochemical Interface Structure of Cu(111) in Alkaline Solutions. In: The Journal of Physical Chemistry C 2021 125(9), S. 5020-5028. (DOI: 10.1021/acs.jpcc.0c09289)

Schematic depiction


Watschinger, M.; Ploner, K.; Winkler, D.; Kunze-Liebhäuser, J.; Klötzer, B.; Penner, S., Operando Fourier-transform infrared–mass spectrometry reactor cell setup for heterogeneous catalysis with glovebox transfer process to surface-chemical characterization. In: Review of Scientific Instruments 2021 92, S. 024105. (DOI: 10.1063/5.0041437)

Surface Film Formation


Portenkirchner, E.; Rommel, S.; Szabados, L.; Griesser, C.; Werner, D.; Stock, D.; Kunze-Liebhäuser, J., Sodiation mechanism via reversible surface film formation on metal oxides for sodium-ion batteries. In: Nano Select 2021 2(8), S. 1533-1543. (DOI: 10.1002/nano.202000285)



Auer, A.; Andersen, M.; Wernig, E.-M.; Hörmann, N. G.; Buller, N.; Reuter, K.; Kunze-Liebhäuser, J., Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. In: Nature Catalysis 2020 3 (10), S. 797-803. (DOI: 10.1038/s41929-020-00505-w)

Influence of Alkali Metal Cations on the double-layer


Xue, S.; Garlyyev, B.; Auer, A.; Kunze-Liebhäuser, J.; Bandarenka, A. S., How the Nature of the Alkali Metal Cations Influences the Double-Layer Capacitance of Cu, Au, and Pt Single-Crystal Electrodes. In: The Journal of Physical Chemistry C 2020 124(23), S. 12442-12447. (DOI: 10.1021/acs.jpcc.0c01715)

Frühere Publikationen

Nach oben scrollen