

Department of Theoretical Physics

Theory Colloquium

Michael Knap, TU München, Germany

"Dynamics of Fracton Quantum Matter"

Abstract

Recent conceptual and experimental progress made it possible to explore strongly-correlated nonequilibrium states of matter, which exhibit a wealth of exotic dynamical phenomena. Despite this apparent complexity, the far-from-equilibrium dynamics of generic interacting quantum systems is characterized by a handful of universal guiding principles, among them the diffusive hydrodynamic transport of globally conserved quantities. Recent developments, however, showed, that in certain constrained many-body systems the structure of conservation laws can cause a drastic modification of this universal dynamical behavior. An example are fracton quantum systems, which possess excitations with constrained mobility.

Fracton systems conserve in addition to a global charge, the associated center of mass (or equivalently the dipole moment). These systems exhibit a novel type of localization transition separating an ergodic dynamical phase from a frozen one; a phenomena known as Hilbert space fragmentation. Even in the ergodic phase, transport is anomalously slow and exhibits sub-diffusive scaling. In this colloquium, I will review some of the theoretical progress in studying anomalous transport in fracton quantum matter, discuss their relations to gauge theories, and propose how these effects may be observed experimentally.

Wednesday | 24.04.2024 | 17:15 SR 2 | ICT building