
Singularity - Containers for Scientific Computing
ZID Workshop

Michael Fink Universität Innsbruck
Innsbruck Nov 2018

Overview

Preliminaries
• Why containers
• Understanding Containers vs. Virtual Machines
• Comparison of Container Systesms (LXC, Docker, Singularity) - why Singularity?
• Containers and Host Resources

Using Singularity
• Singularity Workflow
1. Manual Walkthrough Exercise

Understanding Singularity
• Web resources
• Container Image Formats, Sources, Conversions
• Running Containers

Advanced Singularity
• Automating Creation of Containers
• Container Contents, Cache Files
2. Exercise - Build Container using Build File
• Using MPI with Singularity
3. Exercise - MPI Job with Container
• Singularity Instances

Why Containers?

What is the problem?
• dependency hell

complex (multiple +
indirect + contradictory)
software dependencies

• limited HPC team workforce
always slow, always late

• conservative OS maintenance policy
risk: upgrade breaks system
HPC teams prefer stable over innovative OS

e.g. Redhat/CentOS: backed by HW vendors but very slow adopting new developments
• user portability: differences between installations

new computer → reinstall and test all software
• reproducibility of results

recreate old computations for verification

Solution: container: user-defined software environment in isolated, immutable, portable image
• contains user-defined copy of system and user software
• eliminate (most) system dependencies (but: host kernel and MPI must be compatible with container)
• encapsulate software
• long-term archive for reproducibility

Understanding Containers (1)

Conventional OS
• Kernel runs on physical hardware
• All processes see host‘s resorces (file systems + files, network, memory etc.)

host hardware

host kernel

host
process

...

physical machine running conventional OS

host
process

host
process

Understanding Containers (2)

host hardware

host kernel

host
process

...

physical machine

host
process

host
process

host hardware

host kernel

virtual
hardware

guest kernel

guest
process

host
process

...

...

virtual machine

Classical virtualization
• Host Kernel runs on physical hardware
• Hypervisor and virtual machines (guests) run as processes on host
• Each virtual machine (guest) has:

• virtual hardware (processors, memory, network, ...)
• its own kernel (same or different OS)
• isolated set of processes, file systems + files etc.

• Virtualization overhead
• Boot and shutdown, memory footprint, ...
• Each system call (I/O, network, ...) has to go through all layers
• 2 levels of multitasking, virtual memory management ...
• Code instrumentation
•

Understanding Containers (3)

Container (aka OS Level Virtualization)
• set of processes running on a host with manipulated namespaces = what resources a process can see

• have private copy of
• OS utilities and libraries, file systems and files, software, and data
• other resources (PIDs, network, ...) - not relevant here

• similar to virtual machine, but:
• processes run directly under host‘s kernel (same OS = limitation)
• no virtual hardware, no additional kernel, no virtualization overhead

host hardware

host kernel

...

physical machine

host
process

host
process

host hardware

host kernel

virtual
hardware

guest kernel

guest
process

host
process

...

...

virtual machine

...

host hardware

host OS

guest
process

isolated
namespace

host
process ...

container

...

...

Overview of Container Solutions

• LXC (Linux Containers) linuxcontainers.org
uses Linux namespaces and resource limitations (cgroups) to provide private, restricted environment for processes
operation similar to virtual machines (boot, services)
usage: OS containers (lightweight replacement for servers)

• alternative to virtual machines
• several applications per container

• Docker
similar to LXC, similar purpose (often used for web and database services)
client - server model:

• containers run under dockerd
• user controls operations with docker command

usage: Application containers
• typically only one program per container (microservices)
• containers communicate over virtual network

advantage:
• very popular, huge collection of prebuilt containers on dockerhub

• Singularity
uses Linux namespaces (no cgroups - resource limits should be responsibility of batch system)

to provide private software environment for processes (user defined software environment)
operation like running programs from a shell, access to all host resources except root file system
developed for HPC cluster environments

(*) https://www.xkcd.com/2044/
Docker: why not for HPC?

Docker

• de facto standard container solution for virtual hosting
• huge collection of prebuilt containers repository: Docker Hub

• client-server model
containers run under Docker daemon
mimick virtual server (startup in background, separate network, ...)
docker user commands communicate with Docker daemon

breaks process hierarchy (no integration of batch system + MPI)
• need root privileges to run unsuitable for multiuser
• containers completely isolated from host no access to user data + host resources
• docker image hidden in obscure place cannot copy image to arbitrary server

• complex orchestration (*) of multiple containers
• easy on PC, but very complex operation and deployment in cluster

Conclusion: Docker unsuitable for HPC
BUT: Leverage Docker Ecosystem

Why Singularity?

Singularity easy to understand, use, and operate

• designed to run in HPC envirunments
• use Docker containers or build your own singularity can download containers from Docker Hub

no need to install Docker
• container processes run as children of current shell trivial integration of shell tools (e.g. I/O redirection,

pipelines, command line arguments),
batch system and MPI

• secure: containers run with normal user privileges suitable for multiuser
• by default, only replaces root file system can provide different OS+SW environment, but:

full access to all host resources
(processors, network, infiniband, $HOME, $SCRATCH etc.)

• singularity image = single immutable file (squashfs) easily copy / archive image anywhere

• emerges as new standard for HPC containers

note: Charliecloud, Shifter
• older competitors to Singularity - more complicated & less flexible

- need Docker installation

container

guest
process

/

/usr
/var

/etc/hostname mycontainer

/data

Singularity Containers and Visibility of Host Resources

host

host
process

/

/usr
/var

/home/user/

/etc/hostname myserver

/dev

/scratch

/tmp

/home/user

/dev

/scratch

/tmp

Guest processes can access and use:
• guest file system
• host CPUs & memory
• host system calls (kernel interface)
• host networking (incl. X11) and processes
• parts of host file system:

• current working directory (if accessible)
• $HOME, /dev, /tmp, /var/tmp ...
• $SCRATCH (uibk)

• (most) environment variables
• host stdin, stdout, stderr
• guest process = child of your shell

Singularity
only

Singularity Containers and Visibility of Host Resources

On Test VM
Singularity test.simg:~/sing-test> df
Filesystem 1K-blocks Used Available Use% Mounted on
OverlayFS 1024 0 1024 0% /
/dev/sda1 10253588 5107324 4605696 53% /tmp
udev 1989624 0 1989624 0% /dev
tmpfs 2019872 22984 1996888 2% /dev/shm
tmpfs 16384 8 16376 1% /etc/group
tmpfs 403976 1504 402472 1% /etc/resolv.conf

On LCC2
Singularity test.simg:~> df
Filesystem 1K-blocks Used Available Use% Mounted on
OverlayFS 1024 0 1024 0% /
hpdoc.uibk.ac.at:/hpc_pool/lcc2/scratch 10712179648 3839379136 6872800512 36% /scratch
/dev/mapper/vg00-lv_root 25587500 5002364 20585136 20% /etc/hosts
devtmpfs 8121232 0 8121232 0% /dev
tmpfs 8133636 0 8133636 0% /dev/shm
na1-hpc.uibk.ac.at:/hpc_home/qt-lcc2-home/home/cb01/cb011060 276901056 86282112 190618944 32% /home/cb01/cb011060
/dev/mapper/vg00-lv_tmp 25587500 33032 25554468 1% /tmp
/dev/mapper/vg00-lv_var 25587500 4978280 20609220 20% /var/tmp
tmpfs 16384 8 16376 1% /etc/group

Note:

multiple mounts from same file system
(e.g. $HOME, /var/tmp on test VM) are not listed.

use df -a for complete output

Overview

Preliminaries
• Why containers
• Understanding Containers vs. Virtual Machines
• Comparison of Container Systesms (LXC, Docker, Singularity) - why Singularity?
• Containers and Host Resources

Using Singularity
• Singularity Workflow
1. Manual Walkthrough Exercise

Understanding Singularity
• Web resources
• Container Image Formats, Sources, Conversions
• Running Containers

Advanced Singularity
• Automating Creation of Containers
• Container Contents, Cache Files
2. Exercise - Build Container using Build File
• Using MPI with Singularity
3. Exercise - MPI Job with Container
• Singularity Instances

Singularity Workflow
You need

• PC
running Linux (or virtual Linux - e.g. on VirtualBox)
with Singularity installed + root privilege

build + configure your container in sandbox directory
install software (OS utilities, third party software, data....)

test container
when finished testing locally - prepare for transfer to HPC system

convert sandbox to squashfs image

automate build using build recipe file

• HPC system with Singularity installed + sufficient disk space (scratch)

copy image to HPC server
test + run your container

• If MPI is used

OpenMPI versions of host (mpirun) and container (mpi libraries) must match

read/write directory hierarchy
contains all container‘s files while

building and modifying

compressed readonly file system for linux

Setting up a VirtualBox Linux Instance

Singularity needs Linux to build containers: need Linux VM on Windows + OS X - recommended for Linux
• Download and install VirtualBox + Extension Pack from virtualbox.org
• VirtualBox: set up a Host Only Ethernet Adapter (Global Tools - Host Network Manager)

allows you to ssh into your VM
For this workshop
• Download and import the uibk-singularity-workshop.ova demo VM image

For productive work
• Download Linux ISO. e.g. Ubuntu: releases.ubuntu.com
• Create new VM + install Linux ("minimal" is OK)

≥ 4 GB memory, ≥ 10 GB + estimated size of data virtual hard disk (dynamic)
General/Advanced: bidirectional clipboard (need VB Guest Additions)
Storage: IDE Optical Drive: select Linux ISO (this workshop: Ubuntu AMD64 18.04.1)
Network: Adapter 1: Enable/NAT (default); recommended if local ssh access: Adapter 2: Enable/Host-only
Shared Folders: optional (need VB Guest Additions)

• Start VM and install software
sudo apt-get update ; sudo apt-get -y upgrade
sudo apt-get -y install python gcc make libarchive-dev squashfs-tools

install VirtualBox Guest Additions then restart machine

Install Singularity

On your Linux (virtual or physical) machine
• Follow steps on http://singularity.lbl.gov/install-linux

or https://www.uibk.ac.at/zid/systeme/hpc-systeme/common/software/singularity24.html

• Example: version 2.5.2 (current as of June 2018; 2.6 has Nvidia + namespace enhancements)

VERSION=2.5.2
wget https://github.com/singularityware/singularity/releases/download/$VERSION/singularity-$VERSION.tar.gz
tar xvf singularity-$VERSION.tar.gz
cd singularity-$VERSION
./configure --prefix=/usr/local
make
sudo make install

• Keep installation directory - before installing a new version, remove existing old version:

OLDVERSION=x.y.z
cd singularity-$OLDVERSION
sudo make uninstall
cd ..
rm -rf singularity-$OLDVERSION

• Version 3.0.1 Nov 2018
• Complete rewrite in Golang
• CAUTION: new default container format, not compatible w/ V2.X

Singularity Workflow
How to use

simplest alternative - automation recommended
• develop (build and test) container on your PC (e.g. use latest ubuntu image from docker)

• sudo singularity build --sandbox myubuntu/ docker://ubuntu
create writable sandbox directory named myubuntu

• sudo singularity shell --writable myubuntu
work inside sandbox. install and test OS utilities & software record steps to prepare automated build

• prepare container for use on HPC system
• sudo singularity build myubuntu.simg myubuntu/

convert sandbox to immutable (squashfs) production image. better: prepare build script and automate build

• scp myubuntu.simg user@hpc-cluster:/scratch/user
ship container to HPC cluster

• test and use container on HPC system
• ssh user@hpc-cluster

cd /scratch/user ; module load singularity [openmpi/version]
login and set up environment

• [mpirun -np n] singularity exec myubuntu.simg command [arg ...]
use container (interactive or batch). You have access to local directories e.g. $HOME and $SCRATCH

don’t forget or silently lose all your changes

Manual Walkthrough Demo - Hands On (1)

Web page with details:
https://www.uibk.ac.at/zid/mitarbeiter/fink/singularity-2018/workshop-exercises.html#HDR1

• Prepare your PC and LCC account
• Connect your laptop to Wifi
• (Optional for Linux) start uibk-singularity-workshop virtual machine
• Logon to your LCC account and create symlink $HOME/Scratch → $SCRATCH
• Install Singularity

• Create and test your first container
• Create container in sandbox
• Start container writable shell as root

• update OS
• install OS utilities (vim, nano, less, gcc, make, wget)
• download sample programs mycat.c and hello.c ; compile, and test in /data (SEE NEXT SLIDE)

• Transfer and use container on HPC system
• Convert container to squashfs
• Test container image on local machine (non-root)
• Transfer to LCC2, test on remote machine

Manual Walkthrough Demo - Hands On (2)

Sample programs hello.c mycat.c
Trivial programs to demonstrate typical capabilities of UNIX programs
• process command line arguments
• read data from named files and stdin
• write data to stdout

hello.c
simply echoes all its command line arguments. Examples

$ hello a b c
hello a b c
$./hello one two three
./hello one two three

mycat.c
works like simplified version of cat(1) UNIX program, but prints header for each file read and line numbers
usage: mycat [file ...]

reads files (default / --): stdin
writes concatenated output to stdout with file headers and line numbers

Overview

Preliminaries
• Why containers
• Understanding Containers vs. Virtual Machines
• Comparison of Container Systesms (LXC, Docker, Singularity) - why Singularity?
• Containers and Host Resources

Using Singularity
• Singularity Workflow
1. Manual Walkthrough Exercise

Understanding Singularity
• Web resources
• Container Image Formats, Sources, Conversions
• Running Containers

Advanced Singularity
• Automating Creation of Containers
• Container Contents, Cache Files
2. Exercise - Build Container using Build File
• Using MPI with Singularity
3. Exercise - MPI Job with Container
• Singularity Instances

Understanding Singularity: Documentation, Getting Help, Getting Software

Web resources

• https://www.sylabs.io/singularity/ Official Web Site
• https://www.sylabs.io/docs/ Singularity Documentation
• https://github.com/sylabs/singularity Github: Software Download

• https://hub.docker.com/explore/ Docker Hub Repositories

• https://www.uibk.ac.at/zid/systeme/hpc-systeme/ UIBK HPC Home Page - search singularity
• https://www.uibk.ac.at/zid/mitarbeiter/fink/singularity-2018/ Material for present workshop

Singularity Command Help Utility

• singularity --help
• singularity subcommand --help

Understanding Singularity: Container Image Formats

Concept: container image
• Private copy of root file system: OS (except kernel) + utilities + libraries + permanent data for container

Types of container images (usable as container path in singularity commands)
• Sandbox directory

• directory tree in host file system
• mounted (read-only or read-write) as root inside container
• create with sudo singularity build --sandbox name source
• modify with sudo singularity shell --writable name
• use to create, modify, and test user defined software environment

• Immutable squashfs image file
• read-only image of root tree in single file
• mounted read-only as root inside container
• create with sudo singularity build name.simg source
• use to test, deploy, and run software environment

• Legacy writable filesystem image file - deprecated
• previously only available format - corruption + capacity issues
• create with sudo singularity build --writable name.img source

Understanding Singularity: OS Image Sources

From where can singularity take OS images?
Types of image sources (confusing: Singularity documentation calls these targets)

source type example
• dockerhub docker://name[:release] points to a Docker registry (default Docker Hub)

e.g. docker://ubuntu:bionic
docker://centos:7.5

• directory dirname Directory structure containing a root file system
(typically from earlier build)

• image name.simg name.img Local image on your machine (squashfs or legacy)
• tarball name.tar.gz Archive file containing above directory format

(file name must contain "tar")
• buildfile name.build name.def Buildfile = text file with recipe for building a container

(explained later in automation)
• OS repository (Centos, Ubuntu,) install OS from scratch - only via buildfile

• not available as source: ISO image for OS installation from scratch.
Instead: use Dockerhub or OS repository to download clean OS image and then modify

Understanding Singularity: Converting Container Formats

singularity build

buildfilevi buildfile

singularity build ‐‐sandboxsquashfs image

sandbox directory

legacy image

singularity build ‐‐writabletarball

squashfs image

sandbox directory

legacy image

tarball

tar {c|x}fz name.tar.gz name

docker hub

OS repository

singularity build [‐‐option ...] container‐image‐to‐build source‐spec

deprecated

Understanding Singularity: Running Containers

singularity exec [options] container-path command [arg ...]
execute any command in container

run [options] container-path [arg ...] purpose: define your own commands
start run-script /singularity [arg ...] within container

shell [options] container-path
start interactive shell in container

important common options
-w | --writable (only sandbox or legacy image) Container is writable (must use sudo)

-B | --bind outsidepath[:insidepath[:options]]
bind mount outsidepath (host) as insidepath (container) using options { [rw] | ro }

-H | --home outsidehome[:insidehome]
override mount of $HOME directory.

recommended: use subdirectory of $HOME
to prevent two-way leakage of config files / shell history, etc.

what happens
• command / runscript / shell is executed in container.
• I/O to $HOME, mounted directories, and /dev is possible
• Program has access to host's networking
• stdin, stdout and stderr are connected to running program

Using Singularity - Some Practical Considerations, esp. for UIBK

• Singularity activated by modules environment
module load singularity/2.x no access to older versions (security fixes)

• Which directories are mounted on UIBK clusters
$HOME (by default)
$SCRATCH (UIBK configuration) need to create mount point /scratch in container for this to work

• CAVEAT: Re-Uploading Squashfs image may damage your jobs
Be sure NOT to overwrite your Squashfs image while jobs are still running

→ jobs will malfunction and flood sysadmins with error messages

• Installing your own software inside container
• Use tools like apt (Debian/Ubuntu) or yum (RedHat/CentOS) to install system components and prerequisites
• Install your own stuff into unique directory (e.g. /data) which is unlikely to be clobbered by other components
• Be sure NOT to install to $HOME (which is outside the container)

• Portability, compatibility, reproducibility
Containers help mitigate the replication crisis
But: still need compatible OS infrastructure on host (e.g. kernel, MPI libraries, ...)

Example: OpenMPI 1.10.2 no longer compiles on Centos 7.4 → Ubuntu 16.04 MPI containers not usable

Overview

Preliminaries
• Why containers
• Understanding Containers vs. Virtual Machines
• Comparison of Container Systesms (LXC, Docker, Singularity) - why Singularity?
• Containers and Host Resources

Using Singularity
• Singularity Workflow
1. Manual Walkthrough Exercise

Understanding Singularity
• Web resources
• Container Image Formats, Sources, Conversions
• Running Containers

Advanced Singularity
• Automating Creation of Containers
• Container Contents, Cache Files
2. Exercise - Build Container using Build File
• Using MPI with Singularity
3. Exercise - MPI Job with Container
• Singularity Instances

Automating Creation of Containers Using Build Files

Build file := text file containing directives how to build containers
Use singularity build help to get template and valid combinations

Starts with BASEOS specs (specifies source of OS), e.g.
Bootstrap: {docker|yum|debootstrap|localimage}
From: source-spec
MirrorURL: http://location-of-installation-material

Continues with several sections, each having format
%section-header
lines with shell commands (scriptlet)

Sections are executed in host or container at different times during build process and runtime of container

%setup executed during build on host after creation (bootstrap) of container.
Use $SINGULARITY_ROOTFS to reference container contents.

%post executed during build inside container after %setup.
add here all commands to setup your software

%files used during build - not a scriptlet, but pairs /path/on/host /path/inside/container.
executed too late to be useful - use %setup instead

%test executed during build inside container after %post
define any test commands to test correct setup of container. Exit status used to determine success

%environment executed at start of runtime inside container when singularity { run | exec | shell } is used
purpose: set all desired environment variables

%runscript executed at runtime inside container when singularity run is used
purpose: define your own set of commands

Container Directory Contents (Version 2.5)

After build, container root directory will contain:
1. Complete copy of OS installation from source
2. Singularity-specific data

• you can modify these in sandbox after build while developing container, but...
• ... remember to update your build file and rerun build for final version (consistency!)

/.singularity.d/
actions/ Implementation of Singularity commands
env/ Several environment scripts, including contents of your %environment scriptlet
runscript Contents of your %runscript scriptlet
test Contents of your %test scriptlet
Singularity Your complete build file

/environment -> .singularity.d/env/90-environment.sh Link to your %environment scriptlet
/singularity -> .singularity.d/runscript Link to your %runscript scriptlet
/.exec -> .singularity.d/actions/exec
/.run -> .singularity.d/actions/run
/.shell -> .singularity.d/actions/shell
/.test -> .singularity.d/actions/test

3. Results of all your %setup, %post, and %files actions

Implementations of commands exec, run, shell, etc.
first, source all scripts in /.singularity.d/env/*.sh
then run your command, runscript, or shell

Cache and Temporary Directories

Singularity uses the following host directories

• $HOME/.singularity cache of material downloaded from dockerhub + more
override with export SINGULARITY_CACHEDIR=/alternate/directory
disable with export SINGULARITY_DISABLE_CACHE=yes

• /tmp temporary directories during squashfs image creation.
must be large enough to hold entire tree
override with export SINGULARITY_TMPDIR=/alternate/directory

Using Singularity - More Practical Considerations

• Warning
Carefully inspect build file before running singularity build

One error in build file can clobber your host (*)

• All section header lines must begin with %xxxx - no blanks allowed

• The %setup section is run as root user with no protection
• (*) If the setup process continues into the %post section (for whatever reason - e.g. typo),

all actions intended for container will affect host instead

• This is why we recommend using a Linux VM even when building containers under Linux
• Take VM snapshot before using untested build files

• Files in Sandbox directory created by sudo singularity build -s mydir are owned by root
• Remove a sandbox directory mydir as root

sudo rm -rf mydir

Exercise: Build Container using Build File

Web page with details:
https://www.uibk.ac.at/zid/mitarbeiter/fink/singularity-2018/workshop-exercises.html#HDR2

In this exercise, we will demonstrate automatic creation of a container using the build command
and compile and use two sample programs to test shell integration of Singularity runs

• Download build file automate.build and sample programs mycat.c hello.c
• Create container squashfs image
• Repeat experiments of first exercise

Using MPI with Singularity

Concept
Normal MPI usage

mpirun starts n MPI processes on same or different hosts using mpirun command
MPI runtime uses MPI libraries linked into programs for interprocess communication

Singularity: use host's mpirun to start container processes and communicate with batch system
advantage: Singularity batch and MPI integration is trivial (cf. competitors)
but: MPI runtime on host needs to communicate with MPI libraries in container

 need identical MPI version in host and container

How to
• Build container using MPI from container's OS (or download and build MPI sources)
• Make sure identical MPI exists on target system (else request installation)
• Upload container image
• Create SGE batch script

#!/bin/bash
#$ -pe openmpi-xperhost y
#$ -cwd

module load openmpi/2.1.1 singularity/2.x
mpirun -np $NSLOTS singularity exec mycontainer.simg /data/bin/my-mpi-program

Exercise: Build and Run Container with MPI

Web page with details:
https://www.uibk.ac.at/zid/mitarbeiter/fink/singularity-2018/workshop-exercises.html#HDR3

In this exercise, we will download and compile one of the OSU benchmark programs
to demonstrate MPI integration of Singularity

• Download build file mpitest.build and batch script mpitest.sge
• Create container squashfs image and copy to LCC2

• Run test locally on login node
• Submit test job to SGE

• Compare test results

Singularity Instances (preview)

Problem
Memory congestion w/ multiple singularity processes on same host (e.g. MPI jobs)
• Each singularity exec separately mounts its container file system (squashfs)
• Buffer cache not shared  system memory flooded with identical copies of file system data

Solution
• Have several container processes share the same squashfs mount on each host → shared buffer cache

Singularity instance
• singularity instance.start [-H homespec] [-B mountspec] container-path inst-name

start named instance of given container, create mounts and name spaces,
but do not start any processes in container

• singularity exec instance://inst-name command [arg ...]
start program in namespace of given container instance

• singularity instance.list
list all active container instances

• singularity instance.stop [-f] [-s n] inst-name
stop named instance

-f force by sending KILL signal... -s n sent signal n ... to running processes (n numerical or symbolic)

Caveat: take extreme care that containers are cleaned up at end of job (limited resource - experiments underway)

Singularity Instances Example: MPI Job on SGE Cluster

#!/bin/bash
#$ -N mpi-inst
#$ -j yes
#$ -cwd
#$ -pe openmpi-2perhost 4
#$ -l h_rt=500

module load singularity/2.x openmpi/1.8.5
singularity=$(which singularity)
cwd=$(/bin/pwd)

awk '{print $1}' $PE_HOSTFILE |
parallel -k -j0 "qrsh -inherit -nostdin -V {} $singularity instance.start $cwd/insttest.simg it.$JOB_ID"

sleep 5 # allow instances to settle

time mpirun -np $NSLOTS $singularity run instance://it.$JOB_ID my-program

sleep 5

time awk '{print $1}' $PE_HOSTFILE |
parallel -k -j0 "qrsh -inherit -nostdin -V {} $singularity instance.stop it.$JOB_ID"

thank you

