The tree of life

Metazoa
- Eumetazoa
 - Bilateria
 - Deuterostomia
 - Echinodermata

Chromalveolates
- Protists
 - Ciliates
 - Radiolaria (starfish, sea anemones)
 - Alveolates
 - Dinoflagellates
 - Dinoflagellates

Acceleromorpha (ascidians)

Eumetazoa
- Animals
 - Bilateria
 - Deuterostomia
 - Echinodermata

Gilled symmetry
- Protostomia
 - Rotifers
 - Platyhelminthes (flatworms)
 - Annelida (segmented worms)
 - Moluskas (molluscs, clams, squids)
 - Phyla (e.g., Molluskas)

Metazoan origin
- Evolutionary tree
 - Origin of epithelial tissue
 - Using phylogenetic tree

Tania Holtzem, 2014

https://en.wikipedia.org/wiki/Gastrulation#/media/File:Blastula.png

https://upload.wikimedia.org/wikipedia/commons/6/68/Simetria-bilatera.svg
Echinodermata

- 20 different Taxa developed in the Kambrium
- Only 5 recent taxa left
- 7000 recent species
- Exclusively marine
- **shelf** (0-250m) – **bathyal** – **hadal** (6km - 10km)

Crinoidea (650 species)

Asteroidea (2100 species)

Ophiuroidea (2000 species)

Holothuroidea (1400 species)

Echinoidea (800 species)

Pelmatozoa vs **Eleutherozoa**

[Image of echinoderm species]
Echinodermata

Crinoidea

Echinoidea

Asteroidea

Ophiuroidea

Holothuroidea

Westheide & Rieger, Spezielle Zoologie Teil 1
Einzeller und wirbellose Tiere, 3. Auflage, S. 730
New features in Echinodermata

- Pentamery
- Bilateral “Dipleura”-larvae type in Eleutherozoa
- Ambulacral system
- Madrepore (in Asteroidea, Ophiuroidea, Echinodea)
- Mutable collageneous tissue (MCT)
- Hollow spikes cover the body
Echinoidea

Irregularia

- Bilateral symmetry
- Feeds on sediment
- Very short gut

Regularia

- Outer Pentamery
- Rather long gut

http://www.larcadinoe.com/scheda/Irregularia\%20(flat\%20sea-urchins)/Maretia+planulata/17310

http://koghisberg.com/wp-content/uploads/Paracentrotus-lividus-46mm-1.jpg

Courtesy of Bertemes 2013
Psammechinus miliaris
• Single-layer epithelia with a narrow epidermis
• 5 “Ambulacren” with canals
• solid endoskeleton ("Sklerocyten") with chalk-plates ("Ossikel")
• movable spikes
• Pedicellaria
• Aristotle’s lantern
Aristotle’s lantern
Sea urchins in Calvi

Paracentrotus lividus
http://static.panoramio.com/photos/large/16383487.jpg

Brownish, small animal
Long spikes
White ring on base of spikes

Sphaerechinus granularis

Big animal
Short spikes
Round, white ends

Arbacia lixula
https://upload.wikimedia.org/wikipedia/commons/5/54/Arbacia_lixula_(oursin_noir).JPG

Black animal
Long spikes
Very sharp spikes
Embryonic Development

- Fertilized Egg
- Cleavages
- Blastula
- Gastrula
- Pluteus-larvae
Cleavages

• first and second cleavage
 • symmetric
 • meridional
 • 4 equal blastomeres
Cleavages

- third cleavage
 - symmetric
 - equitorial
 - animal and vegetal halves

→ animal-vegetal axis
Cleavages
Cleavages

• fourth cleavage
 • partly asymmetric
 • animal pole: meridional, symmetric
 • → mesomeres
 • vegetal pole: equatorial, asymmetric
 • → 4 macromeres
 • → 4 micromeres
Cleavages

• fifth and sixth cleavage:

 • animal half:
 • mesomeres:
 • an1
 • an2

 • vegetal half:
 • macromeres: meridional
 • veg1
 • veg2
 • micromeres: meridional
 • 4 smaller micromeres
 • 4 larger micromeres

Wolpert, 2006
Vellutini, 2010
Cleavages

fate map

- animal region
 - ectoderm

- vegetal plate
 - veg1: gut and ectoderm
 - veg2: gut and secondary mesenchyme
 - large micromeres: primary mesenchyme \Rightarrow skeletogenic cells
 - small micromeres: gut induction
Blastula

- ciliated cells
- in the middle: blastocoel
- on the outside: hyaline layer
- blastula hatches from the fertilization envelope
Gastrulation

- vegetal pole \rightarrow vegetal plate

- cells derived from micromeres:
 - primary mesenchyme cells
 - extend filopodia
 - enter the blastocoel and migrate to a specific position
 - produce calcerous skeletal rods

Wolpert, 2006
Gastrulation

- vegetal plate:
 - bends inwards
 - blastopore
 - archenteron

Wolpert, 2006
Gastrulation

- secondary mesenchyme cells:
 - extend filopodia
 - pull the archenteron towards blastocoel wall
 - disperse into the blastocoel
 - form mesoderm (muscle and pigment cells)

→ formation of the mouth and oral-aboral axis

Wolpert, 2006
Gastrulation
Wnt-/β-Catenin - pathway
Cleavages

fate map

- animal region
 - ectoderm

- vegetal plate
 - veg1: gut and ectoderm
 - veg2: gut and secondary mesenchyme
 - large micromeres: primary mesenchyme \rightarrow skeletogenic cells
 - small micromeres: gut induction
Wnt-/?-Catenin - Signalling

• ?-Catenin
 • specifies vegetal half of the embryo
 • accumulates in the micromeres
 • stabilised in the micromeres by maternal Dishevelled protein
 • later stabilised by Wnt-8
 • → inductive ability

• together with transcription factor Otx → activation of pmar1
 • micromeres → organizer function, development into primary mesenchyme
 • veg2 cells → endo-mesoderm
 • veg2 cells → secondary mesenchyme
 • veg2 cells → Notch-Delta signalling, (endoderm-ectoderm boundary)
Back to Calvi
Reaggregation and development

Reaggregation is a known experiment in *Hydra*.

But what about sea urchins?

Questions:

To which state is the embryo/larvae able to reaggregate after mechanical deaggregation?

Is the embryo able to develop a normal larvae after reaggregation?

How does inhibitory treatment during larval development changes the phenotype?

Figure 6: Process to get Hydra aggregates: Incubate Hydras into dissociation medium, dissociate completely with a pipette, centrifuge and solve the pellet in 5 ml new dissociation medium. Divide the cell solution into 0.4 ml PE-tubes and centrifuge again. Put the PE-tubes headlong onto a petri dish and wait until aggregates slowly trickle down.
Questions will be answered in Calvi 😊

https://upload.wikimedia.org/wikipedia/commons/7/73/Calvi_STARESO.jpg
References

• Westheide & Rieger, Spezielle Zoologie Teil 1 Einzeller und wirbellose Tiere, 3. Auflage, S. 730

• Bergbauer & Humberg (2009). Was lebt im Mittelmeer? Kosmos Verlag, S. 234-244