Times of arrival: Bohm beats Kijowski
Michael Ruggenthaler, Gebhard Grübl and Sabine Kreidl
Institut für Theoretische Physik der Universität Innsbruck
Technikerstr. 25, A-6020 Innsbruck, Austria
Submitted April 25, 2005
Abstract. We prove that the Bohmian arrival time of the 1D Schrödinger evolution violates the quadratic form structure on which Kijowski's axiomatic treatment of arrival times is based. Within Kijowski's framework, for a free right moving wave packet , the various notions of arrival time (at a fixed point x on the real line) all yield the same average arrival time
. We derive the inequality
relating the average Bohmian arrival time to the one of Kijowksi. We prove that
if and only if
leads to position probability backflow through x.
Published 14 September 2005.
J. Phys. A: Math. Gen. 38, 8445 - 8451 (2005).
Preprint. http://arXiv.org/abs/quant-ph/0504185
, 9 pages, 137 kB.