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Abstract
Numerical simulation of the full quantum dynamics of open quantum systems is often
limited by the sheer size of the underlying Hilbert space. Commonly, numerical approa-
ches use matrix representations for operators and states, which grow exponentially in
size with the number of subsystems involved. Hence, often approximation methods are
needed to calculate important properties and the dynamics of wavefunctions of large
quantum systems. Alternatively, one can work in the Heisenberg picture, and aim to
determine the time evolution of desired operator expectation values via corresponding
systems of coupled ordinary differential equations. In many cases, such an approach
does not directly lead to a closed set of equations and therefore is not directly applicable.
However, approximations to higher-order products of operators can be used in the form
of the well-known cumulant expansion method. This allows truncating these infinite
sets into smaller solvable ones by approximating higher-order quantum correlations by
products of lower order.

Depending on the complexity of the system, deriving the required equations of motion
for operator averages can be a difficult and laborious task still. A helpful tool to
automate this process for quantum optics type systems is the open-source Julia package
QuantumCumulants.jl. It is capable of automatic generation of the Quantum Langevin
Equations for general system operator averages and application of the aforementioned
cumulant expansion method up to a desired order. For this, it requires the user to
define the Hamiltonian and the dissipative processes of the open quantum system by
using the available building blocks in the package. Furthermore, one can directly obtain
numerical solutions of the analytically derived equations using standard differential
equation solvers.

QuantumCumulants.jl thus is a powerful tool to simulate open quantum systems.
However, for the simulation of large systems, the prime time-limiting process has been
the composition of the large number of required symbolic equations for each subsystem.
So far, for quantum systems consisting of multiple equivalent subsystems, redundant
calculus has been performed. Ensembles of atoms coupled to a cavity or a dipole-
dipole interacting atomic array are common examples of such systems. In this work, we
introduce a newly developed algorithm to avoid this redundancy and speed up the process
by introducing symbolic summations and indices to the QuantumCumulants.jl toolbox.
This allows to efficiently handle systems composed of many equivalent subsystems
and generate the final equations in a much more compact form. To this end, we first
introduce the basic underlying theoretical and computational concepts and then, we
showcase the effectiveness of this extension and its practical use in several examples.
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Zusammenfassung
Die numerische Simulation der vollständigen Quantendynamik offener Quantensystemen
ist meist limitiert aufgrund der Größe des unterliegenden Hilbertraums. Üblicherweise
werden bei numerischen Ansätzen Matrizen für die Darstellung von Operatoren und
Zustände verwendet, welche exponentiell mit der Anzahl an Untersystemen wachsen.
Aus diesem Grund werden oft Näherungen angewandt, um wichtige Eigenschaften
und die Dynamik von Wellenfunktionen von großen Systemen berechnen zu können.
Als Alternative kann man auch im Heisenberg Bild Berechnungen durchführen und
dadurch die zeitliche Entwicklung von gewünschten Operator-Erwartungswerten mittels
Systemen von gewöhnlichen gekoppelten Differentialgleichungen darstellen. In vielen
Fällen führt dies nicht zu einer geschlossenen Menge an Gleichungen und ist dadurch
nicht direkt anwendbar. Allerdings lassen sich Näherungen für Operator Produkte
von höherer Ordnung, wie beispielsweise die Cumulantenentwicklung, anwenden. Dies
ermöglicht eine unendliche Menge an Gleichungen in eine kleinere lösbare Menge zu
zerlegen, indem Quantenkorrelationen höherer Ordnung durch Produkte niedrigerer
Ordnung genähert werden.

Je nach Komplexität des betrachteten Systems kann das Herleiten der Bewegungs-
gleichungen von Operator-Erwartungswerten schwer und mühsam sein. Ein Hilfsmittel,
welches diesen Prozess für Quantenoptisch ähnlichen Systeme automatisiert, ist das
Open-Source Julia Paket QuantumCumulants.jl. Jenes ist in der Lage, die Quantum
Langevin Gleichungen für allgemeine Operatoren des Systems automatisch zu generieren
und die zuvor genannte Cumulantenentwicklung bis zu einer gewissen Ordnung anzu-
wenden. Um dies zu erfüllen, muss ein Benutzer des Pakets zuerst mithilfe von den zur
Verfügung gestellten Bausteinen einen Hamiltonian und dissipative Prozesse definieren.
Zusätzlich ist es ebenfalls möglich, direkt eine numerische Lösung zu erhalten, durch
Anwendung von standardmäßigen Differenzialgleichungs-Rechnern.

QuantumCumulants.jl ist daher ein nützliches Werkzeug für schnelle Berechnungen
von offenen Quantensystemen. Allerdings war der Zeit limitierende Prozess das Herleiten
der großen Anzahl an benötigten symbolischen Gleichungen für jedes Untersystem. Bisher
wurden für Systeme, welche aus mehreren ähnlichen Untersystemen bestehen, redundante
Berechnungen durchgeführt. Bekannte Beispiele für solche Systeme sind Ensembles von
Atomen, welche mit einer Cavity interagieren, oder auch Dipol-Dipol wechselwirkende
atomare Gitter. In dieser Arbeit stellen wir einen neuen Algorithmus vor, welcher diese
Redundanz umgeht und die Geschwindigkeit des Herleitungsprozesses erhöht, indem
symbolische Summen und Indexe in QuantumCumulants.jl eingeführt werden. Dies
ermöglicht Systeme, welche aus mehreren gleichartigen Untersystemen bestehen, effizient
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zu verarbeiten und die endgültigen Gleichungen in einer kompakteren Form darzustellen.
Zu diesem Zweck werden wir zunächst die zugrundeliegenden theoretischen Konzepte
vorstellen und zeigen dann die Effektivität dieser Erweiterung und deren praktische
Anwendung in mehreren Beispielen.
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Chapter 1.

Introduction
The growing interest in the computational simulation of quantum systems gives rise
to the development of different computational toolboxes. Multiple frameworks aim
to solve or simulate elaborate systems in a reasonable timeframe. Several modern
programming languages and packages provide a possibility for the numeric calculation
of quantum optical systems, for example, QuTiP [1], the Quantum Optics toolbox in
MATLAB [2] or QuantumOptics.jl [3]. These programs ease the simulation of different
systems by providing a user with basic structures of quantum-mechanical calculus. They
describe the system dynamics in the Schrödinger picture via matrix representation of
operators and state vectors. Therefore, they have an intrinsic limit to system size due
to the exponential growth of the matrix dimensions with the number of subsystems.
Consequently, common packages which use this matrix representation are usually only
applicable to describe the dynamics of rather small quantum systems. Typically, several
different approximations are used to handle larger ones. As an alternative to the
description in the Schrödinger picture, one can formulate the dynamics of open quantum
systems with differential equations of quantum operators in the Heisenberg picture.
Commonly, this description leads to a large, often even infinite, set of equations and
therefore does not directly reduce the exponential growth of the Hilbert space. To
this end, approximations like the cumulant expansion method are used to truncate the
number of differential equations. This reliable practice is applicable in many cases [4–6].

Typically one derives a differential equation of a single Heisenberg operator average
in an open quantum system with the so-called Quantum Langevin Equation (QLE)
[7, 8]. When several expectation values of quantum operators are needed to describe the
desired system of interest, many iterations of this process are necessary. Furthermore, to
end up with a closed and complete set of differential equations, we perform a cumulant
expansion on every higher-order operator product, which approximates the system
by neglecting higher-order quantum correlations. Since this procedure can be very
cumbersome and prone to errors, QuantumCumulants.jl was developed to automate it.
The package is a helpful tool to quickly elaborate open quantum optical systems and
was already used in several publications [4, 5, 9, 10]. It derives the differential equations
by automatically calculating the Quantum Langevin Equation for user-defined systems
specified by a Hamiltonian and dissipative processes. After deriving an initial set of
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1. Introduction

equations, an automatic completion and the cumulant expansion to a defined order
is performed, to end up with a complete and solvable set. In particular, the program
uses the cumulant expansion to rewrite higher-order products of quantum operators
as summations of lower-order ones by neglecting higher quantum correlations. Even
though QuantumCumulants.jl is a handy and powerful tool, it lacks optimisation for
systems consisting of several similar subsystems, such as, for example, an ensemble
of multiple atoms coupled to a cavity field. Such systems are commonly encountered
in quantum optics [11, 12]. For these kinds of arrangements, the toolbox has so far
performed redundant calculations as an equation for every operator acting on each
subsystem is required. In principle, one can derive equations for systems, which can be
described by multiple subsystems using indexed operators instead of individual ones.
For example, equations for the operators σ1, σ2, ..., σN can be expressed in a single
equation for the operator σi together with indexed variables and summations storing
the different information of the subsystems. However, implementing such an abstract
way of writing operators and equations into an algorithm using indices and summations
is not as straightforward as one might think. As quantum operators inherit non-trivial
rules of calculus, performing multiplications of different indexed operators requires
the treatment of several special cases. This becomes especially clear when products
also include summations. Therefore, deriving such indexed equations requires several
complex and laborious implementations, which we will highlight in this work. To this
end, we will first underline the basic physical concepts needed and give an introduction
to Julia and QuantumCumulants.jl. Furthermore, we will showcase several examples
and benchmark tests of this symbolic indexing extension.

2



Chapter 2.

Basic Concepts
In this section, we want to give a short introduction into the relevant theoretical concepts
and definitions needed to understand the underlying functionalities of the framework.
First, we define the quantum operators used to describe atomic and bosonic systems.
Following up, we briefly summarize a derivation of the Quantum Langevin Equation
(QLE) for open quantum systems. We continue by describing how one can construct a
closed set of equations of motion to simulate the dynamics of an open quantum system.
In this description, we will introduce the so-called cumulant expansion method, which is
needed to truncate the possibly infinite set of equations to a finite solvable one. Finally,
we will also give a quick overview of the physics of dipole-dipole interacting systems.

2.1. Atoms and light
In this section, we will introduce the concepts of quantum operators describing N-level
atoms and quantum harmonical oscillators similar as in [7, 8]. Although one cannot
represent all quantum systems with only these operators, a substantial amount of
problems in quantum optics can be covered. The simplest case of a multi-level atom is
the two-level atom, described by the ground state |g〉, excited state |e〉 and a dipole
transition moment ~d. A schematic drawing of such a two-level atom, which closely
relates to a Spin 1/2 system, with its transition operators is shown in Fig. 2.1.

Figure 2.1.: Schematic drawing of a two-level atom with the corresponding transition operators
σ+ and σ−.
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2. Basic Concepts

Let us first define the atomic transition operators σ+ and σ−. The operator σ+

corresponds to the excitation from the ground state |g〉 to the excited state |e〉 and
one can therefore write σ+ = |e〉 〈g|. The lowering operator σ− describes the inverse
process, σ− = (σ+)† = |g〉 〈e|. When describing multi-level atoms, one would define such
quantum operators for each possible transition within the atomic levels. By enumerating
the atomic states in such a system with {|1〉 , |2〉 , ..., |N〉}, we can relate which transition
an operator describes. For example, σ21 = |2〉 〈1| describes the transition from state |1〉
to state |2〉. When we encounter several transition operators acting at the same time,
we can use the orthonormality of the atomic states to conduct

σijσkl = |i〉 〈j|k〉 〈l| = δjkσil, (2.1.1)

where δjk is the Kronecker delta. A specific state |i〉 of a multi-level atom has the energy
Ei = ~ωi, with ωi being the transition frequency between the atomic ground state and
the state |i〉. In this description, we choose, without loss of generality, that the ground
state of an atom has zero energy, i.e. the frequency of the ground state ω1 is set to 0.
The Hamiltonian describing the energy of the entire N-level atom is then a summation
of all populated states with their energies and is given as

H = ~
N∑

i=2
ωiσ

ii. (2.1.2)

Similarly, different states of a light field can be expressed by a number or Fock state
|n〉. In this case, n ∈ N0 represents the number of photons within the field mode
described by a wave vector ~k and polarisation λ. Equivalent to the general quantum
harmonic oscillator, such a light field can be described with the raising-operator a†

~k,λ
and

lowering-operator a~k,λ. These have the following properties when acting on a number
state |n〉

a |n〉 =
√

n |n − 1〉 (2.1.3)
a† |n〉 =

√
n + 1 |n + 1〉 (2.1.4)

with their commutator relation

[a~k,λ, a†
~k′,λ′ ] = δ~k~k′δλλ′1. (2.1.5)

From this, one can deduct the so-called number operator N = a†a. The eigenstates of
this operator are the Fock states with

N̂ |n〉 = a†a |n〉 = n |n〉 . (2.1.6)
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2. Basic Concepts

Following up, since the number of photons in a mode is defined by the expectation value
of the operator product a†a, the energy of a single mode and polarisation with frequency
ω~k is given as E~k = ~ω~ka†

~k
a~k. Therefore the Hamiltonian describing the energy of a

system consisting of multiple light field modes with mode vectors ~k and polarisations λ
then takes the form:

H =
∑
~k,λ

~ω~k,λa†
~k,λ

a~k,λ. (2.1.7)

Here we neglect the energy of the vacuum field mode, which would result in an additional
~ω~k/2 term. This, however, does not change the general dynamics of systems of interest.
With the operators for atomic and light field configurations defined, we can now continue
to define the interaction Hamiltonian between these two systems. Within the electric
dipole approximation, the interaction between an atom and an electromagnetic field is
determined by the Hamiltonian [7]:

Hint = −~d · ~E. (2.1.8)

With ~d being the dipole moment of the atom and ~E being the quantized electric field.
Using the defined transition operators in Eq. (2.1.1), the dipole moment of a two-level
atom can be written as

~d = ~d21(σ21 + σ12), (2.1.9)

where ~d21 is the dipole matrix element and is assumed to be real. The quantized electric
field ~E has a positional dependency, and neglecting the polarization of different modes
takes the form of [7]:

~E(~r) = i
∑

~k

E~k(a~k
~f~k(~r) − a†

~k
~f ∗
~k
(~r)). (2.1.10)

Here, E~k = (~ωk/2ε0)
1
2 is the field amplitude regarding the corresponding mode fre-

quency ω~k and ~f~k is the positional depending mode function. Inserting these quantities
into Eq. (2.1.8), results in the Hamiltonian

Hint = i~
∑

~k

g~k(σ21 + σ12)(a~kf(~r) − a†
~k
f ∗(~r)), (2.1.11)

with g~k = −E~k
~d21~e~k/~ the coupling strength, and ~e~k being the polarisation direction of

the electric field, which we extracted from the mode function ~f~k. Using the rotating
wave approximation [13] and adding the atomic (2.1.2) and field Hamiltonian (2.1.7)
we end up with the Jaynes-Cummings model [14] for a single mode

HJC = ~ωaσ22 + ~ωfa†a + i~g(σ21af(~r) − σ12a†f ∗(~r)). (2.1.12)
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2. Basic Concepts

Here, we denote the frequency of the atoms as ωa and the ones for the field as ωf .
A generalisation of this model for N identical atoms leads to the well-known Tavis-
Cummings Hamiltonian, given as [15]

HT C =
∑

i

~ωiσ
22
i + ~ωfa†a + i~

∑
i

gi(σ21
i af(~ri) − σ12

i a†f ∗(~ri)). (2.1.13)

This Hamiltonian is frequently encountered in quantum optical systems, and we will
also use it in the examples later in this work.

2.2. Heisenberg Picture
Before deriving the Quantum Langevin Equation, which is used to determine the
differential equations of operator averages, we will now give a short introduction into
the Heisenberg picture. The time evolution of a system, described by a quantum state
|Ψ(t)〉, is represented by the time-dependent Schrödinger equation. This well-known
equation relates the time derivation of a state using a Hamiltonian H and takes the
form:

i~
d
dt

|Ψ(t)〉 = H |Ψ(t)〉 . (2.2.1)

Using the definition of the density operator ρ = ∑
i pi |Ψi〉 〈Ψi|, with pi being the

normalised state probabilities, one can also conduct the so-called von Neumann equation.
For this, the time derivative of the density operator ρ of a system relates to the
Hamiltonian and is

∂

∂t
ρ = i

~
[ρ, H]. (2.2.2)

In contrast to the Schrödinger picture, where a quantum state is described as being
time-dependent, in the Heisenberg picture, the operators inherit the time dependence.
A Heisenberg operator, i.e. a system operator a represented in the Heisenberg picture,
a(t) is given as

a(t) = U(t)†aU(t), (2.2.3)

where U(t) is the time-evolution operator for a system described by the Hamiltonian H.
If H itself is a time-independent quantity, one can write the time-evolution operator in
the general form as

U(t) = e−i H
~ t. (2.2.4)

From the above two equations, one can then derive the so-called Heisenberg equation,
which describes the time evolution of a Heisenberg operator, evolving under the time-
independent Hamiltonian H as

d
dt

O(t) = i

~
[H, O(t)]. (2.2.5)
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2. Basic Concepts

The expectation value of an arbitrary operator regarding a time-dependent quantum
state |Ψ(t)〉 is specified by 〈O〉 = 〈Ψ(t)| O |Ψ(t)〉. Since the state |Ψ(t)〉 can also be
expressed using the time evolution operator given in Eq. (2.2.4) as |Ψ(t)〉 = U(t) |Ψ(0)〉,
it follows that

〈Ψ(t)| O |Ψ(t)〉 = 〈Ψ(0)| U(t)†OU(t) |Ψ(0)〉 = 〈Ψ(0)| O(t) |Ψ(0)〉 . (2.2.6)

Moreover, one can show that the time derivative of an operator average in the Schrödinger
picture leads to the same as applying the expectation value on Eq. (2.2.5). For a general,
non-pure quantum state described by the density matrix ρ, the expectation value of an
operator is then given as

〈O〉(t) ≡ Tr{U(t)†OU(t)ρ} = Tr{OU(t)ρU(t)†}, (2.2.7)

where we use the cyclic properties of the trace to obtain the right most relation. Following
this, it is also apparent to see, that the time derivative of said operator average results
in the relation

d
dt

〈O〉 ≡ d
dt

Tr{O(t)ρ} = Tr{O
d
dt

ρ(t)}. (2.2.8)

2.3. Quantum Langevin Equation
In this section, we will give a short introduction into the derivation of the Quantum
Langevin Equation for a system coupled to a bath consisting of harmonic oscillators
similar as described in [7, 8]. Considering a system linked to a bath, the Hamiltonian
H, specifying the whole super-system, then consists of a system term, describing the
dynamics of the system of interest Hsys, as well as a term representing the bath Hb and
the interaction between them Hint. Using this total Hamiltonian and the Heisenberg
equation (2.2.5), the time derivative of an operator of the system coupled with the bath
reads

d
dt

O(t) = i

~
([Hsys, O(t)] + [Hb, O(t)] + [Hint, O(t)]) . (2.3.1)

Furthermore, the bath consists of infinitely many harmonic oscillator modes, describing
an external field with the Hamiltonian given in Eq. (2.1.7). Continuing, we use a
simplified version of the bath system, where we neglect different polarisations. Therefore,
we have the interaction Hamiltonian between the system and the bath

Hint = i~
∑

~k

(
κ∗

~k
c†b~k − κ~kcb†

~k

)
, (2.3.2)

where we require, that κ~k is a weak coupling strength between the system and the
mode with wave vector ~k. The dissipative coupling operator c depends on the system
of interest. Common examples of these coupling operators would include systems like:

7



2. Basic Concepts

• Two level atom: c = σ−, describing spontaneous emission of the excited state.

• Single mode cavity: c = a, describing photon losses of the cavity.

With the bath Hamiltonian given in Eq. (2.1.7) and the interaction Hamiltonian in
Eq. (2.3.2), the whole Hamiltonian of the system coupled to the bath reads

H = Hsys +
∑

~k

~ω~kb†
~k
b~k + i~

∑
~k

(
κ∗

~k
c†b~k − κ~kcb†

~k

)
. (2.3.3)

Following this, we can use the Heisenberg equation (2.2.5) to calculate the time evolution
for our bath b(t) and system operators A(t). As all bath operators commute with the
system Hamiltonian, we conclude the time derivative for the bath annihilation operator
b~k to

ḃ~k = i

~
[H, b~k] = −iω~kb~k + κ∗

~k
c. (2.3.4)

By formal integration of Eq. (2.3.4), one can therefore obtain

b~k(t) = b~k(t = 0)e−iω~k
t + κ∗

~k

∫ t

0
dt′

(
e−iω~k

(t−t′)c(t′)
)

. (2.3.5)

Continuing, for a general system operator A we derive

Ȧ = i

~
[H, A] = i

~
[Hsys, A] +

∑
~k

(
κ∗

~k
b†

~k
[A, c] − κ~k[A, c†]b~k

)
. (2.3.6)

Inserting Eq. (2.3.5) into Eq. (2.3.6), we arrive at an equation for A(t) in the form

Ȧ = i

~
[Hsys, A] +

∫ t

0
dt′

(
γ∗(t − t′)c†(t′)[A, c] − γn(t − t′)[A, c†]c(t′)

)
+η†(t)[A, c] − [A, c†]η(t).

(2.3.7)

In this step we introduce the time-dependant functions γ(t) and η(t). These are defined
as

γ(t − t′) =
∑

~k

e−iω~k
(t−t′)|κ~k|2 (2.3.8)

η(t) =
∑

~k

e−iω~k
tκ~kb~k(t = 0) (2.3.9)

We assume that the coupling κ~k is constant for all ~k, i.e. κ~k = κ. For this assumption
we can simplify γ(t − t′) to

8



2. Basic Concepts

γ(t − t′) ≈ |κ|2
∑

~k

e−iω~k
(t−t′). (2.3.10)

Furthermore, we use the Markov approximation and use the fact that γ is a function
that peaks very sharply around t′ = t and is close to zero otherwise. We exchange for
this step τ = t − t′, and since γ is close to zero for τ > t, we can rewrite the upper limit
as infinite. With this rewriting, we arrive at the relation:∫ ∞

0
dτγ(τ)c(τ) → c(0)

∫ ∞

0
dτγ(τ)eiω0τ (2.3.11)

For the integration of this function over t′, we use the Cauchy principal value and
rewrite the summation over ~k into an integral over ω~k by considering the density of
states g(ω~k). By doing so, we acquire∫ ∞

0
dτγ(τ) = lim

ε→0

∫ ∞

0
dτ

∫ ∞

0
dω~kg(ω~k)|κ(ω~k)|2e−i(ω~k

−ω0−iε)τ (2.3.12)

∫ ∞

0
dτγ(τ) = lim

ε→0

∫ ∞

0
dω~k

g(ω~k)|κ(ω~k)|2
i(ω~k − ω0 − iε) . (2.3.13)

And for the integral over ω~k we calculate

∫ ∞

0
dτγ(τ) = lim

ε→0

∫ ∞

0
dω~kg(ω~k)|κ(ω~k)|2

[
ε

(ω~k − ω0)2 + ε2 − i(ω~k − ω0)
(ω~k − ω0)2 + ε2

]
(2.3.14)

For the first part of this integral we then obtain

lim
ε→0

∫ ∞

0
dω~kg(ω~k)|κ(ω~k)|2 ε

(ω~k − ω0)2 + ε2 = πg(ω0)|κ(ω0)|2, (2.3.15)

and for the second part

lim
ε→0

∫ ∞

0
dω~kg(ω~k)|κ(ω~k)|2 i(ω~k − ω0)

(ω~k − ω0)2 + ε2 = i
P

ω~k − ω0
. (2.3.16)

Here, P denotes the principal value integral. Finally, we end up with the relation for
γ(τ) with ∫ ∞

0
dτγ(τ) = 1

2Γ + iδl, (2.3.17)

where Γ = 2πg(ω0)|κ|2 is a damping rate and δl an induced line-shift, which one can
eliminate using a renormalization of the transition frequency ω0, i.e. ω0 = ω′

0 + δl, where
ω′

0 is the initial transition frequency. With the use of Eq. (2.3.17) we can conclude that
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∫ t

0
dt′γ(t − t′)c(t′) → c(t)

∫ t

0
dt′γ(t − t′)eiω0(t−t′) =

(1
2Γ + iδl

)
c(t). (2.3.18)

Inserting this relation into Eq. (2.3.7) leads us to the Quantum Langevin Equation for
a system operator A in the form of

Ȧ = i

~
[Hsys, A] −

[
[A, c†]

(1
2Γc + η(t)

)
−

(1
2Γc† + η†(t)

)
[A, c]

]
. (2.3.19)

The function η(t) depends purely on the bath and its initial state. It can be related to
an input field from the bath via η(t) =

√
Γbin(t)[8]. In the following, we assume that the

bath is initially in a vacuum state and any noise coming from the bath operator bin(t)
is white noise. Following this, bin(t) vanishes after averaging any operator equations.
Therefore, we neglect η(t) in Eq. (2.3.19) in the upcoming steps since we are only
interested in time derivatives of operator averages. Calculating the expectation value of
Eq. (2.3.19) and also allowing multiple dissipative processes leads us now to the final
equation of the expectation value of the time derivative of a system operator

〈Ȧ〉 = i

~
〈[Hsys, A]〉 + 1

2
∑

n

Γn

(
〈c†

n[A, cn]〉 + 〈[c†
n, A]cn〉

)
. (2.3.20)

When the dissipative operators cn with their rates Γn are known, we can calculate the
dynamics of all system operators we need. However, these equations of motion are
not necessarily complete since time derivatives of operator averages usually depend on
other operator averages with higher-order products. To numerically solve them, the
dynamics of all the encountered expectation values need to be known. To solve this
problem, we can approximate higher-order averages by already known lower-order ones.
A method that achieves this truncation is the cumulant expansion, where one neglects
higher-order quantum correlations to represent higher-order operator product averages
as lower-order ones.

2.4. The Cumulant expansion method
When deriving differential equations for operator averages using the Quantum Langevin
Equation, one commonly encounters several operator averages containing higher order
products than the differentiated one. Therefore, to end up with an equation set
containing a differential equation for every average, one has to calculate the Quantum
Langevin Equation many, if not an infinite amount, of times. To this end, approximations
like the cumulant expansion method [16] are used to truncate the equation set therefore
completing the set in a reasonable amount of iterations, for the cost of neglecting higher
order quantum correlations. This method was first introduced in [17] for general random
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variables X, in which the cumulant average is defined as

〈X1X2...Xn〉c :=
∑

p∈P (I)
(|p| − 1)!(−1)|p|−1 ∏

B∈p

〈
∏
i∈B

Xi〉. (2.4.1)

In the above equation, n is the so-called order of the cumulant average, and P (I) is
a set of all possible partitions of the index-set I = {1, 2, ..., n}. One such partition is
denoted by p, with its length |p|, and B is one block of a given partition, i.e. a set of
indices of p. The explicit form of a cumulant average expansion is for up to order three
random variables Xi:

〈X〉c = 〈X〉 (2.4.2)

〈X1X2〉c = 〈X1X2〉 − 〈X1〉〈X2〉 (2.4.3)

〈X1X2X3〉c = 〈X1X2X3〉 − 〈X1X2〉〈X3〉 − 〈X1X3〉〈X2〉
−〈X1〉〈X2X3〉 + 2〈X1〉〈X2〉〈X3〉.

(2.4.4)

Theorem 1 in Ref. [17] states that a cumulant average is zero when the elements are
dividable in at least two statistically independent groups, i.e. 〈X1X2...Xn〉c = 0 if at
least one of the elements in {X1, X2, ..., Xn} is statistically independent of the others.
We can use this Theorem to create an approximation. Let us assume that at least one
of the variables is statistically independent of the others so that the cumulant average
is zero. Therefore, we can set the left-hand side of Eq. (2.4.1) to zero and rearrange it
to end up with

〈X1X2...Xn〉 =
∑

p∈P (I)\I
(|p| − 1)!(−1)|p| ∏

B∈p

〈
∏
i∈B

Xi〉. (2.4.5)

Here, the summation runs over all possible partitions except the one that is equal to
the index-set I itself, implying that no average on the right-hand side of Eq. (2.4.5) has
the same or higher order than the left-hand side. With this, one can approximate any
average as summations of products of lower-order averages.

This assumption allows us to introduce an upper limit to the number of operators
in averages encountered throughout the derivation of equations of motion. This upper
bound limit will be denoted as the ”̈order of expansion”̈ and is equivalent to the
maximum number of operators allowed in any average. As for the example referenced
above, one can now calculate an average of orders two and three to:

〈X1X2〉 → 〈X1〉〈X2〉 (2.4.6)

〈X1X2X3〉 → 〈X1X2〉〈X3〉 + 〈X1X3〉〈X2〉 + 〈X1〉〈X2X3〉 − 2〈X1〉〈X2〉〈X3〉. (2.4.7)

Such an approximation for the order one cumulant expansion (2.4.6) is often referenced
as the mean-field approximation. The relationship described in Eq. (2.4.1) can also be
used recursively, meaning that one can for example represent an average of order four

11



2. Basic Concepts

in terms of order two and lower, by first performing a third order expansion and then a
second order one. Substituting operator averages as shown in (2.4.6) and in (2.4.7) is,
in general, an approximation. However, if the joint cumulant of the expanding average
is indeed zero, this substitution is exact.

2.5. Dipole-Dipole Interactions
In this section, we build upon the previous derivation of the Quantum Langevin Equation
to include systems with close-range dipole-dipole interactions. For simplicity, we will
consider an ensemble of identical two-level atoms, with a ground state |g〉 and excited
state |e〉, interacting with a single external field bath. A simplified depicture of such
a system is shown in Fig. 2.2. In contrast to the previous derivation, where atoms
coupled individually to the bath, this time, we also describe the interaction between
the systems via the bath. We will take a similar approach as provided in [18] and rely
on the derivation given in [7, 8].

Figure 2.2.: Illustration of the coherent and dissipative coupling of an atomic ensemble.
The coherent coupling Ωi,j and dissipative coupling Γi,j are highlighted by the red curve.
Individual decay with the natural decay rate Γ0 into the bath is shown by the orange curve.
Atom i and j are also depicted with their dipole moment ~µ = ~deg.

The bath Hamiltonian is similar to the previous one in Eq. (2.1.7), whereas the interaction
Hamiltonian now reads [8]:

Hint = i~
∑
~k,i

(
κ∗

~k
b†

~k
e−i~k~riσ−

i − κ~kb~kei~k~riσ+
i

)
, (2.5.1)

where σ−
i = |gi〉 〈ei|, σ+

i = |ei〉 〈gi| and ~ri is the positional vector of the i-th atom in the
ensemble. Following the previous procedure, we arrive at the Heisenberg equation for a
system operator A(t) as
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Ȧ = i

~
[H, A] +

∑
i,j

[∫ t

0
dt′

(
γ∗

i,j(t − t′)σ+
j (t′)[A, σ−

i ] − γi,j(t − t′)[A, σ+
i ]σ−

j (t′)
)

δi,jη
†(t)[A, σ−

i ] − δi,j[A, σ+
i ]η(t)

]
,

(2.5.2)

where this time

γi,j(t − t′) =
∑

~k

e−iω~k
(t−t′)+i~k(~ri−~rj)|κ~k|2 (2.5.3)

η(t) =
∑

~k

e−iω~k
t+i~k~rj κ~kb~k(t = 0). (2.5.4)

Applying the same approximations, which we used in Sec. 2.3, we obtain

∫ ∞

0
dτγi,j(τ)F (τ) → F (0)

∫ ∞

0
dτγi,j(τ)eiω0τ =

(1
2Γi,j + iΩi,j

)
F (0), (2.5.5)

and with that, we conclude that

Ȧ = i

~
[H + Hdip, A] −

∑
i,j

[
[A, σ+

i ]
(1

2Γi,jσ
−
j + δi,jη(t)

)

−
(1

2Γi,jσ
+
j + δi,jη

†(t)
)

[A, σ−
i ]

]
.

(2.5.6)

In Eq. (2.5.6) we combined terms proportional to Ωi,j into the Hamiltonian Hdip for
i 6= j and absorbed Ωi,i into ω. Therefore, the dipole-dipole interaction Hamiltonian
Hdip is given as

Hdip = ~
∑
i 6=j

Ωi,jσ
+
i σ−

j . (2.5.7)

Using again, that η(t) depends only on the initial bath state and that any noise generated
by the bath is white noise, we end up with the time derivative of an operator average of
our system as

〈Ȧ〉 = i

~
〈[Hsys + Hdip, A]〉 + 1

2
∑
i,j

Γi,j

(
〈σ+

i [A, σ−
j ]〉 + 〈[σ+

i , A]σ−
j 〉

)
. (2.5.8)
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The quantities calculated by the integral in Eq. (2.5.5) are the so called coherent coupling
Ωi,j and the dissipative coupling Γi,j. They are given as [18]

Ωi,j = Γ0G(k0ri,j) (2.5.9)
Γi,j = Γ0F (k0ri,j), (2.5.10)

where Γ0 = Γi,i = 2πg(ω)|κ|2 is the natural decay rate, k0 = ω/c the associated wave
vector of the decay channel and ri,j = |~ri − ~rj| is the distance between atom i and atom
j. Furthermore the functions G and F are defined as

G(ξ) = −3
4

[
(1 − cos2 θ)cos ξ

ξ
− (1 − 3 cos2 θ)(sin ξ

ξ2 + cos ξ

ξ3 )
]

(2.5.11)

F (ξ) = −3
2

[
(1 − cos2 θ)sin ξ

ξ
− (1 − 3 cos2 θ)(cos ξ

ξ2 + sin ξ

ξ3 )
]
, (2.5.12)

where θ is the angle between the vector ~ri,j and the dipole moment of the emitter
~deg. From these functions, one can also determine the behaviour in the limiting cases
ri,j � λ and ri,j � λ, where λ is the wavelength of the emitted light. If the atoms are
largely separated, i.e. ri,j → ∞, they behave like completely separated emitters and
the decay rates Γi,j approach the one of a single emitter meaning that Γi,j

ri,j→∞−−−−→ Γ0δij ,
as one would intuitively expect. On the other hand, if the atoms are very close to each
other, all decay rates approach the same value of the single-emitter emission rate. In
this case, one can conduct that Γi,j

ri,j→0−−−−→ Γ0 for all decay rates.
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Chapter 3.

QuantumCumulants.jl
QuantumCumulants.jl is a framework written in the Julia programming language and
designed for the automatic symbolic derivation of equations of motion for quantum
operator averages in the Heisenberg picture. Time derivatives of expectation values
of open system operators are calculated using the Heisenberg equations for operators
including damping via a QLE-based approach given in Eq. (2.3.20). For any nontrivial
Hamiltonian the commutator introduces new and often more complex operator products
and thus this approach commonly leads to a large, or even infinite number, of differential
equations needed to fully describe the system of interest. To this end, QuantumCumu-
lants.jl uses a truncation of the fast-growing set of expectation values of the differential
equations using the cumulant expansion method described in Sec. 2.4 [16].

The framework enables a user to do quick simulations of quantum optical systems. For
this purpose, it consists of multiple methods and constructors designed to automate the
calculation of commutator relations of bosonic and transition operators. In difference to
other frameworks, QuantumCumulants.jl uses solely symbolic operators. No in-detail
knowledge of the inner structure of the operator is therefore required. Calculating
commutator relations is done by using predefined rules of calculus for different operators.
Other functionalities like completing a set of equations to a closed one or calculation
of Correlation-Functions are integrated. Outputs of these methods are composed in
a specific way so that the differential equations solver implemented in Julia, i.e. the
package DifferentialEquations.jl [19], can interpret them. Further functionalities, such
as calculating the spectrum of a cavity output using the two-time correlation-function
or defining an initial state using QuantumOptics.jl, are also possible.

3.1. The Julia Language
Julia is a programming language created by Jeff Bezanson et al. [20] with the goal to
achieve both the speed of efficient compiled languages such as C and the usability of
dynamic languages like Python. One of the benefits of the Julia programming language
is the intuitive way of programming, which other dynamic languages commonly achieve.
Despite being one of these high-dynamic programming languages, Julia is not suffering
from performance issues. It achieves performances similar to compiled languages, such
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as C or Rust. The reasons for this is its just-in-time (JIT) compilations [21]. As of this,
the language uses dynamic, multiple dispatches for different code selections, meaning
that Julia chooses methods for encountered types at run time. In return, this requires a
strict declaration of types. To this end, a dynamic type system is implemented, meaning
the type of a value is not known during compilation times. However, an explicitly
declared hierarchy of types is still present. As an example, every value is an Any type,
which is the universal type in Julia, but not every Number type is a Float. With such
type declarations, one can create methods that are distinguished by the types of their
inputs, meaning that one can write two functions with the same name but different
input types.

Another advantageous aspect of the Julia programming language is that it is an
open-source project. Therefore, it also has a large number of contributors and many
available packages. Installing and loading packages is simple and doable with only a few
commands. Most of them are designed, so one can easily apply their core functionalities
and even build upon them. Multiple of them are also easily combinable. As an example,
QuantumCumulants.jl banks on functionalities of the package Symbolics.jl [22]. Detailed
information about the programming language can be found in its extensive documentary
[23].

3.2. Usage
In this section, we want to give a quick insight into the fundamental workflow when
using QuantumCumulants.jl. To this end we show an example, where we derive the
equations of motion for a small system containing two atoms. We look at a setup similar
to the one described in the later cavity anti-resonance example [24]. In particular,
we have an extended Jaynes-Cummings model, analogous to the one in Eq. (2.1.12),
describing the interaction between two atoms and a lossy cavity. We include in this
system the dipole-dipole interaction between the two atoms and a laser drive with the
corresponding rate η. In the rotating frame of the driving laser the Hamiltonian of the
system is given by

H = ∆ca
†a + η(a† + a) + ∆a

N∑
i

σ22
i +

N∑
i 6=j

N∑
j 6=i

Ωijσ
21
i σ12

j +
N∑
i

gi(a†σ12
i + aσ21

i ), (3.2.1)

with ∆c and ∆a being the detuning of the cavity and atoms, respectively, to the laser
frequency. We also include in this Hamiltonian dipole-dipole interaction similar to the
one seen in Eq. (2.5.1) with Ωij being the coherent coupling.

To derive the equations of motion, we first need to import the package functionalities
into our program. We do so by writing using QuantumCumulants.jl, as seen in code
sample 1. Next, we define the parameters gi, Γij and Ωij, as well as ∆c, ∆a, η and κ.
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For this step, we use both the macro @cnumbers to create single parameters and also the
function call cnumbers() to generate functions, which depend on the numeric indices i
and j, representing the other parameters needed.
using QuantumCumulants

order = 2

@cnumbers Δc η Δa κ

g(j) = cnumbers(Symbol(g, j))[1]

Γ(i,j) = cnumbers(Symbol(Γ, i, j))[1]

Ω(i,j) = cnumbers(Symbol(Ω, i, j))[1]

N = 2 #number of atoms

hc = FockSpace(:cavity)

ha = ⊗([NLevelSpace(Symbol(:atom,i),2) for i=1:N]...)

h = hc ⊗ ha

@qnumbers a::Destroy(h)

σ(i,j,k) = Transition(h,Symbol(”σ_{$k}”),i,j,k+1)

Code sample 1: Including the package and defining Hilbert spaces, parameters and operators.

Additionally, we define in code sample 1 a FockSpace and also a combination of several
NLevelSpace entities. These definitions are used to distinguish the rules of calculus for
operators acting on different Hilbert spaces. The whole Hilbert space of the system h is
then defined as a tensor product of the former two. As a last step, we introduce the
operators a and σ as callable functions, which act on the previously defined FockSpace

and k-th NLevelSpace, respectively. At this point, we can construct the Hamiltonian
from Eq. (5.3.1) describing the system of interest using the previously defined operators,
as seen in code sample 2.
# Hamiltonian

Hc = Δc*a'a + η*(a' + a)

Ha = Δa*sum(σ(2,2,k) for k=1:N) +

sum(Ω(i,j)*σ(2,1,i)*σ(1,2,j)*(i≠j) for i=1:N for j=1:N)

Hi = sum(g(k)*(a'σ(1,2,k) + a*σ(2,1,k)) for k=1:N)

H = Hc + Ha + Hi

# Jump operators & and rates

J = [a, [σ(1,2,k) for k=1:N]]

rates = [κ, [Γ(i,j) for i=1:N, j=1:N]]

ops = [a, σ(2,2,1), σ(1,2,1)]

eqs = meanfield(ops,H,J;rates=rates,order=order)

complete!(eqs)

Code sample 2: Constructing the Hamiltonian, which describes the system, and deriving the
associated equations of motion.

Furthermore, we can also specify the dissipative processes described by their jump
operators and corresponding rates with the vectors J and rates, respectively. After
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defining everything we need, we can create an initial set of equations for the operator
averages defined in the vector ops by calling the function meanfield. The output of this
function is a set of equations of motion for the averages of the operators given in ops,
calculated by the Quantum Langevin Equation (2.5.8). To this end, the function uses
the coupling operators from the vector J with their corresponding dissipative rates in
the argument rates. Averages in the equations with a larger order than the one specified
in the keyword order are approximated using the cumulant expansion, as described in
Sec. 2.4. As a final step, we complete the equations using the in-place method complete!.
An in-place function modifies its input to correspond to the output, meaning that after
the call complete!, eqs is a complete set of equations. This completion of the equations
calculates the QLE for every unknown average encountered within the equations, which
is not a conjugate of already-known ones. This process is repeated until there are no
unknown expectation values left. As a result, we obtain a set of equations which is
complete and has in this particular case the following form:

d

dt
〈a〉 = − 1iη − 1i∆c〈a〉 − 0.5κ〈a〉 − 1ig1〈σ1

12〉 − 1ig2〈σ2
12〉

d

dt
〈σ1

12〉 =Γ12〈σ1
22σ2

12〉 − 0.5Γ11〈σ1
12〉 − 1ig1〈a〉 − 0.5Γ12〈σ2

12〉 + ...

d

dt
〈σ2

12〉 =Γ21〈σ1
12σ2

22〉 − 1ig2〈a〉 + 2ig2〈aσ2
22〉 − 0.5Γ21〈σ1

12〉 + ...

d

dt
〈σ1

21σ2
12〉 =Γ21

(
−0.5〈σ2

22〉 − 0.5〈σ1
22〉

)
+ 1ig1〈a†σ2

12〉 + ...

...

At this point, it is clear that for a higher number of atoms in the cavity, the number of
equations needed to describe the systems grows quickly. Not only does the number of
equations grow fast, but also the number of calculations since terms in the Hamiltonian
grow. However, there are certain symmetries in the equations for different averages,
which we can use to simplify both, calculus and equations. One can express these
symmetries using a recent extension to QuantumCumulants.jl, which introduces symbolic
indices and summations. This extension allows one to efficiently calculate systems which
consist of similar subsystems by reducing the number of redundant calculations and
equations. To showcase the usage of these symbolic indices and summations and also
their applications is the core of this thesis.
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The Extension
In this chapter, we give an overview of the extension to symbolic sums developed in
this thesis work. We construct this overview by showing how one can instantiate the
newly implemented objects and how they interact. Furthermore, we will introduce the
most important features for reliable usage.

4.1. Goals
The main goal of this new utility package is to reduce redundant calculus by collecting
similar differential equations as equations of averages specified with symbolic indices.
Solving this problem also requires an implementation of a symbolic summation, with
which a user can reduce the individual additions of many different terms to a simple
symbolic object. To illustrate this, one can look at the following example: Imagine a
user wants to calculate the sum over many operators ai, where i = {1, 2, ..., N}. Such a
summation would result in the series of addition operations a1 + a2 + ...aN , whereas
one can represent the same addition in just one single symbolic object, ∑N

i=1 ai. Such
summations, including their respective operators, underlie specific calculation rules.

It is clear that an immense series of additions quickly lead to lots of memory allocations
and a high number of needed computations. In contrast, when we represent the
additions as a symbolic summation, only a few operations need to be calculated for the
same effective outcome. Similarly, when deriving the equations of motion for similar
subsystems, many have some symmetry, which one can use to simplify and truncate
them even further. Let us consider the case where we want to derive the equations of
motions for operator averages for a system containing N atoms coupled to a single-mode
electromagnetic field. In such a system, we would need to derive equations for operators
σxy

1 up to σxy
N . These operator equations all conclude in the same equation up to their

numeric index. Therefore, one needs to store at least N equations when deriving a
complete set of equations. We can, however, as an alternative, write equations for an
indexed operator σxy

i , where i ranges from 1 to N . This indexing immensely reduces
the size of our equation set. It also allows us to derive a complete set of equations in a
time frame, which is only proportional to the order of the cumulant expansion. Because
of that, the time frame does not depend on the system size. However, these equations

19



4. The Extension

contain symbolic indices and summations and are not interpretable by differential
equations solvers, since they consist of abstract symbolic index objects. However, we
can still transform said equations into a solvable form. This transformation is possible in
a time and resource-efficient way, as we only need to express the symbolic objects with
actual numbers and additions. We will explain this and its increases in computation
speed in the later examples and benchmarks.

4.2. Indices and Summations
Let us start by examining the implementation of a so-called Index entity. An index is
an object consisting of the full system HilberSpace, a name, a range, and the specific
Hilbert space or a number defining the Hilbert space the index acts on. The latter is
needed to ensure proper calculation relations between operators with different indices.
One can use these index objects combined with operator entities defined in the base
QuantumCumulants.jl package to construct a IndexedOperator object as shown in code
sample 3.
@cnumbers N

# Hilbert space

hc = FockSpace(:cavity)

ha = NLevelSpace(:atom,2)

h = hc ⊗ ha

i = Index(h,:i,N,2) # index acts on second subspace of h

j = Index(h,:j,N,ha) # equivalent definition as Index(h,:j,N,2)

# define σ as a callable function for creating operators

σ(x,y,z) = IndexedOperator(Transition(h,:σ,x,y),z)

σ(2,1,i)*σ(1,2,j) # σᵢ²¹σⱼ¹²

Code sample 3: Example for defining indices and operators.

In code sample 3, we define N , the number of two-level atoms, as a c-number, meaning
it is a general complex number with no numerical value yet. We create this instance
of N using the macro @cnumbers. It is still possible to define the upper limit of any
index with this parameter, even though it has no numeric value. Constructing an index
with a number instead of this parameter is also possible. It is important to note that
two indices are equal only if every single attribute of them is equivalent. So if two
indices have the same Hilbert spaces and range, but distinct names, they are considered
different. The same is true for IndexedOperator Instances. These rules are fundamental
features of the package. Most of the calculation rules implemented rely on equality
checks of Index objects. Therefore, careful naming and creations of indices are essential
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for correct usage. To complete code sample 3, the last line of code in the above example
naturally gives the symbolic output σ21

i σ12
j .

When two operators are multiplied together outside of any symbolic summations,
they are first analyzed, whether or not their indices match. If both operators have the
same index, a simplification is applied if possible. For an example σ21

i σ12
i would result

in the single operator σ22
i . When the operators have different indices, they are assumed

to commute even though they might act on the same specific Hilbert space. This rule is
applied for operators if they are not within a summation. However, different rules are
applied if they occur inside a symbolic summation with a running index equal to one of
the operators. For example, if an operator, which has an index with the same specific
Hilbert space as the summation running index, is multiplied by the sum, an immediate
simplification is applied. What simplification occurs depends on the operators inside
the summation and the one which is multiplied by the sum. Different types of such
simplification processes are shown in Fig. 4.1.

Figure 4.1.: Possible different constructions of summations with their corresponding outputs.

As shown in Fig. 4.1, a simplification occurs in different cases. In example a) of the
above figure, we define a regular summation with only one indexed operator entity. This
example needs no simplification since there are no multiplications of operators involved.
As in example b), we create the additional operator σ22

j . This operator is calculated
from the product σ21

i σ12
j where i = j. This simplification rule is applied because the

index j acts on the same Hilbert space as the running index i of the summation. If
j acts on a different Hilbert space, the operator gets multiplied into the summation
term. Such a special case is calculated by swapping the index of all operators inside the
summation that have the running index of the sum with the index of the additionally
multiplied operator. After that swapping, a possible simplification is applied to the
resulting term. This rule also implies that the upper left example multiplied with an
operator σ12

j leads to the same result as the upper right code sample. In instantiation
c), the index j is excluded by the summation definition, as it is the third argument
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of the function call. As a last example, in d), a summation with two running indices,
i and j, is defined. Again this leads to an additional term, where i = j is still inside
the outermost summation. However, the outer summation with running index j is still
applied to the additional term, leading to a new creation of a summation. Even though
we only use transition operators in these examples, it is also possible to create symbolic
summations using indexed bosonic operators. For these, simplifications are applied
according to their commutator relations given in Eq. (2.1.5).

It is also possible to instantiate so-called NumberedOperator directly by defining
IndexedOperators with symbolic numbers instead of symbolic indices. These operators
are similar to their indexed counterparts regarding their computation rules and commut-
ator relations. What is different, however, is that the numbered variant acts strictly on
the Hilbert space identified by its number. These operators are created in the process
of transforming a set of indexed average operator equations into an interpretable form
for differential equation solver.

4.3. Variables
One can also combine variables with indices in the same way as for operators. The
command IndexedVariable allows a user to create such variables. When doing so, they
act as a symbolic placeholder for numerical values. For example, gi is a placeholder for
a variable g with a value for the i-th subsystem or operator. What is special about
them is that they also underlie exchanges of indices when they are within summations.
As for an example, the multiplication σ22

j

(∑N
i giσ

22
i

)
results in ∑N

i 6=j giσ
22
i σ22

j + gjσ
22
j .

The same is true for Variables with two indices. Fig. 4.2 shows examples of variable
definitions.

IndexedVariable(:g,i) IndexedVariable(:Γ,i,j)

gi Γi,j

Figure 4.2.: Different constructions of variables with indices. On the left definition, a single
indexed variable is created, while on the right side, we have a symbolic variable Γ with two
indices.

When creating variables with two indices, one can use the keyword argument
identical to simplify multiplications even further. This keyword specifies if the two
indices of the variable can have the same symbolic value. If it is set to true, instances
with the same value for the first and second index are created. If the keyword is false,
such instances are immediately replaced by zero.
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As mentioned, these variables created with the function call IndexedVariable do not
have any numerical value but can be easily associated with values. One can do this
using the value_map function, which creates a dictionary of variables given, mapping
them to their corresponding value using a given matrix in the second argument. We will
show this mapping functionality in several examples where we solve systems containing
indexed variables. Variables of any kind get created as Symbols using the Symbolics.jl
[22] package. Symbols created by this package act as regular c-numbers. Following this,
symbolic variables also undergo simplifications when encountered. For example gi + gi

results in 2gi and gi − gi results in 0. Any Symbol created with this package underlies
such simplification rules.

4.4. Averages and Equations
Deriving the equations of motions for operator averages is the most crucial feature of
the framework. Doing so should be a simple and user-friendly task, which should not
require too many input steps. Therefore, we give in this section a quick overview of
the few commands and functions needed to derive the equations of motion for different
open quantum systems.

First, creating an initial set of equations for operators requires a specification of the
Hamiltonian and dissipative processes in the system. For the later, one has to define
both, dissipative operators, which we will also refer to as so-called jump-operators, and
their corresponding dissipative rates. In code sample 4, these operators are collected in
the vector J and the rates in rates. Both vectors have in this example only one entry.
Following up, one can call the function meanfield as shown in the code sample below.
H = ∑(σ(2,2,i),i) + ∑(σ(2,1,i)*a + σ(1,2,i)*a',i)

ops = [σ(2,2,j)]

J = [σ(2,1,i)]; rates = [Γ]

eqs_mf = meanfield(ops,H,J;rates=rates,order=1)

eqs_complete = complete(eqs_mf)

evaluate(eqs_complete;limits=(N=>3))

scale(eqs_complete)

Code sample 4: Example for creating equations of motions and completing them. We use
the Hamiltonian H and operator σ22

j to instantiate a set of equations, using the dissipative
operator σ21

i with its rate Γ. The function call complete completes the system, and we use
evaluate and scale to transform them into a solvable set.

The function meanfield creates an initial set of equations for operator averages defined
in the ops argument, using either Eq. (2.3.20) or Eq. (2.5.8). Which equation is
calculated depends on the given rates and J argument. The indexed operators in
the ops vector can not have any index, which is already used in the Hamiltonian of
the system since an equivalently indexed operator commutes with the corresponding
term in the Hamiltonian. The dissipative process operators ci get replaced by the
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ones defined in the J argument. The keyword argument rates is a vector, with entries
equivalent to either Γi,j seen in Eq. (2.5.8) or Γi seen in Eqs. (2.3.20). It is also possible
to combine both approaches for different operators. It is important to note that the
number of rates defined in the rates keyword coincides with the number of jump
operators defined in J. If this condition is false, the algorithm to create an initial set will
throw an error. Dissipative rates can be numerical values, symbols or IndexedVariable

entities when used in this method call. As an example, code sample 5 shows different
instantiations of the rates vector.

@cnumbers Γ

Γᵢ = IndexedVariable(:Γ,i)

J = [σ(2,1,i)]

rates_1 = [Γ] # symbolic

rates_2 = [Γᵢ] # indexed variable

rates_3 = [1.0] # numerical value

Code sample 5: Example for different definitions of rates. All three rates vectors are valid
examples when used in the meanfield function.

When one uses a IndexedVariable with two indices, equations according to Eq. (2.5.8)
are created instead. Creating these equations requires both coupling operators ci and cj

to be specified. These operators can either be submitted to the function as a vector with
two elements or by a single operator. When only a single operator is present, the second
operator is assumed to be the same. Furthermore, the operators corresponding to the
double-indexed rate must have the same indices as the variable. The order keyword
attribute specifies the order of the cumulant expansion, and if neglected, automates to
the highest order found in ops.

The initial set of equations created by the meanfield method does not necessarily
need to be a closed one, this means that the equations might depend on averages with
unknown values. To create a complete set, one calls the complete function or its in-place
variant complete!. These functions iterate over all already calculated equations and
collect any averages where the time derivatives are unknown. For any of these collected
averages, the function adds a newly created equation using Eq. (2.3.20) and Eq. (2.5.8).
Whether or not a derivative of an operator average is already known does not depend
on index names, implying that the program can detect whether two equations are the
same under exchanging indices. As an example, if the equation for 〈σ12

i 〉 is already
known, no equation for 〈σ12

j 〉 will be created. The same is true if two averages contain
the complex conjugate of each other’s operator products. So if an equation for 〈σ12

i 〉
already exists, no equation for 〈σ21

i 〉 or 〈σ21
j 〉 is created.

As a result, we arrive at a closed set of equations, with all needed but no redundant
equations. When using indices and symbolic summations, the individual system sizes
do not matter when creating this complete set since the number of subsystems is
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treated as a symbolic number. However, this changes when we insert numerical values
for the symbolic indices. Such a step is necessary to solve the equations numerically.
QuantumCumulants.jl implements two methods to achieve such a transformation. One is
the evaluate function, which exchanges each index found with an explicit corresponding
number and writes symbolic summations as additions of terms. This method creates
equations proportional to the actual system size. When calling evaluate, it is necessary
to specify any index ranges which are symbols rather than numbers. One can achieve
this by using the limits keyword, which takes a dictionary mapping each symbolic
parameter to its numerical value. We show one way of defining this keyword in code
sample 4. Another way to transform the equations is the method scale. With scale,
we assume that all constituents in the subsystem are indistinguishable, meaning that
all of them are described by the same numerical value. This implies that for example,
all 〈σ22

i 〉 have the same value. This approach allows a description of systems with
enormous numbers of identical subsystems since it only enters as a numerical factor.
This implemented scaling functionality is a key feature of the package and has many
applications, as we will see in the later examples. Both functionalities evaluate and
scale can be used on specific subsystems independently of each other. For example,
consider a system with N atoms interacting with M cavity fields. One can scale the
atoms and evaluate the cavity fields. Using the implemented keyword h, one can specify
the Hilbert space upon which functionality gets applied.

To summarize, several steps are necessary for a user to obtain a set of differential
equations for the corresponding system of interest. We give here a quick overview:

1. Hilbert spaces and indices are defined using the Index function.

2. Indexed operators are created by calling IndexedOperator and using the previously
defined indices.

3. The Hamiltonian with symbolic summations, created by the ∑ function, is defined.

4. Jump operators and rates are defined to call the meanfield function.

5. The cumulant expansion and a complete algorithm are applied to the Equations
created by this meanfield function.

6. Either evaluate or scale is called to the resulting set of equations.

7. The final result can be numerically solved using a differential equation solver such
as DifferentialEquations.jl.

Furthermore, as a quick overview, we provide a list of all essential functionalities
with a short description. For a full explanation of all the exported methods and
additional examples of using the package, we refer to the current QuantumCumulants.jl
documentary.
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• Index(hilb,name,range,aon)

The constructor of an Index entity, using a Hilbert space hilb, a name, a range

and either a sub-Hilbert space or a number specifying the Hilbert space aon.

• IndexedOperator(op,ind)

The constructor for an indexed operator, using a QuantumCumulants operator
op and an index ind.

• IndexedVariable(name,ind1,ind2)

A method for creating an indexed variable with up to two indices.

• ∑
(term,ind1,ind2,excluded_indices)

A function one can use to create a symbolic summation over a term with up to
two running indices. One can also specify an optional vector of indices to exclude
them from the summation.

• meanfield(ops,H,J;rates,order)

A function one can use to create a first initial set of equations derived for operators
in ops using the Hamiltonian H together with the Jump-operators J with their
rates up to the given expansion order.

• complete(equations)

A method which automatically completes a given initial set of equations to its
closed set under the cumulant-expansion method.

• evaluate(equations;limits,h)

A function to evaluate a given set of equations containing symbolic summations
and indices. If a maximum range of an index is a symbol, it will get replaced
by a numerical value given in the limits keyword argument. Additionally, it is
possible to evaluate only a subset of the Hilbert spaces of the system using the h

keyword argument.

• scale(equations;h)

A method designed to simplify and evaluate a subset of the system or the whole
Hilbert space, depending on the keyword h. The simplification uses the approx-
imation that all the operators of the chosen Hilbert space act with the same
effective action, meaning that averages of two different operators result in the
same outcome.

• value_map(ps,p0;limits)

This method is designed to ease the process of generating a dictionary, which maps
each symbolic character given in ps to its corresponding numerical value p0. The
resulting dictionary is used for solving the equations. If a symbolic parameter is a
IndexedVariable entity with a symbol as upper index limit, the limits keyword
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must be set comparable to the case in evaluate. Indexed variables with one index
are mapped to a vector of numerical values, and a variable with two indices to a
two dimensional matrix.
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Chapter 5.

Examples and Benchmarking
In this chapter, we demonstrate how to use the package and its most relevant usage of
the package and most of its relevant features. We present a step-by-step guide through
several examples available on the QuantumCumulants.jl documentary. We start with a
simple example highlighting most of the necessary features.

5.1. Important Features
Let us now look at the code sample below, to see how these previous definitions of
operators and indices are helpful when deriving equations of motion for the averages of
such operators. First, we define our Hilbert space consisting of a NLevelSpace and a
FockSpace. After that, we define as many indices as needed. Furthermore, we also create
additional variables to describe our system in a more specific way. Using these variables,
we continue by defining a Hamiltonian. We consider the Tavis-Cummings Hamiltonian
for multiple atoms in a single mode cavity, similar to the one in Eq. (2.1.13). Finishing
up the code example, we define ops, J, and rates using again the previously constructed
operators and indexed variables. The last line of the code sample then creates an initial
set of equations, according to the meanfield function, which we already described in
Sec. 4.4.
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using QuantumCumulants

@cnumbers N Δ κ

#define Hilbert space

ha = NLevelSpace(:atom,2) # HilbertSpace of Atoms, in this case 2-Level-Atoms

hc = FockSpace(:field) # HilbertSpace of the Field

h = ha ⊗ hc # combined HilbertSpace

# Define some Indices

i = Index(h, :i, N, ha)

j = Index(h, :j, N, ha)

k = Index(h, :k, N, ha)

a = Destroy(h,:a)

σ(x,y,z) = IndexedOperator(Transition(h,:σ,x,y),z)

# Create indexed Variables

gi = IndexedVariable(:g,i)

γj = IndexedVariable(:γ,j)

νj = IndexedVariable(:ν,j)

# Defining the Hamiltonian

H_TC = Δ*a'*a + Σ(gi*(a'*σ(1,2,i) + a*σ(2,1,i)),i)

# Define rates and Jump-operators for derivation of the equations

J = [a,σ(1,2,j),σ(2,1,j)]

rates = [κ, γj, νj]

# automatic derivation of the second-order equation

eqs_mf = meanfield([σ(2,2,k)],H_JC,J;rates=rates,order=2)

Code sample 6: Example for deriving equations of motion using indexed variables and operators.

The output of code sample 6 is the equation of motion in a second order for σ22
k . In

particular, the exact output of this code reads:

d

dt
〈σ22

k 〉 = νk − 1igk〈σ21
k a〉 + 1igk〈σ12

k a†〉 − 1.0γk〈σ22
k 〉 − 1.0νk〈σ22

k 〉

The indexed variables defined in the previous code sample are used in this system to
represent the interaction between the light field and the atoms in gi and the decay rates
of the atomic operators γi and their decoherence νi. Here one can see another feature of
the package, a variable only needs to be created a single time for all N possible values
it can have. They do not have a numeric value yet, but they can be assigned easily
using vectors after the equations of motion have been evaluated.
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# complete a given set of equations to a complete set

eqs_comp = complete(eqs_mf);

# evaluate the summations and create equations for all individual atoms

# in this case we calculate the equations for 5 atoms,

# which is specified in the limits keyword of the function

eqs = evaluate(eqs_comp;limits=(N=>5));

# solve the system by creating an initial state and construct a ODESystem

# Generate an ODESystem

using ModelingToolkit

@named sys = ODESystem(eqs)

# Solve the system using the OrdinaryDiffEq package

using OrdinaryDiffEq

u0 = zeros(ComplexF64,length(eqs))

p = [Δ, gi, γj, κ, νj, ωi]

g = [0.1,0.3,0.5,0.75,1.0] # different coupling strengths for different atoms

p0 = [0,g,0.25,1,1.5,1.0] # we set all γj and νj to the same values

# construct parameter-values for symbolic variables

p_ = value_map(p,p0;limits=(N=>5))

prob = ODEProblem(sys,u0,(0.0,10.0),p_)

sol = solve(prob,RK4()); #solve the problem

Code sample 7: Example for completing and evaluating the previously derived equations. The
derived equations are first completed using the cumulant expansion method to order two
and evaluated for N = 5 atoms. Additionally, we numerically solve the equations using the
package OrdinaryDiffEq.jl [19].

In code sample 7 we use the previously derived equation of motion of the average of
σ22

k to complete our system of equations. As a result of this automatic completion, we
arrive at a total of 13 equations, which take the form

〈σ22
k 〉 = νk − igk〈σ21

k a〉 + igk〈σ12
k a†〉 − γk〈σ22

k 〉 − νk〈σ22
k 〉

〈σ21
k a〉 = −i

N∑
i 6=k

(gi〈σ12
i σ21

k 〉) − igk〈σ22
k 〉 + igk〈a†a〉 + . . .

〈a†a〉 = −i
N∑
i

(gi〈σ12
i a†〉) + i

N∑
i

(gi〈σ21
i a〉) − κ〈a†a〉

...
〈σ22

k σ22
l 〉 = (−γk − γl − νk − νl)〈σ22

k σ22
l 〉 + νl〈σ22

k 〉 + . . .
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Since these equations still depend on symbolic indices and summations, we can not
derive a numerical solution. To this end, we use the evaluate function, which converts
the complete set of equations to a numerically solvable form for a specific atom number,
in this case, for N = 5. In code sample 7, we also specify the number of atoms with five
inside the limits keyword argument of the function. The output for the first couple of
operator averages after calling this evaluate function is

〈σ22
1 〉 = ν1 − ig1〈σ21

1 a〉 + ig1〈σ21
1 a〉∗ − γ1〈σ22

1 〉 − ν1〈σ22
1 〉

〈σ22
2 〉 = ν2 − ig2〈σ21

2 a〉 + ig2〈σ21
2 a〉∗ − γ2〈σ22

2 〉 − ν2〈σ22
2 〉

...
〈σ22

4 σ22
5 〉 = ig5〈a†〉〈σ22

4 σ12
5 〉 + i〈σ22

4 〉〈σ21
5 a〉∗ + . . .

These equations are now solvable using a Differential Equations solver since all operator
averages are defined with numerical indices. We use the packages OrdinaryDiffEq.jl
and ModelingToolkit.jl to create a system and then a so-called ODEProblem with the
previous equations. Before defining our problem, we construct numerical values for all
the used variables using the vector p0. With those, we create a dictionary, which maps
the symbolic variables to their numerical values using the function value_map, where we
also use the keyword argument limits to set N = 5. This method creates a mapping for
each interaction coupling g for each individual atom. One can then use this dictionary
with a vector stating the initial values of the operator averages in u0 to construct a
ODEPorblem. The range (0.0,10.0) used in the same function call is the time interval
for which the solution is calculated. The problem can now be solved using the solve

function exported by the OrdinaryDiffEq.jl package. In the final step, we plot both
the photon number and the average excitation of each atom. We access the particular
solutions for the averages using NumberedOperators as indices of the sol object.
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Figure 5.1.: Output plot of the previous code sample 7. The excited state population 〈σ22
i 〉 of

the atoms inside the cavity is plotted against the evolution time of the system and is labeled
according to their numerical interaction strength g. Additionally, the average photon number
inside the cavity is shown by the dashed line.

5.2. Example A: A Superradiant Laser
Using these newly implemented functionalities, one can simulate various systems which
consist of an arbitrary composition of multi-level atoms and light-field modes. As a
compulsive example, we give a simulation of a superradiant laser, as described in [25].
A crucial feature of this model is that all averages are assumed to be indistinguishable,
meaning that 〈σxy

i σxy
j 〉 = 〈σxy

1 σxy
2 〉 for all i 6= j. This symmetry is applied when using

the scale function to a set of indexed equations of motions for operator averages.
Fig. 5.2 shows a simplified illustration of the system.

Let us start by introducing the Hamiltonian of the system of interest

H = −∆a†a +
N∑

i=1
gi(a†σ12

i + aσ21
i ), (5.2.1)

where ∆ is the detuning between cavity- and atom-frequency and gj the coupling
strength of the j-th atom. We can now use this Hamiltonian to derive a complete set of
equations for operator averages by using the previously described methods. We start
by importing the package and defining the Hilbert space and Hamiltonian, as seen in
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Figure 5.2.: Schematic of the superradiant laser setup. An ensemble of atoms is depicted
in a lossy cavity, characterized by the photon decay rate κ. The atoms are driven by a laser
with a rate R and individually decay with a rate Γ. Additionally, the atoms are affected by
dephasing, represented by the rate ν.

code sample 8.
using QuantumCumulants

order = 2 #order of the cumulant expansion

@cnumbers N Δ κ Γ R ν

hc = FockSpace(:cavity)

ha = NLevelSpace(:atom,2)

h = hc ⊗ ha

# Indices and Operators

i = Index(h,:i,N,ha); k = Index(h,:k,N,ha); l = Index(h,:l,N,ha)

@qnumbers a::Destroy(h)

σ(i,j,k) = IndexedOperator(Transition(h,:σ,i,j),k)

g(i) = IndexedVariable(:g,i)

# Define the Hamiltonian

H = -Δ*a'a + (Σ(g(i)*a'*σ(1,2,i),i) + Σ(g(i)*a*σ(2,1,i),i))

Code sample 8: Defining the Hilbert space and Hamiltonian for the superradiant laser example.

The order of expansion for this example is set to two, but one can alter this easily at
the cost of computation time. We also define the index i again with a symbolic upper
limit N and use an indexed variable gi to use different couplings for later calculation. In
the very last step of the upper code, we define our Hamiltonian according to Eq. (5.2.1).
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We continue by constructing the Jump-operators with their rates and a set of operators
for which we derive the equations.
J = [a,σ(1,2,l),σ(2,1,l),σ(2,2,l)]

rates = [κ, Γ, R, ν]

ops = [a'*a,σ(2,2,k)]

# create Meanfield-Equations with given order for the given operators

eqs = meanfield(ops,H,J;rates=rates,order=order)

# custom filter function

φ(x::Average) = φ(x.arguments[1])

φ(::Destroy) = -1

φ(::Create) =1

φ(x::QTerm) = sum(map(φ, x.args_nc))

φ(x::Transition) = x.i - x.j

φ(x::IndexedOperator) = φ(x.op)

φ(x::SingleSum) = φ(x.term)

φ(x::AvgSums) = φ(arguments(x))

phase_invariant(x) = iszero(φ(x))

eqs_c = QuantumCumulants.complete(eqs;filter_func=phase_invariant)

eqs_sc = scale(eqs_c)

Code sample 9: Creating a complete set of equations of motions with a filter function.

Additionally, we also define a filter function. Since the entire system is phase invariant,
we can neglect terms with a phase. One can do this by setting the keyword argument of
the complete function filter_func to the pre-defined phase_invariant function, which
checks if a term has zero phases. In the last step of code sample 9, we call the scale

function to scale up the set of equations, applying the before-mentioned symmetry rules
onto the equations. The resulting complete set of equations then takes the form

d

dt
〈a†a〉 = − 1.0κ〈a†a〉 − 1iNg1〈a†σ12

1 〉 + 1iNg1〈aσ21
1 〉

d

dt
〈σ22

1 〉 =R − 1.0R〈σ22
1 〉 − 1.0Γ〈σ22

1 〉 + 1ig1〈a†σ12
1 〉 − 1ig1〈aσ21

1 〉

d

dt
〈a†σ12

1 〉 = − 0.5R〈a†σ12
1 〉 − 0.5Γ〈a†σ12

1 〉 − 0.5κ〈a†σ12
1 〉 − 0.5ν〈a†σ12

1 〉 + . . .

d

dt
〈σ12

1 σ21
2 〉 = (−1.0R − 1.0Γ) 〈σ12

1 σ21
2 〉 + 1ig1〈a†σ12

1 〉 − 1ig1〈aσ21
1 〉 + . . .

Continuing, we define initial values and solve the equations before finally plotting the
average photon number inside the cavity and the excitation of one atom.
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# define the ODE System and Problem

@named sys = ODESystem(eqs_sc)

# Initial state

u0 = zeros(ComplexF64, length(eqs_sc))

# System parameters

N_ = 2e5; Γ_ = 1.0; Δ_ = 2500Γ_; g_ = 1000Γ_

κ_ = 5e6*Γ_; R_ = 1000Γ_; ν_ = 1000Γ_

ps = [N, Δ, g(1), κ, Γ, R, ν]

p0 = [N_, Δ_, g_, κ_, Γ_, R_, ν_]

prob = ODEProblem(sys,u0,(0.0, 1.0/50Γ_), ps.=>p0);

# Solve the Problem

sol = solve(prob,Tsit5(),maxiters=1e7)

# Plot time evolution

t = sol.t; n = real.(sol[a'a]); s22 = real.(sol[σ(2,2,1)])

Code sample 10: Solving the previously derived equations.

Figure 5.3.: Plots of the solution of the previous code sample 10 for the number of photons
〈a†a〉 and average excitation of the atoms 〈σ22

1 〉.

To show more functionalities of the package, we also include a calculation of the
spectrum using two-time correlation functions. One can do so by calling the functions
CorrelationFunction and Spectrum as shown in code sample 11.
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corr = CorrelationFunction(a', a, eqs_c; steady_state=true,

filter_func=phase_invariant)

corr = scale(corr)

S = Spectrum(corr, ps);

prob_ss = SteadyStateProblem(prob)

sol_ss = solve(prob_ss, DynamicSS(Tsit5(); abstol=1e-8, reltol=1e-8),

reltol=1e-14, abstol=1e-14, maxiters=5e7);

ω = [-10:0.01:10;]Γ_

spec = S(ω,sol_ss.u,p0)

spec_n = spec ./ maximum(spec)

δ = abs(ω[(findmax(spec)[2])]);

Code sample 11: Calculating the correlation function and the spectrum of the emitted steady
state output.

We use here the function CorrelationFunction, to derive 〈a†(t)a(τ)〉 for our system
using the previously derived complete set of equations eqs_c. This method returns a
complete set of equations of correlation functions between system operators and a(τ).
Here the keyword steady_state is set to true since we are interested in the output
spectrum of the system after it reaches its steady state. We then continue by scaling
these equations and defining our spectrum S. At this point, S is an abstract function
that can be called using a range of desired frequencies, in this case, ω. The steady-state
solution for the operator averages of our system sol_ss.u and the numerical values for
parameters encountered in the correlation function p0 are also provided to the spectrum
function. After calculating the spectrum, we normalize it in the last few steps and plot
the result in Fig. 5.4.

36



5. Examples and Benchmarking

Figure 5.4.: Normalised spectrum of the laser for the above example. The spectrum is
calculated by Fourier transforming the two-time correlation function.

5.3. Example B: Cavity Anti-resonance
In this example, we want to highlight further advantages of the indexing extension for
QuantumCumulants.jl. It is also possible within the package to create summations with
up to two running indices, saving even more derivation time. We give an example of a
system where we construct summations with two indices, similar to the model described
in [24]. The system contains a cavity field interacting with atoms, including dipole-dipole
interaction. Additionally, a laser drives the system through one of the cavity mirrors.
The Hamiltonian of the system is similar to the Tavis-Cummings Hamiltonian given in
Eq. (2.1.13)

H = ∆ca
†a + η(a† + a) + ∆a

N∑
i

σ22
i +

N∑
i 6=j

N∑
j 6=i

Ωijσ
21
i σ12

j +
N∑
i

gi(a†σ12
i + aσ21

i ). (5.3.1)

Here, ∆c and ∆a are the detunings of the cavity and atoms to the gain laser, respectively.
We see that this Hamiltonian consists of several summations, one of which is a summation
over two running indices i and j. This term corresponds to the dipole-dipole interactions
between the atoms. We also encounter here a variable with two indices, namely Ωij.
This double-indexed variable behaves in the first place like a symbolic complex number.
However, as in the example below, we defined the variable to have the keyword identical

set to false, meaning that Ωii = 0 for all i. One can use this small optimization to
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neglect terms that contain variables like Ωii immediately.
using QuantumCumulants

order = 2; @cnumbers Δc η Δa κ N

# define Hilbert space

hc = FockSpace(:cavity); ha = NLevelSpace(Symbol(:atom),2); h = ha ⊗ hc

# define indices

i = Index(h,:i,N,ha); j = Index(h,:j,N,ha); k = Index(h,:k,N,ha)

# define indexed variables

gi = IndexedVariable(:g,i); Γ_ij = IndexedVariable(:Γ,i,j);

Ω_ij = IndexedVariable(:Ω,i,j;identical=false)

@qnumbers a::Destroy(h)

σ(x,y,k) = IndexedOperator(Transition(h,:σ,x,y),k)

# Hamiltonian

Hc = Δc*a'a + η*(a' + a)

Ha = Δa*Σ(σ(2,2,i),i) + Σ(Ω_ij*σ(2,1,i)*σ(1,2,j),j,i;non_equal=true)

Hi = Σ(gi*(a'*σ(1,2,i) + a*σ(2,1,i)),i)

H = Hc + Ha + Hi

# Jump operators & and rates

J = [a, σ(1,2,i) ]

rates = [κ,Γ_ij]

ops = [a, σ(2,2,k), σ(1,2,k)]

eqs = meanfield(ops,H,J;rates=rates,order=order)

eqs_comp = complete(eqs);

eqs_ = evaluate(eqs_comp;limits=(N=>2));

Code sample 12: Code sample for deriving equations of motions for a cavity with 2 atoms and
dipole-dipole coupling.

As mentioned, we can create a summation with two running indices using the same
methods one uses to instantiate single-indexed summations. We also set the keyword
non_equal to true, indicating that the two running indices of the summation can never
be equal. In code sample 12, we also define a dissipative rate Γij with two indices. This
rate corresponds to the collective decay rate of the closely spaced atoms, and when
deriving the equations of motion, it is used equivalently as in Eq. (2.3.20). In this
particular example, the second dissipative coupling operator is automatically derived
from the first. Therefore, for the rate Γij with the corresponding coupling operator
ci = σ12

i , the second operator c†
j is automatically set to be σ21

j .
We continue the example by deriving a set of equations and transforming them into

a solvable form using the evaluate function. We call the method in this example using
the keyword limits to set the number of atoms to two. We use a steady-state solver
for our equations to determine the photon number in the cavity |〈a〉|2 of the system.
To resolve the transmission of the gain Laser through the cavity, we scan the laser
detuning. As a last step, we normalize the photon number by their maximum and plot
the result. One finds an anti-resonance feature of the transmitted light with a sharp
phase response as shown in Fig. 5.5.
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Figure 5.5.: The transmission coefficient T of the cavity and the phase Φ in degrees are
plotted against the laser detuning in units of Γ. The transmission coefficient T is calculated
by normalizing the photon number in the cavity in the steady state.

5.4. Example C: Ensemble of Two-Level Atoms in an
optical Array

For this example, we present a system of several two-level atoms interacting via the
dipole-dipole interaction. The atoms are arranged in a two-dimensional optical array
with variable lattice parameters. In this example, we are interested in the case where
the polarizations of the atom-transition dipoles ~µ are perpendicular to the lattice plane.
The atoms are excited by a π/2 laser-pulse from a specific angle. Fig. 5.6 depicts a
schematic drawing of the system of interest.
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Figure 5.6.: Schematic of the atomic array model. The figure depicts the atoms with their
corresponding dipole moment ~µ as well as the angles φ and θ specifying the direction of the
laser plane.

Since we are interested in the dipole-dipole interactions and the collective decay of
the atomic array, we are considering the Hamiltonian

H = −∆a

N∑
i

σ22
i +

N∑
i 6=j

Ωijσ
12
i σ21

j + i

2ΩD(t)
N∑
i

(
Φiσ

21
i − Φ∗

i σ
12
i

)
(5.4.1)

with ∆a being the atom-laser detuning, and Ωij the coherent coupling between atom i
and j. We introduce here a time-dependent pump laser ΩD(t), which is essentially a
rectangular function with a set width and amplitude. We use this function to initiate the
system in a preferable state and to simulate an initial π/2-laser pulse. Φi is a parameter
describing the phase of the laser pulse at the position of atom i. It is a geometric
property, depending on the setup of our system and is calculated via Φi = e−i~k~ri , where
~k is the wave vector of the incoming laser-light and ~ri the positional vector of atom i,
based on the laser-plane. We also choose the relative position of the array corresponding
to the laser plane to be at zero phase in the middle of the lattice. To simulate the
system with QuantumCumulants.jl, we start by loading the packages and defining the
Hilbert space, see code sample 13.
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using QuantumCumulants, Symbolics

@syms t::Real

@cnumbers Δ_a Ω_R N

@register Ω(t)

Nx=3; Ny=3; N_N = Nx*Ny; order_=1;

h = NLevelSpace(Symbol(:atom),2);

i = Index(h,:i,N,h); j = Index(h,:j,N,h); k = Index(h,:k,N,h);

σ(i,j,k) = IndexedOperator(Transition(h,:σ,i,j),k)

Γ(i,j) = IndexedVariable(:Γ,i,j)

Ω(i,j) = IndexedVariable(:Ω,i,j);

Φ(i) = IndexedVariable(:Φ,i); Φd(i) = IndexedVariable(:Φd,i) ;

Hₐ = -Δ_a*Σ(σ(2,1,i)*σ(1,2,i),i)

Hₑₗ = Σ(Σ((Ω(i,j)*σ(2,1,i)*σ(1,2,j)),j,[i]),i,[j])

Hₚᵤₘₚ = im*(1/2)*Ω(t)*Ω_R*Σ((Φ(i)*σ(2,1,i) - Φd(i)*σ(1,2,i)),i)

H = Hₐ + Hₑₗ + Hₚᵤₘₚ

J = [σ(1,2,i)]; rates = [Γ(i,j)]; ops = [σ(2,2,k)]

eqs = meanfield(ops,H,J;rates=rates,iv=t,order=order_)

eqs_complete = complete(eqs);

eqs_eval = evaluate(eqs_complete;limits=(N=>N_N));

Code sample 13: Deriving equations of motions for a three-by-three array of two-level atoms.
We use here the package Symbolics.jl [22] to define the invariant variable t, to simulate the
time dependency of the function Ω(t), which we introduced in the system Hamiltonian from
Eq. (5.4.1).

Following up, we calculate the numerical values for all the parameters needed. For
this, we choose the distance between two neighbouring atoms to be not too far apart
from each other so that we can still observe collective behaviour. To be precise, the
lattice constant is in both dimension set to a = 0.1λ with λ being the wavelength of
the emitters. Furthermore, we calculate the laser phase, having the zenith angle θ and
azimuth angle φ, as seen from the array centre. Using all of these, we can simulate the
collective behaviour of the array in different orders of the expansion and extract the
expectation value of a quantum mechanical operator after some evolution time T .

Let us first consider the case where we have a three-by-three array. This array
size allows us to do calculations in the second order of the cumulant expansion, as
the number of equations needed to describe the system is not too large for solving it
efficiently. For example, we want to know how the expectation value of the excited
state population of the middlemost atom changes over time compared to an atom at
the corner of the array for a laser positioned at the angles θ = π/2 and φ = 0. We plot
the time evolution in first-order and second-order expansion for both atoms of interest
and for a free single atom which is not interacting via the dipole-dipole interaction, see
Fig. 5.7.
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Figure 5.7.: Comparison of the excited state population expectation value between an atom at
the corner (a) of the array to the centre atom (b) and a free single atom (c). The simulation
was made for a three-by-three array in first and second-order expansion, using a laser at
angular positions θ = π/2, φ = 0 and a lattice constant of a = 0.1λ. In the case of a single
free atom (c), the first and second-order expansion lead to the same result. The reason is that
the system is describable solely by using the equations of motions for first-order averages since
no higher-order products can occur.

Continuing the example, we increase the system size of the array to a nine-by-nine
array. For this, we use the first-order expansion, commonly known as the mean-field
approximation, where we reduce all averages of operator multiplications as a product of
the individual operator averages. As mentioned, we do not need to specify an entirely
new system. We only need to vary a numerical value in our code and calculate additional
parameters. For deriving the equations, we change the numerical value in the limits

keyword of the evaluate function. As output, we plot the average population of the
excited level for an atom in the middle of the array, an atom at the corner and a free
atom. The result is depicted in Fig. 5.8.
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Figure 5.8.: Comparison of the excited state population expectation value between different
atoms confined in a nine-by-nine optical array construction. The simulation was made for a
nine-by-nine array in first-order expansion, using a laser at angular positions θ = π/2, φ = 0
and a lattice constant of a = 0.1λ.

As a final examination of this example system, we analyse how the angular dependency
of the laser impacts the decay of the excited state population of the atoms in the array.
We do so by iterating over the angular positions between the gain laser and the array.
We then continue by solving the equations of motion for each iteration individually. For
this, we calculate for each angular step in θ and Φ the excited population average of
each atom and take the mean value of the whole array after a set evolution time of
t = 1/Γ0.
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Figure 5.9.: Average excitation of each atom in the array depending on the laser angular
positions after an evolution time of t = 1/Γ0. Both angles φ and θ are represented in units of
π. The lattice constant is in both directions set to a = 0.1λ, with λ being the wavelength of
the emitters. Brighter colours (yellow) represent a higher average excited state population,
and darker colours (blue) refer to a lower average excited state population.

As we see in Fig. 5.9, the average excitation of the lattice is at its maximum after
t = 1/Γ0, when the wave vector ~k of the incoming laser light is perpendicular to the
dipole moment ~µ of the individual atoms. The value for a free atom at the chosen point
in time of t = 1/Γ0 is 〈σ22〉 = 0.196.

5.5. Example D: Laser with Filter Cavities
In this final example, we want to show the combined usage of both functionalities
evaluate and scale. Furthermore, in this example, we use symbolic indices on bosonic
operators and on atomic ones. Let us first start by introducing the system and its
Hamiltonian. We are considering multiple cavities with different detunings coupled to
a system similar to the one described in the Superradiant Laser example in Sec. 5.2.
Such a setup is used to calculate the spectrum of a laser by filtering the emitted light
using filter cavities. One can do so by measuring the photon number within each filter
cavity, as seen in [26]. With the additional cavities the Hamiltonian has the form

H = −∆a†a + g
N∑

j=1
(a†σ12

j + aσ21
j ) −

M∑
i=1

δib
†
ibi + gf

M∑
i=1

(a†bi + ab†
i ). (5.5.1)
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In this equation, δi is the detuning of the i-th filter cavity, and gf is the coupling
strength between the gain cavity and the filter cavities. Each filter cavity has the same
coupling strength gf and photon decay rate κf . In this setup, the symbolic index j
describes the atomic Hilbert space and the symbolic index i is the bosonic one of the
filter cavities. In code sample 14, this Hamiltonian is defined and the equations of
motion are derived.
# Paramters

@cnumbers κ g gf κf R Γ Δ ν N M

δ(i) = IndexedVariable(:δ, i)

# Hilbertspace

hc = FockSpace(:cavity)

hf = FockSpace(:filter)

ha = NLevelSpace(:atom, 2)

h = hc ⊗ hf ⊗ ha

# Indices and Operators

i = Index(h,:i,M,hf)

j = Index(h,:j,N,ha)

@qnumbers a::Destroy(h,1)

b(k) = IndexedOperator(Destroy(h,:b,2), k)

σ(α,β,k) = IndexedOperator(Transition(h,:σ,α,β,3), k)

# Hamiltonian

H = Δ*Σ(σ(2,2,j),j) + Σ(δ(i)*b(i)'b(i),i) +

gf*(Σ(a'*b(i) + a*b(i)',i)) + g*(Σ(a'*σ(1,2,j) + a*σ(2,1,j),j))

# Jumps & rates

J = [a, b(i), σ(1,2,j), σ(2,1,j), σ(2,2,j)]

rates = [κ, κf, Γ, R, ν]

eqs = meanfield(a'a,H,J;rates=rates,order=2)

eqs_c = complete(eqs)

M_ = 20 # 20 cavities

eqs_sc = scale(eqs_c;h=[ha]) # scale only atomic Hilbert space

eqs_eval = evaluate(eqs_sc; limits=Dict(M=>M_)) # evaluate the rest

Code sample 14: Derivation of a closed set of equation for the filter cavities. The
equations are first derived using the Hamiltonian in Eq. (5.5.1) and then both scaled
and evaluated. The scale function is used on the atomic Hilbert space by setting the
keyword h to [ha] and the evaluate function on the Hilbert space describing the filter cavities.

In code sample 14, we use scale with the keyword h set to the atomic Hilbert space.
After the scaling of the equations, we evaluate them with the number of filter cavities
M set to 20. The detunings of the cavities δi range from δ1 = 0 up until δ20 = 9.5Γ0 in
0.5Γ0 steps. Solving these equations numerically for g = Γ0, gf = 0.1Γ0, κf = 0.1Γ0,
R = 10Γ0, κ = 100Γ0, ν = Γ0 and N = 200 atoms in the main cavity gives the results
shown in Fig. 5.10.
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Figure 5.10.: Average photon number of the filter cavities (left) and the normalized intensity
depending on the detuning from the main cavity (right). The uppermost filter cavity (blue)
corresponds to the one with the lowest detuning δ1 = 0 and the lowest one (dark green) to
the highest detuning δ20 = 9.5Γ0. The normalized intensity curve (right) is extrapolated from
the steady state photon number of the filter cavities depending on their detuning.

5.6. Benchmarking
To test the performance of the package regarding different system sizes, we vary the
number of atoms included in two examples, a linear chain and an optical array, similar
to the one in Sec. 5.4. We compare calculation times and resources for these systems.
Furthermore, we compare the brute force algorithm to the newly implemented one
using indexed operators and equations. For this, we compare the resources needed to
transform the equations of motion into a solvable set, i.e. time and memory allocations
for the function call evaluate, and for completion, i.e. the function complete. For the
first example, we derive the equations of motions in a second order for the system,
explained in Sec. 5.4 for a N -by-N array, where we continuously increase N and measure
both calculation time and memory allocations. We do so by using another Julia package
called TimerOutputs.jl. Fig. 5.11 shows the results for this benchmark.
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Figure 5.11.: Comparison of derivation times and memory allocations needed between
different algorithms. In (a), calculation times of different function calls are plotted against the
number of atoms included in the array on a logarithmic scale. In (b), memory allocations of
the same function calls are shown. The blue graph is associated with the resources needed for
the complete function call, and the orange one with the evaluate function. The green graph
shows the resources for the same system, where one does not use symbolic indexing.

As shown in Fig. 5.11, both time needed to complete the equations and memory
allocations are constant over the system size. What is also notable about both graphs
is that for sizable systems, the total time and allocations needed for the evaluate

function is lower than the total for a complete call without using indices, as one would
expect. Similarly, for a comparison in first-order expansion, we vary a system consisting
of a linear atom chain, including dipole-dipole interaction terms. We measure once
again derivation time and memory allocations. Fig. 5.12 displays the results of the
benchmarking.
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Figure 5.12.: Comparison of calculation times and memory allocations needed between
different algorithms for a linear atomic chain in first-order expansion. In (a), the calculation
times of different function calls are plotted against the number of atoms included. In (b),
memory allocations of the same function calls are shown. Both plots display the results on a
logarithmic scale. The blue graph is associated with the resources needed for the complete

function call, and the orange one with the evaluate function. The green graph shows the
resources for the same system, where one does not use symbolic indexing.

When using symbolic indexing, resources needed for the complete call are again constant
over different system sizes. The blue graph in Fig. 5.12 shows this feature. Furthermore,
it is visible that using evaluate is more efficient in time and allocations than not using
indices and summations at all. For a sizable system with 50 atoms, the evaluate

function is significantly more efficient then the algorithm without symbolic indexing.
All testing regarding benchmarking was done using an AMD Ryzen 5 3400G CPU,

an NVIDIA GeForce GTX960 GPU and 16GB of DDR4 2666MHz RAM on Quantum-
Cumulants.jl version v0.2.13.
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Chapter 6.

Conclusion and Outlook
We added the possibility to use symbolic indices and summations to the Julia pack-
age QuantumCumulants.jl. With this implementation, it is possible to implement
and simulate quantum-optical systems, which consist of several similar subsystems,
efficiently. One can use these symbolic summations and indices to ease the creation
of systems of interest and reduce both memory allocations required and calculation
time for deriving equations. By representing additions as symbolic summations, we
reduce redundant calculus. In addition, by rewriting similar differential equations using
indexed operator expectation values, we also reduce the number of equations needed
to describe the quantum dynamics of the system of interest. Furthermore, we added
new possibilities to transform these equations with the scale and evaluate function-
alities. The output of these functions is interpretable for differential equation solvers
like DifferentialEquations.jl. In addition to indexed operators, we also implemented
IndexedVariables to help the user construct additional parameters in an intuitive way.
We showcased the potential of symbolic indexing in various examples, mostly building
upon the Tavis-Cummings model. Highlighted examples include recently investigated
systems such as the cavity-anti-resonance [24] and the superradiant laser [25]. Finally,
we show that using symbolic summations reduces the computational resources needed to
calculate specific systems by doing benchmark testing on two different example models.

6.1. Current Limitations
For now, one of the extensive limitations is that systems requiring more than two indices
to describe a single parameter are not yet possible to simulate. The same limitation also
holds for models defined by summations with three or more indices. For higher orders
of indices, the calculation rules for these objects are progressively more complicated.
Since there are already a lot of systems that can be effectively described by only using
summations and parameters using two or fewer indices, this was not a focus point in
the initial development.
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6.2. Further Development
Since QuantumCumualants.jl is under current development, more extensions will likely
get created for this package to handle more use cases. For example, it is not yet possible
for the toolbox to simulate fermionic operator or corresponding Hilbert spaces. One of
the primary goals for the indexing extension is to further decrease computation times
for larger systems by increasing the efficiency and speed of the methods provided. On
the other hand, a problem one might want to tackle in the future is the creation of
multi-indexed summations and variables. Although one can calculate many systems
using only two indices, more cumbersome systems with multiple indices and summations
should also profit from the extension.
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Appendix A.

Source code of important functions
Here, we show the source code of the most critical implemented methods. We start
with the IndexedOperator and the SingleSum objects.
struct IndexedOperator <: QSym

op::IndexableOps

ind::Index

function IndexedOperator(op::IndexableOps,ind::Index)

@assert isequal(ind.hilb,hilbert(op))

isa(ind.hilb, ProductSpace) && (@assert isequal(acts_on(op),ind.aon))

return new(op,ind)

end

end

const Summable = Union{<:QNumber,<:CNumber,

<:SymbolicUtils.Sym{Parameter,IndexedVariable},

<:SymbolicUtils.Sym{Parameter,DoubleIndexedVariable}}

const IndexedObSym = Union{IndexedOperator,

SymbolicUtils.Sym{Parameter,IndexedVariable},

SymbolicUtils.Sym{Parameter,DoubleIndexedVariable}}

struct SingleSum{M} <: QTerm #Sum with an index

term::Summable

sum_index::Index

non_equal_indices::Vector{IndexInt} #indices not equal to the summation index

metadata::M

function SingleSum(term::Summable,sum_index::Index,

non_equal_indices::Vector,metadata)

SymbolicUtils._iszero(term) ? 0 : new{typeof(metadata)}

(term,sum_index,sort(non_equal_indices,by=getIndName),metadata)

end

end

function SingleSum(term::IndexedObSym,

sum_index, non_equal_indices;metadata=NO_METADATA)

term_indices = get_indices(term)

if sum_index in term_indices

return SingleSum(term,sum_index,non_equal_indices,metadata)

else

return (sum_index.range - length(non_equal_indices)) * term

end

end

Code sample 15: Source code of the implementation of the IndexedOperator and SingleSum.

52



A. Source code of important functions

Continuing, we show how the multiplication of a summation with an indexed operator
is implemented.
function *(sum::SingleSum,elem::IndexedObSym)

NEIds = copy(sum.non_equal_indices)

if !((elem.ind == sum.sum_index) && (elem.ind ∉ NEIds)

&& (sum.sum_index.aon == elem.ind.aon))

qaddterm = nothing

term = sum.term

if length(NEIds) == 0

extraterm = change_index(term,sum.sum_index,elem.ind)

qaddterm = extraterm*elem

else

specNEIs = Tuple{Index,Index}[]

for ind in NEIds

tuple = (elem.ind,ind)

push!(specNEIs,tuple)

end

extraterm_ = change_index(term,sum.sum_index,elem.ind)

qaddterm = reorder(extraterm_*elem,specNEIs)

end

push!(NEIds,elem.ind)

qmul = sum.term*elem

if qmul isa QMul

qmul = order_by_index(qmul,[sum.sum_index])

end

if (qmul isa QMul && (isequal(qmul.arg_c,0)

|| SymbolicUtils._iszero(qmul.args_nc)))

return 0

end

sort!(NEIds,by=getIndName)

newsum = SingleSum(qmul,sum.sum_index,NEIds)

if SymbolicUtils._iszero(newsum)

return qaddterm

elseif SymbolicUtils._iszero(qaddterm)

return newsum

end

return QAdd([newsum,qaddterm])

else

qmul = sum.term*elem

if qmul isa QMul

qmul = order_by_index(qmul,[sum.sum_index])

end

qmul isa QMul && (isequal(qmul.arg_c,0)

|| SymbolicUtils._iszero(qmul.args_nc)) && return 0

return SingleSum(qmul,sum.sum_index,NEIds)

end

end

Code sample 16: Implementation of a multiplication of a summation and an operator. As a

final example we show the implementation of the meanfield function.
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function indexed_meanfield(a::Vector,H,J;

Jdagger::Vector=adjoint.(J),rates=ones(Int,length(J)),

multithread=false,simplify::Bool=true,order=nothing,

mix_choice=maximum,iv=SymbolicUtils.Sym{Real}(:t))

for ind in get_indices(a)

if ind in get_indices(H)

error(”Index $(ind.name) in operator-vector is already used in H!”)

end

end

rhs = Vector{Any}(undef, length(a))

imH = im*H

for i=1:length(a)

try

rhs_ = commutator(imH,a[i])

rhs_diss = indexed_master_lindblad(a[i],J,Jdagger,rates)

indices = get_indices(a[i])

if length(indices) <= 1

rhs[i] = rhs_ + rhs_diss

else

mapping = Tuple{Index,Index}[]

for j = 1:length(indices)

for k = 1:j

if k != j

push!(mapping,(indices[k],indices[j]))

end

end

end

rhs[i] = reorder((rhs_+rhs_diss),mapping)

end

catch err

println(”could not calculate meanfield-equations for operator $(a[i])”)

rethrow(err)

end

end

vs = map(average, a)

rhs_avg = map(average, rhs)

if simplify

rhs_avg = map(SymbolicUtils.simplify, rhs_avg)

end

rhs = map(undo_average, rhs_avg)

if order !== nothing

rhs_avg = [cumulant_expansion(r, order; simplify=simplify,

mix_choice=mix_choice) for r∈rhs_avg]

end

eqs_avg = [Symbolics.Equation(l,r) for (l,r)=zip(vs,rhs_avg)]

eqs = [Symbolics.Equation(l,r) for (l,r)=zip(a,rhs)]

varmap = make_varmap(vs, iv)

me = IndexedMeanfieldEquations(eqs_avg,eqs,vs,a,H,J,Jdagger,rates,iv,varmap,order)

return me

end

Code sample 17: Source code of the implementation of the meanfield function when called
with IndexedOperator entities.
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A. Source code of important functions

The whole source code of the package is available on the official QuantumCumulants.jl
GitHub repository [27].
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