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Abstract
In this thesis we study the coupled atom-field dynamics of a superradiant laser based
on a thermal atomic beam crossing a standing wave optical resonator. In order to treat
experimentally relevant system sizes we need to include a very large number of atoms
which prevents the use of a full quantum model, which would require an intractably
large Hilbert space. As a viable alternative, we use a so-called cumulant expansion
based on expectation values of suitably chosen atomic operators for selected clusters of
atoms with very similar properties. In this way we circumvent the challenge of too many
equations that would arise when treating each atom individually. We assume that groups
of atoms behave in a sufficiently identical way so that we can use a reduced number of
equations and still obtain the essential physics correctly. Here, the kinetic temperature
of the atoms is assumed high enough to describe their centre of mass classically and
deterministically, meaning that the initial starting positions and the initial velocities
determine their full path. In a further approximation we also neglect the cavity light
forces, which the photons exert on the atoms during their passage through the cavity.
The initial velocity distribution along the cavity axis is a Gaussian describing a thermal
atomic cloud. As we deal with a thermal atomic beam with a fluctuating number of
atoms crossing the resonator the coupled atom-field system does not reach an exact
steady state, but the system variables oscillate around their average values. For a large
number of atomic clusters these fluctuations are rather small and the long term solution
of the equations from a first order cumulant expansion yields a quasi-steady-state. In
typical parameter regimes a second order model predicts minor modifications only.

As expected, in the quasi steady state the highest photon numbers appear when
the atoms have close to zero velocity along the cavity axis minimizing their Doppler
width and providing for a maximal gain for steady state lasing. For hotter atoms with
a wider velocity distribution, the average photon numbers decrease even to a point,
where lasing stops and we find virtually no field inside the cavity. Varying the number
of atoms while leaving the collective cooperativity parameter 𝑔2𝑁

𝜅𝛾 fixed, results in very
similar numbers of photons per atom, suggesting that the total photon number scales
with 𝑁2 as expected for superradiant lasing. When we change the number of atoms and
their velocities we observe that the reduced photon number stemming from a broader
velocity distribution can be compensated by simply using more atoms. As a key result
we predict that instead of trying to further cool down a thermal gas with a certain
particle loss, one can also get a similar amount of photons inside the cavity by just
using more atoms at higher temperature. However, a broader atomic distribution can

I



also lead to a wider output spectrum unfavourable for clock laser applications.
Comparing models of different expansion orders, we find that the results in lowest

order (mean field) and a mixed order agree quite well, as long as we include the full
mixed order terms (keeping the phase terms). The reduced mixed order expansion,
where one discards some phase dependent terms, however, only agrees with the mean
field in certain restricted parameter regions, which do not cover our targeted regime.
For experimentally relevant parameters we had to keep all equations in the full mixed
order. In a final chapter we studied the effects of a velocity cut-off filter, which discards
the fast fraction of the atomic distribution, on the resulting average photon number.
Interestingly the absolute photon number always drops when there are less atoms in the
cavity and the fast atoms thus hardly perturb lasing. Nevertheless, cutting the velocity
distribution at large values lets the photon number stay at a high level for increasing
temperatures. On the other hand, including the full velocity distribution the photon
numbers drop quite drastically with increasing temperature.
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Zusammenfassung
In der vorliegenden Arbeit untersuchen wir die gekoppelte Atom-Feld Dynamik eines
superradianten Lasers, der auf einem thermischen Atom-Strahl basiert, welcher sich in
einem optischen Stehwellenresonator befindet. Um experimentell relevante Systemgrößen
zu behandeln, muss eine sehr große Anzahl von Atomen simuliert werden, was uns
daran hindert, das volle Quanten-Modell zur Beschreibung heranzuziehen, da dessen
Hilbertraum unlösbar groß ist. Als praktikable Alternative verwenden wir die sogenannte
Kumulantenentwicklung, die auf Erwartungswerten von passend ausgewählten Atom-
Operatoren für bestimmte Cluster von Atomen mit sehr ähnlichen Eigenschaften basiert.
Dadurch umgehen wir das Problem zu vieler Gleichungen, würden wir jedes Atom
einzeln behandeln. Wir nehmen an, dass sich Gruppen von Atomen ähnlich genug
verhalten, sodass wir eine reduzierte Anzahl an Gleichungen benützen können, in denen
trotzdem die essentielle Physik korrekt enthalten ist. Die kinetische Temperatur der
Atome wird als hoch genug angenommen, sodass wir deren Schwerpunkt klassisch und
deterministisch beschreiben können, also bestimmen die Anfangsbedingungen in Ort
und Geschwindigkeit den gesamten Weg der Atome. Eine weitere Näherung besteht
darin, die Lichtkräfte, die die Photonen während des Weges durch den Hohlraum auf
die Atome ausüben, zu vernachlässigen. Die anfängliche Geschwindigkeitsverteilung
entlang der Hohlraumachse ist eine Gauß-Verteilung, die eine thermische Atom-Wolke
beschreibt.

Da wir einen thermischen Atom-Strahl mit fluktuierender Anzahl von Atomen, die den
Resonator durchqueren, behandeln, erreicht das gekoppelte Atom-Feld System keinen
stationären Zustand, sondern die Systemvariablen fluktuieren um ihren Durchschnitt-
swert. Diese Fluktuationen sind für eine große Anzahl an Atom-Clustern eher klein und
die Langzeit-Lösung der Gleichungen in erster Ordnung der Kumulantenentwicklung
führt schließlich zu einem quasi-stationären Zustand. In typischen Parameterregionen
sagt ein Modell 2ter Ordnung nur kleinere Änderungen voraus.

Wie erwartet erhalten wir die maximale Anzahl an Photonen im quasi-stationären
Zustand, wenn die Atome entlang der Hohlraumachse eine Geschwindigkeit nahe bei null
haben, was die Doppler-Breite minimiert, so ermöglichen die Atome den maximalen Gain
für den Laser. Für wärmere Atome mit breiterer Geschwindigkeitsverteilung verringert
sich die durchschnittliche Photonenzahl bis zu einem Punkt, an dem der Laserbetrieb
stoppt und sich kein kohärentes Feld und keine Photonen mehr im Hohlraum befinden.
Variieren der Atomzahl bei gleichzeitiger Fixierung der kollektiven Kooperativität 𝑔2𝑁

𝜅𝛾
resultiert in sehr ähnlichen Photonenzahlen pro Atom, was darauf hindeutet, dass die

IV



Photonenzahl mit 𝑁2 skaliert, wie bei einem superradiantem Laser erwartet. Wenn
wir die Anzahl der Atome und deren Geschwindigkeit verändern, sieht man, dass die
reduzierte Anzahl an Photonen aufgrund einer breiteren Geschwindigkeitsverteilung
dadurch kompensiert werden kann, dass man mehr Atome in der Verteilung nützt. Als
wichtiges Ergebnis sagen wir voraus: Anstatt das thermische Gas mit weiterem Teilchen-
verlust weiter zu kühlen, kann man eine ähnliche Anzahl an Photonen im Hohlraum
dadurch erhalten, mehr Atome bei höherer Temperatur zu verwenden. Allerdings kann
eine breitere Verteilung auch zu einem breiteren Spektrum führen, was sich nachteilig
auf Anwendungen der Uhren-Laser auswirken würde.

Wenn wir die Modelle verschiedener Entwicklungsordnungen vergleichen, sehen wir,
dass die Ergebnisse in niedrigster Ordnung (Molekularfeldnäherung) und einer gemis-
chten Ordnung gut miteinander übereinstimmen, zumindest solange wir die volle
gemischte Ordnung verwenden (die Phasen – Terme werden nicht vernachlässigt).
Die Entwicklung in reduzierter gemischter Ordnung, bei der wir manche Phasen–Terme
vernachlässigen, stimmt mit der Molekularfeldnäherung nur in bestimmten Parameterre-
gionen überein, die unsere Zielparameterregion nicht überdecken. Für diese experimentell
benutzten Parameter müssen alle Gleichungen der vollen gemischten Ordnung behalten
werden. In einem letzten Kapitel untersuchen wir, welchen Einfluss ein Geschwindigkeits-
filter, der den schnellen Anteil der Atome herausfiltert, auf die Anzahl der Photonen
hat. Interessanterweise verringert sich die Photonenzahl immer, wenn sich weniger
Atome im Hohlraum befinden und die schnellen Atome stören den Laserbetrieb kaum.
Außerdem lässt ein Abschneiden der Geschwindigkeitsverteilung bei großen Werten
für steigende Temperatur die Photonenzahl hoch bleiben. Wenn wir jedoch die volle
Geschwindigkeitsverteilung inkludieren, fallen die Photonenzahlen ziemlich drastisch
mit steigender Temperatur.
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Chapter 1.

Introduction
In physics it is essential to measure quantities with high precision and accuracy. This
allows us to determine natural constants, predict outcomes of experiments, test our
theories and discover new effects when the discrepancy between prediction and exper-
iment is too large to be explained by mere statistics. Consequently, better precision
and accuracy lead to discovering new effects and therefore constitute scientific progress.
Naturally, the quantities we are able to measure most precisely play a big role. With
the help of lasers with small linewidths, time and frequency become such accurately
measurable quantities. Atomic clocks, based on lasers, allow us to measure time with
such precision, that we can test the theories of relativity and lasers in a large interfero-
meter enable us to detect gravitational waves. Even in everyday-life lasers exert their
influence: the GPS navigation system works with precise time measurement based on
atomic clocks only. It is therefore no surprise that decreasing the linewidth of lasers is
of high relevance and promises scientific progress.

The current main hindrance for higher precision of atomic clocks is the linewidth
of the laser that operates on the ultra-narrow clock transition [1]. These lasers have
to be stabilized using high-𝑄 cavities. The cavity mirrors, however, are subject to
thermal noise and therefore prevent the linewidth to go below a certain threshold. This
is the main reason, why the linewidth can not be reduced further [1]. To circumvent
this problem, one could directly obtain the light from an ultra-narrow atomic clock
transition. While simple, the fluorescence is to weak, but a collective emission from
many atoms would be sufficient to obtain a power large enough to be technologically
relevant.

The fundamental work on such superradiance was done by Dicke in [2], where he
had a look at the radiation of a gas in a volume smaller than the wavelength of the
light. In this regime one has to include collective effects and can not treat each emitter
independently anymore. This paper lead to much more work on the topic of coherent
collective radiation. In 1982, Gross and Haroche summarized these results in their essay
[3]. In 1993, Haake and Kolobov proposed a superradiant laser [4], where one uses this
collective emission. In their model, they found the intensity to be proportional to the
square of the number of atoms, while the linewidth scales inversely proportional to this.
D. Meiser et al. showed in [1] that these collective emission can be achieved inside bad
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1. Introduction

cavities in 2009. In the paper [5] from 2012, Bohnet et al. proposed a superradiant laser
with less than one intra-cavity photon. Such a laser would operate in the so-called ”bad
cavity” regime, where the spontaneous emission rate 𝛾 is much smaller than the cavity
decay rate 𝜅.

The fundamental linewidth of a laser is given by the so-called Schawlow-Townes
formula Δ𝑓 = 1

4𝜋
ℎ𝑓

𝑃out
( 2𝛾𝜅

2𝛾+𝜅)2. In the good cavity limit (2𝛾 ≫ 𝜅) the Schawlow-Townes
formula simplifies to Δ𝑓 = 𝜅

4𝜋
ℎ𝑓

𝑃out
, while in the bad cavity limit (2𝛾 ≪ 𝜅) we obtain

Δ𝑓 = 𝛾
𝜋𝜅

ℎ𝑓
𝑃out

for the fundamental linewidth. Moreover, in the bad cavity limit, the
so-called frequency pulling coefficient d𝑓

d𝑓cav
= 2𝛾

2𝛾+𝜅 is much smaller, so the influence of
the noise in the cavity frequency is drastically reduced [5]. When operating in such a
regime the collective excitation is stored in the gain medium, and therefore the atoms are
mainly responsible for carrying the phase information. The authors demonstrate in [5] a
superradiant laser source, in which synchronization of atomic dipoles can be sustained
by very few photons inside the cavity and claim, that the linewidth of the emitted
light is more than ten thousand times less than the quantum linewidth limit that one
typically uses for good cavity optical lasers. For a practical implementation in 2020
Haonan Liu et al. proposed a ”rugged mHz-linewidth superradiant laser driven by a hot
atomic beam” [6]. The setup they considered consists of a beam of thermal atoms, that
are pumped before they enter a cavity and serve as a gain medium for a superradiant
laser. Along the cavity axis the velocity distribution is a thermal Maxwell-Boltzmann
distribution. They demonstrated, that this kind of setup is competitive with the best
clock lasers. An advantage of the proposed setup is its ruggedness, meaning it can be
operated in challenging real-world environments such as improved GPS satellites, deep
space navigation and new geophysical technologies.

In the following thesis we study superradiant lasing based on a thermal atomic beam.
Contrary to the setup in [6], the atoms are moving in the cavity from the beginning with
the same velocity distribution along the cavity axis. We start by introducing the basic
concepts of a laser in the next chapter and derive important formulas, which govern the
dynamics of such a system. Thereafter, we adapt these formulas to our specific model
and arrive at the master equation for our system. To handle the very large number of
atoms, we use a cumulant expansion to first order (mean field) and also to mixed order,
which yields large sets of differential equations that we solve numerically. We study the
general time evolution and the photon numbers in quasi-steady-state depending on the
temperature. Furthermore, we examine the difference of reduced mixed order (where we
discard the phase terms) to the full mixed order for different parameter regions. Finally,
we have a look at the influence of a velocity filter for the atoms on the photon numbers.
In this thesis we will mostly focus on the photon numbers. For a laser also the linewdith
is very interesting. To calculate the linewidth, the approach of the so called imaginary
filter cavities could be useful. This method has been introduced in [7] and successfully
used for example in [8].
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Chapter 2.

Basic Concepts
In this chapter we introduce the basic concepts and formulas governing the time evolution
of our system. We start with a general introduction to the concept of a laser and its
underlying physical mechanisms. The second section will cover the dynamics of the
atoms, the field inside the cavity and their interaction, while in the third section we
will introduce the Master equation as a way of dealing with open quantum systems. In
the fourth section we present the cumulant expansion method in order to deal with a
large number of atoms. so that we obtain a set of differential equations for operator
expectation values instead of solving the full, high-dimensional Master equation.

2.1. Laser theory
In this section we will introduce the basic principles of a laser system. The laser is, in
contrast to a black body radiator, a source of monochromatic and coherent light. Two
crucial phenomena required to build a laser are spontaneous and stimulated emission of
photons, as the acronym ”Light Amplification by Stimulated Emission of Radiation”
suggests. These two processes are depicted in figure 2.1.

On the left we depict a two-level-atom with excited state |𝑒⟩ and ground state |𝑔⟩. If
the electron 𝑒− is initially in the excited state |𝑒⟩ the atom can decay into a the ground
state of lower energy. Energy conservation is still satisfied, as the excess energy is now
carried away in form of a photon (symbolized by the red wavy line) with a certain
frequency corresponding to the energy difference between excited and ground state.
This process is called spontaneous emission, as there is no certain time at which the
atom decays, rather the probability of being in the excited state decreases exponentially.
The emitted photon can now encounter another two-level-atom in the excited state
and initiate the so-called stimulated emission: Instead of the two-level-atom decaying
spontaneously, the incoming photon stimulates the decay and therefore the emission of
another identical photon with the same frequency, propagation direction, phase and
polarization. These two photons can stimulate further emission from further two-level-
atoms, which again amplifies the photon number and so on, resulting in an avalanche of
coherent photons with all the same frequency, phase and polarization (depicted on the
right in figure 2.1). To obtain a reasonably large photon number, one puts the atoms into
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2. Basic Concepts

e- e- . . . . .

Figure 2.1.: Basic concept of a laser. An atom spontaneously decays, emitting a photon
(red wavy arrow). This photon triggers another atom’s stimulated emission of a second
photon. The photons now have the same frequency, propagation direction and phase.
More and more photons are created by stimulated emission, resulting in an avalanche of
photons.

a cavity. The mirrors of the cavity reflect the photons back and the avalanche continues
to grow. One of the mirrors is partially transmissive in order to get a laser output. If
the photons encounter atoms in the ground state, they can get absorbed. Consequently,
for the photon avalanche to grow instead of being diminished by absorption, we need
the ensemble of atoms to be inverted, meaning that more atoms are in the excited state
than in the ground state. This is, however, not possible in thermal equilibrium, which
can be seen from the so-called Einstein coefficients and the phenomenological Einstein
rate equations.

Suppose we have 𝑁 two-level-atoms, with 𝑁e of them in the excited state and 𝑁g
in the ground state, such that 𝑁 = 𝑁e + 𝑁g. The coefficient 𝐴 denotes the rate of
spontaneous decay from the excited state into the ground state, and 𝐵 represents the
rate of absorption and stimulated emission per energy density. The rate of absorption is
the same as the rate of stimulated emission, if the degeneracy of the levels is the same,
which can be seen by further considerations (more details in [9]). Moreover, these rates
depend on the energy density 𝑈, which is assumed to be constant. The rate of change
of the ground state population d𝑁g

d𝑡 now consists of three processes: the decrease due
to absorption with rate 𝐵𝑈 ⋅ 𝑁g and the increase due to the spontaneous decay with
rate 𝐴 ⋅ 𝑁e and due to stimulated emission with rate 𝐵𝑈 ⋅ 𝑁e. As 𝑁 = 𝑁e + 𝑁g is a
conserved quantity, we also have that any increase/decrease of 𝑁g is equivalent to a
decrease/increase of 𝑁e. Altogether we arrive at

d𝑁g

d𝑡
= −d𝑁e

d𝑡
= 𝐴 ⋅ 𝑁e + 𝐵𝑈 ⋅ 𝑁e − 𝐵𝑈 ⋅ 𝑁g (2.1)

If we do not drive the system in any way, the energy density 𝑈 is zero, the only
occurring process is spontaneous emission and we arrive at the differential equation for
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2. Basic Concepts

an exponential decay of the population in the excited level, just as discussed above.
When driving the system for a long time, we will end up in a steady-state, where there is
no population change anymore and we set d𝑁g

d𝑡 = 0. Using 𝑁g = 𝑁 − 𝑁e, we rearrange
equation 2.1 and find for the fraction of atoms in the excited state

𝑁e
𝑁

= 1
2 + 𝐴

𝐵𝑈
. (2.2)

As 𝐴 and 𝐵𝑈 are both rates, they are positive, meaning that even for very high
energy densities (𝑈 approaching infinity) the fraction of atoms in the excited state
will stay below 1/2 and we therefore have no population inversion. To circumvent this
problem, we will later (in section 2.4.1) discuss how to achieve population inversion. To
this end, we assume, that the atoms have an auxiliary level, which we can adiabatically
eliminate.

2.2. The atom and the cavity field
Let us first have a look at the description of the atom and the cavity field. To make
our life simpler, we approximate all atoms as a two-level-system (TLS) consisting of
a ground state |𝑔⟩ and an excited state |𝑒⟩. The levels are separated by an energy
difference corresponding to the atomic transition frequency 𝜔a, which lies close to
the cavity resonance frequency 𝜔c. The difference between these two frequencies is
called the detuning Δ = 𝜔c − 𝜔a. As all processes are close to this transition, all other
transitions are off-resonant and we can neglect the AC-Stark Shifts that would arise
from treating the off-resonant transitions perturbatively. This TLS is mathematically
equivalent to a spin-1/2-system. Therefore we can use the terminology developed for
the spin-1/2-system, in particular we make use of the Pauli matrices. The Hamiltonian
of the TLS now becomes 𝐻atom = ℏ𝜔a

2 𝜎z. It is important to note, that we can add a
constant term of Energy 𝐸0 without changing the dynamics, as this will only change the
global phase of the resulting wave function which will drop out anyway after calculating
expectation values. We will make use of this gauge freedom later.

Next, we want to describe the quantized fields inside the cavity. The energy of the
electromagnetic fields is given by

𝐸 = 1
2

∫ dV[𝜖0E2(r, 𝑡) + 1
𝜇0

B2(r, 𝑡)] (2.3)

Using the source-free Maxwell equations to derive the wave equations for E(r, 𝑡) and
E(r, 𝑡), one can verify that [10]

E(r, 𝑡) = 𝐸0 𝑞(𝑡) sin(𝑘𝑥) e𝑦 (2.4)

B(r, 𝑡) = 𝜇0𝜖0
𝑘

𝐸0 𝑞(𝑡) cos(𝑘𝑥) e𝑧 (2.5)
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2. Basic Concepts

satisfy the wave equation and also the boundary conditions, namely the electric field
being zero at the cavity mirrors, by choosing appropriate values for 𝑘. Inserting these
expressions into equation 2.3 one arrives, by fixing 𝐸0 = √2𝜔c

𝜖0𝑉 , at the energy of the
well-known harmonic oscillator with unit mass

𝐸 = 𝑝2

2
+ 1

2
𝜔2

c 𝑞2, (2.6)

which we know how to quantize: Replacing the canonical variables 𝑝 and 𝑞 by their
respective operators ̂𝑝 and ̂𝑞 (canonical quantization) and defining new operators by
̂𝑎 = (2ℏ𝜔c)−1/2 (𝜔c ̂𝑞 + 𝑖 ̂𝑝) and ̂𝑎 = (2ℏ𝜔c)−1/2 (𝜔c ̂𝑞 − 𝑖 ̂𝑝), one finds the Hamiltonian of

the cavity field to be
�̂�cavity = ℏ𝜔c ̂𝑎† ̂𝑎 (2.7)

where we have dropped the ground state energy 1
2ℏ𝜔c. From the canonical com-

mutation relation [ ̂𝑞, ̂𝑝] = 𝑖ℏ we find [ ̂𝑎, ̂𝑎†] = 1. From this commutator together with
equation 2.7 we see that ̂𝑎 and ̂𝑎† are ladder operators, leading us to defining the
Fock-states |𝑛⟩ with eigenvalue 𝑛 ∈ ℕ0 = {0, 1, 2, 3, ...} as basis states for the cavity
field :

�̂�|𝑛⟩ = 𝑛 ℏ𝜔c (2.8)
̂𝑎†|𝑛⟩ =

√
𝑛 + 1 |𝑛 + 1⟩ (2.9)

̂𝑎|𝑛⟩ =
√

𝑛 |𝑛 − 1⟩. (2.10)

Now that we have seen how to describe the atoms and the field by themselves, we
go on to finding a description of their interaction. Classically, their interaction energy
is given by −dE(r, 𝑡). In the usual experiments the wavelength is much larger than
the atoms, allowing us to approximate the electric field strength being constant over
the extent of an atom. Using this so-called electric dipole approximation [11] and the
operator expression for the electric field 2.4, we only have to find the operator expression
for the dipole moment d. By symmetry arguments, the diagonal elements of the dipole
operator vanish. Furthermore, we can choose the off-diagonal elements to be real by
choosing an appropriate phase in the wave function for the ground or excited state.
Therefore, we can write the dipole operator as ̂𝑑 = 𝑑 (𝜎+ + 𝜎−). For later convenience,
we introduce the notation 𝜎ij = |𝑖⟩⟨𝑗|. We can express the Pauli-matrices as follows:
𝜎− = 𝜎ge, 𝜎+ = 𝜎eg and 𝜎z = 𝜎ee − 𝜎gg. We also note, that 𝜎ij𝜎kl = 𝜎il𝛿jk, which will
be used later for simplifying some equations. Together with equation 2.4 we arrive at

�̂�int = −d̂ Ê = ℏ𝑔𝑓(𝑥)(𝜎eg + 𝜎ge)( ̂𝑎 + ̂𝑎†) (2.11)

where 𝑓(𝑥) = sin(𝑘𝑥) is a mode function. Multiplying out the brackets and calculating
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2. Basic Concepts

the time evolution of the resulting operators in the Heisenberg picture yields

𝜎eg ̂𝑎 ∼ 𝑒𝑖(𝜔𝑎−𝜔c)𝑡 (2.12)
𝜎eg ̂𝑎† ∼ 𝑒𝑖(𝜔a+𝜔c)𝑡 (2.13)
𝜎ge ̂𝑎 ∼ 𝑒−𝑖(𝜔a+𝜔c)𝑡 (2.14)

𝜎ge ̂𝑎† ∼ 𝑒−𝑖(𝜔a−𝜔c)𝑡. (2.15)

As we will choose 𝜔a ≈ 𝜔c, only the first and the last term are near-resonant, while
the other fast oscillating terms are off-resonant. Treating the off-resonant terms with
time-dependent perturbation theory, the large terms in the exponents appear in the
denominator [10], making the resulting terms very small, such that we can neglect them.
This approximation is known as the Rotating Wave Approximation (RWA). Putting
all the previous results together, we arrive at the Hamiltonian describing an atom
interacting with a cavity field mode

�̂� = �̂�atom + �̂�cavity + �̂�int = ℏ𝜔a𝜎ee + ℏ𝜔c ̂𝑎† ̂𝑎 + ℏ𝑔𝑓(𝑥) (𝜎eg ̂𝑎 + 𝜎ge ̂𝑎†) (2.16)

This Hamiltonian is the well-known Jaynes-Cummings-Hamiltonian [11]. A central
part of our model discussed later is based on the atoms moving in the cavity, the mode
function modifies their interaction strength with the photons. This Hamiltonian is also
easily extended to multiple noninteracting atoms

�̂� = ℏ𝜔a ∑
𝑚

𝜎ee
𝑚 + ℏ𝜔c ̂𝑎† ̂𝑎 + ℏ𝑔 ∑

𝑚
𝑓(𝑥𝑚) (𝜎eg

𝑚 ̂𝑎 + 𝜎ge
𝑚 ̂𝑎†). (2.17)

where 𝜎±
𝑚 are the operators of atom 𝑚 and we sum over all atoms. This Hamiltonian

is the so-called Tavis-Cummings Hamiltonian [12].

2.3. Transforming into a rotating frame
From classical mechanics we know that it is sometimes convenient to switch to a certain
reference frame, which can lead to a simplification of the equations of motion. The
quantum mechanical analog is introduced in the following. In quantum mechanics, a
general way of associating two sets of basis states with each other is a (time dependent)
unitary transformation 𝑅(𝑡), such that [13]

|Φ⟩ = 𝑅(𝑡)|Ψ⟩. (2.18)

Assuming that |Ψ⟩ satisfies the Schrödinger equation 𝑖ℏ ̇|Ψ⟩ = 𝐻|Ψ⟩ with some
Hamiltonian 𝐻, one can derive a differential equation for |Φ⟩. Using the product rule
and the unitarity of the transformation 𝑅−1(𝑡) = 𝑅†(𝑡), one arrives at a transformed
Schrödinger equation 𝑖ℏ ̇|Φ⟩ = �̃�|Φ⟩ with

�̃� = 𝑖ℏ�̇�(𝑡)𝑅†(𝑡) + 𝑅(𝑡)𝐻𝑅†(𝑡). (2.19)
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2. Basic Concepts

Choosing 𝑅(𝑡) = 𝟙 one trivially obtains the Schrödinger equation, from which we
started. Choosing the transformation being the exponential of the full Hamiltonian
𝑅(𝑡) = exp(𝑖𝐻𝑡/ℏ) yields the Heisenberg picture. In our case we split the Tavis-
Cummings Hamiltonian into two parts 𝐻0 + 𝑉,

𝐻0 = ℏ𝜔a ∑
𝑚

𝜎ee
𝑚 + ℏ𝜔a ̂𝑎† ̂𝑎 (2.20)

𝑉 = ℏ(𝜔c − 𝜔a⏟
∶=Δ

) ̂𝑎† ̂𝑎 + ℏ𝑔 ∑
𝑚

𝑓(𝑥𝑚) (𝜎eg
𝑚 ̂𝑎 + 𝜎ge

𝑚 ̂𝑎†) (2.21)

and choose 𝑅(𝑡) = exp(𝑖𝐻0𝑡/ℏ) [13], which is known as the interaction picture with re-
spect to 𝐻0. Using the explicit expression for 𝑅(𝑡) and the well known Hadamard-Lemma
exp(𝑋)𝑌 exp(−𝑋) = ∑∞

𝑘=0
1
𝑘! [𝑋, 𝑌 ]𝑛 with [𝑋, 𝑌 ]𝑛 = [𝑋, [𝑋, 𝑌 ]𝑛−1] and [𝑋, 𝑌 ]0 = 𝑌,

we derive an expression for the transformed Hamiltonian �̃� according to equation 2.19
and end up with

�̃� = ℏΔ ̂𝑎† ̂𝑎 + ℏ𝑔 ∑
𝑚

𝑓(𝑥𝑚) (𝜎eg
𝑚 ̂𝑎 + 𝜎ge

𝑚 ̂𝑎†) (2.22)

2.4. Open Quantum Systems - the Master Equation
In physics, we are used to looking at isolated systems, which are ideal and reasonably easy
to describe. However, in reality, these systems always interact with their environment.
In some systems this interaction can be negligible, such that the system is sufficiently
well approximated as an isolated system. In the case of a laser, though, we need these
interactions to describe the laser light emerging from the cavity where we can use it
for further applications. The atoms interacting with the surrounding field modes lead
to spontaneous emission of a photon and de-excitation of the atoms. Moreover, the
photons inside the cavity interact with the infinite modes of the vacuum field outside of
the cavity, which leads to photons travelling through the cavity mirrors and being lost
for the cavity dynamics. Solving the full schrödinger equation for the coupled setup of
system and environment may be too hard or not necessary, if we are only interested
in the evolution of the system itself. In this case, one can derive a set of differential
equations for the evolution of the system itself, and this equation is called the ”Master
Equation”. The case of a cavity interacting with a (thermal) environment ist studied in
[9], Here, we will only give a brief overview.

The system of interest is a harmonic oscillator with hamiltonian 𝐻sys = ℏ𝜔𝑎†𝑎 and
the environment consists of multiple modes 𝐻env = ∑𝑗 ℏ𝜔𝑗𝑏

†
𝑗𝑏𝑗. After a rotating wave

approximation, the interaction between them reads 𝐻int = ∑𝑗 𝑔𝑗(𝑎†𝑏𝑗 + 𝑎𝑏†
𝑗). The

whole system behaves according to the equivalent of the Schrödinger equation when
working with density matrices, the von Neumann equation,

̇𝜌AB = − 𝑖
ℏ

[𝐻AB, 𝜌AB] (2.23)

8



2. Basic Concepts

where the index AB indicates, that the hamiltonian and the density matrix are that of
the setup including system A and environment B. The idea now is to trace over the
environment B and obtain an equation solely for system A. It is convenient to work in
the interaction picture with respect to the bare hamiltonians of system and environment
without the interaction between them. Formal integration of the von Neumann equation
and substituting back into the von Neumann equation in interaction representation
yields [9]

̇̃𝜌AB(𝑡) = 1
𝑖ℏ

[ ̃𝐻1, ̃𝜌AB(0)] − 1
ℏ2 ∫

𝑡

0
[�̃�1(𝑡), [�̃�1(𝑡′), ̃𝜌AB(𝑡′)]]d𝑡′. (2.24)

Tracing over the environment B, the first commutator is assumed to vanish (this is
true, if there is no correlation between system A and environment B at time 𝑡 = 0), so
that we only have to evaluate the partial trace of the double commutator. In order to
evaluate the double commutator, we also assume that the state of the environment is not
changed by the interaction with the system, and we can write 𝜌AB(𝑡) = 𝜌A(𝑡) ⊗ 𝜌B(0),
which is known as the Born-Markov approximation [9]. In particular, we also neglect the
influence of the history of the system: In principle, the state of the environment depends
on the history of the system, and this dependence would also have an effect back on
the system itself. By making the Markovian assumption, we consider the environment
much larger than our system, so that the influence of the system on the environment is
negligible and there is no back action of the system on itself.

In [9] the authors derive the master equation of a harmonic oscillator interacting
with a thermal environment. To this end, the environment 𝜌B(0) is in a coherent state
with a thermal distribution of photons. As we simulate an optical cavity, we can neglect
the thermal photons on the outside, which is equivalent to setting the temperature
to 𝑇 = 0. Then, we finally arrive at the following differential equation for the density
operator of the system 𝜌A,

̇̃𝜌A = 𝜅
2

(2𝑎 ̃𝜌A(𝑡)𝑎† − 𝑎†𝑎 ̃𝜌A(𝑡) − ̃𝜌A(𝑡)𝑎†𝑎), (2.25)

where 𝜅 is the photon loss rate, as we will see later. The right-hand-side of this
equation is said to be of Lindblad form. In fact, a lot of interactions can be described
by such a term in Lindblad form. One just has to identify the corresponding jump
operator 𝑐 (in our case 𝑎) and the rate Γ, at which these jumps occur (in our case 𝜅).
The general form of these Lindblad terms then looks like

ℒΓ𝜌 = Γ
2

(2𝑐𝜌𝑐† − 𝑐†𝑐𝜌 − 𝜌𝑐†𝑐). (2.26)

If we want to describe more than one interaction, we add all the corresponding
Lindblad terms to the right hand side of the von Neumann equation and we call it
master equation from that point on. In our model we will have three Lindblad terms of

9



2. Basic Concepts

different type: describing the spontaneous emission of the atoms, accounting for the
cavity loss and we can also model the driving of the laser as such a term in Lindblad form.
With methods that we will introduce in the next section, we can derive a differential
equation for the operator ⟨𝑐†𝑐⟩. Starting from ̇𝜌 = ℒΓ𝜌, one arrives at a differential
equation of an exponential decay with rate Γ, which is also the inverse of the mean life
time,

̇⟨𝑐†𝑐⟩ = −Γ ⟨𝑐†𝑐⟩. (2.27)

If we now specify 𝑐 to being the atomic jump operator, then ⟨𝑐†𝑐⟩ becomes the
population of the excited state, decaying with Γ, which corresponds to the spontaneous
emission rate, and we can immediately associate the Γ in the Lindblad term with a
physically measureable quantity, namely the spontaneous emission rate. The decay of
a field inside a cavity is very similar: Specifying 𝑐 to being the bosonic annihilation
operator, ⟨𝑐†𝑐⟩ becomes the number of photons (and therefore also the energy). This
leads us to identifying Γ with the decay rate of the cavity photon number/energy in
this particular example.

2.4.1. Modeling the driving of the laser
For a system to work as a laser we need population inversion, meaning there should be
more atoms in the excited state than in the ground state, as discussed in section 2.1.
Such a population inversion cannot be achieved in thermal equilibrium, which can be
seen from the Boltzmann factor. Moreover, coherently driving the atoms with another
laser will result in Rabi oscillations, and the population will oscillate between ground
and the excited state. However, even for a perfectly resonant drive we will only arrive
at an average of half of the population in the excited state. Taking into account the
spontaneous emission of the atoms will result in damped Rabi oscillations, therefore
dropping to even below half of the population being excited. So, in order to achieve
population inversion we employ a third level, the so-called auxiliary level |𝑎⟩, which
energetically lies above the ground state as well as above the excited state. We pump
the transition between the ground state |𝑔⟩ and the auxiliary level |𝑎⟩ with a pump laser
or some other broadband sources of light. This pumping will transfer the population
between the ground state and the auxiliary level. The key trick now is that there is also
a decay channel from the auxiliary level |𝑎⟩ to the excited state |𝑒⟩ featuring a very
large decay rate. So the atoms, initially in the ground state |𝑔⟩, are pumped into the
auxiliary level |𝑎⟩, but, instead of going back to the ground state, which would result in
Rabi oscillations, the atoms almost immediately decay to the excited state. In order
for this to happen, the rate of decay must be much larger than the Rabi-frequency.
Effectively, we have now transferred the atoms from the ground state |𝑔⟩ to the excited
state |𝑒⟩. The rate of this transfer is associated with the Rabi frequency, as an atom in
the auxiliary level almost immediately decays to the excited state. Adiabatic elimination
of the auxiliary level |𝑎⟩ leaves us with an effective two-level-system with ”spontaneous
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2. Basic Concepts

excitation”. This spontaneous excitation combines the pumping to the auxiliary level
and the fast decay to the excited level to a single (incoherent) process and is the opposite
of spontaneous emission, hence the name ”spontaneous excitation”.

Adiabatic
Elimination

Figure 2.2.: Sketch of the incoherent pump. The black arrows indicate coherent transfer.
But instead of getting back into the ground state (black dotted arrow), the electrons
immediately decay into the excited state (red wavy line). By adiabatic elimination, we
can describe these processes as depicted on the right.

2.5. Cumulant expansion
If we want to solve the Schrödinger equation for more than a few individual two-level
atoms, we quickly run into a problem: if 𝑁 is the number of individual atoms, the
dimension of the Hilbert space scales exponentially as 2𝑁 (for two-level-atoms), which
means that for as little as 𝑁=20 atoms we already have 106 dimensions in the Hilbert
space and approximately 1012 entries in the time evolution operator represented as
a matrix. Yet, in this thesis„ we want to simulate hundreds of thousands of atoms.
Solving these high-dimensional differential equations numerically takes far to much
computational time, such that we have to come up with alternative methods to study
the dynamics. We could investigate the dynamics in the Heisenberg picture, but there
we obtain differential equations for the operators in our system, which are hard to solve.
The crucial simplification, however, is performed by simulating the dynamics of the
expectation values of the operators only. In the end, we want to find the expectation
values of certain operators anyway. Making use of the Schrödinger picture (as the
operators themselves are time independent), for a general operator �̂� we find

d
d𝑡

⟨�̂�⟩ = d
d𝑡

Tr{�̂�𝜌} = Tr{�̂� d
d𝑡

𝜌}, (2.28)

where we can insert the master equation for d
d𝑡𝜌. Using the invariance of the trace under

cyclic permutation we can simplify the equations to terms including expectation values
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of other operators or products of operators. In order to obtain a closed set of differential
equations, we need to derive the equations for these other operators or products of
operators. This could again lead to new products of operators and so on. For simple
systems, e.g. a cavity with a lossy mirror described by the Master equation we have

̇𝜌 = −𝑖[𝜔𝑎†𝑎, 𝜌] + 𝜅
2

(2𝑎𝜌𝑎† − 𝑎†𝑎𝜌 − 𝜌𝑎†𝑎) (2.29)

and the set of equations closes without much effort. In fact, after deriving the equation
for the photon number �̂� = 𝑎†𝑎 we are already done, as on the right-hand-side of the
equation only the expectation value of the photon number itself appears,

̇⟨𝑎†𝑎⟩ = −𝜅⟨𝑎†𝑎⟩. (2.30)

However, for more complicated systems (e.g. featuring a larger number of atoms to
arrive at our laser system), we will have to derive more and more equations for longer
and longer products of operators. This means that we have to truncate this expansion
in order to close the set. This can be done by approximating higher-order expectation
values by products of lower-order expectation values. The general way of doing this was
introduced by R. Kubo in [14]. A less mathematical approach is given by N. G. van
Kampen in [15] and [16]. For our purpose a useful summary of the important results
is given in [17]. The joint cumulant ⟨ ⋅ ⟩𝑐 can be thought of being a measure of the
correlation of the operators and can be expressed by

⟨𝑋1𝑋2...𝑋𝑛⟩𝑐 ∶= ∑
𝑝∈𝑃(𝐼)

(|𝑝| − 1)!(−1)|𝑝|−1 ∏
𝐵∈𝑝

⟨∏
𝑖∈𝐵

𝑋𝑖⟩ (2.31)

where 𝑋1, 𝑋2, ..., 𝑋𝑛 are the operators, 𝑃(𝐼) is the set of all partitions, |𝑝| is the length
of the partition 𝑝 and 𝐵 runs over the blocks of each partition [17]. The idea here is to
assume that the joint cumulant of the operators is zero. This is mathematically rigorous
in the case, that two of the operators are statistically independent of each other only
[14]. Here, we approximate the joint cumulant as zero, which allows us to rearrange
equation 2.31 to

⟨𝑋1𝑋2...𝑋𝑛⟩ = ∑
𝑝∈𝑃(𝐼)\𝐼

(|𝑝| − 1)!(−1)|𝑝| ∏
𝐵∈𝑝

⟨∏
𝑖∈𝐵

𝑋𝑖⟩. (2.32)

With this we are able to express higher-order expectation values in terms of lower-
order expectation values, assuming, that the joint cumulant is zero. In our work we will
frequently need the formula for 𝑛 = 2 and 𝑛 = 3, so it makes sense to write down these
specific cases as

⟨𝑎𝑏⟩ ≈ ⟨𝑎⟩⟨𝑏⟩ (2.33)
⟨𝑎𝑏𝑐⟩ ≈ ⟨𝑎𝑏⟩⟨𝑐⟩ + ⟨𝑎𝑐⟩⟨𝑏⟩ + ⟨𝑐𝑏⟩⟨𝑎⟩ − 2⟨𝑎⟩⟨𝑏⟩⟨𝑐⟩ (2.34)
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We see that in the case 𝑛 = 2, one just writes the product of the expectation values
instead of the expectation value of the operators’ product, while it is more complicated
for 𝑛 = 3. Altogether, we are able to express expectation values of higher-order operator
products by expectation values of lower-order operator products, which eventually allows
us to close the set of differential equations.
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Chapter 3.

The Model
After having introduced the basic concepts in the previous chapter let us now find the
equations that govern the dynamics of our specific laser model.

We consider an ensemble of incoherently pumped two-level-atoms inside a lossy cavity
as depicted in figure 3.1. The cavity mirrors are not completely reflective and allow for
photons to leak out of the cavity with a rate 𝜅. An incoherent pump (see section 2.4.1)
is included, such that we are able to achieve population inversion. In an experiment, the
atoms would be distributed over many periods of the mode function. To mimic such an
experimental situation, in our simulations we distribute the atoms equidistantly along
one spatial period of the resonant mode function. Moreover, we allow the atoms to move
along the cavity axis. Here, we treat their movement deterministically and classically.
This means that we neglect the light forces the photons exert on the atoms during
absorption and emission. For this reason we only need to assign an initial velocity and
position to each atom, and because of the lack of forces the velocity will stay the same
throughout the entire simulation. Together with the initially assigned position of each
atom its full path is determined. We choose the velocity distribution to be a Gaussian
distribution with standard deviation 𝜎v in 1D, which coincides with the distribution of
a thermal gas, when we care about one dimension only and is therefore what one would
expect from thermal atoms. Later, we will arrange the atoms in clusters of identical
atoms. This will allow us to simulate the system for much higher atom numbers while
still solving the same number of equations.

The atoms themselves are modeled as two-level systems and interact with the electric
field of the cavity by emitting and absorbing photons with a rate 𝑔2

𝜅 , depicted on
the left-hand side of figure 3.1. Furthermore, the atoms are subject to two incoherent
processes: the spontaneous emission of photons with rate 𝛾 and the incoherent pump
(discussed in section 2.4.1), where the atoms are pumped to an auxiliary level, but
rapidly decay to the excited state |𝑒⟩, eventually allowing for population inversion.
The coherent exchange of energy between atoms and the cavity field is the interaction
described by the Tavis-Cummings hamiltonian discussed in section 2.2,

�̂� = ℏ𝜔a ∑
𝑚

𝜎ee
𝑚 + ℏ𝜔c ̂𝑎† ̂𝑎 + ℏ𝑔 ∑

𝑚
𝑓(𝑥𝑚) (𝜎eg

𝑚 ̂𝑎 + 𝜎ge
𝑚 ̂𝑎†), (3.1)
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1 atom

atoms get arranged 
in clusters (a)

νincoherent
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cavity 
loss

atom
clusters

(b)

Figure 3.1.: Overview of the processes and the simulated setup. (a) Relevant processes
for a single atom. (b) The atoms are grouped into clusters. The clusters move according to
a gaussian velocity distribution with standard deviation 𝜎v. The atoms are incoherently
pumped with a rate 𝜈 and photons leak out of the cavity with a rate 𝜅.

where we have already included the position-dependent interaction strength due to the
mode function 𝑓(𝑥𝑚). By transforming into a rotating frame according to section 2.3
we arrive at the Hamiltonian for our system, i.e.

𝐻int = Δ𝑎†𝑎 + 𝑔 ∑
𝑚

𝑓(𝑥𝑚)(𝑎†𝜎ge
𝑚 + 𝜎eg

𝑚𝑎).

Choosing the initial expectation value ⟨𝜎ee
𝑚⟩ to be zero is equivalent to requiring all

atoms to start in the ground state. Yet, we still need to include the dissipative processes.
In our model we account for the spontaneous emission, the incoherent pump and the
cavity losses. As discussed in section 2.4, for each incoherent process we have to identify
the corresponding jump operator ̂𝑐 and its rate of change in order to construct the
term in Lindblad-form. The jump operator for the spontaneous emission is the atomic
lowering operator 𝜎ge with the rate 𝛾, while the incoherent pump is described by the
atomic rising operator 𝜎eg with rate 𝜈. Finally, we include the Lindblad term for the
cavity loss by identifying the field annihilation operator ̂𝑎 as the jump operator and 𝜅
as its rate. Written out in detail the Lindblad-terms read

ℒ𝛾𝜌 = 𝛾
2

∑
𝑚

(2𝜎ge
𝑚𝜌𝜎eg

𝑚 − 𝜎eg
𝑚𝜎ge

𝑚𝜌 − 𝜌𝜎eg
𝑚𝜎ge

𝑚) (spont. emission)

ℒ𝜈𝜌 = 𝜈
2

∑
𝑚

(2𝜎eg
𝑚𝜌𝜎ge

𝑚 − 𝜎ge
𝑚𝜎eg

𝑚𝜌 − 𝜌𝜎ge
𝑚𝜎eg

𝑚) (spont. excitation)

ℒ𝜅𝜌 = 𝜅
2

(2𝑎𝜌𝑎† − 𝑎†𝑎𝜌 − 𝜌𝑎†𝑎) (cavity loss).
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Now, we are able to add these Lindblad-terms for the incoherent processes to the von
Neumann equation describing the dynamics of the system under the Tavis-Cummings
Hamiltonian, so that we arrive at the master equation for our system,

̇𝜌 = − 𝑖
ℏ

[𝐻int, 𝜌] + ℒ𝛾𝜌 + ℒ𝜈𝜌 + ℒ𝜅𝜌 (3.2)

Since we cannot solve the full master equation for more than a few atoms, we use the
method of the cumulant expansion introduced in section 2.5 to obtain a set of differential
equations that we can solve numerically in a realistic amount of computational time.

3.1. Mean Field
To keep things simple, let us first derive the equations of motion in mean field, meaning
we approximate all operator product averages ⟨𝑎𝑏⟩ as products of operator averages
⟨𝑎⟩⟨𝑏⟩. We are particularly interested in the photon number ⟨𝑎†𝑎⟩, but under our
approximation we find ⟨𝑎†𝑎⟩ ≈ ⟨𝑎†⟩⟨𝑎⟩ = ⟨𝑎⟩∗⟨𝑎⟩ = |⟨𝑎⟩|2. This suggests starting the
derivation with the equation for ⟨𝑎⟩, since we just need to take the absolute value
squared of the time evolution of ⟨𝑎⟩. Upon inserting the master equation for ̇𝜌 we obtain

̇⟨𝑎⟩ = − 𝑖
ℏ

⋅ tr{a[𝐻int, 𝜌]} + tr{𝑎 ⋅ ℒ𝛾𝜌}⏟⏟⏟⏟⏟
=0

+ tr{𝑎 ⋅ ℒ𝜈𝜌}⏟⏟⏟⏟⏟
=0

+tr{𝑎 ⋅ ℒ𝜅𝜌}. (3.3)

We see immediately that tr{𝑎 ⋅ ℒ𝛾𝜌} = tr{𝑎 ⋅ ℒ𝜈𝜌} = 0 because 𝑎 commutes with all
𝜎 operators together with the invariance under cyclic permutation. Investigating the
other terms yields (for Δ = 0)

tr{a[𝐻int, 𝜌]} ∝ ∑
𝑚

tr{a[𝑎†𝜎ge
𝑚, 𝜌]}

= ∑
𝑚

tr{𝑎𝑎†𝜎ge
𝑚𝜌 − 𝑎𝜌𝑎†𝜎ge

𝑚}

= ∑
𝑚

tr{[𝑎, 𝑎†]𝜎ge
𝑚𝜌} = ∑

𝑚
⟨𝜎ge

𝑚⟩

and

tr{𝑎 ⋅ ℒ𝜅𝜌} = 𝜅
2

⋅ tr{2𝑎𝑎𝜌𝑎† − 𝑎𝑎†𝑎𝜌 − 𝑎𝜌𝑎†𝑎}

= 𝜅
2

⋅ tr{𝑎𝑎𝜌𝑎† − 𝑎𝑎†𝑎𝜌}

= 𝜅
2

⋅ tr{[𝑎†, 𝑎]⏟
=−1

𝑎𝜌} = −𝜅
2

⋅ ⟨𝑎⟩.

where we have used known commutators, once more the cyclic property of the trace
and that 𝑎 and all 𝜎 operators act on different Hilbert spaces. Altogether, we find the
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3. The Model

following equation

̇⟨𝑎⟩ = −(𝜅
2

+ 𝑖Δ)⟨𝑎⟩ − 𝑖𝑔 ∑
𝑚

𝑓(𝑥𝑚)⟨𝜎ge
𝑚⟩. (3.4)

We notice that we have to derive the equation for ⟨𝜎ge
𝑚⟩ as well, in order to obtain a

closed set. After additionally deriving the equation for ⟨𝜎ee
𝑚⟩ we are able to close the set

by performing the above approximation ⟨𝑎𝑏⟩ ≈ ⟨𝑎⟩⟨𝑏⟩. Realizing that for any operator
�̂� we have ⟨�̂�†⟩ = ⟨�̂�⟩∗ we arrive at the set of differential equations for the mean field
thatwesolve numerically,

̇⟨𝑎⟩ = −(𝜅
2

+ 𝑖Δ)⟨𝑎⟩ − 𝑖𝑔 ∑
𝑚

𝑓(𝑥𝑚)⟨𝜎ge
𝑚⟩ (3.5a)

̇⟨𝜎ge
𝑚⟩ = −𝛾 + 𝜈

2
⟨𝜎ge

𝑚⟩ + 2𝑖𝑔𝑓(𝑥𝑚)⟨𝜎ee
𝑚⟩⟨𝑎⟩ (3.5b)

̇⟨𝜎ee
𝑚⟩ = −(𝛾 + 𝜈)⟨𝜎ee

𝑚⟩ + 𝑖𝑔𝑓(𝑥𝑚)(⟨𝑎⟩∗⟨𝜎ge
𝑚⟩ − ⟨𝜎ge

𝑚⟩∗⟨𝑎⟩) + 𝜈. (3.5c)

Until this point, we have treated each atom individually. As discussed above, we
want to go to large atom numbers, and even in mean field we cannot numerically
compute each of the atoms individually. Therefore, we group them into clusters of
identical atoms: The index (𝑚) is replaced by the index (𝑚, 𝑖). The operator 𝜎𝑚,𝑖
acts on the 𝑖-th atom in the 𝑚-th cluster. The crucial simplification is to still treat
the different clusters 𝑚 individually, but require, that the atoms within a cluster are
indistinguishable: ⟨𝜎𝑚,𝑖⟩ = ⟨𝜎𝑚,𝑗⟩ for 𝑖 ≠ 𝑗. Now, let us have a look at how this changes
our set of differential equations. The last two equations in 3.5 are copied once for
each atom in the cluster (𝑚). Therefore, we end up with 𝐾 of these equations for a
particular cluster, where 𝐾 denotes the number of atoms in a cluster or the cluster
size. But, as these atoms are indistinguishable, we just have the same equation 𝐾 times.
Obviously, we need to solve this equation only once. Altogether this means, that the
last two equations stay the same and describe each atom (𝑖) in its particular cluster
(𝑚) at the same time, as all atoms (𝑖) are indistinguishable. For the first equation
in 3.5, we now need to sum over all clusters (𝑚), but also all atoms (𝑖) within each
cluster. But, as ⟨𝜎𝑚,𝑖⟩ = ⟨𝜎𝑚,𝑗⟩, we conclude that the sum over 𝑖 gives just a factor 𝐾:
∑𝐾

𝑖=1⟨𝜎𝑚,𝑖⟩ = 𝐾 ⋅ ⟨𝜎𝑚⟩. Therefore, the new equation reads

̇⟨𝑎⟩ = −(𝜅
2

+ 𝑖Δ)⟨𝑎⟩ − 𝐾 ⋅ 𝑖𝑔
𝑁Cl

∑
𝑚=1

𝑓(𝑥𝑚)⟨𝜎ge
𝑚⟩, (3.6)

where the sum over m now goes up to the number of clusters 𝑁Cl, instead of over all
atoms individually as before. Altogether, the total atom number 𝑁 is then the number
of clusters 𝑁Cl times the number of atoms per cluster 𝐾, 𝑁 = 𝑁Cl ⋅ 𝐾. The source term
∑𝑚 𝑓(𝑥𝑚)⟨𝜎ge

𝑚⟩ becomes enhanced by the cluster size 𝐾, which demonstrates that the
clusters now consist of 𝐾 atoms, with each of these 𝐾 atoms acting as a source. The
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3. The Model

number of differential equations scales linearly with the number of individual clusters,
in particular we obtain 1 + 2 ⋅ 𝑁Cl equations for 𝑁Cl individual clusters in comparison
to 2𝑁Cl ⋅ 𝑀cutoff for the full quantum model (𝑀cutoff is the chosen photon cutoff). This
linear scaling allows us to simulate many clusters, but we pay the price of having to
neglect all quantum correlations.

3.2. Mixed Order Expansion
If we go to full second order, we have to derive equations for all operator products
such as ⟨𝜎𝑗𝜎𝑛⟩ and we will eventually end up with quadratic scaling of the number of
equations with the atom number. The idea behind using a mixed order expansion is to
keep second order correlations between field and atoms of the type ⟨𝑎𝜎⟩ only, but neglect
the second order correlations between the atoms and approximate ⟨𝜎𝑗𝜎𝑛⟩ = ⟨𝜎𝑗⟩⟨𝜎𝑛⟩.

Once again, we are interested in the photon number ⟨𝑎†𝑎⟩. This time we derive
the equation for the photon number directly, as we want to keep the second order
correlations in the electromagnetic field. After similar, albeit longer, calculations than
in the case for the mean field above, we find the equations for mixed order.

For some of the derivations, it is useful to know that Tr{�̂�[�̂�, ̂𝜌]} = 0 if [�̂�, �̂�] =
0 because of the invariance of the trace under cyclic permutation: Tr{�̂�[�̂�, ̂𝜌]} =
Tr{�̂��̂� ̂𝜌 − �̂� ̂𝜌�̂�} = Tr{�̂��̂� ̂𝜌 − �̂��̂� ̂𝜌} = Tr{[�̂�, �̂�]𝜌}. The equations in mixed order
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read

̇⟨𝑎⟩ = − (𝜅
2

− 𝑖Δ)⟨𝑎⟩ − 𝐾 ⋅ 𝑖𝑔 ∑
𝑚

𝑓(𝑥𝑚)⟨𝜎ge
𝑚⟩ (3.7a)

̇⟨𝑎†𝑎⟩ = − (𝜅 − 2𝑖Δ)⟨𝑎†𝑎⟩ + 𝑖𝑔𝐾 ∑
𝑚

𝑓(𝑥𝑚)(⟨𝑎𝜎eg
𝑚⟩ − ⟨𝑎†𝜎ge

𝑚) (3.7b)

̇⟨𝑎𝑎⟩ = − (𝜅 − 2𝑖Δ)⟨𝑎𝑎⟩ − 2𝑖𝑔𝐾 ∑
𝑚

𝑓(𝑥𝑚)⟨𝑎𝜎ge
𝑚⟩ (3.7c)

̇⟨𝑎𝜎eg
𝑚⟩ = − (𝛾 + 𝜅 + 𝜈

2
− 𝑖Δ)⟨𝑎𝜎eg

𝑚⟩ + 𝑖𝑔𝑓(𝑥𝑚)⟨𝑎†𝑎⟩ − 𝑖𝑔
𝑁Cl

∑
𝑗=1

𝐾
∑
𝑖=1

𝑓(𝑥𝑗)⟨𝜎
eg
𝑚𝜎ge

𝑗,𝑖⟩

(3.7d)
− 2𝑖𝑔𝑓(𝑥𝑚)⟨𝑎†𝑎𝜎ee

𝑚⟩

̇⟨𝑎𝜎ge
𝑚⟩ = − (𝛾 + 𝜅 + 𝜈

2
− 𝑖Δ)⟨𝑎𝜎ge

𝑚⟩ − 𝑖𝑔𝑓(𝑥𝑚)⟨𝑎𝑎⟩ − 𝑖𝑔
𝑁Cl

∑
𝑗=1

𝐾
∑
𝑖=1

𝑓(𝑥𝑗)⟨𝜎
ge
𝑚𝜎ge

𝑗,𝑖⟩

(3.7e)
+ 2𝑖𝑔𝑓(𝑥𝑚)⟨𝑎𝑎𝜎ee

𝑚⟩

̇⟨𝜎ee
𝑚⟩ =𝑖𝑔𝑓(𝑥𝑚)(⟨𝑎†𝜎ge

𝑚⟩ − ⟨𝑎𝜎eg
𝑚⟩) − (𝛾 + 𝜈)⟨𝜎ee

𝑚⟩ + 𝜈 (3.7f)

̇⟨𝜎ge
𝑚⟩ = − 𝛾 + 𝜈

2
⟨𝜎ge

𝑚⟩ − 𝑖𝑔𝑓(𝑥𝑚)⟨𝑎⟩ + 2𝑖𝑔𝑓(𝑥𝑚)⟨𝑎𝜎ee
𝑚⟩ (3.7g)

̇⟨𝑎𝜎ee
𝑚⟩ = − (𝛾 + 𝜈)⟨𝑎𝜎ee

𝑚⟩ − 𝜅
2

⟨𝑎𝜎ee
𝑚⟩ + 𝜈⟨𝑎⟩ − 𝑖𝑔𝑓(𝑥𝑚)⟨𝑎𝑎𝜎eg

𝑚⟩ (3.7h)

− 𝑖𝑔
𝑁Cl

∑
𝑗=1

𝐾
∑
𝑖=1

𝑓(𝑥𝑚)⟨𝜎ee
𝑚𝜎ge

𝑗,𝑖⟩ + 𝑖𝑔𝑓(𝑥𝑗)⟨𝑎†𝑎𝜎−
𝑚⟩.

Once again, we have already inserted the cluster size 𝐾 where it belongs. For the
first three equations in 3.7 we obtain an enhancement of the source term, similar to
the first equation in mean field. The sixth and seventh equation are copied 𝐾 times,
similar to the last two equations in mean field. However, for the forth, fifth and last
equation, we need to be a little more careful while evaluating the double sums, as we
need to distinguish the cases 𝑗 ≠ 𝑚 and 𝑗 = 𝑚: To evaluate the first double sum in
the equation for ⟨𝑎𝜎eg

𝑚⟩, we split the sum over (𝑗) into two parts, namely 𝑗 ≠ 𝑚 and
𝑗 = 𝑚. For the sum with 𝑗 ≠ 𝑚, we are in a similar situation as in the mean field above,
we approximate ⟨𝜎eg

𝑚𝜎ge
𝑗,𝑖⟩ as ⟨𝜎eg

𝑚⟩⟨𝜎ge
𝑗,𝑖⟩ and carry out the sum over 𝑖 which gives us a

factor of 𝐾,

∑
𝑗≠𝑚

𝐾
∑
𝑖=1

𝑓(𝑥𝑗)⟨𝜎
eg
𝑚𝜎ge

𝑗,𝑖⟩ = ∑
𝑗≠𝑚

𝐾
∑
𝑖=1

𝑓(𝑥𝑗)⟨𝜎
eg
𝑚⟩⟨𝜎ge

𝑗,𝑖⟩ = 𝐾 ⋅ ⟨𝜎eg
𝑚⟩ ∑

𝑗≠𝑚
𝑓(𝑥𝑗)⟨𝜎

ge
𝑗 ⟩. (3.8)
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3. The Model

The sum with 𝑗 = 𝑚 describes the correlations within a cluster,

∑
𝑗=𝑚

𝐾
∑
𝑖=1

𝑓(𝑥𝑗)⟨𝜎
eg
𝑚𝜎ge

𝑗,𝑖⟩ =
𝐾

∑
𝑖=1

𝑓(𝑥𝑚)⟨𝜎eg
𝑚𝜎ge

𝑚,𝑖⟩. (3.9)

In order to simplify further we have a closer look at the expression ⟨𝜎eg
𝑚𝜎ge

𝑚,𝑖⟩. Here,
𝜎eg

𝑚 is the operator acting on a particular atom in cluster (𝑚). One particular (𝑖) in this
sum will be the very same atom as the atom, on which 𝜎eg

𝑚 acts and then we simplify
⟨𝜎eg

𝑚𝜎ge
𝑚,𝑖⟩ = ⟨𝜎ee

𝑚⟩. For all other (𝑖) different from that particular 𝑖, the operators do not
act on the same atom and we therefore approximate ⟨𝜎eg

𝑚𝜎ge
𝑚,𝑖⟩ = ⟨𝜎eg

𝑚⟩⟨𝜎ge
𝑚⟩. This term

appears 𝐾 − 1 times, as there are 𝐾 − 1 atoms in a cluster different from a particular
atom. Altogether we have for the sum 𝑗 = 𝑚

𝐾
∑
𝑖=1

𝑓(𝑥𝑚)⟨𝜎eg
𝑚𝜎ge

𝑚,𝑖⟩ = (𝐾 − 1) ⋅ 𝑓(𝑥𝑚)⟨𝜎eg
𝑚⟩⟨𝜎ge

𝑚⟩ + 𝑓(𝑥𝑚)⟨𝜎ee
𝑚⟩. (3.10)

For the second and third double sum in 3.7 we proceed similarly. However, the last
term where both operators act on the very same atom vanishes, as 𝜎ge

𝑚𝜎ge
𝑚 = 0 and

𝜎ee
𝑚𝜎ge

𝑚 = 0. Putting it all together, the double sums in 3.7 can be evaluated as

∑
𝑗𝑖

𝑓(𝑥𝑗)⟨𝜎
eg
𝑚𝜎ge

𝑗,𝑖⟩ = 𝐾 ⋅ ⟨𝜎eg
𝑚⟩ ∑

𝑗≠𝑚
𝑓(𝑥𝑗)⟨𝜎

ge
𝑗 ⟩ + (𝐾 − 1) ⋅ 𝑓(𝑥𝑚)⟨𝜎eg

𝑚⟩⟨𝜎ge
𝑚⟩ + 𝑓(𝑥𝑚)⟨𝜎ee

𝑚⟩

∑
𝑗𝑖

𝑓(𝑥𝑗)⟨𝜎
ge
𝑚𝜎ge

𝑗,𝑖⟩ = 𝐾 ⋅ ⟨𝜎ge
𝑚⟩ ∑

𝑗≠𝑚
𝑓(𝑥𝑗)⟨𝜎

ge
𝑗 ⟩ + (𝐾 − 1) ⋅ 𝑓(𝑥𝑚)⟨𝜎ge

𝑚⟩⟨𝜎ge
𝑚⟩ + 0

∑
𝑗𝑖

𝑓(𝑥𝑗)⟨𝜎ee
𝑚𝜎ge

𝑗,𝑖⟩ = 𝐾 ⋅ ⟨𝜎ee
𝑚⟩ ∑

𝑗≠𝑚
𝑓(𝑥𝑗)⟨𝜎

ge
𝑗 ⟩ + (𝐾 − 1) ⋅ 𝑓(𝑥𝑚)⟨𝜎ee

𝑚⟩⟨𝜎ge
𝑚⟩ + 0.

All averages over products of three operators can be rewritten in terms of averages
over products of at most two operators, as introduced in section 2.5, such that

⟨𝑎𝑏𝑐⟩ ≈ ⟨𝑎𝑏⟩⟨𝑐⟩ + ⟨𝑎𝑐⟩⟨𝑏⟩ + ⟨𝑐𝑏⟩⟨𝑎⟩ − 2⟨𝑎⟩⟨𝑏⟩⟨𝑐⟩. (3.11)

For the sake of better readability we shall refrain from carrying out all the expansions
in the above set of differential equations. In the end, we are able to close the set with
having 3 + 5 ⋅ 𝑁Cl equations for 𝑁Cl individual clusters. So, the number of equation still
scales linearly as in the case of the mean field. This time however, quantum correlations
between atoms and photons are included.

There is an additional idea to simplify the equations: we never specify the phase for
the system, if we start with all expectation values being zero. The incoherent processes
have a random phase, and as the master equation sums over all possibilities the average
is zero. This means, that only the phase invariant terms survive. From the set of
equations above only three are phase invariant and we end up with 1 + 2 ⋅ 𝑁Cl equations
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for 𝑁Cl clusters,

̇⟨𝑎†𝑎⟩ = − (𝜅 − 2𝑖Δ)⟨𝑎†𝑎⟩ + 𝑖𝑔𝐾 ∑
𝑚

𝑓(𝑥𝑚)(⟨𝑎𝜎eg
𝑚⟩ − ⟨𝑎†𝜎ge

𝑚) (3.12a)

̇⟨𝑎𝜎eg
𝑚⟩ = − (𝛾 + 𝜅 + 𝜈

2
− 𝑖Δ)⟨𝑎𝜎eg

𝑚⟩ + 𝑖𝑔𝑓(𝑥𝑚)⟨𝑎†𝑎⟩ − 𝑖𝑔𝐾 ⋅ ⟨𝜎eg
𝑚⟩ ∑

𝑗≠𝑚
𝑓(𝑥𝑗)⟨𝜎

ge
𝑗 ⟩

(3.12b)
− 𝑖𝑔(𝐾 − 1) ⋅ 𝑓(𝑥𝑚)⟨𝜎eg

𝑚⟩⟨𝜎ge
𝑚⟩ − 𝑖𝑔𝑓(𝑥𝑚)⟨𝜎ee

𝑚⟩ − 2𝑖𝑔𝑓(𝑥𝑚)⟨𝑎†𝑎𝜎ee
𝑚⟩

̇⟨𝜎ee
𝑚⟩ = 𝑖𝑔𝑓(𝑥𝑚)(⟨𝑎†𝜎ge

𝑚⟩ − ⟨𝑎𝜎eg
𝑚⟩) − (𝛾 + 𝜈)⟨𝜎ee

𝑚⟩ + 𝜈. (3.12c)

Considering the phase invariant terms only we arrive at the same computational
complexity as in the case of mean field.
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Chapter 4.

Simulation of the laser dynamics
In chapter 2 we have discussed the underlying formulas and concepts governing the
dynamics of a single mode multi-atom laser and in chapter 3 we have particularized
the relevant formulas to our specific model and derived a set of differential equations
approximating the dynamics. Now, we solve these equations numerically for different
parameters and have a discuss the results.

4.1. Simulated photon number trajectories
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Time evolution for 200 Atom clusters
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Figure 4.1.: Example of the photon number time evolutions for different velocity spreads
𝜎v in a mean field approximation. (a) Photon number evolution for different 𝜎v for 200
atom clusters. (b) Mean photon number evolution for different 𝜎v for 1000 atom clusters.
After a certain time, the system reaches its quasi steady state and the photon number
fluctuates around its value. The fluctuations, however, become smaller if we divide the
velocity distribution into a larger number of atom clusters. The other parameters are:
𝐾 = 1000, 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔 = 1.36 ⋅ 10−3, 𝜅 = 1.

Let us first investigate some example trajectories in order to get a general idea of how
the system behaves. Figure 4.1 shows a few photon number evolutions in mean field for
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velocity distributions with different standard deviations 𝜎v. On the left-hand side we
show the system using a division in 200 atom clusters, while on the right-hand side we
go as high as 1000 atom clusters. We start with small initial values different from zero
to introduce an initial phase, so either we choose ⟨𝑎⟩(𝑡 = 0) ≠ 0 or ⟨𝜎ge

𝑚⟩(𝑡 = 0) ≠ 0.
We always end up with very similar trajectories, no matter which of the initial values
we choose to be nonzero or by how much. From the graphs we see, that lower values for
𝜎v, i.e. lower temperatures allow the system to reach its quasi steady state faster and
higher values lead to the system reacting more slowly. For atoms at rest, i.e. 𝜎v = 0, we
end up with a constant steady state photon number. (blue trajectories). In contrast,
moving atoms will always result in photon number fluctuations around a certain value.
Moreover, the lower the standard deviation 𝜎v of the velocity distribution, the higher
the photon number in the cavity.

In the following sections we will have a closer look at this phenomenon, which can
be explained by the Doppler effect: faster atoms see the photons shifted up or down in
frequency, depending on if they are moving towards or away from them. This frequency
difference will suppress their interaction with the cavity field. If we choose 𝜎v too large
there will be virtually no photons in the cavity (green trajectory in the left graph).
Lastly, we see that choosing a larger number of atom clusters leads to the quasi steady
state faster and, crucially, also to less fluctuations around its value (compare the orange
trajectories in the right and left graph). However, we have to pay for this clearer picture
with more atom clusters, therefore a larger number of equations and as a result, we
need more time to compute the dynamics numerically. Ideally, we would simulate each
atom individually, but this is, as already discussed, not feasible.

In order to simulate a homogeneous density we equidistantly place the atoms along
the cavity mode and distribute them equally over one wavelength. When the atoms move
with a certain velocity, they will, sooner or later (depending on their initial position),
sample an average of the mode function. The effective interaction strength ∑𝑚 𝑔2

𝑚
(with 𝑔𝑚 = 𝑔 ⋅ 𝑓(𝑥𝑚)) is then equal to 1

2 ⋅ ∑𝑚 𝑔2, as 𝑓 = cos and the average of cos2

over a period is 1
2 . In figure 4.2 we depict the situation of all atoms starting at the

maximum of the mode function. The blue trajectory depicts the situation for fixed
atoms, where we end up with roughly 200 photons. As soon as we increase 𝜎v just a
little (orange trajectory), the initial photon number follows the blue trajectory, but, as
the atoms start to distribute themselves equally over a period of the mode function,
begins to drop down to about 100 photons. If we increase 𝜎v further we start to see less
and less photons appear in the cavity, which is due to the Doppler effect. To isolate the
influence of the Doppler effect on the photon number from the influence of the initial
positions of the atom, we need to make sure that the effective interaction strength for
fixed atoms and for moving atoms stays the same. For this reason we place the atoms
equidistantly and equally distributed over one period of the mode function.

Now let us study the influence of different numbers of atom clusters in order to
find a suitable value for our simulations. To this end, we simulate a total number of
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Figure 4.2.: Photon number evolution with all atoms initially at a mode function
maximum (antinode). Only for 𝜎v = 0 (optimal coupling, blue trajectory) the photon
number stays at around 200. As soon as we allow for motion, the photon number will
eventually drop to about half of the value. The trajectories that do not even reach this level
are those with such large a value of 𝜎v that the Doppler effect suppresses the interaction
between atoms and photons. The other parameters are 𝐾 = 1, 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0,
𝑔 = 0.05, 𝜅 = 1.

106 atoms, grouped into 1000 clusters (1000 atoms per cluster), in 400 clusters (2500
atoms per cluster), in 200 clusters (5000 atoms per cluster) and in 50 clusters (20000
atoms per cluster) and depict the results in figure 4.3. This way, all differences in the
results can be traced back to the different groupings of the atoms. On the left-hand
side of figure 4.3 we compare the results for two particular values of 𝜎v, while on the
right-hand side we average over many trajectories (see details in section 4.2) to arrive
at an average photon number in quasi steady state depending on 𝜎v. As we can see
from the left part of the figure, for small 𝜎v the different trajectories fluctuate around
the same value, whereas for larger 𝜎v upon close inspection one sees that the value of
the brown trajectory (for the lowest number of atom clusters: 50 corresponding to 2000
atoms per cluster) fluctuates much more. When averaging over many trajectories these
fluctuations average out for the most part and we see that the results agree for different
cluster numbers. However, for a number of clusters as low as 50, we observe noticeable
deviations, especially for large values of 𝜎v. For small 𝜎v the three graphs are virtually
indistinguishable. One has to keep in mind that, in principle, we would have to treat
each atom individually, which would require simulating 106 atom clusters with cluster
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size 1. But, given these results, we can estimate that the difference is not too big. The
above considerations lead us to using an atom cluster number of 400 for the following
simulations. For higher order expansions we might want to reduce the number further
while keeping in mind to average over more trajectories so that we arrive at a smooth
graph.
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Figure 4.3.: Comparison of simulations using different numbers of atom clusters with
the same total number of atoms 106. (a) Some example trajectories. (b) Photon number in
quasi-steady-state averaged over many trajectories. We always use the same parameters,
in particular the same total number of atoms. We observe only small differences, especially
for large 𝜎v. The other parameters are 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔 = 1.36 ⋅ 10−3, 𝜅 = 1.

4.2. Photon number dependence on temperature
As mentioned in the previous section, now, we look more closely at how the photon
number in quasi steady state behaves as a function of 𝜎v. As the atoms move through
maxima and nodes of the mode function, the photon number fluctuates. In order to get
a meaningful result, we average over time letting the system evolve longer and average
over all the values of the trajectories after the system reaches its quasi steady state.
For typical trajectories in the parameter range we are interested in we conclude that
𝜅𝑡 = 200 is a good time at which the system has reached its quasi steady state (all
rates are measured in 𝜅, therefore all times are measured in 1

𝜅 , more details on this in
appendix A). However, we could still by chance choose a particular velocity distribution,
that incidentally has more or less photons compared to a typical velocity distribution
with the same standard deviation 𝜎v. To minimize this effect we initialize our system
with 50 different random Gaussian distributions (with the same standard deviation),
let them evolve and calculate an average once more. For a better comparison we always
use the same 50 random Gaussian distributions. In summary, to get a quasi steady
state value for a certain 𝜎v we average over a lot of trajectories with different random
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velocity distributions and over the fluctuations of each trajectory.
This way, we are able to average out effects stemming from the fluctuations in each

trajectory and effects from certain special distributions. These quasi steady state values
for the photon number are calculated for a list of 𝜎v-values, eventually leading to a
graph such as 4.4. To compare the results for different 𝜎v we use the same probability
distribution for each value (more on this in appendix B). Moreover, when we want to
simulate the system for different atom numbers, we alter the cluster size instead of the
number of clusters for better comparability.
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Figure 4.4.: Quasi steady state photon numbers (mean field) as a function of the standard
deviation of the velocity distribution 𝜎v with fixed collective cooperativity parameter. (a)
Absolute photon numbers. For more atoms, we also end up with more photons. (b) Photon
number per atom. The curves for the photon number almost perfectly align. The maximum
photon number always appears at 𝜎v = 0 or very small 𝜎v. With increasing 𝜎v the photon
number drops due to the Doppler effect, to a point where there are no longer any photons
inside the cavity. The other parameters are 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔2 ⋅ 𝑁 = 0.375,
𝜅 = 1.

In figure 4.4, the result of the above procedure is depicted. We use the same parameters,
except for the atom number 𝑁 and the interaction strength 𝑔. However, we vary 𝑔
in such a way, that the collective cooperativity parameter 𝑔2𝑁

𝜅𝛾 is constant. On the
left-hand side we depict the absolute number of photons for different atom numbers
(by choosing different cluster sizes), while on the right-hand side the 𝑦-axis shows the
photon numbers per atom. As we can see on the left, for more atoms we end up with
more photons in general, even though the interaction strength becomes smaller (as
𝑔2𝑁 = const.). The interesting results are displayed on the right-hand side, where, if
we choose the photon number per atom instead of the absolute photon numbers, the
curves almost perfectly align.

It seems that the number of photons per atom is linearly correlated with the parameter
𝑔2𝑁, which also means that the total number of photons scales with 𝑔2𝑁2. Looking at
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the right hand side, we also notice some properties of the curves: the maximum number
of photons is always achieved for very small velocities, usually for 𝜎v = 0. For larger
velocities the photon numbers begin to drop until a point, where we no longer have
photons in the cavity if we choose 𝜎v too large. This behaviour can be explained by
the Doppler effect: the moving atoms see the photons with a different frequency and
are therefore detuned from the photon frequency, making the interaction between them
harder. The faster the atoms are, the higher the detuning is, until a point where the
photons no longer interact with the atoms.
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Figure 4.5.: Quasi steady state photon numbers (mean field) as a function of the
standard deviation of the velocity distribution 𝜎v with fixed 𝑔, but variable atom numbers.
(a) Absolute photon number. (b) Photon number normalized to 𝜎v = 0 (maximum). The
red dots indicate the value at which the curves have dropped to half of their initial value.
Now, the curves on the right hand side do not longer align when normalized. Larger atom
numbers allow for larger possible values of 𝜎v, while maintaining a lot of photons inside
the cavity. The parameters are 𝑁Cl = 400, 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔 = 0.00136, 𝜅 = 1.

Now that we have investigated the situation of keeping the collective cooperativity
parameter constant, let us look at the influence the atom number exerts on the system,
while fixing the other system parameters. As mentioned above, for changing the atom
number we alter the cluster size instead of the number of clusters for better comparability.
Once again, we average over a lot of trajectories to get rid of the effects a single initial
velocity distributions and we average over each trajectory to get rid of the fluctuations.
The results of this calculations are depicted in figure 4.5. On the right hand side of figure
4.5 one can see the photon numbers, this time normalized to the maximum photon
number at 𝜎v = 0 for different cluster sizes. Qualitatively, they all look very similar to
the graphs before. Crucially however, they do not longer align with each other. When
using more atoms the curves decrease later, at larger 𝜎v and the threshold value, at
which no photons are in the cavity anymore, increases for larger atom numbers. In
order to compare how soon the curves drop, for each curve we determine the threshold
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value of 𝜎v at which the number of photons has decreased to half of the maximum at
𝜎v = 0 (indicated by the red dot) and depict it in figure 4.6. One can clearly see that for
larger photon numbers the threshold value of 𝜎v increases. The dependency is almost
linear, upon closer inspection it looks like a polynomial behaviour with an exponent
slightly below 1. These results suggest that instead of trying to minimize the velocity
distribution (and thereby the temperature), which can be experimentally challenging,
one could increase the number of atoms in order to still realize decently large photon
numbers. However, it remains to be seen which effects this has on the linewidth of the
resulting output light.
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Figure 4.6.: Dependence of the threshold value
of the velocity spread 𝜎v on the number of atoms.
Larger atom numbers allow for larger velocity
spreads (i.e. temperature) while still having
photons inside the cavity. The parameters are
the same as for the results in figure 4.5.

So far we have simulated the system
in mean field (lowest order) only as this
is numerically the fastest. However, as
discussed in section 3.2, in the so-called
mixed order we can include all second
order correlations with the exception of
atom-atom correlations, and still end up
with a set of differential equations that
scales linearly with the system size, i.e.
the number of atom clusters. The results
that we obtain from these calculations are
shown in figure 4.7. For comparison, we
additionally depict the mean field results
as a reference. The dotted lines represent
the data calculated in mixed order. On
the left hand side of the figure we can see
that the results in mean field and mixed
order agree very well and the same results
as in mean field are to be expected. To see
the difference between these two orders of
approximation one has to zoom in to the graph to make the separation of the lines
visible as shown on the right-hand-side of figure 4.7.
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Figure 4.7.: Quasi steady state photon numbers as a function of the standard deviation
of the velocity distribution 𝜎v with fixed 𝑔, but variable atom numbers. (a) Normalized
photon numbers in mean field (solid line) and mixed order (dotted line). (b) Zoomed
in region of the plot on the left. The solid line represents the results in mean field from
above, the dotted line shows the data calculated from mixed order. The differences are
minute, visually distinguishable only upon zooming in. The parameters are 𝑁Cl = 400,
𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔 = 0.00136, 𝜅 = 1.

Now, the question arises how the results would change upon using second order,
where we keep the quantum correlations between the atoms. Yet, to be able to simulate
the system we have to significantly reduce the number of clusters 𝑁Cl. A comparison of
the absolute photon numbers in mean field (solid line, 𝑁Cl = 400), mixed order (dotted
line, 𝑁Cl = 400) and second order (dashed line, 𝑁Cl = 25) is depicted on the left-hand
side of figure 4.8. We see, that for low 𝜎v the results agree, but for higher 𝜎v the result
in second order drops below the results for the other orders. This is, however, due to
the choice of using different numbers of atom clusters (compare with figure 4.3, where a
lower number of clusters also leds to slightly different results): on the right-hand side
we use 𝑁Cl = 25 clusters and the results in different expansion orders agree. From these
two graphs we conclude, that mean field and mixed order yield similar results as second
order, but we aim at simulating a large number of atom clusters, which we can only do
in mean-field and mixed order.
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Figure 4.8.: Absolute photon numbers using different orders in the cumulant expansion.
The solid line represents mean field, the dotted line is mixed order and the dashed line
depicts the result in second order. (a) We use 𝑁Cl = 400 clusters for mean field and mixed
order, but only 𝑁Cl = 25 clusters for second order. (b) We use 𝑁Cl = 25 clusters for mean
field, mixed order and second order. On the left, for small 𝜎v the results agree very well,
but for larger 𝜎v the results in second order differ slightly from the other results. These
differences come from using fewer clusters for second order (compare with results in 4.3):
on the right, where we use the same cluster sizes for all expansions, all orders agree with
each other. The other parameters are 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔 = 0.00136, 𝜅 = 1.

4.3. Comparison of different cumulant expansion orders
So far, when simulating the system in mixed order, we have always used all 3 + 5 ⋅ 𝑁Cl
equations as discussed in section 3.2. To compare with the mean field, we have used
inhomogeneous initial conditions, similar to what we have done in mean field. These
results, mean field and full mixed order with inhomogeneous initial conditions, agree
very nicely as seen in the previous section. Now, the question arises, if we could use
the reduced mixed order with 1 + 2 ⋅ 𝑁Cl equations to save some computational time.
A simple simulation for 𝜎v = 0 reveals that the result differs noticeably compared to
the result for full mixed order with inhomogeneous initial conditions and therefore it
also differs from the mean field. To investigate this curious result, again, we look at the
average photon number in quasi steady state for different atom numbers and different
velocities. The result is depicted in figure 4.9. The solid line depicts the result in mean
field/full mixed order with inhomogeneous initial conditions, while the dotted line shows
the result for reduced mixed order. As we can see, they do not only differ for 𝜎v = 0,
but in fact for all possible 𝜎v and all depicted atom numbers, and also by quite large a
margin.

One could argue that there might have been a mistake in the program for the reduced
mixed order. To check this we use the program for full mixed order, but with homogenous
initial conditions, i.e. we set all initial values to zero, which should be mathematically
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Figure 4.9.: Difference between full and reduced mixed order. The colour indicates the
number of atoms. A solid line depicts the result in mean field/full mixed order with
inhomogeneous initial condition, while the dotted line shows the result for reduced mixed
order. The results disagree substantially at small 𝜎v. The parameters are 𝑁Cl = 400,
𝜈 = 0.5, 𝛾 = 10−8, Δ = 0, 𝑔 = 0.00136, 𝜅 = 1.

equivalent to the reduced mixed order: Looking at the equations for reduced mixed
order

̇⟨𝑎†𝑎⟩ = − (𝜅 − 2𝑖Δ)⟨𝑎†𝑎⟩ + 𝑖𝑔𝐾 ∑
𝑚

𝑓(𝑥𝑚)(⟨𝑎𝜎eg
𝑚⟩ − ⟨𝑎†𝜎ge

𝑚)

̇⟨𝑎𝜎eg
𝑚⟩ = − (𝛾 + 𝜅 + 𝜈

2
− 𝑖Δ)⟨𝑎𝜎eg

𝑚⟩ + 𝑖𝑔𝑓(𝑥𝑚)⟨𝑎†𝑎⟩ − 𝑖𝑔𝐾 ⋅ ⟨𝜎eg
𝑚⟩ ∑

𝑗≠𝑚
𝑓(𝑥𝑗)⟨𝜎

ge
𝑗 ⟩

− 𝑖𝑔(𝐾 − 1) ⋅ 𝑓(𝑥𝑚)⟨𝜎eg
𝑚⟩⟨𝜎ge

𝑚⟩ − 𝑖𝑔𝑓(𝑥𝑚)⟨𝜎ee
𝑚⟩ − 2𝑖𝑔𝑓(𝑥𝑚)⟨𝑎†𝑎𝜎ee

𝑚⟩

̇⟨𝜎ee
𝑚⟩ = 𝑖𝑔𝑓(𝑥𝑚)(⟨𝑎†𝜎ge

𝑚⟩ − ⟨𝑎𝜎eg
𝑚⟩) − (𝛾 + 𝜈)⟨𝜎ee

𝑚⟩ + 𝜈,

we see that these equations form a closed set, except for the terms ⟨𝜎eg
𝑚𝜎ge

𝑗 ⟩ and ⟨𝑎†𝑎𝜎ee
𝑚⟩

in the second equation. We get rid of them if we set all single expectation values (except
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for ⟨𝜎ee
𝑚⟩) to zero: we approximate ⟨𝜎eg

𝑚𝜎ge
𝑗 ⟩ as ⟨𝜎eg

𝑚⟩⟨𝜎ge
𝑗 ⟩ for 𝑗 ≠ 𝑚 (for 𝑗 = 𝑚 we end

up with ⟨𝜎ee
𝑚⟩) and we now have only single operator expectation values, which are

initialized as zero by choosing homogeneous initial conditions. Similarly, we approximate
⟨𝑎†𝑎𝜎ee

𝑚⟩ using the cumulant expansion formula introduced in section 2.5 as products of
at most two-operator expectation values. The first term can now be rewritten in terms
of ⟨𝑎†𝑎⟩ and ⟨𝜎ee

𝑚⟩, while the other terms are products with at least one term like ⟨𝑎⟩ or
⟨𝑎†⟩, which are initialized as zero by choosing homogeneous initial conditions. Looking
at the full equations we also see that in the equations for the expectation values of the
phase dependent terms all source terms are again phase dependent, meaning that if we
initially set all phase dependent terms to zero, they will never be become nonzero.

The results from the full mixed order with homogeneous initial conditions and from the
reduced mixed order agree completely, verifying the above mathematical considerations
and suggesting that there has been no error in the program code. It seems that choosing
the initial condition to be either inhomogeneous or homogeneous makes all the difference.
This seems very curious, as the effect of the initial conditions usually fades out and one
eventually ends up in a similar state for systems with a quasi steady state. To further
investigate the influence of the initial conditions on the system we look at all expectation
values of the system, not just the photon number. Surprisingly, for very small atom
numbers it turns out that the initial conditions fade out and we have the same result
for reduced mixed order and full mixed order with inhomogeneous initial conditions
in contrast to the result for large atom numbers depicted in figure 4.9. Larger atom
numbers eventually cause the initial conditions not to fade out anymore. The threshold,
at which this damping vanishes, is investigated in figures 4.10 and 4.11. Figure 4.10
shows the system before we reach the threshold, while figure 4.11 depicts the results
after crossing the threshold. We look at each expectation value, but for all operators
indexed with 𝑚 we only depict one cluster (𝑚 = 1), as the results are very similar for
other clusters. The initial condition reads 0.1+0.0 ⋅ 𝑖. We choose such a high (real) value
to show that it still damps out. The blue line depicts the real value, while the orange
line represents the imaginary part. In figure 4.10 one can easily see that all the values
eventually damp out to 0, regardless of the initial condition, with the exception being,
as expected, the phase-invariant terms ⟨𝑎†𝑎⟩, ⟨𝑎𝜎eg⟩ and ⟨𝜎ee⟩. For this result we have
used 40 clusters and a cluster size of 250. However, just increasing the cluster size to
260 in figure 4.11, we see something completely different: suddenly, the initial conditions
do not damp out anymore. We have crossed a threshold. The phase dependent terms
now contribute to the time evolution and change the results. One might wonder, what
happens in between the cluster sizes 250 and 260. The answer is that already at 251
the initial condition does not damp out anymore, but one has to simulate the system a
lot longer to reach a steady state.

32



4. Simulation of the laser dynamics

0 5000 10000
0.000

0.025

0.050

0.075

0.100 <{〈a〉}
={〈a〉}

0 5000 10000
0.00

0.25

0.50

0.75

1.00
<{〈a†a〉}
={〈a†a〉}

0 5000 10000
0.000

0.025

0.050

0.075

0.100 <{〈aa〉}
={〈aa〉}

0 5000 10000

0.00

0.05

0.10 <{〈aσeg1 〉}
={〈aσeg1 〉}

0 5000 10000
0.000

0.025

0.050

0.075

0.100 <{〈aσge1 〉}
={〈aσge1 〉}

0 5000 10000
0.00

0.25

0.50

0.75

1.00 <{〈σee
1 〉}

={〈σee
1 〉}

0 5000 10000
0.000

0.025

0.050

0.075

0.100 <{〈σge1 〉}
={〈σge1 〉}

0 5000 10000
0.000

0.025

0.050

0.075

0.100 <{〈aσee
1 〉}

={〈aσee
1 〉}

Figure 4.10.: Time evolution of the expectation value of each operator for 𝑁Cl = 40
clusters and a cluster size of 𝐾 = 250. Blue depicts the real part, while orange shows
the imaginary part. The phase dependent terms damp out to zero and only the phase
invariant terms survive, as expected. The other parameters are 𝜈 = 0.5, 𝛾 = 10−8, Δ = 0,
𝑔 = 0.005, 𝜎v = 0, 𝜅 = 1.
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Figure 4.11.: Time evolution of the expectation value of each operator for 𝑁Cl = 40
clusters, but this time a cluster size of 𝐾 = 260. Blue depicts the real part, while orange
shows the imaginary part. Just increasing the cluster size from 250 to 260, the phase-
dependent terms do not damp out anymore and contribute to the time evolution. The
other parameters are the same as above.
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In order to gain more insight into how the parameters affect the state, we create
phase plots in figures 4.12, 4.13, 4.14 and 4.15. The parameters in figures 4.12 and 4.13
are in the same region as the parameters in the plot before, where we had a look at
when the phase terms damp out. In figure 4.12 we depict the absolute photon number
in full mixed order, in figure 4.13 we depict the difference of full mixed order to reduced
mixed order, and normalize with respect to the photon number in full mixed order.
From this plot one can determine in which parameter regimes the reduced mixed order
is a good approximation of the full mixed order. In 4.14 and 4.15 we do the same, but
now for the parameter regime, that we have used to calculate all the previous results.

In figure 4.12 we see that we achieve large photon numbers for large atom numbers 𝑁,
large interaction strength 𝑔 and small 𝜎v. In figure 4.13 we see the normalized difference
between full and reduced mixed order. In the blue region they are similar, while in the
yellow region they differ a lot. Comparing to figure 4.12 we conclude that whenever the
photon numbers are small, reduced and full mixed order agree with each other, with the
exception of small pump rates 𝜈 (lower left graph). Moreover, we see that for large atom
numbers and large interaction strength 𝑔 (upper right corner of the plots in the left
column) the difference begins to reduce. It is also important to note that the contour
lines in the upper left plots (where we depict 𝑁Cl vs. 𝐾) respectively show a typical
𝑦 = 𝑐

𝑥 behaviour, suggesting that the difference is not due to the artificial arrangement
of the atoms into clusters.

In figure 4.14 and figure 4.15 we do the same, but now for a parameter region close
to the parameters that we used to calculate most of the previous results. The absolute
photon numbers for the new regime in figure 4.14 look qualitatively very similar to the
result for the old parameter regime, but in general the photon numbers are much larger,
as we now also have larger atom numbers. One difference regarding the pump strength
𝜈 appears: Increasing the pump strength leads to higher photon numbers, while in the
old parameter regime an increased pump strength did not lead to more photons. The
difference in full and reduced mixed order is depicted in figure 4.15. Qualitatively, it is
similar to the plot for the old regime. However, as we now include much larger atom
numbers in the new regime, we now look at a bigger range. We clearly see that for
larger atom numbers the results begin to approach each other again in the green to
blue regions in figure 4.15. In summary, it seems that reduced and full mixed order
agree well for small photon numbers, and also for very large numbers of atoms. For our
previously used parameters the reduced and full mixed order still disagree considerably
and we should use full mixed order.
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Figure 4.12.: Photon numbers for different parameter regions. We depict the photon
number ⟨𝑎†𝑎⟩ in full mixed order. Blue indicates a small photon number, while a yellow
colour means a large number of photons. The parameters (constant in each plot) are
𝑁Cl = 40, 𝜎v = 0, 𝑔 = 0.005 and 𝜈 = 0.5.
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Figure 4.13.: Difference of full and reduced mixed order. We plot the absolute value
of the difference in photon number between full mixed order and reduced mixed order.
We normalize to the results in full mixed order. A large value (yellow) means that the
phase terms do not cancel out and the results in full mixed order and reduced mixed
order differ very much. On the contrary, in the blue region, they are close to each other.
The parameters are the same as above.
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Figure 4.14.: Photon numbers for different parameter regions. We depict the photon
number ⟨𝑎†𝑎⟩ in full mixed order. A blue colour indicates a small photon number, while a
yellow colour means a large number of photons. The parameters (constant in each plot)
are 𝑁Cl = 100, 𝜎v = 0, 𝑔 = 0.00136 and 𝜈 = 0.5.
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Figure 4.15.: Difference of full and reduced mixed order. We plot the absolute value of
the difference in photon number between full mixed order and reduced mixed order. We
normalize to the results in full mixed order. A large value (yellow) means, that the phase
terms do not cancel out and the results in full mixed order and reduced mixed order differ
very much. On the contrary, in the blue region, they are close to each other. In the white
region the difference is so big, that it exceeds the colour bar. The parameters are the same
as above.
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4.4. Effects of a velocity filter to remove fast atoms
Another interesting idea is to consider a cutoff in the velocity distribution. By using
such a velocity filter we get rid of the atoms with very high velocity, effectively creating
a colder ensemble. This could be more beneficial than trying to narrow the velocity
distribution by cooling, because cooling the atoms is experimentally difficult. In order
to investigate this we again determine the average number of photons in quasi steady
state by using multiple trajectories as in the previous sections. This time, however, we
exclude the fast atoms from the dynamics. Figure 4.16 shows the results. To get a better
comparison, the blue graph shows the previous result with no cut. The orange line
represents the graph, when all atoms above 1.0 standard deviations are excluded from
the dynamics, while the green graph does the same for a cut at 0.5 standard deviations.
On the left-hand side, the absolute photon number is depicted. It is clearly visible that
we end up with less photons in the cavity if we cut the distribution. This is not very
suprising, as we also have less atoms contributing to the dynamics. On the right-hand
side, the normalized photon numbers are shown, such that the maximum photon number
for each cut (which occurs for very small 𝜎v) is set to one. Here, we see another feature:
although we start with large photon numbers when using no cut, the photon numbers
drop drastically with increasing 𝜎v, while the green line for a cut at 0.5 𝜎v stays at a
high level much longer with increasing 𝜎v. In summary, cutting the distribution leads
to lower photon numbers, but the photon numbers for cut distributions are much less
influenced by higher velocities (and therefore temperature) and one can tolerate a higher
temperature, before the photon numbers drop drastically compared to the situation
at zero temperature. However, it remains to be seen what such a cutoff will do to the
linewidth of the laser light.
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Figure 4.16.: Photon numbers for different velocity cutoffs. (a) Absolute photon number
with different cutoffs. (b) Normalized to maximum photon number. Cutting the distribution
yields smaller absolute photon numbers, but also leads to the photon numbers staying at
a high level for increasing 𝜎v. We only depict the results in mean field, as the results in
mixed order almost perfectly align. The parameters are 𝑁Cl = 400, 𝜈 = 0.5, 𝛾 = 10−8,
Δ = 0, 𝑔 = 0.00135, 𝜅 = 1.

38



Chapter 5.

Conclusions and Outlook
We have numerically studied a laser system consisting of a single-mode cavity and up
to 106 moving atoms. To be able to simulate such a high dimensional system we have
used a cumulant expansion truncated at low orders. Another key approximation method
was to group the atoms into clusters, such that the atoms within one cluster would be
indistinguishable and could be considered identical. We have seen that such a grouping
into clusters leads to valid results, even though we did not treat each atom individually.

The main novelty of this thesis is to include the motion of the atoms. We did this
by assigning starting points and initial velocities to each atom while neglecting light
forces and, thus, the path of each atom was known from the beginning of the simulation.
We do not reach an actual steady-state, as the moving atoms will always result in
fluctuations in the photon numbers. However, when choosing a sufficiently large number
of clusters we reach a quasi steady state, at which the fluctuations oscillate around
a certain value. This value can be determined by averaging over a lot of trajectories,
and one unsurprisingly finds the highest photon numbers for no velocity at all. The
photon numbers decrease with an increasing velocity of the atoms, until there are
no photons inside the cavity anymore, which can be explained by the Doppler effect.
Fixing the collective cooperativity parameter 𝑔2𝑁

𝜅𝛾 to a certain value, we find that the
photon numbers per atom are very similar and therefore they scale with 𝑔2𝑁2. When
fixing all parameters except the number of atoms and the standard deviation of the
velocity distribution, we see that a broader distribution can be compensated by a larger
amount of atoms, such that we still end up with a lot of photons inside the cavity. A
higher atom number does therefore not only lead to higher photon numbers in general,
but also the photon numbers do not drop that fast with increasing 𝜎v (and therefore
increasing temperature). Moreover, we see that the reduced mixed order can be used
to approximate the full mixed order, but only in certain parameter regions, especially
for low atom numbers. For our typical parameters we need to use the full mixed order.
Furthermore, by using velocity filters for the atoms, one loses quite some photons, but
now, increasing 𝜎v has much less of an impact on the photon numbers than for setups
without a velocity filter. For a cut at 0.5 of the standard deviation of the distribution
one can go to double the velocity compared to the full distribution, before a drastic
drop in photon numbers appears.
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5. Conclusions and Outlook

The logical next task is to calculate the spectrum of the system as the most important
property of a clock laser. As the system never reaches an exact steady-state, it is more
subtle to obtain the correct spectrum compared to other systems. The approach of the
so-called filter cavities might be useful here. Furthermore, it would be interesting to
have a look at the system including light forces. Additionally, one could simulate the
system in higher orders in the cumulant expansion, but one probably has to decrease
the number of clusters to make it numerically feasible.
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Appendix A.

Dimensionless Equations for
Numerical Simulations
In order to simulate a physical system, we need to solve the corresponding set of
differential equations numerically, if they are to complicated to solve manually. For
this purpose, we need to translate the set of differential equations with dimensions
into numerical values only, as the computer only operates with mere numbers and does
not care about dimensions or units. In principle, we can choose any consistent unit
system, as the physical results do not change, regardless of the unit system in use. A
straightforward choice would be the SI system, but, as this system was developed for
everyday life rather than for quantum physics, we would have to deal with huge and very
small numbers at the same time. While, in principle, this leads to the same result, it is
very challenging for the computer to deal with such a big range of values, resulting in
longer computational times. To find a good unit system, one usually identifies ”typical”
quantities that represent the scale on which the processes happen. In our case, we choose
the planck constant ℏ to be 1, this is very well known and widely used in quantum
physics. Moreover, for the typical quantities of length and time (=inverse frequency) we
choose the wavelength of the mode function 𝜆 and the mean lifetime of the photons
emerging from the cavity 1

𝜅 , which is the inverse of the rate of decay 𝜅. We choose a
numerical value of 1 for these quantities, which means, that all lengths are given in
terms of the period of the mode function and times are given in terms of the mean
lifetime of a photon inside the cavity. To ensure consistency in the unit system, we see
that by choosing the time scale we also have chosen the frequency scale to be 𝜅. All
frequencies are therefore measured in terms of the photon decay rate 𝜅. In summary,
we have for lengths 𝑠, times 𝑡 and frequencies 𝜔

• 𝑡 = ̃𝑡 ⋅ 1
𝜅

• 𝑠 = ̃𝑠 ⋅ 𝜆

• 𝜔 = �̃� ⋅ 𝜅.

The tilde indicates that the variable is just a numerical value. In order to get the
actual value in another unit system (𝑠, 𝑡, 𝜔, ...), one has to multiply the numerical value
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( ̃𝑠, ̃𝑡, �̃�) in the result with the actual value of the ”typical” quantities (𝜆, 1
𝜅 , 𝜅) in said

unit system.
Moreover, in the following let us link the important quantity of temperature 𝑇 to the

related quantity of the standard deviation of the velocity distribution, 𝜎v. As we know,
the temperature is related to the kinetic energy as

𝐸 =
𝑚 ∑𝑖⟨𝑣

2
𝑖 ⟩

2
= 𝑓

2
𝑘 𝑇 , (A.1)

where 𝑓 is the number of spatial degrees of freedom (𝑓 = 1 in our case, as we are in 1D),
𝑘 the Boltzmann constant and 𝑚 the masses of the particles (assuming all particles have
the same mass). To express ∑i⟨𝑣

2
i ⟩ via the quantity 𝜎v, one has to calculate the second

moment of a 1D Gaussian distribution. Well known substitutions lead to the result
∑i⟨𝑣

2
i ⟩ = (𝜎v)2. Altogether, we arrive at the following term expressing the temperature

𝑇 via the standard deviation in the velocity distribution 𝜎v,

𝑇 = 𝑚 ⋅ (𝜎v)2

𝑓 ⋅ 𝑘
. (A.2)
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Appendix B.

Program Example
The following programs are examples of what we have been using to perform the
numerical simulations. The first program uses the julia package QuantumCumulants
and derives the equations by itself. This has been mainly used to check the manually
derived equations and to simulate the system in second order.

#import necessary libraries

using QuantumCumulants

using OrdinaryDiffEq

using ModelingToolkit

using PyPlot

using Random

using DelimitedFiles

M=1 #choose order of cumulant expansion

NCl=5 #Number of atom clusters

#define symbolic parameters

@cnumbers K Δ g κ Γ R ν t σv

v=[cnumbers(Symbol(:v, i))[1] for i=1:NCl]

#define atom trajectories

x0=[i/NCl for i=1:NCl]

xt=[x0[i]+v[i]*t for i=1:NCl]

phit=xt*2pi

#define Hilbert space

hc=FockSpace(:cavity)

ha_2l(i) = NLevelSpace(Symbol(:atom, i), 2)

ha_clust(i) = ClusterSpace(ha_2l(i), K, M)

ha = ⊗([ha_clust(i) for i=1:NCl]...)

h = hc ⊗ ha;
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# operators

@qnumbers a::Destroy(h)

σ(i, j, k) = Transition(h, Symbol(:σ, k), i, j, k+1)

#define Hamiltonian

H = Δ*a'*a + sum([g*cos(phit[i])*(a'*sum(σ(1,2,i))+a*sum(σ(2,1,i))) for i=1:NCl])

#Lindblad terms for dissipative processes

J = [a; [σ(1,2,i) for i=1:NCl];[σ(2,1,i) for i=1:NCl];]

rates = [κ; [Γ for i=1:NCl]; [ν for i=1:NCl];];

# Derive equations

ops = [a] #for this operator(s) the equations will be derived

eqs = meanfield(ops,H,J; rates=rates, iv=t, order=M);

#custom filter function (only relevant for 2nd order)

φ(x::Average) = φ(x.arguments[1])

φ(::Destroy) = -1

φ(::Create) = 1

φ(x::QTerm) = sum(map(φ, x.args_nc))

φ(x::Transition) = x.i - x.j

phase_invariant(x) = iszero(φ(x))

#Complete equations starting with equation for ops

#eqs_c = complete(eqs; filter_func=phase_invariant) #use this for 2nd order

eqs_c = complete(eqs, multithread=true); #use this for mean field

#define ODE system, which can be solved numerically

sys = ODESystem(eqs_c);

#define function giving the solution, depending on parameters

function photnumbevo(T_end, K_, ν_, σv_, i, γ_, g_)

u0=[0.01 + 0.0*im for i=1:length(eqs_c)]

κ_ = 1

Δ_ = 0

Random.seed!(i) #allows us to have the same random distribution for the same i

v_=[randn()*σv for i=1:NCl]

ps=[K, Δ, g, κ, Γ, ν, σv, v...]

p0=[K_, Δ_, g_, κ_, γ_, ν_, σv_, v_...]
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prob=ODEProblem(sys, u0, (0.0, T_end), ps.=>p0);

sol = solve(prob, Tsit5(), maxiters=1e7, saveat=0.1);

return abs2.(sol[a])

#return abs2.(sol[a])

end

#calculate a result

res=photnumbevo(400, 200000, 0.5, 0.0, 1, 10^(-8), 0.00136);

#plotting

tarr=collect(0.0:0.1:400)

plot(tarr, res)

In the second program, we make use of a standard Differential equations solver, but
we have to write the equations down manually (in this example for mixed order). This
program (or similar ones) were used for numerics.

#import necessary libraries

using DifferentialEquations

using PyPlot

using DelimitedFiles

using Statistics

using Random

#define function which returns solution to set of differential equations

function photnumbevo(T_end, K, NCl, ν, σv, i, γ, g)

#define fixed parameters

κ=1

Δ=0

function G(x)

λ=1

k=(2*pi)/λ

return g*cos(k*x)

end

#define atom trajectories

x0=[j/NCl for j=1:NCl]

Random.seed!(i)

v0=[randn()*σv for j=1:NCl]
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function cavityall(du, u, p, t)

xt=[x0[i]+t*v0[i] for i=1:NCl]

#abbreviations

aσparr=[G(x0[i]+t*v0[i])*u[i+3] for i=1:NCl]

aσp=sum(aσparr)

aσmarr=[G(x0[i]+t*v0[i])*u[NCl+i+3] for i=1:NCl]

aσm=sum(aσmarr)

σpσmarr=[G(x0[i]+t*v0[i])*u[2*NCl+i+3] for i=1:NCl]

σpσm=sum(σpσmarr)

σmarr=[G(x0[i]+t*v0[i])*u[3*NCl+i+3] for i=1:NCl]

σm=sum(σmarr)

pσm=[σm-σmarr[i] for i=1:NCl]

# write down manually derived equations in mixed order

# for mean field we need completely different equations

du[1]=-(κ/2-im*Δ)*u[1] - im*K*σm #for <a>

du[2]= -(κ-2*im*Δ)*u[2] + im*K*(aσp - conj(aσp)) #for <a^†a>

du[3]=-(κ-2*im*Δ)*u[3] - 2*im*K*aσm #for <aa>

#use loop for each cluster

for i=4:(3+NCl) #eq for <aσ+>

du[i]= -(κ/2+γ/2+ν/2-im*Δ)*u[i] + im*G(xt[i-3])*u[2] -im*G(xt[i-3])*u[i+2*NCl]+

-2*im*G(xt[i-3])*(u[2]*u[i+2*NCl]+u[1]*conj(u[i+4*NCl])+

+u[i+4*NCl]*conj(u[1])-2*u[1]*conj(u[1])*u[i+2*NCl]) +

-im*K*conj(u[i+3*NCl])*pσm[i-3] +

-im*G(xt[i-3])*(K-1)*conj(u[i+3*NCl])*u[i+3*NCl]-im*G(xt[i-3])*u[i+2*NCl]

end

for i=(4+NCl):(3+2*NCl) #eq for <aσ->

du[i]= -(κ/2+γ/2+ν/2-im*Δ)*u[i]- im*G(xt[i-3-NCl])*u[3]+

+2*im*G(xt[i-3-NCl])*(u[3]*u[i+NCl]+2*u[1]*u[i+3*NCl]-2*u[1]*u[1]*u[i+NCl]) +

- im*K*u[i+2*NCl]*pσm[i-3-NCl]-im*G(xt[i-3-NCl])*(K-1)*u[i+2*NCl]*u[i+2*NCl]

end

for i=(4+2*NCl):(3+3*NCl) #eq for <σee>

du[i]= - (γ+ν)*u[i] + ν+im*G(xt[i-3-2*NCl])*(conj(u[i-2*NCl]) - u[i-2*NCl])
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end

for i=(4+3*NCl):(3+4*NCl) #eq for <σ->

du[i]= -(γ+ν)/2*u[i]-im*G(xt[i-3-3*NCl])*u[1]+ 2*im*G(xt[i-3-3*NCl])*u[i+NCl]

end

for i=(4+4*NCl):(3+5*NCl) #eq for <aσee>

du[i]= -(γ+ν+κ/2-im*Δ)*u[i] + ν*u[1]- im*G(xt[i-3-4*NCl])*(u[3]*conj(u[i-NCl])+

+2*u[1]*u[i-4*NCl]-2*u[1]*u[1]*conj(u[i-NCl])) +

+im*G(xt[i-3-4*NCl])*(u[2]*u[i-NCl]+conj(u[i-4*NCl])*u[1]+

+u[i-3*NCl]*conj(u[1])-2*conj(u[1])*u[1]*u[i-NCl]) +

-im*K*u[i-2*NCl]*pσm[i-3-4*NCl]-im*G(xt[i-3-4*NCl])*(K-1)*u[i-2*NCl]*u[i-NCl]

end

end

# initial conditions

u0=[0.01+0.0*im for i=1:(3+5*NCl)]

tspan=(0.0, T_end)

prob=ODEProblem(cavityall, u0, tspan)

sol=solve(prob, saveat=0.1);

#pick solutions for interesting field operators

return [sol[1, :], sol[2, :], sol[3, :], sol[4, :], sol[2*NCl+2, :], sol[3*NCl+2, :]]

end

#define function calculating for different seeds and save the data in an array

function calcdata(T_end, K, NCl, ν, σv, g, samplesize)

#save data in txt file with parameters in name

open("inhom/qmixed_Tend$T_end.K$K.NCl$NCl.nu$ν.sv$σv.g$g.txt", "w") do io

ini=1

for j=(ini):(ini+samplesize-1)

writedlm(io, [abs.(photnumbevo(T_end, K, NCl, ν, σv, j, 10^(-8), g)[2])])

end

end

end

tableK=[2500, 2000, 1500, 1000, 500]

scanv1=collect(0.0:0.01:0.1)

scanv2=collect(0.12:0.02:0.7)

scanv=0.5*vcat(scanv1, scanv2);
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using ProgressMeter

prog=Progress(length(tableK)*length(scanv))

#calculate for all parameters using a loop

samplesize=50;

for i in 1:length(tableK)

Threads.@threads for j in 1:length(scanv)

calcdata(400, tableK[i], 400, 0.5, scanv[j],0.00136, samplesize)

next!(prog)

end

end

#reads out data from txt file

function readout_te(T_end, K, NCl, ν, σv, g)

yprob=readdlm("qmixed_Tend$T_end.K$K.NCl$NCl.nu$ν.sv$σv.g$g.txt");

te=sum(yprob, dims=1)

return transpose(te)/size(yprob, 1)

#averaging over all trajectories with different random distributions

end

function readout_av(T_end, K, NCl, ν, σv, g)

yprob=readout_te(T_end, K, NCl, ν, σv, g)

#average over each trajectory

sum=0;

start=2000; #at this time the quasi-steady-state is achieved

size=length(yprob)-start+1;

for i=start:length(yprob)

sum+=yprob[i]

end

return sum/size

end

#reads out average quasi-steady state values and plots them

function readout_graph(T_end, K, NCl, ν, g)

graph=zeros(length(scanv))

graph=readout_av.(T_end, K, NCl, ν, scanv, g)

plot(scanv, graph)

return graph

end
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