Benjamin Peter Lanyon

Associate Professor, Institute for Experimental Physics, University of Innsbruck
Technikerstraße 25, A-6020 Innsbruck, Austria
Email: ben.lanyon@uibk.ac.at
Group website (Distributed Quantum Systems): https://www.uibk.ac.at/en/exphys/research/dqs/
Publication list: https://shorturl.at/f04Zm (Google scholar)
Orchid: https://orcid.org/0000-0002-7379-4572

Employment

2024 –ongoing  Associate Professor of Physics, Institute for Experimental Physics, University of Innsbruck. Leader of the Distributed Quantum Systems group.
2020 –2023      Assistant Professor of Physics, Institute for Experimental Physics, University of Innsbruck
2013 – 2019     Senior Scientist at the Institute of Quantum Optics and Quantum Information, Innsbruck, Austria Academy of Sciences, Austria
2011 - 2013      Marie-Curie Postdoctoral Fellow, Institute of Quantum Optics and Quantum Information, Innsbruck, Austria (with R. Blatt)
2009 – 2010     Postdoctoral Fellow and Junior Lecturer, University of Queensland, Brisbane, Australia (with A. White)

Education

2023     Habilitation, Experimental Physics, University of Innsbruck, Austria
2009     Ph.D., Physics, University of Queensland, Australia
2005     M.Phil., Physics, University of Warwick, UK
2002     B.Sc., Physics, University of Warwick, UK

Top ten publications

  1. A telecom-wavelength quantum repeater node based on a trapped-ion processor.
    Victor Krutyanskiy, Marco Canteri, Martin Meraner, James Bate, Vojtech Krcmarsky, Josef Schupp, Nicolas Sangouard, Ben P. Lanyon, Phys. Rev. Lett. 111, 213601 (2023).
     
  2. Entanglement of trapped-ion qubits separated by 230 meters,
    V. Krutyanskiy, M. Galli, V. Krcmarsky, S. Baier, D. A. Fioretto, Y. Pu, A. Mazloom, P. Sekatski, M. Canteri, M. Teller, J. Schupp, J. Bate, M. Meraner, N. Sangouard, B. P. Lanyon, T. E. Northup, Phys. Rev. Lett. 130, 050803 (2023).
     
  3. Light-matter entanglement over 50 km of optical fibre.
    V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer and B. P. Lanyon. npj Quantum Information 5, 72 (2019).
     
  4. Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal Efficiency, 
    Josef Schupp, Vojtech Krcmarsky, Viktor Krutianskii, Martin Meraner, Tracy E. Northup, Ben P. Lanyon. PRX Quantum 2, 020331 (2021) 
     
  5. Efficient tomography of a quantum many-body system.
    B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A. S. Buyskikh, A. J. Daley, M. Cramer, M. B. Plenio, R. Blatt, C. F. Roos.  Nat. Phys. 13, 1158 (2017).
     
  6. Quasiparticle engineering and entanglement propagation in a quantum many-body system, 
    Jurcevic*, P., Lanyon*, B. P., Hauke, P., Hempel, C., Zoller, P., Blatt, R. & Roos, C. F. Nature 511, 202–205 (2014). https://www.nature.com/articles/nature13461
     
  7. Observation of entangled states of a fully-controlled 20 qubit system.
    N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzapfel, P. Jurcevic, M. Plenio, M. Huber, C. Roos,  R. Blatt, B. Lanyon. Phys Rev X. 8 021012 (2018), https://doi.org/10.1103/PhysRevX.8.021012
     
  8. Probing Renyi entanglement entropy via randomized measurements.
    T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, C. F. Roos. Science 364, 260 (2019). https://doi.org/10.1126/science.aau4963
     
  9. Entangled-enhanced detection of single photon scattering events.
    C Hempel, BP Lanyon, P Jurcevic, R Gerritsma, R Blatt, CF Roos. Nature Photonics 7, 630–633 (2013). http://www.nature.com/nphoton/journal/v7/n8/full/nphoton.2013.172.html
     
  10. Universal digital quantum simulation with trapped ions.
    B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C. F. Roos. Science 334, 57 (2011). https://www.science.org/doi/10.1126/science.1208001

 

Research projects

  • Entanglement growth between remote atomic quantum processors” (Principle Investigator) Standalone project, Austrian Science Fund 2026-2030. Group share 637kE
  • Optimal quantum sensing and quantum sensing networks” (Principle Investigator), Core project of Quantum Science Austria, Cluster of Excellence, Austrian Science Fund 2023-2026. Group share 146kE
  • Quantum Internet Alliance – phase 1”, (co-Principle Investigator) EU Horizon 2020 Flagship, 2022-2026. Group share 1138kE.
  • QCI: Proof of Concept – Secure Connectivity Austria”, (Principle Investigator) Digital Europe programme, 2023-2025. Group share 600kE.
  • Quantum many body atom-photon interface”, (Principle Investigator) Standalone project, Austrian Science Fund, 2021-2025. Group share 528kE.
  • Quantum Internet Alliance” (co-Principle Investigator), FET Flagship on Quantum Technologies, European Commission 2018 – 2022. Group share 262kE.
  • Photon conversion for ion trap quantum networks” (Principle Investigator) START Prize, Austrian Science Fund, 2016-2023. Group share 1161kE.
  • Scalable Ion-Trap Quantum Network” (Principle Investigator), Center for Distributed Quantum Information, U.S. Army Research Laboratory, 2015 – 2020. Group share 1901kUSD.

Fellowships & Awards

  • Fellow of the Canadian Institute for Advanced Research (CIFAR), Quantum Information Science programme, 2019-2026
  • START Prize from the Austrian Science Fund (FWF), 2015-2023
  • Marie Curie International Incoming (postdoctoral) Fellowship from the European Commission, 2011-2013
  • European Endeavour Award, Australian Government, 2007

Student supervision

PhD

  1. Vojtech Krcmarsky (2024). “A trapped-ion quantum network over 230 m”
  2. Martin Meraner (2022). “A photonic quantum interface between trapped ions and the telecom C-band”
  3. Josef Schupp (2022). “Interface between trapped-ion qubits and travelling photons with close-to-optimal efficiency,”

Ongoing primary supervisor:
Yash Wath, Felix Bernecker, Pascal Wintermeyer, Armin Winkler, James Bate, Marco Canteri.

Master

  1. Tatjana Runggaldier (2025-Defense Dec). “Ion-photon entanglement over a 17 km-long optical fibre deployed across Innsbruck”
  2. Johannes Helgert (2024). “Radio frequency control of a trapped-ion quantum network node”
  3. Tabea Stronski (2024). “Implementation of a Controlled-NOT Gate with Quantum Memory Application for Trapped Ions”
  4. Armin Winkler (2023). “Frequency Stabilization of a 729 nm Ti:Sa Laser for Qubit Manipulation in Trapped Calcium Ions”
  5. Marco Canteri (2020). “Single-atom-focused laser for photon generation and qubit control”
  6. Helene Hainzer (2018). “Title: Laser locking for trapped-ion quantum networks”

Invited presentations

  • Innsbruck Off-Campus Quantum Network  & Trapped-Ion Source of Multipartite Photonic Entanglement, European Conference on Trapped Ions (ECTI), Amsterdam, Holland, Sep 2025
  • Towards networks of quantum processors.  25th Annual Southwest Quantum Information and Technology (SQuInT) Workshop 2023, Albuquerque, New Mexico, Oct 2023.
  • Towards quantum networks of light and matter. Joint Annual Meeting of SPS and ÖPG, Basel, Sep 2023.
  • A telecom quantum repeater node, Quantum Information and Measurement VI Conference, Washington (Online-hybrid), Nov 2021.
  • A telecom quantum repeater node, Quantum Interaction of Distant Objects & Applications of Optically Connected Atoms and Nanoparticles, Czech, Oct 2021.
  • A telecom quantum repeater node, International Conference on Quantum Communication (ICQOM 2021), Paris, Oct 2021.
  • Ion-photon entanglement over 50 km of optical fiber, Departmental talk, group of Prof. Yasser Omar, University of Lisbon, Portugal, July 2019.
  • Ion-photon entanglement over 50 km of optical fiber, Departmental talk, group of Prof. Enrique Solano, University of Bilbao, Spain, July 2019.
  • Ion-photon entanglement over 50 km of optical fiber, 8th Conference on Quantum Information and Quantum Control in Toronto, August 2019.
  • Ion-photon entanglement over 50 km of optical fiber, Departmental talk, group of Prof. Matthias Keller, University of Sussex, United Kingdom, August 2019.
  • Ion-photon entanglement over 50 km of optical fiber, Continuous-time quantum computing and simulation: perspectives and challenges, The Royal Society at Chicheley Hall, Buckinghamshire,  October 2019.
  • Quantum simulations and networks with trapped ions, Photons beyond qubits, Czech, April 2018.
  • Entangling & verifying a 20 qubit simulator, International Conference on Atomic Physics (ICAP), Barcelona, July 2018.
  • The campus quantum network and a photonic quantum adapter, Departmental talk, group of Prof. Matthias Keller, University of Sussex, United Kingdom, March 2017
  • Building and characterising a quantum many-body system of trapped ions, Departmental talk, group of Prof. Hugues de Riedmatten, ICFO, Barcelona, March 2015
  • Towards a photonic Quantum adapter for trapped Ions, Complex Quantum Systems (CoQuS) Colloquium, University of Vienna, Nov 2015
  • Characterizing a 20-​spin quantum simulator, Quantum Systems and Technology, Monte Verità, Switzerland, June 2015
  • Quantum many-body physics with trapped ions, Departmental colloquium, University of Strathclyde, April 2015.
  • A trapped ion quantum simulator, Conference on Designed Quantum States of Matter, 516th Wilhelm und Else Heraeus‐Seminar, Bad Honnef, Germany, December 2014
  • Quasiparticle engineering and 20-qubit entangled states, Workshop on Quantum Information and Dynamics in Ion Traps, Cartagena, Spain, March 2014.|
  • Observation of the quantum speed limit and its breakdown, Quantum simulations with trapped ions workshop,  Old Ship Hotel, Brighton, December 2013.
  • Digital simulations and large-scale entanglement in trapped ions. 23rd International conference on atomic physics (ICAP), Paris, July 2013.
  • Discord and cluster states in trapped ions, Workshop on Quantum Information and Quantum Dynamics in Trapped Ions,  Obergurgl, Austria, April 2013.
  • Digital quantum simulations with trapped ions. Physics of Quantum Electronics, Snowbird, USA, January 2012.
  • Digital quantum simulations with trapped ions,  SFB-Meeting, Foundations and applications of quantum science,  Innsbruck, October 2011
  • Quantum simulation of the Klein paradox in trapped ions, European conference on trapped ions (ECTI), Country Durham, UK, September 2010.
  • Demonstration of a quantum algorithm for calculating molecular energies. Inaugural Symposium on Quantum Science and Technology, Brisbane, Australia, 2009.
  • New optical quantum logic gates and their application to quantum chemistry, Departmental talk, Group of Prof. Ian Walmsley, University of Oxford, England, 2009.
  • New optical quantum logic gates and their application to quantum chemistry, Group of Prof. Alan Aspuru-Guzik, University of Harvard, USA, 2009.
  • Experimental realization of the power of one qubit, Quantum Information and Control In Queensland (QICIQ), Palm Cove, Cairns, Australia, 2007.
  • Observing the resonant dynamics of thin two-layer systems, Annual conference on progress in Quantitative Non-Destructive Evaluation (QNDE), Portland, Maine, USA, 2005.

 

Summer School presentations

  • Quantum Information Science with Trapped Ions, Introductory course on quantum information, summer school 2018, University of Innsbruck, July 2018.
  • Quantum Information Science with Trapped Ions, Introductory course on quantum information, summer school 2016, University of Innsbruck, July 2016.
  • Quantum Information Science with Trapped Ions, Introductory course on quantum information, summer school 2014, University of Innsbruck, July 2014.
  • Experimental quantum information science, Joint Trento-Innsbruck Physics Lectures, University of Trento, Italy, September 2013.

Organisation and committee work

  • Organiser of the 2025 spring meeting of the ‘Quantum Internet Alliance’, Innsbruck, Austria
  • Organiser of the 2014 summer school ‘Introductory Course on Quantum Information’, Innsbruck Austria. Over 50 international and 30 national students attended the school.
  • Programme committee for the 2018 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences (CLEO/EQEC)
  • Programme committee for the 2019 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences (CLEO/EQEC)

Outreach

  • Co-presenter of the ‘Junge Uni Kids’ event, rocket construction and competition, University of Innsbruck, July 2022.
  • Interactive lab tours, Tag der Physik, University of Innsbruck, April 2022.
  • Interactive lab and optic fiber display, celebration for the 350th anniversary of the University of Innsbruck, June and October 2019.
  • Open Lab Days, StV Physik (physics student union) and the Innsbruck Physics Research Centre, University of Innsbruck, July 2018.

Publication list

45. M. Canteri, J. Bate, I. Mishra, N. Friis, V. Krutyanskiy, B. P. Lanyon, Generation of multipartite photonic entanglement using a trapped-ion quantum processing node, preprint, arXiv:2510.15693v2, (2025). https://arxiv.org/abs/2510.15693v2

44. Canteri, M., Koong, Z. X., Bate, J., Winkler, A., Krutyanskiy, V. & Lanyon, B. P. A photon‑interfaced ten‑qubit quantum network node. Phys. Rev. Lett. 135, 080801 (2025). https://doi.org/10.1103/v5k1-whwz

43. Cussenot, P., Grivet, B., Lanyon, B. P., Northup, T. E., de Riedmatten, H., Sørensen, A. S. & Sangouard, N. Uniting quantum processing nodes of cavity‑coupled ions with rare‑earth quantum repeaters using single‑photon pulse shaping based on atomic frequency comb. Phys. Rev. Lett (2025). https://doi.org/10.1103/hvsx-cx2d. https://arxiv.org/abs/2501.18704

42. Bate, J., Hamann, A., Canteri, M., Winkler, A., Koong, Z. X., Krutyanskiy, V., Dür, W. & Lanyon, B. P. Experimental distributed quantum sensing in a noisy environment. Phys. Rev. Lett. 135, 220801 (2025). https://doi.org/10.1103/3hgx-wcdn

41. Krutyanskiy, V., Canteri, M., Meraner, M., Krcmarsky, V. & Lanyon, B. P. Multimode ion‑photon entanglement over 101 kilometers. PRX Quantum 5, 020308 (2024). https://doi.org/10.1103/PRXQuantum.5.020308

40. Krutyanskiy, V., Canteri, M., Meraner, M., Bate, J., Krcmarsky, V., Schupp, J., Sangouard, N. & Lanyon, B. P. A telecom‑wavelength quantum repeater node based on a trapped ion processor. Phys. Rev. Lett. 130, 213601 (2023). https://doi.org/10.1103/PhysRevLett.130.213601

39. Krutyanskiy, V., Galli, M., Krcmarsky, V., Baier, S., Fioretto, D. A., Pu, Y., Mazloom, A., Sekatski, P., Canteri, M., Teller, M., Schupp, J., Bate, J., Meraner, M., Sangouard, N., Lanyon, B. P. & Northup, T. E. Entanglement of trapped‑ion qubits separated by 230 meters. Phys. Rev. Lett. 130, 050803 (2023). https://doi.org/10.1103/PhysRevLett.130.050803

38. Schupp, J., Krcmarsky, V., Krutyanskiy, V., Meraner, M., Northup, T. E. & Lanyon, B. P. Interface between trapped‑ion qubits and traveling photons with close‑to‑optimal efficiency. PRX Quantum 2, 020331 (2021). https://doi.org/10.1103/PRXQuantum.2.020331

37. Meraner, M., Mazloom, A., Krutyanskiy, V., Krcmarsky, V., Schupp, J., Fioretto, D. A., Sekatski, P., Northup, T. E., Sangouard, N. & Lanyon, B. P. Indistinguishable photons from a trapped‑ion quantum network node. Phys. Rev. A 102, 052614 (2020). https://doi.org/10.1103/PhysRevA.102.052614

36. Krutyanskiy, V., Meraner, M., Schupp, J., Krcmarsky, V., Hainzer, H. & Lanyon, B. P. Light‑matter entanglement over 50 km of optical fibre. npj Quantum Inf. 5, 72 (2019). https://doi.org/10.1038/s41534-019-0186-3

35. Maier, C., Brydges, T., Jurcevic, P., Trautmann, N., Hempel, C., Lanyon, B. P., Hauke, P., Blatt, R. & Roos, C. F. Environment‑assisted quantum transport in a 10‑qubit network. Phys. Rev. Lett. 122, 050501 (2019). https://doi.org/10.1103/PhysRevLett.122.050501

34. Brydges, T., Elben, A., Jurcevic, P., Vermersch, B., Maier, C., Lanyon, B. P., Zoller, P., Blatt, R. & Roos, C. F. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019). https://doi.org/10.1126/science.aau4963

33. Hempel, C., Maier, C., Romero, J., McClean, J., Monz, T., Shen, H., Jurcevic, P., Lanyon, B. P., Love, P., Babbush, R., Aspuru‑Guzik, A., Blatt, R. & Roos, C. F. Quantum chemistry calculations on a trapped‑ion quantum simulator. Phys. Rev. X 8, 031022 (2018). https://doi.org/10.1103/PhysRevX.8.031022

32. Friis, N., Marty, O., Maier, C., Hempel, C., Holz‑N, M., Jurcevic, P., Plenio, M. B., Huber, M., Roos, C., Blatt, R. & Lanyon, B. P. Observation of entangled states of a fully controlled 20‑qubit system. Phys. Rev. X 8, 021012 (2018). https://doi.org/10.1103/PhysRevX.8.021012

31. Krutyanskiy, V., Meraner, M., Schupp, J. & Lanyon, B. P. Polarisation‑preserving photon frequency conversion from a trapped‑ion‑compatible wavelength to the telecom C‑band. Appl. Phys. B 123, 228 (2017). https://doi.org/10.1007/s00340-017-6806-8

30. Zwerger, M., Lanyon, B. P., Northup, T. E., Muschik, C. A., Dür, W. & Sangouard, N. Quantum repeaters based on trapped ions with decoherence‑free‑space encoding. Quantum Sci. Technol. 2, 044001 (2017). https://doi.org/10.1088/2058-9565/aa7983

29. Vogell, B., Vermersch, B., Northup, T. E., Lanyon, B. P. & Muschik, C. A. Deterministic quantum state transfer between remote qubits in cavities. Quantum Sci. Technol. 2, 045003 (2017). https://doi.org/10.1088/2058-9565/aa868b

28. Jurcevic, P., Shen, H., Hauke, P., Maier, C., Brydges, T., Hempel, C., Lanyon, B. P., Heyl, M., Blatt, R. & Roos, C. F. Direct observation of dynamical quantum phase transitions in an interacting many‑body system. Phys. Rev. Lett. 119, 080501 (2017). https://doi.org/10.1103/PhysRevLett.119.080501

27. Lanyon, B. P., Maier, C., Holz‑N, M., Baumgratz, T., Hempel, C., Jurcevic, P., Dhand, I., Buyskikh, A. S., Daley, A. J., Cramer, M., Plenio, M. B., Blatt, R. & Roos, C. F. Efficient tomography of a quantum many‑body system. Nat. Phys. 13, 1158–1162 (2017). https://doi.org/10.1038/nphys4244

26. Lechner, R., Maier, C., Hempel, C., Jurcevic, P., Lanyon, B. P., Monz, T., Brownnutt, M., Blatt, R. & Roos, C. F. Electromagnetically‑induced‑transparency ground‑state cooling of long ion strings. Phys. Rev. A 93, 053401 (2016). https://doi.org/10.1103/PhysRevA.93.053401

25. Jurcevic, P., Hauke, P., Maier, C., Hempel, C., Lanyon, B. P., Blatt, R. & Roos, C. F. Spectroscopy of interacting quasiparticles in trapped ions. Phys. Rev. Lett. 115, 100501 (2015). https://doi.org/10.1103/PhysRevLett.115.100501

24. Jurcevic, P., Lanyon, B. P., Hauke, P., Hempel, C., Zoller, P., Blatt, R. & Roos, C. F. Quasiparticle engineering and entanglement propagation in a quantum many‑body system. Nature 511, 202–205 (2014). https://doi.org/10.1038/nature13461

23. Genway, S., Li, W., Ates, C., Lanyon, B. P. & Lesanovsky, I. Generalized Dicke nonequilibrium dynamics in trapped ions. Phys. Rev. Lett. 112, 023603 (2014). https://doi.org/10.1103/PhysRevLett.112.023603

22. Lanyon, B. P., Zwerger, M., Jurcevic, P., Hempel, C., Dür, W., Briegel, H. J., Blatt, R. & Roos, C. F. Experimental violation of multipartite Bell inequalities with trapped ions. Phys. Rev. Lett. 112, 100403 (2014). https://doi.org/10.1103/PhysRevLett.112.100403

21. Lanyon, B. P., Jurcevic, P., Zwerger, M., Hempel, C., Martinez, E. A., Dür, W., Briegel, H. J., Blatt, R. & Roos, C. F. Measurement‑based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013). https://doi.org/10.1103/PhysRevLett.111.210501

20. Schachenmayer, J., Lanyon, B. P., Roos, C. F. & Daley, A. J. Entanglement growth in quench dynamics with variable‑range interactions. Phys. Rev. X 3, 031015 (2013). https://doi.org/10.1103/PhysRevX.3.031015

19. Lanyon, B. P., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R. & Roos, C. F. Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013). https://doi.org/10.1103/PhysRevLett.111.100504

18. Lamata, L., López, C. E., Lanyon, B. P., Bastin, T., Retamal, J. C. & Solano, E. Deterministic generation of arbitrary symmetric states and entanglement classes. Phys. Rev. A 87, 032325 (2013). https://doi.org/10.1103/PhysRevA.87.032325

17. Hempel, C., Lanyon, B. P., Jurcevic, P., Gerritsma, R., Blatt, R. & Roos, C. F. Entanglement‑enhanced detection of single‑photon scattering events. Nat. Photonics 7, 630–633 (2013). https://doi.org/10.1038/nphoton.2013.172

16. Lanyon, B. P., Hempel, C., Nigg, D., Müller, M., Gerritsma, R., Zähringer, F., Schindler, P., Barreiro, J. T., Rambach, M., Kirchmair, G., Hennrich, M., Zoller, P., Blatt, R. & Roos, C. F. Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011). https://doi.org/10.1126/science.1212419

15. Zhou, X.‑Q., Ralph, T. C., Kalasuwan, P., Zhang, M., Peruzzo, A., Lanyon, B. P. & O’Brien, J. L. Adding control to arbitrary unknown quantum operations. Nat. Commun. 2, 1392 (2011). https://doi.org/10.1038/ncomms1392

14. Gerritsma, R., Lanyon, B. P., Kirchmair, G., Zähringer, F., Hempel, C., Casanova, J., Garcia‑Ripoll, J. J., Solano, E., Blatt, R. & Roos, C. F. Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011). https://doi.org/10.1103/PhysRevLett.106.060503

13. Goggin, M. E., Almeida, M. P., Barbieri, M., Lanyon, B. P., O’Brien, J. L., White, A. G. & Pryde, G. J. Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl Acad. Sci. USA 108, 1256–1261 (2011). https://doi.org/10.1073/pnas.1011424108

12. Broome, M. A., Fedrizzi, A., Lanyon, B. P., Kassal, I., Aspuru‑Guzik, A. & White, A. G. Discrete single‑photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010). https://doi.org/10.1103/PhysRevLett.104.153602

11. Gillett, G. G., Dalton, R. B., Lanyon, B. P., Almeida, M. P., Barbieri, M., Pryde, G. J., O’Brien, J. L., Resch, K. J., Bartlett, S. D. & White, A. G. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010). https://doi.org/10.1103/PhysRevLett.104.080503

10 Lanyon, B. P., Whitfield, J. D., Gillett, G. G., Goggin, M. E., Almeida, M. P., Kassal, I., Biamonte, J. D., Mohseni, M., Powell, B. J., Barbieri, M., Aspuru‑Guzik, A. & White, A. G. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010). https://doi.org/10.1038/nchem.483

9. Barbieri, M., Weinhold, T., Lanyon, B. P., Gilchrist, A., Resch, K. J., Almeida, M. P. & White, A. G. Parametric downconversion and optical quantum gates: two’s company, four’s a crowd. J. Mod. Opt. 56, 209–214 (2009). https://doi.org/10.1080/09500340802337374

8. Lanyon, B. P., Barbieri, M., Almeida, M. P. & White, A. G. Simplifying quantum logic using higher‑dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009). https://doi.org/10.1038/nphys1150

7. Lanyon, B. P., Barbieri, M., Almeida, M. P. & White, A. G. Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008). https://doi.org/10.1103/PhysRevLett.101.200501

6. Lanyon, B. P., Weinhold, T. J., Langford, N. K., O’Brien, J. L., Resch, K. J., Gilchrist, A. & White, A. G. Experimentally generating and tuning robust entanglement between photonic qubits. New J. Phys. 11, 013008 (2007). https://doi.org/10.1088/1367-2630/11/1/013008

5. Lanyon, B. P., Weinhold, T. J., Langford, N. K., Barbieri, M., James, D. F. V., Gilchrist, A. & White, A. G. Manipulating biphotonic qutrits. Phys. Rev. Lett. 100, 060504 (2007). https://doi.org/10.1103/PhysRevLett.100.060504

4. Dixon, S., Potter, M. & Lanyon, B. P. Characterisation of thickness and crystallographic texture of sheet using non‑contact ultrasonic measurements. Ironmaking & Steelmaking 32, 385–390 (2006). https://doi.org/10.1179/174328105X71263

3. Dixon, S., Lanyon, B. P. & Rowlands, G. Ultrasonic resonance in thin two‑layer dynamic systems. J. Phys. D: Appl. Phys. 39, 506 (2006). https://iopscience.iop.org/article/10.1088/0022-3727/39/3/014

2. Dixon, S., Lanyon, B. P. & Rowlands, G. Coating thickness and elastic modulus measurement using ultrasonic bulk wave resonance. Appl. Phys. Lett. 88, (2005). https://doi.org/10.1063/1.2192144

1. Dixon, S., Potter, M. & Lanyon, B. P. Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system. J. Phys. D: Appl. Phys. 38, 4115 (2005). https://iopscience.iop.org/article/10.1088/0022-3727/38/22/016

Nach oben scrollen