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Zusammenfassung

Optische Übergänge mit langlebigen angeregten Zuständen sind die Basis von Atomuhren,
die genausten Messapparate der Menschheit. In diesen Uhren wird die Frequenz eines
Lasers auf den schmalbandigen atomaren Übergang stabilisiert. Da die Atome selbst kein
Frequenzsignal erzeugen, sondern lediglich als Referenz dienen, spricht man von passiven
Atomuhren. Die Gewinnung von schmalbandigem Licht direkt aus dem sogenannten
Uhrenübergang ist eine vielversprechende Idee, die theoretisch die Genauigkeit der aktuell
besten Uhr übertreffen sollte. Das Konzept eines solchen Apparats entspricht dem eines
Lasers, jedoch in einem ungewöhnlichen Regime. Die Verstärkungsbandbreite des aktiven
Mediums ist viel schmaler als die Linienbreite des Resonators, was dazu führt, dass
das Laserlicht der atomaren Übergangsfrequenz und nicht der Resonatorfrequenz folgt.
Dadurch sind thermische Fluktuationen in den Resonatorspiegeln, welche momentan
die Frequenzstabilität der besten Laser limitieren, irrelevant.

Natürlich bringt der Aufbau eines solchen sogenannten Superradianten Lasers auch
Schwierigkeiten mit sich. Das Hauptproblem besteht darin, kontinuierliche Inversion im
atomaren Ensemble zu erzeugen, ohne den Laserübergang zu stören oder die Atome auf-
zuheizen. Im ersten Teil dieser Arbeit beschäftigen wir uns mit möglichen Realisierungen
von solch einem Anregungsprozess. Zu diesem Zweck untersuchen wir ein verblüffendes
Phänomen in einem V-Level Atom, bei dem durch kohärentes Treiben beider Übergänge
Inversion im Langlebigeren erreicht werden kann. Dabei wurden Parameterbereiche
gefunden, in denen simultanes Kühlen während des Laserbetriebs möglich ist. Allerdings
wird bei dem Pumpprozess der Laserübergang stark verbreitert, sodass eine schmale
Linienbreite lediglich im normalen Good-Cavity Regime erreicht werden kann. In einem
anderen Ansatz betrachten wir ein Pumpschema für ein Viel-Niveau Atom entsprechend
der Levelstruktur vom Uhrenatom Strontium-88. Wir konnten zeigen, dass durch eine
geeignete Wahl der Parameter eine ausreichende Inversion bei gleichzeitig nur minimalen
Störungen erreicht werden kann.

Neben der Anwendung als aktive Atomuhr haben wir weitere dynamische Eigen-
schaften dieses Systems, bestehend aus einem Ensemble von langlebigen Atomen in
einem Resonator, untersucht. Dabei haben wir einen Übergang von resonatorvermittel-
ter Sub- zu Superradianz entdeckt, welcher für kohärent bestrahlte Atome bei halber
Anregung auftritt. Zusätzlich schlagen wir vor, diesen Übergang zur Verbesserung von
passiven Atomuhren zu verwenden. Diese theoretisch beschriebenen Phänomene konnten
experimentell verifiziert werden.

Um die oben genannten großen offenen Quantensysteme zu beschreiben, müssen wir ei-
ne Näherung durchführen. Eine Methode, die sich für solche Systeme bewährt hat, ist die
Kumulantenentwicklung. Dieser Ansatz hat jedoch den Nachteil, dass die Gleichungen
zunächst mühsam analytisch hergeleitet werden müssen. Um diesen fehleranfälligen und
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aufwendigen Prozess zu vereinfachen, haben wir ein Computeralgebrasystem entwickelt,
das die gewünschten Gleichungen aus einem benutzerdefinierten Modell automatisch
erzeugt und numerisch implementiert. Dieses Programm kann nicht nur zur Beschrei-
bung des Superradianten Lasers verwendet werden, sondern auch für viele andere
Quantensysteme.
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Abstract
Optical transitions with long-lived excited states are the basis of atomic clocks, the
most accurate man-made devices. In such clocks, the frequency of a laser is stabilized
relative to a narrow-band atomic transition. Since the atoms themselves here do not
generate a frequency signal but merely serve as a reference, those are referred to as
passive atomic clocks. Obtaining narrow-band light directly from the so-called clock
transition is a promising idea that is predicted to surpass the accuracy of the current
best clock. The concept of such an apparatus corresponds to that of a laser but in an
unusual regime. The gain bandwidth of the active medium is much narrower than the
linewidth of the resonator, which results in the laser light following the atomic transition
frequency instead of the cavity resonance frequency. This makes fluctuations in the
resonator mirrors irrelevant, which currently limit the frequency stability of the best
lasers.

Of course, the construction of such a so-called superradiant laser also comes with
challenges. The main problem is to find a mechanism to produce continuous inversion in
the atomic ensemble without disturbing the laser transition or heating the atoms. In the
first part of this work we deal with possible realizations of such a process. To this end,
we investigate a very counterintuitive process in a V-level atom, where coherent driving
of both transitions can result in inversion for the longer-lived one. We found parameter
ranges in which simultaneous cooling during laser operation is possible. However, the
laser transition is broadened due to the pumping process, thus a narrow linewidth can
only be achieved in the conventional good-cavity regime. In another approach, we study
a pumping scheme in a multilevel atom corresponding to the level structure of the clock
atom strontium-88. We were able to show that an appropriate choice of parameters can
achieve a sufficient inversion with only minimal perturbations at the same time.

In addition to its application as an active atomic clock, we have further investigated
dynamical properties of an ensemble of long-lived atoms in a resonator. We discovered
a transition from cavity mediated sub- to superradiance, which occurs for a transversely
driven atomic ensemble at the point of half excitation. We propose to use this transition
to improve the readout of passive atomic clocks. Several of these theoretically observed
phenomena have been demonstrated experimentally.

To describe the large open quantum systems mentioned already above, we need to
make approximations. One method that has proven successful for such systems is the
cumulant expansion. This approach requires that first the equations are laboriously
derived analytically. To simplify this error-prone and cumbersome process, we developed
a symbolic algebra framework that automatically generates and numerically implements
the desired equations from a user-defined model. This program can be used not only to
describe the superradiant laser but also for many other quantum systems.
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1 Introduction
The invention of the laser led to a revolution in science and substantially impacts modern
life. This makes it probably the prime application of cavity quantum electrodynamics
(CQED), the physics of atoms inside a resonator. The LASER, an acronym for Light
Amplification by Stimulated Emission of Radiation, relies, as the name suggests, on
stimulated emission of light. This process has been described already in 1917 by Albert
Einstein in his groundbreaking work Zur Quantentheorie der Strahlung [1.1], where he
describes it as the inverse mechanism to absorption, which, together with spontaneous
emission are the three fundamental processes describing the interactions of matter with
electromagnetic radiation. To achieve steady state lasing, a mechanism to continuously
recreate inversion in the atomic ensemble is required, i.e., the upper state of the lasing
transition needs to be populated more than the lower one. Unfortunately, this is not
possible by considering two atomic levels only. Even though Einstein described already
in 1917 all constituents for such a repumping process, it was only proposed more than
three decades later [1.2]. The first realization of a radiation amplification device was
achieved by Charles Townes in 1953 [1.3], emitting microwave radiation, the so-called
maser. Soon afterwards the optical maser, operating on a much shorter wavelength,
was introduced [1.4], which was later on called laser. Eventually, in 1960 the first
laser [1.5], the ruby laser, was built. Since then many types of lasers, based on different
technologies and targeting different properties have been developed [1.6, 1.7]. The
number of applications is almost countless, ranging from everyday objects such as bar
code scanners to industrial cutting machines and precision instruments in research
laboratories. A maybe not obvious, but particularly important and interesting scientific
use case is its function as a time keeping device. Stabilizing the frequency of a laser on
a narrow transition of an atom is the underlying basis of the best clocks, the so-called
atomic clocks [1.8].

1.1 Passive atomic clocks
Every apparatus with a repeating periodic signal can, in principle, be used as a clock.
The precision of a clock is usually determined by the time it is off after a given duration.
For an oscillator we can describe it equivalently by its relative frequency error, which
is given by the ratio between the frequency uncertainty ∆f and the frequency of the
signal itself f . Therefore, to obtain a small relative error ∆f/f ≪ 1 one aims for large
frequencies with small inaccuracies. This can be achieved with atomic transitions, e.g., in
Cesium clocks the laser frequency is stabilized on a microwave transition in the hyperfine
structure of the atomic ground state, with a frequency of around 9 GHz. Since 1967 this
transition still defines the second as the duration of 9.192.631.770 periods [1.9]. The
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1 Introduction

Figure 1.1: Schematic illustration of an atomic lattice clock. A laser is locked on a ULE cavity
and then stabilized on a narrow atomic transition. To electronically measure the
optical frequency, the signal is mapped to, e.g., a radio frequency with a frequency
comb.

best Cesium clocks reach a precision of 10−16 [1.10], which corresponds to an inaccuracy
of only one second in 300 million years. However, using an optical transition instead of a
microwave transition features a more than four magnitudes larger frequency with several
hundred THz. Optical lattice clocks [1.11], where the atoms are trapped in a magic
wavelength optical lattice [1.12], achieve a precision at the level of 10−19 [1.13–1.15].
Such a clock is off by less than a second at the age of the universe.

The basic operational scheme of an optical lattice clock [1.8, 1.11, 1.16] is shown
in Fig. 1.1: A laser is locked with the Pound-Drever-Hall technique (PDH) [1.17] on
to the resonance frequency of an ultra low expansion (ULE) cavity. This frequency
stabilization sets the short term stability of the laser. The frequency of the laser is
then changed by, e.g., an acousto-optic modulator (AOM), according to the error signal
from the clock measurement. To convert the huge optical frequency into a measurable
electronic signal, a frequency comb [1.18] is used. The clock measurement usually looks
as follows: First, of course, the atomic ensemble needs to be prepared, the atoms need to
be cooled [1.19], trapped in the optical lattice and prepared in the (desired) ground state.
Afterwards one tries to excite the atoms with the clock laser in a Ramsey measurement
sequence [1.20, 1.21]. In the simplest case this means a π/2-pulse on the atoms is
followed by another π/2-pulse after some free evolution time τ . The inverse of the free
evolution time 1/τ defines the width of the Ramsey fringes, which in turn determines
the precision of the frequency measurement. Of course, the free evolution time can not
be longer than the excited state lifetime, therefore an atomic transition with a long
lived upper state is used, a so-called clock transition. In the end a readout, to determine
the fraction of excited atoms, needs to be performed. There are many different ways
to do this, however, a very common one is the electron-shelving technique [1.8, 1.22].
For this method one drives a strong dipole transition with a fast decay channel into
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1.2 Active atomic clocks

the ground state and measures the number of emitted photons. Detecting almost no
fluorescence photons indicates that most atoms have been excited to the upper clock
state, which means the clock laser has the correct frequency. If many photons are
detected, it means that the laser frequency is not perfectly resonant and needs to be
changed. The obtained measurement signal is processed and sent to the AOM to adapt
the laser frequency. This results in a feedback loop stabilizing the laser on the atomic
clock transition.

Due to the many scattered photons the atoms will be strongly heated. For such
destructive measurements the atomic ensemble needs to be prepared for every cycle.
This undesired dead time limits the long-term stability of the clock, which refers to the
Dick effect [1.8, 1.23]. Therefore the dead time should be reduced as far as possible,
with the ultimate goal of a continuous measurement. A feasible step in this direction
are non-destructive readout methods [1.8]. However, another, more profound, limiting
factor stems from the precision of the clock laser. As mentioned before, the laser is
stabilized on the resonance frequency of a ULE cavity. Thermal noise in the mirrors
of this cavity [1.24] induces tiny fluctuations on the resonator length, which lead to
changes of the resonance frequency. The resulting clock laser frequency fluctuations are
currently the main constraint for the performance of optical atomic clocks.

A proposed device, which is theoretically capable to overcome all of these obstacles,
is the so-called superradiant laser [1.25, 1.26], an active optical atomic clock.

1.2 Active atomic clocks

The atomic clocks described in the previous section are passive since the atoms are
merely used as a reference to stabilize the laser. The idea of an active atomic clock is
to directly extract narrow bandwidth light from the clock transition. In the microwave
regime a similar device already exists for decades in the form of the hydrogen maser [1.27].
This is a well working device, but it can not reach the precision of current atomic clocks.
In the optical domain a continuous operation has not been achieved so far, due to
various difficulties:

First of all, it is hard to obtain a decent radiation power from a narrow clock
transition with a decay rate below one Hertz. The solution to this problem is to
utilize superradiance [1.28], the enhanced collective light emission of a large ensemble.
A particular way to achieve this for a dilute atomic cloud is within a cavity, which
enables long range interaction between the atoms. Cavity enhanced emission of a
superradiant pulse from a narrow optical transition has already been demonstrated
in several experiments [1.29–1.31]. The more involved challenge is to preserve the
superradiance for continuous output. One promising approach is to create a beam
of excited atoms, which transversely passes the cavity [1.32], similar to the working
principle of the hydrogen maser. The main obstacle here is to obtain the necessary
atomic flux, but this seems technically feasible [1.33]. Another possible realization
is to trap the atoms inside the cavity and repump them incoherently on the clock
transition [1.25]. The main problems here are that the clock transition gets disturbed
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and the atoms are heated by the repumping process.
Anyway, from a basic inspection of the system, continuous light emission from inverted

atoms inside a cavity resembles very much a laser. So why should this realization be
any better, in terms of frequency stability, than a ’normal’ laser? As mentioned in
section 1.1, the main limitation for passive clocks are the length fluctuations of the ULE
cavity. For ’normal’ lasers, with a narrow cavity linewidth and a broad gain medium
bandwidth, usually referred to as the good cavity regime, the same applies. In this
case, the frequency of the emitted photons is governed by the resonance frequency of
the cavity, which in turn is determined by the cavity length. In contrast, the laser
described in this section is in a completely different regime. The linewidth of the
gain medium - the clock transition, is several orders of magnitudes narrower than
the cavity linewidth. Deep in this so-called bad cavity regime, the frequency of the
emitted photons is set by the atomic transition frequency instead of the cavity resonance
frequency. The phase information of the laser is mainly stored in the collective dipole of
the atoms [1.26], this makes the device largely insensitive to cavity length fluctuations,
the current main limitation. Such a laser is predicted to achieve a linewidth at the
millihertz level [1.25, 1.32].

1.3 Outline of this thesis
The focus of this thesis is on the simulation of large atomic ensembles in optical cavities.
In particular, we are interested in the collective cavity induced atomic behavior, but
also in the various excitation possibilities and their consequences for the atoms inside
the resonator.

In chapter 2 we introduce the necessary fundamental tools and phenomena used for
the publications in the following chapters.

Coherently driving both transitions of a V-level atom with very different decay rates
can surprisingly yield almost perfect steady state inversion on the narrower transition.
In chapter 3 we showed a possible realization of a laser utilizing this repumping process,
where we additionally identified regimes with simultaneous cooling.

A well established method to describe large atomic ensembles in cavities is the
cumulant expansion. This approach makes it possible to describe realistic system sizes.
However, deriving the equations and implementing them can be a cumbersome and
error-prone task. To this end, we developed a toolbox which does this automatically.
Some theoretical background, the working principle and many examples of this package
are described in chapter 4.

A still missing piece to achieve continuous operation of a superradiant laser is a
practical repumping mechanism. First of all the process needs to provide the necessary
gain, but it should also not perturb the clock transition and heat the atoms significantly.
In chapter 5 we investigated a realistic multi-level repumping scheme according to the
level structure of strontium-88. We found parameter regimes for a sufficiently large
repumping rate with simultaneously small perturbations and acceptable heating.

In chapter 6 we studied a system similar to a superradiant laser, where basically the
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1.3 Outline of this thesis

incoherent pump is replaced by a coherent transverse drive. We discovered a transition
from cavity sub- to superradiance at 50% excitation in the atomic ensemble, due to an
overall vanishing phase between the atoms and the cavity. Additionally, we proposed
a cavity enhanced Ramsey scheme, utilizing this feature. The transition from cavity
sub- to superradiance, as well as a proof of principle for the Ramsey scheme, are
verified experimentally. Preliminary results from the collaboration between theory and
experiment are shown in chapter 7.

The conclusions in chapter 8 are followed by additional publications completed during
the thesis period: The publication presented in chapter 9 considers motion in a toy
model of a bad cavity laser, where we found regimes for simultaneous lasing, cooling
and trapping. In chapter 10 we focused on imperfections of a superradiant laser, such
as inhomogeneous broadening and varying cavity couplings. Although this publication
would conceptionally fit into the main part, we mention it as additional material, since
the contributions from the author of this thesis were mainly discussions, support and
minor calculations.
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2 Theoretical background

The purpose of this chapter is to introduce the fundamental theoretical concepts
underlying the physical results of this thesis. We start by briefly describing the very
basics of quantum optics, i.e., atoms, photons and their interaction. After this, we deal
with open quantum systems, where we characterize the relevant dissipative processes.
To handle realistic system sizes we specify the cumulant expansion method with a
practical implementation. Then, a more detailed introduction to the calculation of the
emission spectrum is given and we explain the concept of cavity mediated superradiance.
In the final section we utilize almost all of these tools to analyze the properties of a
superradiant laser.

2.1 Building blocks of quantum optics
Quantum optics describes the interaction between atoms and light on the quantum
level. Although the considered systems can be arbitrarily complicated, the elemental
building blocks are simple [2.1, 2.2]. Atoms are condensed to their relevant transitions
as multi-level systems with discrete energies and photons are described as excitations of
quantum harmonic oscillators. Of course, not all systems can be expressed in terms
of multiple levels and harmonic oscillators. However, a large number of problems in
quantum optics are covered by these two concepts or can be reduced to them.

2.1.1 Multi-level atoms
The simplest form of a multi-level atom is a two-level system with a dipole transition
[2.1–2.3]. With the two states |1〉 and |2〉, the transition dipole moment operator can
be written as

d = d21|2〉〈1| + d∗
21|1〉〈2|, (2.1)

where d21 is the dipole matrix element. Without loss of generality d21 is assumed to be
real and we introduce the transition operator σij = |i〉〈j| to express the dipole operator
as

d = d21(σ21 + σ12). (2.2)

Extending this to multi-level atoms is straightforward, by dealing with one transition at
a time. The transition operator σij = |i〉〈j| transfers an atom from state |j〉 to |i〉 and
for i equal to j it represents the projector on the state |i〉. Using the orthonormality
between two distinct states leads to the simple algebraic rule

σijσkl = |i〉〈j|k〉〈l| = δjkσ
il, (2.3)
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2 Theoretical background

with δjk the Kronecker delta. Each state |i〉 of a multi-level atom has a corresponding
energy Ei = ~ωi. For ωi the transition frequency between state |1〉 and |i〉, the energy
of such a free N -level atom can be expressed with the Hamiltonian

Ha =
N∑

i=2

~ωiσ
ii, (2.4)

where we set the energy of the state |1〉 equal to 0 without loss of generality.

2.1.2 Photons

The quantized electromagnetic field, derived from Maxwell’s equations without source,
is described by quantum harmonic oscillators. In particular, one obtains a position r

and time t dependent electric field operator [2.4]

E(r, t) = i
∑

k,λ

Ek

(

ak,λ(t)fk,λ(r) − a†
k,λ(t)f∗

k,λ(r)
)

ek,λ, (2.5)

with the sum over all possible wave vectors k and two orthogonal polarizations λ. The
field amplitude Ek for each mode is given by the frequency ωk = c|k| and the chosen
volume in space V according to Ek =

√

~ωk/(2ǫ0V ), which corresponds to the electric
field of one photon. Boundary conditions determine the spatial dependence of the mode
described by the normalized function fk,λ. The polarization direction ek,λ is orthogonal
to the propagation direction given by the wave vector k. The bosonic creation (a†

k,λ)
and annihilation (ak,λ) operators obey the canonical commutation relation

[

ak,λ, a
†
k′,λ′

]

= δk,k′δλ,λ′✶. (2.6)

An excitation of the harmonic oscillator described by a†
k,λ and ak,λ corresponds to a

photon with frequency ωk and polarization λ. The number of photons in each mode is
given by the operator a†

k,λak,λ, therefore we can intuitively express the energy of the
electromagnetic field as

Hf =
∑

k,λ

~ωk,λa
†
k,λak,λ. (2.7)

A rigorous derivation of the energy for the electromagnetic field [2.4] leads to an additional
term ~ωk,λ/2, which is usually referred to as the energy of the electromagnetic vacuum.
However, it can be neglected, since it is irrelevant for the dynamics of the system.

The mode function of a running plane wave in free space is given by f(r) = eikr. For a
resonator the electric field needs to vanish at the surface of the mirrors. These boundary
conditions lead to standing waves along the axis of a linear cavity. The corresponding
mode function is f(r) = cos(kr), where merely wave vectors fulfilling the condition
|k| = nπ/L, with n an integer and L the distance between the mirrors, are allowed [2.5].
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2.2 Atom-light interaction

If only a single mode of the cavity is relevant, the Hamiltonian (2.7) simplifies to

Hf = ~ωfa
†a, (2.8)

where ωf is the resonance frequency of the single-mode cavity and we omitted the wave
vector and polarization subscripts.

2.2 Atom-light interaction

The interaction of a two-level atom with a light field in the dipole approximation is
described by the interaction Hamiltonian [2.1]

Hint = −d · E. (2.9)

Inserting the expression for the dipole operator (2.2) and the quantized electric field
(2.5) results in

Hint = i~
∑

k,λ

gk,λ

(

σ21 + σ12
) (

ak,λf(r) − a†
k,λf

∗(r)
)

, (2.10)

with gk,λ = −
√

~ωk/(2ǫ0V )d21ek,λ/~. Considering only a single mode of the electro-
magnetic field with frequency ωf results in the quantum Rabi model [2.6]

HR = ~ωaσ
22 + ~ωfa

†a+ i~g
(

σ21 + σ12
) (

af(r) − a†f∗(r)
)

. (2.11)

From the free Hamiltonian H0 = ~ωaσ22 + ~ωfa
†a we obtain the following time depen-

dence for the operators of the uncoupled atom-field system in the Heisenberg picture:

a(t) = a(0)e−iωft, σ12(t) = σ12e−iωat. (2.12)

Thus, one finds that the operator products σ21a and σ12a† rotate at a frequency
|ωa − ωf|, whereas σ21a† and σ12a rotate at ωa + ωf. For a resonant field ωa ≈ ωf
the latter two terms oscillate much faster, which means they quickly average to zero.
Neglecting those terms amounts to the application of the rotating wave approximation
(RWA) [2.2, 2.3, 2.7], which is valid if the condition ωa + ωf ≫ |ωa − ωf|, g is fulfilled.
This leads to the well-known Jaynes-Cummings model [2.8]

HJC = ~ωaσ
22 + ~ωfa

†a+ i~g
(

σ21af(r) − σ12a†f∗(r)
)

. (2.13)

An extension of this model to N two-level atoms is straightforward and results in the
Tavis-Cummings Hamiltonian [2.9]

HTC =
∑

j

~ωjσ
22
j + ~ωfa

†a+ i~
∑

j

gj

(

σ21
j af(rj) − σ12

j a
†f∗(rj)

)

, (2.14)
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2 Theoretical background

with ωj the transition frequency of the j-th atom.
For classical monochromatic light described by an electric field

E(r, t) = iE0

(

f(r)e−iωft − f∗(r)eiωft
)

, (2.15)

the atom-light interaction Hamiltonian within the rotating wave approximation results
in

Hd = ~ωaσ
22 + i~

Ω

2

(

σ21e−iωftf(r) − σ12eiωftf∗(r)
)

, (2.16)

where Ω = −2d21E0/~ is called the Rabi-frequency [2.1, 2.2]. Assuming classical light
corresponds to describing the field by its mean value, this approximation is valid for
coherent light [2.10, 2.11].

2.3 Open quantum systems

In the previous section we introduced the coherent interaction between atoms and light,
where we implicitly assumed a closed system. The time evolution of the state vector
|ψ(t)〉 for a closed quantum system is governed by the time-dependent Schrödinger
equation

i~
d

dt
|ψ〉 = H|ψ〉. (2.17)

However, quantum systems are sometimes, or usually, not perfectly closed, which means
they interact with the environment. This might be undesired if one aims at optimal
control, but it can also be necessary, as the leakage of photons through the mirrors of a
laser cavity. In any case, we need to describe it to predict the correct behavior of the
system. The dynamics of an open quantum system can be calculated by the quantum
master equation [2.12, 2.13]

d

dt
ρ = −i[H, ρ] + L[ρ], (2.18)

for the density matrix ρ, where the Hamiltonian term describes the coherent system
dynamics and the Liouvillian super-operator L keeps track of the dissipative processes.
In the Born-Markov approximation [2.12, 2.13] we can express the Liouvillian in standard
Lindblad form

L[ρ] =
1

2

∑

j

Rj(2JjρJ
†
j − J†

j Jjρ− ρJ†
j Jj), (2.19)

where Rj represents the rate of the dissipative process described by the jump operator
Jj . In the following we introduce the dissipative processes used in the publications of
this thesis, namely atomic and cavity decay, incoherent repumping as well as atomic
and cavity dephasing, see Fig. 2.1.
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2.3 Open quantum systems

Figure 2.1: Dissipative processes. Schematic illustration of the considered dissipative processes.
Atomic and cavity decay is depicted in a), incoherent repumping in b) and c)
indicates the origin of atomic and photon dephasing.

2.3.1 Decay

The origin of decay, the spontaneous emission of a photon from an excited atom or the
loss of a photon through the cavity mirrors, is the interaction of the system with the
environment. The system couples to a bath of oscillators of the electromagnetic field
with infinitely many degrees of freedom, as described in section 2.2. In the case of a
two-level atom the Hamiltonian describing the system and the environment within the
RWA is

H = ~ωaσ
22 +

∑

k,λ

~ωk,λa
†
k,λak,λ + i~

∑

k,λ

gk,λ

(

σ21ak,λf(r) − σ12a†
k,λf

∗(r)
)

. (2.20)

Eliminating the bath degrees of freedom by performing the partial trace on the environ-
ment and considering Markovian processes [2.12, 2.13], which means that there is no
back-action onto the system from the bath, leads to a Liouvillian term in Lindblad form
(2.19) with a jump operator σ12 and rate Γ corresponding to the atomic excited state
decay rate. A detailed derivation can for example be found in [2.1]. The interpretation
of the jump operator σ12 is very intuitive: It acts on the atom in the excited state |2〉
and transverses it to the lower state |1〉. The decay of the cavity field can be derived in
the same way, which results in a jump operator a and a rate κ which determines the
loss rate of the photons. The atomic [2.14] and cavity [2.15] decay rates are given by

Γ =
ω3

aµ
2

3πǫ0c3
and κ = 2π

FSR
F , (2.21)

where µ is the atomic transition dipole, FSR = c/2L the free spectral range of the cavity
with length L and F the cavity finesse. Note that we assumed for these two dissipative
processes that the bath is in the vacuum state, i.e., at zero temperature without any
photons. For an optical frequency ω at room temperature T this is valid since the relevant
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modes of the bath have a vanishing small occupation n̄ = (e~ω/kBT )−1 ≪ 1 [2.1, 2.13].

2.3.2 Repumping

To achieve steady state lasing it is necessary to maintain the inversion in the atomic
ensemble in order to provide gain for the stimulated emission. Unfortunately, this is
not possible with only a coherent drive. We can excite the atoms once by applying a
π-pulse on them, but this does not allow for continuous output. A common way to
create inversion is to utilize decay processes in multi-level atoms. The simplest model
considers a three-level atom with suitable transitions, see Fig. 2.1 b: A transition from
the lower lasing state |1〉 to an upper auxiliary state |3〉 is coherently driven and the
state |3〉 decays fast into the upper lasing state |2〉. If the decay rate of state |3〉 is much
larger than the one of state |2〉, we can adiabatically eliminate state |3〉. This results in
a dissipative process with jump operator σ21 and corresponding rate R depending on
the coherent drive strength, the decay rates and the laser detuning. Additionally, the
repumping process induces a dephasing on the lasing transition and for a not perfectly
resonant drive laser we obtain a frequency shift [2.7, 2.16] on the lower lasing state.
A detailed calculation is shown in the appendix of chapter 5. This publication also
includes a more complicated repumping scheme involving a six-level atom where we
introduce a numerical approach to adiabatically eliminate the auxiliary levels.

2.3.3 Dephasing

External perturbations on the system can lead to fluctuations of the resonance frequency.
Concerning atoms these might originate from varying electric or magnetic fields, resulting
in an effective Hamiltonian for a two-level atom of Ha = ~(ωa + ξ(t))σ22, with a
time-dependent frequency fluctuation ξ(t). For cavities they can, e.g., stem from
thermal fluctuations affecting the cavity length, described by the Hamiltonian Hc =
~(ωc + ξ(t))a†a. Therefore, besides the usual deterministic part HD a stochastic part
ξ(t)HS appears in the Hamiltonian. For white noise frequency fluctuations, obeying the
two-time correlation function [2.13]

〈ξ(t)ξ(t′)〉 = νδ(t− t′), (2.22)

with the Dirac delta function δ and ν the characteristic frequency of the noise, we can
write the Heisenberg equation for a system operator O for such a Hamiltonian as

(S)
d

dt
O = LD[O] + ξ(t)LS[O]. (2.23)

Here LD[O] = i[HD,O] and LS[O] = i[HS,O]. However, we need to interpret Eq. (2.23)
as Stratonovich stochastic differential equation, indicated by (S), and transform it into
Itô form [2.1, 2.13]

(I) d

dt
O = LD[O] +

1

2
νL2

S[O] + ξ(t)LS[O]. (2.24)
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For a stochastic average of Eq. (2.24), indicated by 〈·〉s, the white noise part vanishes
and we are left with

d

dt
〈O〉s = 〈LD[O]〉s +

1

2
ν〈L2

S[O]〉s. (2.25)

The first term in Eq. (2.25) describes the usual time evolution due to the determin-
istic part of the Hamiltonian and from the stochastic part we obtain a contribution
proportional to L2

S[O], called the Itô correction [2.1, 2.13]. Evaluating this term leads to

L2
S[O] = −[HS, [HS,O]] = 2HSOHS − OHSHS −HSHSO. (2.26)

For white noise frequency fluctuations of a two-level atom this corresponds to a Liouvil-
lian with jump operator σ22 and for a single mode cavity we obtain the jump operator
a†a. The corresponding rate is determined by the frequency ν characterizing the noise.

2.3.4 Drive laser phase noise
Such an effective dephasing process can also stem from a fluctuating phase of a laser.
Adding laser phase fluctuations φ(t) to the Hamiltonian of a driven two-level atom
(2.16) leads to

H = ~ωaσ
22 + i

Ω

2

(

σ21e−i(ωlt+φ(t)) − σ12ei(ωlt+φ(t))
)

, (2.27)

where we chose f(r) = 1. Transforming into the (instantaneous) frame of the fluctuating
laser frequency with the unitary transformation

U(t) = ei(ωlt+φ(t))σ22

, (2.28)

according to
H ′ = i~U̇(t)U †(t) + U(t)H(t)U †(t), (2.29)

results in
HI = ~(ωa − ωl)σ

22 + i~
Ω

2

(

σ21 − σ12
)

− φ̇(t)σ22. (2.30)

This Hamiltonian has the same structure, with a deterministic and stochastic part,
as described in the previous section. For white noise frequency fluctuations, fulfilling
〈φ̇(t)φ̇(t′)〉 = νδ(t− t′), we will again obtain an effective dephasing process with jump
operator σ22 and corresponding rate ν.

2.4 Cumulant expansion
The master equation (2.18) fully describes the time evolution of an open quantum
system, nevertheless, solving this equation analytically is usually not possible and exact
numerical approaches are limited by the size of the Hilbert space. For example, the
density matrix of a composite quantum system with N two-level atoms has a size of
22N . This exponential scaling with the constituents restricts full quantum calculations
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to rather small systems. However, very often one is only interested in some specific
operator expectation values. From the master equation (2.18) we can derive the time
evolution of an operator expectation value 〈O〉 as follows: The time derivative of a not
explicitly time-dependent operator can be written as

d

dt
〈O〉 =

d

dt
tr{Oρ} = tr{O d

dt
ρ}. (2.31)

Inserting the master equation (2.18) with the Liouvillian term in Lindblad form (2.19)
we obtain

d

dt
〈O〉 = −i tr{O[H, ρ]}+

1

2

∑

j

Rj

(

2 tr{OJjρJ
†
j }−tr{OJ†

j Jjρ}−tr{OρJ†
j Jj}

)

. (2.32)

Using the cyclic permutation property of the trace we find

d

dt
〈O〉 = i 〈[H,O]〉 +

1

2

∑

j

Rj

(

2〈J†
j OJj〉 − 〈OJ†

j Jj〉 − 〈J†
j JjO〉

)

. (2.33)

Equivalently this equation can be derived from the average of the quantum Langevin
equation [2.13, 2.17].

Using Eq. (2.33) we can directly derive the time evolution for a desired expectation
value. But, one will immediately encounter the problem that this equation depends
on other expectation values, potentially including multiple operators. To be able to
calculate the dynamics, a closed set of equations for all appearing expectation values
would need to be derived. For most systems this procedure leads to an infinite, or
at least huge, set of coupled differential equations. In this straightforward approach
we would again capture the full quantum description, reflecting the master equation.
However, there is a variety of systems featuring only a limited amount of quantum
correlations, which do not require a full quantum model. A measure for the quantum
correlations in a product of n operators O1O2...On is the joint cumulant [2.18]

〈O1O2...On〉c =
∑

p∈P (I)

(|p| − 1)!(−1)|p|−1
∏

B∈p

〈
∏

i∈B

Oi〉 , (2.34)

with I = {1, 2, ..., n}, P (I) the set of all partitions of I, |p| denotes the length of the
partition p, and B runs over the blocks of each partition. A vanishing joint cumulant
indicates that at least one operator in the product is independent of the others. To
make this abstract expression tangible we write it down explicitly for the two cases
n = 2 and n = 3

〈O1O2〉c = 〈O1O2〉 − 〈O1〉〈O2〉 (2.35a)

〈O1O2O3〉c = 〈O1O2O3〉 − 〈O1O2〉〈O3〉 − 〈O1〉〈O2O3〉
− 〈O1O3〉〈O2〉 + 2〈O1〉〈O2〉〈O3〉.

(2.35b)

In general, the joint cumulant of order n, i.e., for the product of n operators, represents
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2.4 Cumulant expansion

the difference between the average of order n and lower orders. Hence, if the n-th order
cumulant is equal to zero, we can express the corresponding n-th order average by
averages of order n− 1 and below. From Eq. (2.34) we derive

〈O1O2...On〉 =
∑

p∈P (I)\I

(|p| − 1)!(−1)|p|
∏

B∈p

〈
∏

i∈B

Oi〉 , (2.36)

where the sum runs over all partitions of I not including I itself. For the two examples
in Eq. (2.35) we obtain

〈O1O2〉 = 〈O1〉〈O2〉 (2.37a)

〈O1O2O3〉 = 〈O1O2〉〈O3〉 + 〈O1〉〈O2O3〉 + 〈O1O3〉〈O2〉 − 2〈O1〉〈O2〉〈O3〉. (2.37b)

Rewriting an average according to Eq. (2.36) is only exact if the corresponding joint
cumulant vanishes. We can also do it if this is not the case, though, it will be an
approximation then, which neglects quantum correlations or equivalently assumes that
the joint cumulant of the operator product is zero. The resulting inaccuracy of this
approximation in the cumulant expansion method is determined by the joint cumulant.
Keeping averages of the product for n operators and approximating all above is called the
n-th order cumulant expansion. Using the cumulant expansion method to approximate
averages to a desired order always leads to a closed set of equations. For a system of N
particles in the n-th order cumulant expansion, the number of equations scales as Nn.

In section 2.5.1 and 2.7 we apply the second order cumulant expansion in two particular
examples. Furthermore, the method has been used in all publications of this thesis,
except for the one in chapter 9.

2.4.1 Practical implementation
The cumulant expansion method is well suited for large systems with moderate quantum
correlations. Examples are cavity QED systems [2.19] as lasers [2.20] and optomechanical
systems in specific regimes [2.21], but also dipole interacting atomic arrays [2.22, 2.23]
or coupled harmonic oscillator systems [2.24]. This expansion was and still is used
successfully to approximate specific systems, but there is one obstacle to its practicality:
In order to solve the equations of motion one needs to derive them first. This might be
a straightforward task, obtaining them from Eq. (2.33) by using operator commutation
relations and then applying the cumulant expansion (2.36) to some desired order,
however, for non-trivial systems it is usually very tedious and error-prone. In many
cases it is not possible in a feasible amount of time. To this end, we created the toolbox
QuantumCumulants.jl [2.17, 2.25], which automatically derives the symbolic equations
and additionally implements them numerically. The underlying concept of the program
is actually quite simple:

The equation of motion for an operator average 〈O〉 of an open quantum system is
implemented according to Eq. (2.33), where the user only needs to specify the operator
(product) O, the Hamiltonian H of the system and a list of jump operators J with
their corresponding rates. To define the Hamiltonian and dissipative processes, it is
possible to create symbolic parameters and the fundamental operators of quantum
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optics, described in section 2.1, are predefined with their commutation relations. These
commutation relations are applied to the operators via the following rules: From the
commutation relation of the bosonic creation and annihilation operator (2.6) we obtain
the rule

aa† → a†a+ 1, (2.38)

which is immediately applied if the expression aa† is found in the equations. This means
these terms are forced to normal ordering. For multi-level atoms the orthonormality (2.4)
between two states is used. Therefore, a product of transition operators is simplified as

σijσkl → δjkσ
il. (2.39)

Hence, it either results in another transition operator or vanishes. After the simplification
on the operator level, the cumulant expansion to a desired order is performed according
to Eq. (2.36). To expand a higher order term by several orders, the cumulant expansion
is applied successively.

A more detailed description of the toolbox’s working principle can be found in
chapter 4 and on the official documentation [2.26].

Choice of rules and operators

The above described rules for the operators have some arbitrariness to them, which
is important to be aware of. For example, we choose normal ordering for the bosonic
operators. To describe photons this seems to be the natural choice to interpret the mean
photon number a†a correctly, however, there might be other systems where anti-normal
(aa†) or symmetric ((a†a+ aa†)/2) ordering is the better choice.

In the case of transition operators we simplify the expression as far as possible. Thus,
there will be at maximum one transition operator per atom in an operator product.
The resulting transition operator can also be a projector, this implies that we keep the
discrete energy structure, which already implies some quantumness. Therefore, it is not
possible to derive fully classical equations for interacting dipoles with the implemented
rule. The related question if, e.g., 〈σ22〉 = 〈σ21σ12〉 is a first or second order term arose
several times. The simple answer to it is that it is just a matter of definition and in any
case one needs to choose the order of the approximation such that it is reasonable for
the investigated system. For many quantum optics systems it has proven advantageous
to consider the above term as a first order one, therefore we choose this convention.

Symbolic sums and indices

A new key extension we have added to the toolbox [2.25] after the publication in
chapter 4 are symbolic sums and indices [2.26]. This allows us to define and solve
systems with multiple elements of the same kind very efficiently. A particular example
is the Tavis-Cummings Hamiltonian (2.14) introduced in section 2.2. Instead of deriving
the equation for each atom individually, we can now derive the equation for the i-th
atom, specified with a symbolic index i. In the end, we can then either evaluate the
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2.5 Spectrum

equations for a specific number of atoms or if we assume that all atoms behave identically
we can scale up the system, which can reduce the number of equations enormously.
With the latter approach it is possible to describe realistic system sizes since the particle
number merely enters as a numerical factor. For this and other new features we refer to
the documentation of the toolbox [2.26].

2.5 Spectrum
A fascinating feature of lasers that distinguishes them from other light sources is their
narrow frequency spectrum [2.27]. For a stationary field the spectrum is given by the
Fourier transform of the two-time correlation function [2.1, 2.28]

S(ω) = Re

[∫ ∞

0
eiωτ 〈a†(t+ τ)a(t)〉dτ

]

, (2.40)

where t is some fixed time at which the system is in the steady state. Therefore, in
order to calculate the spectrum of the laser, we first need to determine the two-time
correlation function of the field 〈a†(t + τ)a(t)〉. To this end, we use the quantum
regression theorem [2.1, 2.29], which states that the expectation value of an operator
product evaluated at different times 〈O1(t+ τ)O2(t)〉 follows the same equation as
〈O1(t+ τ)〉, with respect to τ . For the time evolution of the two-time correlation
function 〈a†(t + τ)a(t)〉 this means, that we can derive the equation for 〈a†(t + τ)〉
and complement all averages with a(t). The equation for 〈a†(t+ τ)a(t)〉 might depend
on other two-time correlation functions and time-dependent expectation values. For
the correlation functions we derive the equations for the additional ones. The time-
dependent expectation values can be treated as constants since we demand to be in a
steady state. To obtain a closed set of equations we use the cumulant expansion. In
section 2.7 we derive the equations for a superradiant laser in a second order cumulant
expansion.

To evaluate the Fourier transformation in Eq. (2.40) we can follow different approaches.
The straightforward way is to calculate the time evolution of the correlation function
and then take the Fourier transform of this. Another possibility is to calculate the
Laplace transform of the correlation function, this is usually much more efficient. Since
a(t) can appear at most once in each operator product, we can in general express the
correlation function equations for a system in steady state as

d

dτ
g(τ) = Mg(τ) + c, (2.41)

where g(τ) is the vector of two-time correlation functions, M a matrix of parameters and
steady state values and c a possible constant inhomogeneity of the differential equation
set. The Laplace transform g̃(s) = L{g(τ)} corresponds to the Fourier transform in
Eq. (2.40) for s = iω. Applying the Laplace transform on Eq. (2.41) leads to

sg̃(s) − g(0) = Mg̃(s) +
c

s
. (2.42)
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2 Theoretical background

Rewriting this expression we obtain an equation of the form Ag̃(s) = b, where A =
s✶ − M and b = g(0) + c/s. Solving this system of linear equations as

g̃(s) = A−1b, (2.43)

which essentially corresponds to inverting the matrix A, can be very efficient and is
usually much faster than the straightforward time evolution approach. In some cases it
can even be solved analytically [2.20].

2.5.1 Drive laser phase noise
To numerically treat quantum optic systems we usually transform into a suitable rotating
frame. In many cases this allows us to eliminate the explicit time dependence in the
Hamiltonian, as in section 2.3.4. Furthermore, we can get rid of the huge optical
frequencies, which are usually orders of magnitude larger than the other frequencies of
the system. Dealing numerically with very small and large numbers at the same time
is disadvantageous, therefore one tries to describe the system in terms of frequency
differences. Calculating the spectrum in a fixed (coherent) reference frame does not
lead to any trouble, all results are simply shifted by the constant frequency of the
reference frame. However, transforming the system into a fluctuating (instantaneous)
rotating frame as we did in section 2.3.4, does not allow for a straightforward calculation
of the spectrum, since there is no constant reference frequency [2.30]. Obtaining the
correct spectrum in that case requires a more careful derivation for the set of correlation
functions:

If avoidable, one does not want to deal with a time-dependent or stochastic Hamilto-
nian. Therefore, we describe the system in the instantaneous rotating frame with the
Hamiltonian HI. Let’s assume that we have already calculate the steady state of the
system in this frame. As mentioned before, we can not use the instantaneous frame to
calculate the spectrum, a rotating frame with constant frequency is required. To make
it more descriptive, we consider the example of a two-level atom inside a cavity, driven
by a noisy laser. This system is described by the Jaynes-Cummings Hamiltonian (2.13)
with an additional classical atomic drive term including phase fluctuations (2.27). In
the laboratory frame we obtain the Hamiltonian (~ = 1)

Hlab = ωaσ
22+ωfa

†a+g
(

σ21a+ σ12a†
)

+i
Ω

2

(

σ21e−i(ωlt+φ(t)) − σ12ei(ωlt+φ(t))
)

. (2.44)

Furthermore, we assume atomic and cavity decay as described in section 2.3.1. Trans-
forming (2.29) the Hamiltonian into the instantaneous frame of the fluctuating laser
with the unitary UI(t) = ei(ωlt+φ(t))(a†a+σ22) yields

HI = −∆aσ
22 −∆fa

†a+g
(

σ21a+ σ12a†
)

+ i
Ω

2

(

σ21 − σ12
)

− φ̇(t)
(

a†a+ σ22
)

. (2.45)

We introduced here the atomic ∆a = ωa −ωl and cavity detuning ∆f = ωf −ωl. Following
the procedure in section 2.3.3 we can rewrite the stochastic part as a dephasing process
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2.5 Spectrum

with jump operator a†a+ σ22, which allows us to solve the dynamics of the system with
a time independent Hamiltonian. As discussed before, to obtain the correct spectrum
we need to go into a rotating frame with a fixed frequency. Therefore, we transform
the Hamiltonian Hlab into the coherent frame of the laser (without the noise term) by
the unitary transformation Uc(t) = eiωlt(a

†a+σ22). We end up with the (time-dependent)
Hamiltonian

HC = −∆aσ
22 − ∆fa

†a+ g
(

σ21a+ σ12
j a

†
)

+ i
Ω

2

(

σ21e−iφ(t) − σ12eiφ(t)
)

. (2.46)

Deriving the equation of the two-time correlation function for the field with this
Hamiltonian, as described in section 2.5, leads to

d

dτ
〈ã†ã0〉 = −

(

i∆f +
κ

2

)

〈ã†ã0〉 + ig〈σ̃21ã0〉. (2.47)

The tilde indicates the coherent rotating frame, we omit the time dependence (τ) and
use the notation ã0 = ã(0) for readability, where we set t = 0. Next, we derive the
equation for 〈σ̃21ã0〉

d

dτ
〈σ̃21ã0〉 = −Γ

2
〈σ̃21ã0〉+Ω〈σ̃22ã0〉eiφ(t)− Ω

2
〈ã0〉eiφ(t)+ig〈ã†ã0〉−2ig〈ã†σ̃22ã0〉. (2.48)

Assuming we want to treat the system in second order, we expand the third order
term 〈ã†σ̃22ã0〉 as usual. Furthermore, undesired terms proportional to eiφ(t) appear in
Eq. (2.48). To deal with them we use the following properties: Averages not depending
on two different times are steady state values. Additionally, we can transform them from
the coherent to the instantaneous frame with the unitary transformation UC→I(t) =

eiφ(t)(a†a+σ22). Thereby we can use the steady state values from the instantaneous frame.
Performing the cumulant expansion to second order and transforming all steady state
values with the unitary leads to

d

dτ
〈σ̃21ã0〉 = −Γ

2
〈σ̃21ã0〉 + Ω〈σ̃22ã0〉eiφ(t) − Ω

2
〈a〉 + ig〈ã†ã0〉

− 2ig
(

〈a†〉〈σ̃22ã0〉eiφ(t) + 〈a〉〈a†σ22〉 + 〈σ22〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ22〉
)

.
(2.49)

Note that we got rid of the factor eiφ(t) in the steady state field term, but we gained
the same factor from the steady state value of 〈a†〉. However, we find in Eq. (2.49) that
the unknown two-time correlation function 〈σ̃22ã0〉 solely appears in combination with
eiφ(t). Therefore, we simply derive the equation for 〈σ̃22ã0〉eiφ(t). From the product rule
of the derivative we obtain

(S)
d

dτ
〈σ̃22ã0〉eiφ(t) = iφ̇(τ)〈σ̃22ã0〉eiφ(τ) +

d

dτ

(

〈σ̃22ã0〉
)

eiφ(t). (2.50)

As described in section 2.3.3 we need to transform this stochastic equation from
Stratonovich to Itô form. For white noise frequency fluctuations, obeying 〈φ̇(t)φ̇(t′)〉 =
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νδ(t− t′), this leads to [2.1, 2.13]

(I)
d

dτ
〈σ̃22ã0〉eiφ(t) = −ν

2
〈σ̃22ã0〉eiφ(τ) +

d

dτ

(

〈σ̃22ã0〉
)

eiφ(t). (2.51)

Evaluating the second term, applying the cumulant expansion and the steady state
transformation procedure as described above, we will find other two-time correlation
functions for which the equations need to be derived. They might also be combined
with a factor of the form e±inφ(τ), where n is an integer. Including these factors in
the derivation and performing the Itô correction as in Eq. (2.51) leads to the following
closed of set equations:

d

dτ
〈ã†ã0〉 = −

(

i∆f +
κ

2

)

〈ã†ã0〉 + ig〈σ̃21ã0〉 (2.52a)

d

dτ
〈σ̃21ã0〉 = −Γ

2
〈σ̃21ã0〉 + Ω〈σ̃22ã0〉eiφ(t) − Ω

2
〈a〉 + ig〈ã†ã0〉

−2ig
(

〈a†〉〈σ̃22ã0〉eiφ(t) + 〈a〉〈a†σ22〉 + 〈σ22〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ22〉
) (2.52b)

d

dτ
〈σ̃22ã0〉eiφ(t) = −ν

2
〈σ̃22ã0〉eiφ(τ) − Γ〈σ̃22ã0〉 − Ω

2

(

〈σ̃21ã0〉 + 〈σ̃12ã0〉
)

−ig
(

〈σ21〉〈ãã0〉e2iφ(τ) + 〈a〉〈aσ21〉 + 〈a〉〈σ̃21ã0〉 − 2〈a〉〈a〉〈σ21〉
)

+ig
(

〈a〉〈a†σ12〉 + 〈σ12〉〈ã†ã0〉 + 〈a†〉〈σ̃12ã0〉e2iφ(τ) − 2〈a†〉〈a〉〈σ12〉
)

(2.52c)

d

dτ
〈ãã0〉e2iφ(τ) =

(

− 2ν + i∆ − κ

2

)

〈ãã0〉e2iφ(τ) − ig〈σ̃12ã0〉e2iφ(τ) (2.52d)

d

dτ
〈σ̃12ã0〉e2iφ(τ) = −2ν〈σ̃12ã0〉e2iφ(τ) − Γ

2
〈σ̃12ã0〉e2iφ(τ) + Ω〈σ̃22ã0〉eiφ(τ)

+2ig
(

〈a〉〈aσ22〉 + 〈σ22〉〈ãã0〉e2iφ(τ) + 〈a〉〈σ̃22ã0〉eiφ(τ) − 2〈a〉〈a〉〈σ22〉
)

−Ω

2
〈a〉 − ig〈ãã0〉e2iφ(τ)

(2.52e)

2.5.2 Filter cavities

An intuitive and straightforward method to calculate the cavity emission spectrum is to
simulate the measurement with frequency filters. This can be implemented by a back
action free weak coupling of filter cavities with different resonance frequencies to the
main cavity [2.31, 2.32]. The distribution of the photon number in the filter cavities
depicts the frequency spectrum. A system described by a Hamiltonian Hsys can be
extend by Nfc filter cavities as

H = Hsys +
Nfc∑

j

ωj
fcf

†
j fj + gfc

Nfc∑

j

(

f †
j a+ fja

†
)

, (2.53)
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2.6 Cavity mediated superradiance

Figure 2.2: Spectrum methods comparison. The spectrum calculated in the coherent frame
matches the filter cavity method. The spectrum calculated in the instantaneous
frame yields a wrong result. The parameters are ∆a = ∆f = 0Γ, g = Γ/2, κ =
200Γ, Ω = 10Γ, ν = 10Γ and κfc = gfc = Γ/50.

with f †
j (fj) the photon creation (annihilation) operator of the j-th filter cavity, ωj

fc

the resonance frequency and gfc the coupling strength of the filter cavities to the main
cavity. For the dissipative processes we need to add the decay of the filter cavities
described by the jump operators f j with photon loss rate κfc equal for all of them. The
bandwidth of the filter cavities κfc sets the frequency resolution and the coupling gfc is
required to be so weak that back action on the system is negligible. This (brute-force)
approach is usually rather computationally intense, however, it has the advantage that
the spectrum can be calculated straightforwardly within an ordinary time evolution.
Additionally, difficulties as in the previous section due to the (instantaneous) rotating
frame do not arise, since the photon numbers in the filter cavities correspond to the
absolute frequencies ωj

fc. Therefore, in principle, it always yields the correct spectrum,
which can be convenient to check the results of more complicated systems [2.33].

In figure 2.2 we compare the spectrum obtained by the filter cavity method with the
Fourier transform, for the example of the atom coupled to the cavity driven by a noisy
laser, described in section 2.5.1. We see that the filter cavity spectrum (blue solid line)
agrees well with the spectrum calculated in the coherent frame (orange dashed). The
small difference stems from the inaccuracy of the filter cavity method, due to the small
but finite values of gf and κf. In contrast, the spectrum calculated in the instantaneous
frame of the fluctuating drive laser (green dashed-dotted line) is completely different.

2.6 Cavity mediated superradiance
In section 2.3.1 we introduced the free space decay of a single excited (two-level) atom,
originating from the interaction with the electromagnetic vacuum modes. For a dilute
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2 Theoretical background

Figure 2.3: Dicke states. The Dicke states for N = 16 are shown. The red arrow indicates
the action of collective decay. States at M = −J (labeled red) can not decay
collectively.

cloud of emitters we can still describe each atom individually, as long as the spacing
between them is sufficiently large. However, the behavior of an excited atomic ensemble
changes drastically, if the distance between the atoms is at the order of the atomic
transition wavelength. In this limit collective emission from fully excited atoms occurs,
which results in a strong and short light pulse with a peak intensity proportional to the
square of the atom number [2.34]. This phenomenon, called superradiance, essentially
stems from the interaction of multiple emitters with a common electromagnetic (vacuum)
mode [2.35].

Achieving superradiance in free space is typically very challenging, due to the required
confinement in the small volume. A convenient way to circumvent this problem is to
use a cavity. Instead of the electromagnetic vacuum modes in free space, the interaction
between the atoms is mediated by a cavity field mode. The crucial advantage is that
the atoms can be widely distributed, due to the periodic long-range interaction of the
standing wave along the cavity axis [2.5].

In the bad cavity regime, where photons inside the cavity are lost immediately such
that reabsorption by the atoms is highly unlikely, we can adiabatically eliminate the
cavity mode. The resulting equations feature conceptionally the same collective decay
process as the optimal free space case described by the jump operator J− =

∑N
j=1 σ

12

[2.36–2.38]. In free space the corresponding dissipative rate is the single atom decay rate
Γ, whereas for the cavity mediated case we obtain the rate CΓ, which corresponds to
the single atom photon emission rate into the cavity, with the cooperativity parameter
C = 4g2

κΓ . Note that the N2 emission enhancement originates from the sum over all
atoms in the jump operator.
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2.7 Superradiant laser

2.6.1 Dicke states
A particularly useful representation to describe the collective behavior of N identical
two-level atoms are the Dicke states |J,M〉 [2.34], the eigenstates of the collective spin
operators

Jz |J,M〉 =
1

2

∑

j

σz
j |J,M〉 = M |J,M〉 (2.54a)

J2 |J,M〉 =
3N

4
+

1

4

∑

j 6=k

[

σ21
j σ

12
k + σz

jσ
z
k

]

|J,M〉 = J(J + 1) |J,M〉 , (2.54b)

with 0 ≤ J ≤ N/2 and |M | ≤ J , where we use the notation of transition operators and
σz

j = σ22
j − σ11

j . These states can be visualized in a plot with J on the x- and M on the
y-axis, leading to a triangle shaped diagram of states [2.37, 2.39]. In figure 2.3 we show
an example for N = 16. Investigating the action of the collective decay operator we
find that it solely reduces M , but leaves J unchanged

J− |J,M〉 =
√

(J −M + 1)(J +M) |J,M − 1〉 . (2.55)

In the visualization of the Dicke triangle this corresponds to a vertical downward line.
From this we see that a state at the lower edge of the triangle (M = −J) can not decay
collectively. Incoherently pumping an atomic ensemble, as described in section 2.3.2,
populates mostly such states with minimal J . This means a non-inverted (M < 0)
incoherently pumped ensemble does not emit a superradiant pulse [2.23, 2.36, 2.37].
For cavity mediated superradiance a very similar behavior can occur for a transverse
coherent excitation of the atoms. Here the alternating sign of the cavity coupling leads
to an effective population of mainly the states, which are subradiant with respect to the
collective cavity emission. Therefore, with a transverse drive, a superradiant pulse will
only appear for coherent excitation which achieves inversion. A more detailed explanation
can be found in the publication of chapter 6, where we showed this phenomenon
theoretically. Preliminary results of an experimental verification are shown in chapter 7.

2.7 Superradiant laser
In this section we introduce the theoretical concept and show the main properties of the
superradiant laser [2.20, 2.40, 2.41]. To this end, we utilize many of the tools developed
so far. A minimalistic model [see figure 2.4] to describe this system features N two-level
atoms coupled to a single mode cavity described by the Tavis-Cummings Hamiltonian
(2.14). To gain inversion the atoms are incoherently pumped with a repumping rate
R and cavity photons are lost very quickly at a decay rate κ. Besides these main
constituents we include the individual decay and dephasing of the atoms with rates Γ
and ν, respectively. Furthermore, we model thermal fluctuations of the cavity mirrors
as white noise resonance frequency fluctuations with a cavity dephasing term specified
by the rate ξ. We derive the equations of motion for this system in a second order
cumulant expansion [2.17, 2.20]. The main system observable we are interested in is the
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Figure 2.4: Schematics superradiant laser. N two-level atoms couple to a single cavity mode
with strength g. The atoms are incoherently pumped, decay and dephase individu-
ally with rates R, Γ and ν, respectively. Cavity photons are lost at a rate κ and
cavity dephasing is characterized by the rate ξ.

cavity photon number 〈a†a〉. Deriving the equation for this and all the other occurring
averages according to Eq. (2.33) leads to the following closed set of equations

d

dt
〈a†a〉 =i

N∑

i

gi〈aσ21
i 〉 − i

N∑

i

gi〈a†σ12
i 〉 − κ〈a†a〉 (2.56a)

d

dt
〈σ22

j 〉 =R
(

1 − 〈σ22
j 〉
)

+ igj〈a†σ12
j 〉 − igj〈aσ21

j 〉 − Γ〈σ22
j 〉 (2.56b)

d

dt
〈a†σ12

j 〉 = −
(
R+ Γ + ν + κ+ ξ

2
+ i∆f

)

〈a†σ12
j 〉 + igj〈a†a〉

(

2〈σ22
j 〉 − 1

)

+i
N∑

i6=j

gi〈σ21
i σ

12
j 〉 + igj〈σ22

j 〉
(2.56c)

d

dt
〈σ12

j σ
21
k 〉 = − (R+ Γ + ν) 〈σ12

j σ
21
k 〉 + igj〈aσ21

k 〉
(

2〈σ22
j 〉 − 1

)

−igk〈a†σ12
j 〉
(

2〈σ22
k 〉 − 1

)

.
(2.56d)

In this derivation we used that an incoherently pumped system is phase invariant,
i.e., terms as 〈a〉 and 〈σ12

j 〉 are and will remain zero for any time. In contrast, a
coherently driven system inherits a prescribed phase and these terms do not vanish.
Solving this system now for realistic particle numbers with millions of atoms is still not
possible, since it would result in billions of equations. However, the number of equations
can be massively reduced by assuming that several atoms behave identically. We
deploy the most drastic reduction, where we assume that all atoms behave identically,
this means 〈σ22

j 〉 = 〈σ22
1 〉, 〈a†σ12

j 〉 = 〈a†σ12
1 〉 and 〈σ12

j σ
21
k 〉 = 〈σ12

1 σ
21
2 〉 for all j and

k. Hence, in this case, we obtain a set of only four coupled differential equations.
Note that the sums in Eq. (2.56a) and (2.56c) become ∑N

i gi〈aσ21
i 〉 → Ng〈aσ21

1 〉 and

24



2.7 Superradiant laser

Figure 2.5: Superradiant laser. (a) Time evolution of the intra-cavity photon number, su-
perradiant pulses can be observed in the transient phenomenon. (b) Emission
spectrum for cavity detuning and dephasing, shows the insensitivity to cavity
length fluctuations. The legend in (a) corresponds to both subfigures.

∑N
i6=j gi〈σ21

i σ
12
j 〉 → (N − 1)g〈σ21

1 σ
12
2 〉.

Besides the photon number we are also interested in the spectrum of the laser. To
this end, we first need to obtain the equation for the two-time correlation function
of the field 〈a†a(0)〉. We derive the equations as described in section 2.5, again in a
second order cumulant expansion, utilizing the phase invariance of the system and
assuming that all atoms behave identically. We obtain the closed set of equations for
the correlation functions

d

dτ
〈a†a(0)〉 = −

(
κ+ ξ

2
+ i∆f

)

〈a†a(0)〉 + iNg〈σ21
1 a(0)〉 (2.57a)

d

dτ
〈σ21

1 a(0)〉 = − R+ Γ + ν

2
〈σ21

1 a(0)〉 − ig
(

2〈σ22
1 〉 − 1

)

〈a†a(0)〉. (2.57b)

For the system in steady state the spectrum can be calculated with the Laplace
transform as described in section 2.5, we obtain

(

〈a†a〉 (s)
〈σ21

1 a〉 (s)

)

=

(

i∆f − κ+ξ
2 iNg

−ig(〈σ22
1 〉0 − 1) −R+γ+ν

2

)−1( 〈a†a〉0

〈σ21
1 a〉0

)

, (2.58)

where the subscript 0 indicates the steady state of the averages. This leads to the
analytic solution for the spectrum

S(∆) = 〈a†a〉 (i∆) = Re




〈a†a〉0

(

i∆ + R+Γ+ν
2

)

− igN 〈σ21
1 a〉0

(

i∆ + R+Γ+ν
2

) (

i∆ + κ+ξ
2 − i∆f

)

− g2N 〈σ22
1 〉0



 . (2.59)

Note that we are in the rotating frame of the atomic transition frequency ωa, therefore
the spectrum is also shifted by this frequency.
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Figure 2.5(a) shows the dynamics of the photon number. A noticeable feature of it
are the decreasing pulses, which can be explained in the Dicke triangle picture: The
incoherent pump populates mainly states with minimal J at the edge of the triangle. For
a non-inverted ensemble these states are subradiant with respect to the collective cavity
mediated decay, however, as soon as a certain inversion is reached a superradiant pulse
occurs, which deexcites the atoms. This process repeats several times until a steady
state is reached. In figure 2.5(b) the spectrum is shown. Besides the narrow linewidth
close to the optimal value of FWHM = 4g2/κ, we also see the intriguing insensitivity
to cavity resonance frequency changes. For a cavity detuning of ∆f = 2500Γ (orange
dashed line) the central lasing frequency is merely changed by ∆ = 1Γ. For a ’normal’
good cavity laser the peak of the spectrum would directly follow the cavity detuning.
This feature is also visible for the cavity dephasing ξ = κ (green dashed-dotted line).
For a ’normal’ laser the linewidth would approximately be determined by ξ, here the
linewidth is almost not affected, it even becomes a little bit narrower.

We used QuantumCumulants.jl to derive and solve the equations, a similar example
(without cavity dephasing term) can be found on the documentation of the toolbox [2.26].
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Simultaneous strong coherent pumping of the two transitions of a V-level
atom with very different decay rates has been predicted to create almost
perfect inversion on the narrower transition. Using the example of the
blue and red transitions in Strontium we show that for suitable operating
conditions the corresponding resonant gain can be used to continuously
operate a laser on the narrow transition. In particular, for a strong detuning
of the pump field with respect to the narrow transition, coherent laser
emission occurs close to the bare atomic transition frequency exhibiting only
a negligible contribution from coherent pump light scattered into the lasing
mode. Calculations of the cavity output spectrum show that the resulting
laser linewidth can get much smaller than the bandwidth of the pump light
and even the natural linewidth of the narrow atomic transition. Its frequency
is closely tied to the atomic transition frequency for properly chosen atom
numbers. Simulations including atomic motion show Doppler cooling on the
strong transition with minor motion heating on the lasing transition, so that
continuous laser operation in the presence of a magneto-optical trap should
be possible with current experimental technology.
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3.1 Introduction
It has been a longstanding dream of AMO physics to implement an active optical
frequency standard by operating a continuous laser on a narrow atomic transition in
close analogy to microwave masers [3.1–3.3]. This new class of lasers would exhibit superb
accuracy, precision, and robustness against thermal noise [3.4, 3.5]. In particular, in view
of the recent development and outstanding success of optical atomic clocks, worldwide
efforts towards implementations of such an active optical clock have enormously grown
in the past few years [3.6–3.10]. This was further fueled by the prospects of superior
stability and accuracy theoretically predicted for superradiant clock lasers [3.5, 3.11–3.13].
Since in such bad-cavity lasers the phase coherence of the system is stored in the atomic
gain medium, the laser setup is largely insensitive to technical fluctuations for an
isolated atomic gas. In particular, thermal fluctuations of the cavity mirrors [3.14] are
strongly suppressed. An important challenge that hinders the further development in
this direction lies in achieving the necessary steady-state inversion of such a narrow
transition: the implementation of efficient and minimally perturbative pump schemes
proves extremely difficult. Thus, finding a suitable driving mechanism constitutes a
central issue for the realization of highly stable active optical frequency standards [3.15].

One possible route create a continuously inverted intra-cavity gain medium is to send
a sufficiently dense beam of excited atoms through a cavity [3.16, 3.17]. In this process
a π-pulse is applied to the atoms just before they enter the lasing region. However, such
a setup requires a cold and dense atomic beam which has to be perfectly controlled.
Furthermore, the coherence can only be stored within the part of the atomic medium
that is within the active lasing region, which requires a high intra-cavity atom number.
Therefore, finding a mechanism to create steady-state inversion by repumping atoms
within the cavity is highly desirable since this would allow straightforward continuous
operation.

Unfortunately, inversion on a transition cannot simply be achieved by coherent
pumping as stimulated emission always compensates absorption. However, in Ref. [3.18]
a surprising mechanism leading to steady-state population inversion on the narrower
transition of a V-type atom via coherent driving was shown theoretically. In the model
considered therein, both transitions of the V-level atom are driven coherently and
no direct decay channel between the two excited states is present, as depicted in Fig.
3.1(a). To the best of our knowledge, this scheme was so far not shown experimentally.
Interestingly, lasing using a V-level system was recently observed experimentally [3.19].
While the pump mechanism for this virtual-state lasing appears very similar at first
sight, it turns out that the system is operated in a distinctly different parameter regime,
which leads to anti-Stokes Raman gain with no inversion on the narrow transition.

While the appearance of inversion on the narrow transition has already been theoreti-
cally shown, the usefulness of this unconventional driving scheme in a lasing setup [see
Fig. 3.1(b)] remained an open question. The aim of this paper is to address precisely
this point: we start by reviewing the driving scheme. Then, we show that steady-state
inversion can still be achieved for pump lasers with a realistic spectral linewidth far
above the natural linewidth of the narrow atomic transition. We proceed by coupling
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Figure 3.1: Continuous lasing of a driving V-type atom. In the sketch (a) we show the considered
coherently pumped V-level system. Population inversion can be achieved on the
narrower transition, which in our case is the transition |1〉 ↔ |2〉 with a negative
detuning on the broad transition, ∆3 < 0, and ∆2 > 0. (b) An ensemble of such
atoms is then placed inside a cavity and the narrow transition is coupled to the
cavity mode with coupling strength g. For later reference we show the frequency
hierarchy in the parameter region needed for lasing action in (a). Note that Γgain

2

denotes the power-broadened transition |1〉 ↔ |2〉 which provides the gain for
lasing.

the inverted, narrow transition to an optical cavity and show that the system behaves
like a laser with a clear threshold for sufficient gain with increasing atom number. As
an important feature we predict that the spectral linewidth of the output laser light can
be well below that of the narrow transition and the pump light. Note, however, that
even though the linewidth of the cavity we consider is much larger than the natural
linewidth of the narrow transition, we do not operate in the typical low intensity bad
cavity regime: due to the power broadening induced by the strong driving laser the
effective linewidth of the gain medium is much larger than that of the optical resonator.
Thus, the system resembles more a conventional laser than a superradiant one.

Another important aspect for stable operation of our laser is the thermal back-action
of lasing on the gain medium: this includes heating due to optical pumping or photon
recoil from spontaneous emission, which causes line broadening as well as particle loss
via heating in the gain medium. Hence, we provide an estimate of these effects for the
considered unconventional driving scheme. We show that Doppler cooling from the two
pump lasers occurs. Therefore, for operating parameters that allow lasing (even though
not optimal ones), we find that the kinetic energy of an atomic ensemble subjected to
the driving scheme is limited to the Doppler temperature of the broad transition, which
should allow stationary operation.

3.2 Steady-State Population Inversion via Coherent Driving

In this section, we provide a brief review of the driving scheme from Ref. [3.18]. Moreover,
we investigate the influence of a finite pump laser linewidth and the time scale of the
process. Note, that the key point is that population inversion can be achieved without
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Figure 3.2: Steady-state inversion of a V-level atom. The figures show the population difference
of the narrow transition |1〉 ↔ |2〉 as a function of both driving laser detunings (a)
and Rabi frequencies (b), respectively. Red areas indicate population inversion.
The parameters when kept constant are ∆2 = 5Γ3, ∆3 = −1Γ3, Ω2 = 0.5Γ3 and
Ω3 = 0.5Γ3.

a direct irreversible process that causes gain in the excited state. Rather, the scheme
here is based on an indirect incoherent process [3.18].

We consider a V-level atom, which is coherently pumped on both transitions, as
depicted in Fig. 3.1(a). The ground state is denoted by |1〉 and the two excited states
by |2〉 and |3〉. Decay from an excited state |i〉 to the ground state |1〉 occurs at a rate
Γi. Each transition |1〉 ↔ |i〉 is driven coherently with the respective Rabi frequency Ωi.
The difference of the driving laser frequency ωℓi and the atomic resonance frequency
of a transition ωi is given by the detuning ∆i = ωℓi − ωi. The time evolution of the
density matrix ρ for this system is described by the master equation

ρ̇ = −i[H, ρ] + L[ρ]. (3.1)

In the rotating frame of both pump lasers the Hamiltonian reads

H =
∑

i={2,3}

−∆iσii + Ωi(σi1 + σ1i) (3.2)

with the atomic operators defined by σij := |i〉〈j|. The dissipative processes are
accounted for by the Liouvillian in standard Lindblad form. For the decay from an
excited state |i〉 to the ground state |1〉 the Liouvillian term reads

LΓ[ρ] =
∑

i={2,3}

Γi

2
(2σ1iρσi1 − σiiρ− ρσii) (3.3)

Let us stress here again that there is no decay channel from |3〉 to |2〉 or vice versa.
A necessary property for the V-level atom to be able to exhibit steady-state population
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inversion with this scheme, is that the atom needs to have a big ratio between the two
decay rates. In our case we choose the transition |1〉 ↔ |2〉 to be the narrower one,
i.e. Γ3/Γ2 ≫ 1. For example, in the case of 88Sr we get a ratio of Γ3/Γ2 ≈ 4266 for
the transitions |1〉 ≡ 1S0, |2〉 ≡ 1P1, and |3〉 ≡ 3P1, with the corresponding decay rates
Γ2 = 2π7.5kHz and Γ3 = 2π32MHz, respectively. For 174Yb the ratio for the same
transitions is approximately Γ3/Γ2 ≈ 160. This is still sufficient to create population
inversion, but leads to a lower maximal steady-state population inversion compared to
88Sr. In general, a larger ratio of the decay rates leads to a higher maximal population
inversion. Note, that through this pumping scheme steady-state population inversion
can only be achieved on the narrower transition. In the following calculations, we will
always use the case of 88Sr, i.e. with a decay rate ratio of Γ3/Γ2 = 4266.

Using the above Hamiltonian Eq. (3.2) and Liouvillian Eq. (3.3), we compute the
steady state of the system. Fig. 3.2 shows scans of the population difference 〈σ22〉−〈σ11〉
over tunable system parameters, namely both detunings and Rabi frequencies. We can
see that it is possible to achieve an inversion of almost 100% for 88Sr. Note, that all
parameters are in units of Γ3. Hence, a relatively large Rabi frequency on the transition
|1〉 ↔ |2〉 (Ω2 & 0.1Γ3) is needed to achieve a significant population inversion.

Investigating the inversion when varying the detunings [Fig. 3.2(a)], we see that for a
given ∆2 the minimum is always at ∆3 = ∆2. The scan over different Rabi frequencies
[Fig. 3.2(b)] shows that there is a threshold which the driving amplitudes have to
surpass in order to achieve population inversion. Yet, there is also an upper limit: if
either Rabi frequency becomes much larger than all other frequencies in the system, one
simply obtains the result of a strongly driven two-level transition; i.e., the population
is distributed equally between the ground state and the strongly driven upper level.
If both Rabi frequencies become extremely large simultaneously, half the population
accumulates in the ground state, while the excited states are populated with a quarter
each.

Note also, that the symmetry in the detunings is just due to the freedom of choice
zero-point energy (direction of the rotating frame; ∆̃i → −∆i).

3.2.1 Effects of Driving with a Finite Laser Linewidth
The driving term in the Hamiltonian Eq. (3.2) assumes lasers with an infinitely small
linewidth. Certainly, this is not always a good assumption for real experimental setups.
In particular, the linewidth of transitions in clock atoms (such as the ones considered
here) can be much smaller than that of a driving laser. Thus, we study the influence of
a finite pump laser linewidth on the system. A finite linewidth νi of the driving laser
on the transition |1〉 ↔ |i〉 can be modelled by an effective atomic decoherence process
in the form of dephasing [3.20, 3.21]. The Liouvillian for such a process is

Lνi
[ρ] =

νi

2
(2σiiρσii − σiiρ− ρσii). (3.4)

In Fig. 3.3(a), we see that for laser linewidths up to the order of 10Γ2 the population
difference stays almost the same. This is a consequence of the Rabi frequency Ω2 being
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Figure 3.3: Laser linewidth influence and process time scale. In figure (a) we can see that for
ν2 = 10Γ2 the population difference 〈σ22〉−〈σ22〉 is still almost the same. The blue
solid line is for ν3 = 0 and the dashed lines are for ν3 = 0.5Γ3. Since Γ3 ≫ Γ2, the
linewidth ν3 can be neglected in comparison to ν2. The parameters are ∆3 = −Γ3,
Ω2 = 0.5Γ3, Ω3 = 0.5Γ3 and the blue circles indicate the values for ∆2 in (b).
Figure (b) shows that the steady state can be reached much faster if ∆2 is closer to
zero. Here, we have ν2 = ν3 = 0, and the black dots indicate the t95 data points.

much larger than the pump laser linewidth ν2. Only with a dephasing at the order of
100Γ2, we start to see a significant reduction of the maximal population inversion. Hence,
the laser on the narrower transition does not need to be extremely narrow in order to
excite the atom, which is advantageous in experimental setups. Furthermore, a linewidth
of the laser on the broader transition of up to several hundred Γ2 (ν3 = 0.5Γ3 ≈ 2000Γ2)
has almost no impact on the state population. This is expected since Γ3 ≫ Γ2.

3.2.2 Time scale

For some applications it is necessary or useful to create the population inversion on a
shorter timescale. In Fig. 3.3(b) the time evolution of the population difference for
different values of ∆2 is shown. First of all we can see that the timescale is determined
by Γ2 rather than Γ3. Thus, the time needed to reach the steady-state population
inversion can be quite long, e.g. for clock atoms with decay rates in the mHz-regime.
Furthermore, we also see that the time strongly depends on ∆2. The closer ∆2 is to zero,
the faster the steady state can be reached. However, this can cause a lower population
inversion.

In order to quantitatively compare the times needed to reach the steady state, we
introduce the variable t95, which is the time at which the population inversion exceeds
95% of its steady-state value. By choosing the lowest possible value for ∆2 we can
reduce t95 by up to one magnitude compared to the case with the highest inversion. To
further decrease t95 we can establish a bigger effective decay rate Γeff

2 > Γ2, which then
determines the time scale. This can be achieved by, for example, creating an additional
decay channel from |2〉 to |1〉. Since |3〉 decays into |1〉 with Γ3 ≫ Γ2 we could open
an additional decay channel for |2〉 if it is possible to incoherently drive the atom from
|2〉 to |3〉. The corresponding rate needs to be Γ23 ≈ (M − 1)/MΓ2 in order to have
M -fold faster decay from |2〉. This is valid as long as Γeff

2 ≪ Γ3 holds.
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3.3 Continuous Stationary Lasing

We proceed by considering an ensemble of V-type atoms placed inside an optical
resonator, as shown in Fig. 3.1(b). Since inversion on the narrow transition can be
achieved using the driving scheme, the atoms act as gain for the field inside the resonator.
In the following, we investigate the properties of the output light and show that we
obtain continuous lasing.

Consider N V-level atoms inside a cavity, each of which couples with a rate gj to the
cavity field via the transition |1〉 ↔ |2〉. The Hamiltonian is given by

H = −∆ca
†a+

N∑

j=1

gj(a†σj
12 + aσj

21) +
∑

i={2,3}

N∑

j=1

−∆j
iσ

j
ii + Ωj

i (σj
i1 + σj

1i), (3.5)

where ∆c = ωℓ2 − ωc is the detuning between the cavity resonance frequency ωc and
the laser frequency ωℓ2. The cavity photon creation (annihilation) operator is denoted
by a† (a) and the superscript index j specifies the j-th atom. Photons leaking through
the cavity mirrors at a rate 2κ give rise to an additional Liouvillian term

Lκ[ρ] = κ(2aρa† − a†aρ− ρa†a). (3.6)

For individually decaying atoms, the same decay process as described in Eq. (3.3) applies
to each atom. Thus, we have

LNΓ[ρ] =
∑

i={2,3}

Γi

2

N∑

j=1

(2σj
1iρσ

j
i1 − σj

iiρ− ρσj
ii), (3.7)

for the decay processes of both excited states. If we assume that all atoms are driven
by the same laser, we obtain the following dissipative processes due to the finite laser
linewidth (see 3.6.1 for details). On the transition |1〉 ↔ |3〉 we get a dephasing with

LNν3
[ρ] =

ν3

2
(2S3ρS3 − S2

3ρ− ρS2
3), (3.8)

whereas on the transition |1〉 ↔ |2〉 we have

LNν2
[ρ] =

ν2

2
(2(a†a+ S2)ρ(a†a+ S2) − (a†a+ S2)2ρ− ρ(a†a+ S2)2), (3.9)

where Si =
∑N

j=1 σ
j
ii is the collective atomic operator. The additional term (a†a) in

Eq. (3.9) is due to the shared rotating frame of the atom and the cavity. The full
Liouvillian for the lasing setup then reads

Llaser[ρ] = Lκ[ρ] + LNΓ[ρ] + LNν2
[ρ] + LNν3

[ρ] (3.10)

Solving the master equation for more than just a few atoms is an impossible task
due to the exponential scaling of the Hilbert space with the atom number. Therefore,
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Figure 3.4: Single atom emission spectrum. The peak at the atomic resonance frequency
(ω = ω2) has a FWHM of approximately Γgain

2 = 614Γ2, and the smaller peak
at the pump laser frequency (ω = ωℓ2 = 5Γ3 + ω2, see inset) of FWHM ≈ 15Γ2.
The red, dashed line in the inset indicates the driving laser frequency ωℓ2. The
parameters are ∆2 = 5Γ3, ∆3 = −1Γ3, Ω2 = 0.5Γ3, Ω3 = 0.5Γ3 and ν2 = ν3 = 0.
This single atom emission spectrum was calculated with a master equation approach,
using the Wiener-Khinchin theorem [3.23].

we employ a second-order cumulant expansion [3.22] to calculate the time evolution of
average values of interest. Furthermore, we assume that all atoms couple equally to
the cavity. Exploiting the symmetry of the system renders N a constant factor, which
does not change the number of equations one needs to solve. This allows us to solve
the equations of motion for a large number of atoms. The most relevant second-order
equations can be found in appendix 3.6.3.

3.3.1 Lasing Threshold

As a first step, we compute the normalized power spectral density S(ω) of a single atom
when it is subject to the driving scheme. This gives us a general idea of what to expect
for the resulting lasing output.

Due to the strong coherent driving amplitude, a considerable power broadening on
the otherwise narrow transition is induced. This transforms the naturally narrow gain
medium into a relatively broad one, see Fig. 3.4. Thus, with respect to the power-
broadened linewidth, the resulting laser operates in the good-cavity regime (κ ≪ Γgain

2 ).
In general, the strong coherent drives lead to distinct energies of multiple dressed states,
i.e. they induce considerable ac-Stark shifts. For example, for the parameters chosen
in Fig. 3.4, we see that the laser gain peak is slightly shifted from the bare resonance
frequency ω2. Furthermore, we observe an additional small and broad peak to the left
of the laser gain frequency, which is the signature of a dressed state. The other small,
but narrow peak (linewidth ∼ 15Γ2) in Fig. 3.4 (see inset) is located at the frequency
of the pump laser (ω = ωℓ2) and can therefore not be used for lasing. A large amount
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Figure 3.5: Laser threshold behaviour. The threshold behaviour of the cavity photon number
n on the atom number N is shown in the figure (a) and the population inversion
〈σ22〉 − 〈σ11〉 for the same dephasings (ν ≡ ν1 = ν2) and number of atoms is shown
in (b). The parameters are ∆2 = 5Γ3, ∆3 = −1Γ3, Ω2 = 0.5Γ3, Ω3 = 0.5Γ3,
∆c = ∆2 (ωc = ω2), g = 2Γ2 and κ = 50Γ2.

of photons from the pump laser would be coherently scattered into the cavity. At the
same time, the largest amount of emitted power is far detuned from any driving laser.
Coherent scattering of the driving laser into the cavity is therefore suppressed. This
already indicates that lasing can indeed be achieved at this frequency.

Making use of the inversion scheme on the narrow transition results in a steady state
of the optical cavity featuring a potentially large number of photons. Therefore, the
optical resonator provides a continuous output. In Fig. 3.5 we investigate the behaviour
of the system with an increasing number of atoms N . We find that the system exhibits
a threshold, as can be clearly seen in Fig. 3.5(a), where we plot the steady-state photon
number inside the cavity. Once the threshold is passed, the number of photons inside
the cavity (and hence the lasing power) rapidly increases. The threshold atom number
is approximately N ≈ 12000 for ν1 = ν2 = Γ2 (see inset). For stronger dephasing a
larger gain medium is required in order to sustain the lasing operation. Therefore, the
number of atoms needed to pass the threshold increases. This can also be seen from Fig.
3.5(b), where the population inversion per atom is depicted. For stronger dephasing,
the inversion decreases and thus the gain provided by each atom is reduced. The key
observation, however, is that the threshold can still be passed almost regardless of the
linewidth of the driving lasers used in the inversion scheme.

In order to avoid coherent scattering of photons from the pump laser on the transition
|1〉 ↔ |2〉 into the cavity, we need to ensure that the laser is far detuned from the
cavity resonance frequency. Because of this, we chose a large detuning of ∆2 = 5Γ3, at
which the inversion scheme also works well. Fig. 3.6(a) shows the amount of coherently
scattered photons |〈a〉|2 in comparison to the total photon number n in the cavity as
a function of ∆2. We see, that if the detuning ∆2 is small, a considerable amount of
photons enter the cavity via coherent scattering. Moreover, we can see that the chosen
value for ∆2 is not optimal. The cavity photon number therefore is not maximal. If we
change ∆2 from 5Γ3 to e.g. 2Γ3, the photon number would in fact increase by almost

35



3 Publication: Continuous narrowband lasing with coherently driven V-level atoms

0 1 2 3 4 5
∆2/Γ3

10−2

10−1

100

101

102

103

104
(a)

n

|〈a〉|2

−2000 −1000 0 1000 2000
(ω2 − ωc)/Γ2

0

200

400

600

800

1000

1200

n

(b)

N = 50000, ∆2 = 5.0Γ3

N = 25000, ∆2 = 5.0Γ3

N = 25000, ∆2 = 3.5Γ3

Figure 3.6: Stimulated emission of photons. Figure (a) shows the steady-state average photon
number n and the coherent fraction of photons |〈a〉|2 inside the cavity as a function
of the detuning ∆2. The cavity is always on resonance with the unperturbed atomic
transition frequency (∆c = ∆2). If ∆2 is small, coherent scattering of photons into
the cavity is more likely to occur. In figure (b) the photon number n is plotted as
a function of the detuning between the atomic transition frequency and the cavity
resonance frequency ω2 − ωc = ∆c − ∆2. For the maximum photon number the
cavity needs to be blue detuned from the atoms (ωc > ω2). The parameters when
kept constant for both subfigures are the same as in Fig. 3.5 for N = 50000.

one order of magnitude, still keeping the coherently scattered photon number sufficiently
low.

Fig. 3.6(b) shows that, if the cavity is blue detuned from the atomic transition
frequency, the photon number can further increase. Of course, if the cavity is too far
off-resonant, the photon number almost vanishes. The three different sets of parameters
considered, indicate that above threshold an increasing atom number N and a decreasing
pump laser detuning ∆2 shift the optimal cavity resonance frequency towards the atomic
resonance frequency.

3.3.2 Cavity Emission Spectrum

The steady-state cavity power spectral density can be calculated as the Fourier transform
of the first order correlation function g1(τ) = 〈a†(τ)a(0)

S(ω) =

∫ ∞

0
dτg1(τ)e−i(ω)τ . (3.11)

Using the quantum regression theorem [3.24] we can calculate the time evolution of the
correlation function g1(τ) with a second order cumulant expansion. In appendix 3.6.1
one can see that the time evolution for the laser systems with finite pump laser linewidth
have been calculated in a fluctuating rotating frame (U(t) = e

i(ωℓ2t+φ(t))(a†a+
∑N

j=1
σj

22
),

instantaneous frame). But since we want to obtain the spectrum with respect to a stable
monochromatic reference frequency we are only allowed to transform the system into a
non-fluctuating rotating frame (e.g. U(t) = e

iωℓ2t(a†a+
∑N

j=1
σj

22
), coherent frame) [3.25].
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Figure 3.7: Spectral properties of the cavity. Figure (a) shows a typical (normalized) spectrum
S(ω) above threshold, where we chose N = 50000 and ν = 10Γ2 (black circles in
(b) and (c)). The FWHM (0.35Γ2) and the peak position δp (22.9Γ2) are indicated.
Note that the spectrum is plotted with respect to the atomic transition frequency.
The reduction of the laser linewidth with increasing cavity photon number is
plotted in (b). And (c) shows the shift of the peak position due to a stark shift
caused by large cavity photon numbers. The legend in (b) is for all three plots.

The set of equations to calculate the correlation function and a detailed derivation is
shown in appendix 3.6.4 and 3.6.2, respectively.

The properties of the cavity emission spectrum are depicted in Fig. 3.7. The most
significant result here is that a FWHM below Γ2 can be reached, even if the linewidths
of the driving lasers are above 100Γ2. Hence, a narrow bandwidth laser can be achieved
with relatively broad pump lasers. Furthermore, the system does not rely on a direct
decay channel into the lasing transition, as opposed to conventional laser systems. Only
a V-level structure is necessary, which can be often found in rare earth atoms, commonly
used in optical clocks. Let us stress here, that we assumed an ideal model with all
atoms fixed at the cavity field anti-nodes.

As expected for a conventional laser, the FWHM is approximately given by the cavity
linewidth 2κ for small photon numbers [see Fig. 3.7(b)]. Above threshold, where the
photon number is large, it reduces with FWHM(n) ∼ 1/n. This behaviour is well-know
in the case of good-cavity lasers [3.1]. In Fig. 3.7(c), we can see that the peak position
shows an almost linear dependency on the photon number, if the latter is large. This is
caused by an ac-Stark shift due to the cavity field. In general we find that the spectral
properties are very similar to those of a conventional laser. For example, also the cavity
pulling coefficient above threshold is dδp(∆c)/d∆c ≈ 1.

The FWHM shows an unexpected behaviour for ν = 0 at high photon numbers.
The most likely reason for this is that the second order cumulant expansion reaches
its limits there. The fact that this happens only for ν = 0 is a good indicator: the
dephasing destroys the coherences and therefore makes the system more classical, i.e.
the approximation is more accurate. By keeping specific third order terms as e.g.
〈a†aσ22〉 [3.26] one may get rid of this inaccuracy. However, the equations listed in the
appendix are already quite lengthy; taking third order corrections would ultimately go
beyond the intended scope of this work.
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3.4 Cooling
Another point of interest for the stability of continuous lasing operation is cooling of
the atoms. On the one hand, this ensures that the atoms stay in the cavity as long
as possible thereby providing gain. On the other hand, heating will generally cause
noise and broadening of the gain medium, which will have a detrimental impact on the
spectral properties of the laser.

Therefore, we consider the impact of the inversion scheme on the atomic motion in
this section. To this end, effects of photon recoil from spontaneous emission events are
taken into account. This allows us to estimate the temperature of the gain medium
when subjected to the two driving lasers.

We employ a Monte-Carlo wave function (MCWF) approach [3.27, 3.28], where we
treat the atomic motion as classical variables. In the MCWF method, the norm of the
state vector decreases over time. Once the norm decreases below a certain (randomly
chosen) value, a quantum jump occurs. In our approach, we include an additional
momentum kick whenever a jump occurs.

In the following, we restrict the atomic motion to two spatial dimensions. The pump
lasers are considered to be aligned perpendicularly, in directions determined by their
respective wavevectors ki, respectively (i.e. k2 · k3 = 0). Furthermore, we neglect the
influence of the cavity field in these calculations. In the case of many photons inside the
cavity this assumption may be far from ideal. However, note that the lasing operation
is optimal (maximal output power) when the cavity is blue detuned from the atomic
transition frequency, as shown in [Fig. 3.6(b)]. Therefore, the cavity would effectively
provide an additional cooling mechanism [3.29, 3.30]. Thus, neglecting the cavity leads
to higher final temperatures, which provides a sufficient estimate.

Since the atoms do not interact with one another, we repeatedly compute trajectories
of the particle motion for a single atom only. The considered system is modeled as
follows: the internal atomic structure is treated quantum mechanically, while the
motional degrees of freedom are assumed to be fully described by their average values.
This assumption is well justified if the momentum of the atom is large compared to the
momentum of a single photon. The Hamiltonian of this system reads

H =
∑

i={2,3}

−∆iσii + Ωi cos(ki · r)(σi1 + σ1i), (3.12)

where r is the atomic position vector in the plane spanned by the wavevectors. The
atomic motion is described by the classical equations of motion for the velocity

ṙ =
p
m
, (3.13)

and the forces acting on the atom

ṗi = kiΩi sin(ki · r)2Re 〈σ1i〉 + ξi(t). (3.14)

The terms ξi(t) account for the momentum kicks due to the spontaneous emission of a
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photon. Whenever a jump from an excited state |j〉 to the ground state occurs in the
Monte Carlo trajectory, we add the recoil momentum kj with a random direction to
the particle’s momentum vector. In our case, we project the three dimensional random
momentum vector with length kj along the axis determined by the lasers wavevectors.
In particular, we have

ξi(t) = si(t)
∑

j={2,3}

kjδ(t− trec
j ), (3.15)

where si(t) is the i-th component of a random, three-dimensional unit vector. Fur-
thermore, trec

j denotes any point in time at which a jump from the j-th level occurs.
The dissipative processes are the same as described before in equations Eq. (3.3) and
Eq. (3.4).

In Fig. 3.8 we plot the time evolution of the particle’s kinetic energy and of the
population inversion. For the lasing parameters used before (blue lines) we see that
the pump on the lasing transition slowly heats the particles. However, the pump on
the broader transition cools them quite well. The lasing transition is still inverted, but
the population inversion is significantly decreased. The main reason for this is that, on
average, the particle feels a much weaker pump field, since they are not always located
at the field maxima. This could be circumvented by simply increasing the laser power.
The second set of parameters (orange lines) shows that it is possible to achieve much
better cooling on both transitions, and also a larger population inversion. Specifically,
the cooling rate is much larger. Unfortunately, these parameters are not suitable for
lasing: the comparably small detuning would lead to substantial coherent scattering of
the driving laser into the cavity.

Additionally, for the parameters where lasing works well, we find that the finite
linewidth of the driving laser rarely affects the particle motion. In the case of optimal
cooling, however, the final kinetic energy as well as the cooling time scale is significantly
increased. Note also, that the final temperature along the k3-axis is on the order of the
Doppler temperature of the broader transition [kBT ≈ Γ3/2 (blue) and kBT ≈ 3Γ3/10
(orange)]. The Doppler broadening ∆ωD corresponding to this temperature kBT ≈ Γ3/2
on the narrower transition is approximately

∆ωD =
ω2

c

√

8kBT ln(2)

m
≈ 120Γ2, (3.16)

with ω2 = 2π × 435THz and m = 87u. Since this Doppler broadening is approximately
a factor of 5 smaller than the power broadened gain (614Γ2, see Fig. 3.4), the finite
temperature does not significantly affect the lasing.

Note that ∆2 < 0 and ∆3 > 0 is required to achieve cooling. This is because the
atoms are inverted on the transition |1〉 ↔ |2〉, but not on the transition |1〉 ↔ |3〉 [3.31].
Furthermore, we also want to mention here that for strong pumping and far blue-detuned
lasers it is possible that atoms in the ground state get cooled and trapped at the field
nodes (high-intensity Sisyphus cooling) [3.32]. We were able to observe this for some
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Figure 3.8: Particle motion. The solid lines are for ν = Γ2 and the dashed lines for ν = 10Γ2.
We chose ∆3 = −Γ3. For 〈σ22〉 − 〈σ11〉 we averaged 50 data points to increase the
visibility, the bright fast fluctuating lines are the non-averaged for ν = 1.0Γ2. The
atom starts with a momentum of pi(0) = 100ki at the pump field anti-nodes in the
ground state. We average 500 MCWF trajectories and the legend is for all three
plots.

specific parameters on the narrow transition. For the motion of 174Yb, as mentioned in
section 3.2, we almost always obtained heating or trapping at the field nodes.

3.5 Conclusions
We have shown that continuous lasing on a narrow atomic transition can be implemented
in a V-level configuration, when a second closed broad transition sharing the same
ground state is available. Using two strong and sufficiently detuned coherent driving
lasers lead to almost perfect inversion on the narrow transition. The entire mechanism
does not rely on a direct decay channel into the excited state with a narrow line, which
makes it distinctly different from previously considered lasing setups. When the inverted
transition is coupled to an optical resonator, the system starts to lase once a certain
threshold number of atoms is passed. The spectral properties of the output laser light
exhibit a linewidth that can be well below the natural linewidth of the narrow transition.
Notice, that despite the fact that the natural linewidth of the lasing transition is smaller
than the cavity linewidth by far, the power broadening induced by the strong pump light
means that we are effectively in the good-cavity regime. Furthermore, we found optimal
lasing for many atoms and, accordingly, many photons in the cavity. The coherence is
thus stored in the cavity field rather than the atomic dipoles. Hence, the lasing setup
we consider is more similar to a conventional laser rather than a superradiant one. Yet,
the spectral linewidth of the laser can be extremely small and is effectively determined
by the natural linewidth of the atom. Finally, we have shown that the overall promising
properties of such a laser are conserved even when considering pump lasers that are
broad and induce strong dephasing.

Interestingly lasing has been found recently in a closely related setup using Ytterbium
atoms [3.19]. However in this case it was identified as Raman lasing [3.11, 3.33] which
occurs in a very different operation regime and inherits the pump laser linewidth. While
our configuration finally does not meet all criteria for a clock laser it can be seen as a
major experimental step in this direction.
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In order to estimate heating effects induced by the strong driving beams, we considered
the motion of an atom subjected to the inversion scheme. We found that the kinetic
energy is limited by the Doppler temperature of the broad transition. Therefore, we
conclude that the system should not exhibit instabilities due to heating.
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3.6 Appendix

3.6.1 Dephasing due to a finite pump laser linewidth

In this section we show the fundamental steps to derive the dephasing Liouvillian
originating from a finite pump laser linewidth for N coherently driven two-level atoms
coupled to a cavity Eq. (3.9). Using the standard phase diffusion model with a noisy
phase φ2(t) we have the following Hamiltonian written in the lab frame

Hlab = ωca
†a+

N∑

j=1

gj(a†σj
12 + aσj

21) +
N∑

j=1

ωj
2σ

j
22

+
N∑

j=1

Ωj
2

(

σj
21e

−i(ωℓ2t+φ2(t)) + σj
12e

i(ωℓ2t+φ2(t))
)

,

(3.17)

where the noise statistics of φ2(t) is determined by its derivative, which is assumed to
be a white noise frequency fluctuation such that

〈φ̇2(t)φ̇2(t′)〉 = ν2δ(t− t′). (3.18)

Additionally, we assume here that all atoms experience the same pump laser phase
(collective phase noise). We switch into the (instantaneous) rotating frame of the pump
laser with the unitary transformation

UI(t) = e
i(ωℓ2t+φ2(t))(a†a+

∑N

j=1
σj

22
)
, (3.19)

41



3 Publication: Continuous narrowband lasing with coherently driven V-level atoms

in which the Hamiltonian becomes

H = −∆ca
†a+

N∑

j=1

gj(a†σj
12 + aσj

21) +
N∑

j=1

−∆j
2σ

j
22

+
N∑

j=1

Ωj
2(σj

21 + σj
12) − φ̇2(t)(a†a+

N∑

j=1

σj
22).

(3.20)

We distinguish now between the deterministic part of the Hamiltonian HD and the
stochastic part

HS = −(a†a+
N∑

j=1

σj
22), (3.21)

such that H = HD + φ̇2(t)HS . The Heisenberg equation of a system operator O for this
Hamiltonian can be written as

(S) d

dt
O = LD[O] + φ̇2(t)LS [O], (3.22)

with LD[O] = i[HD, O] and LS [O] = i[HS , O]. Equation Eq. (3.22) needs to be inter-
preted as a Stratonovich stochastic differential equation [indicated by (S)] , which can
be transformed into Itô form [indicated by (I)] as follows [3.37]:

(I) d

dt
O = LD[O] +

1

2
ν2L

2
S [O] + φ̇2(t)LS [O], (3.23)

By averaging equation Eq. (3.23) the stochastic part vanishes and we get

d

dt
〈O〉S = 〈LD[O]〉S +

1

2
ν2 〈L2

S [O]〉S . (3.24)

Evaluating L2
S [O] = −[HS , [HS , O]], we find that the fluctuating phase leads to dephasing

as described in equation Eq. (3.9). Note, that 〈·〉S indicates a stochastic average, not a
quantum average as in the cumulant expansion.

3.6.2 Derivation of correlation function equations

On the one hand, we compute the steady-state expectation values in the instantaneous
rotating frame (see 3.6.1). On the other hand, the correlation function for the spectrum
has to be computed in a non-fluctuating (coherent) rotating frame [3.25]. In this section
we show the main procedure to derive the equations. The full set of equations to obtain
the correlation function is given in 3.6.4. Again, we consider N two-level atoms coupled
to a cavity as in 3.6.1, including the third level is straight forward. In the coherent
rotating frame with the unitary transformation

UC(t) = e
iωℓ2t(a†a+

∑N

j=1
σj

22
)
, (3.25)
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we obtain the time-dependent Hamiltonian

H̃ = −∆cã
†ã+

N∑

j=1

gj(ã†σ̃j
12 + ãσ̃j

21) −
N∑

j=1

∆j
2σ̃

j
22 +

N∑

j=1

Ωj
2

(

σ̃j
21e

−iφ2(t) + σ̃j
12e

iφ2(t)
)

.

(3.26)
The tilde indicates that the operator is in the coherent rotating frame. With cavity
decay and individual atomic decay, described by Eq. (3.6) and Eq. (3.7), respectively,
we obtain with the quantum regression theorem [3.24] the differential equation for the
correlation function

d

dt
〈ã†ã0〉 = igN〈σ̃1

21ã0〉 − i∆c〈ã†ã0〉 − 0.5κ〈ã†ã0〉 (3.27)

Here and in the following, we use the notation 〈Õ(t)ã(0)〉 = 〈Õã0〉. To calculate
Eq. (3.27) we also need the equation for 〈σ̃21

1 (t)ã(0)〉 which is given by

d

dt
〈σ̃1

21ã0〉 = −2ig
(

〈ã†〉〈σ̃1
22ã0〉 + 〈ã0〉〈ã†σ̃1

22〉 + 〈σ̃1
22〉〈ã†ã0〉 − 2〈ã†〉〈ã0〉〈σ̃1

22〉
)

+ ig〈ã†ã0〉 − 0.5Γ2〈σ̃1
21ã0〉 − i∆2〈σ̃1

21ã0〉
+ iΩ2〈ã0〉eiφ2(t) − 2iΩ2〈σ̃1

22ã0〉eiφ2(t).

(3.28)

Equation Eq. (3.28) contains some specific averages proportional to eiφ(t) (〈ã〉 and
〈σ̃1

22ã0〉). To solve this problem we use two properties: first, since we are in steady
state, all averages that do not involve ã0 do not depend on two different times and
hence can be replaced by the respective steady-state values. Second, the change of the
steady-state values from the coherent to the instantaneous frame is given by the unitary
transformation

UC→I(t) = e
iφ2(t)(a†a+

∑N

j=1
σj

22
)
. (3.29)

We get for example 〈ã〉 = 〈a〉 e−iφ2(t). With this we can use the steady-state values in
the instantaneous frame, which we have obtained before. Replacing them, we find that
all averages 〈σ̃1

22ã0〉 only occur in combination with the factor eiφ2(t). Therefore, we
derive the equations of motion for 〈σ̃1

22ã0〉 eiφ2(t) rather than 〈σ̃1
22ã0〉 alone. In equation

Eq. (3.30) we show two examples of such differential equations for averages multiplied
with a phase fluctuation term:

d

dt
〈σ̃1

22ã0〉eiφ2(t) = ig
(

〈ã†〉〈σ̃1
12ã0〉 + 〈ã0〉〈ã†σ̃1

12〉 + 〈σ̃1
12〉〈ã†ã0〉

− 2〈ã†〉〈ã0〉〈σ̃1
12〉 − 〈ã〉〈σ̃1

21ã0〉 − 〈ã0〉〈ãσ̃1
21〉

− 〈σ̃1
21〉〈ãã0〉 + 2〈ã〉〈ã0〉〈σ̃1

21〉
)

eiφ2(t)

+ iφ̇2〈σ̃1
22ã0〉 − Γ2〈σ̃1

22ã0〉eiφ2(t)iφ̇2〈σ̃1
22ã0〉

− iΩ2〈σ̃1
21ã0〉 + iΩ2〈σ̃1

12ã0〉e2iφ2(t)

(3.30a)
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d

dt
〈σ̃1

12ã0〉e2iφ2(t) = 2iφ̇2〈σ̃1
12ã0〉 + 2ig

(

〈ã〉〈σ̃1
22ã0〉 + 〈ã0〉〈ãσ̃1

22〉

+ 〈σ̃1
22〉〈ãã0〉 − 2〈ã〉〈ã0〉〈σ̃1

22〉
)

e2iφ2(t) − iΩ2〈ã0〉eiφ2(t)

− ig〈ãã0〉e2iφ2(t) − 0.5Γ2〈σ̃1
12ã0〉e2iφ2(t)

+ i∆2〈σ̃1
12ã0〉e2iφ2(t) + 2iΩ2〈σ̃1

22ã0〉eiφ2(t)

(3.30b)

In equations Eq. (3.30a) and Eq. (3.30b), terms proportional to φ̇ appear, namely
iφ̇ 〈σ̃1

22ã0〉 and 2iφ̇ 〈σ̃1
12ã0〉, respectively. Transforming these Stratonovich stochastic

differential equations to Itô as in section 3.6.1 leads to a dephasing term −0.5ν2 〈σ̃1
22ã0〉

and −2ν2 〈σ̃1
22ã0〉, respectively. In section 3.6.4 you find the closed system of differential

equations derived via this procedure.

3.6.3 Second-order cumulant expansion

In order to derive the following equations we wrote a program [3.38] that symbolically
evaluates bosonic and fermionic commutation relations. Then, the generalized cumulant
expansion is applied to obtain a closed set of equations featuring only first- and second-
order averages. The correctness of the equations is ensured by comparing numerical
results for smaller systems with a full quantum treatment for a variety of parameters.

System equations

Note, that we only show part of the derived equations in order to keep the length of
the entire set at a comprehensible level. As previously mentioned, the (in total 37)
equations were derived using a software tool. The tool is open source and available
online [3.38].

d

dt
〈a†a〉 = −κ〈a†a〉 + iNg〈aσ1

21〉 − iNg〈a†σ1
12〉

d

dt
〈a〉 = i∆c〈a〉 − 0.5 (κ+ ν2) 〈a〉 − iNg〈σ1

12〉

d

dt
〈σ1

22〉 = −Γ2〈σ1
22〉 + iΩ2〈σ1

12〉 + ig〈a†σ1
12〉 − iΩ2〈σ1

21〉 − ig〈aσ1
21〉

d

dt
〈σ1

12〉 = i∆2〈σ1
12〉 − 0.5 (Γ2 + ν2) 〈σ1

12〉 + iΩ3〈σ1
32〉 + iΩ2

(

−1 + 〈σ1
33〉
)

+ ig〈aσ1
33〉

− ig〈a〉 + 2iΩ2〈σ1
22〉 + 2ig〈aσ1

22〉

d

dt
〈σ1

32〉 = −0.5 (Γ2 + Γ3 + ν2 + ν3) 〈σ1
32〉 + iΩ3〈σ1

12〉 + i∆2〈σ1
32〉 − iΩ2〈σ1

31〉

− i∆3〈σ1
32〉 − ig〈aσ1

31〉

d

dt
〈σ1

33〉 = −Γ3〈σ1
33〉 + iΩ3〈σ1

13〉 − iΩ3〈σ1
31〉
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d

dt
〈aσ1

21〉 = iΩ2〈a〉 + ig〈a†a〉 + i∆c〈aσ1
21〉 − 0.5Γ2〈aσ1

21〉 − 0.5κ〈aσ1
21〉 − ig〈σ1

22〉

− 2ig
(

〈a†〉〈aσ1
22〉 + 〈a〉〈a†σ1

22〉 + 〈σ1
22〉〈a†a〉 − 2〈a†〉〈a〉〈σ1

22〉
)

− ig
(

〈a†〉〈aσ1
33〉 + 〈a〉〈a†σ1

33〉 + 〈σ1
33〉〈a†a〉 − 2〈a†〉〈a〉〈σ1

33〉
)

− i∆2〈aσ1
21〉 − 2iΩ2〈aσ1

22〉 − iΩ2〈aσ1
33〉 − iΩ3〈aσ1

23〉 − ig (−1 +N) 〈σ1
21σ

2
12〉

d

dt
〈aσ1

22〉 = ig
(

〈a†〉〈aσ1
12〉 + 〈a〉〈a†σ1

12〉 + 〈σ1
12〉〈a†a〉 − 2〈a†〉〈a〉〈σ1

12〉
)

+ i∆c〈aσ1
22〉

+ iΩ2〈aσ1
12〉 − Γ2〈aσ1

22〉 − 0.5κ〈aσ1
22〉 − 0.5ν2〈aσ1

22〉 − iΩ2〈aσ1
21〉

− ig
(

〈σ1
21〉〈aa〉 + 2〈a〉〈aσ1

21〉 − 2〈σ1
21〉〈a〉2

)

− ig (−1 +N) 〈σ1
22σ

2
12〉

d

dt
〈σ1

21σ
2
12〉 = ig

(

〈a〉〈σ1
33σ

2
21〉 + 〈σ1

33〉〈aσ1
21〉 + 〈σ1

21〉〈aσ1
33〉 − 2〈a〉〈σ1

33〉〈σ1
21〉
)

+ iΩ2〈σ1
12〉 + ig〈a†σ1

12〉 + iΩ2〈σ1
33σ

2
21〉 + iΩ3〈σ1

21σ
2
32〉 − Γ2〈σ1

21σ
2
12〉

− 2ig
(

〈a†〉〈σ1
22σ

2
12〉 + 〈σ1

22〉〈a†σ1
12〉 + 〈σ1

12〉〈a†σ1
22〉 − 2〈a†〉〈σ1

22〉〈σ1
12〉
)

− ig
(

〈a†〉〈σ1
33σ

2
12〉 + 〈σ1

33〉〈a†σ1
12〉 + 〈σ1

12〉〈a†σ1
33〉 − 2〈a†〉〈σ1

33〉〈σ1
12〉
)

+ 2ig
(

〈a〉〈σ1
22σ

2
21〉 + 〈σ1

22〉〈aσ1
21〉 + 〈σ1

21〉〈aσ1
22〉 − 2〈a〉〈σ1

22〉〈σ1
21〉
)

− iΩ2〈σ1
21〉 − ig〈aσ1

21〉 − 2iΩ2〈σ1
22σ

2
12〉 + 2iΩ2〈σ1

22σ
2
21〉 − iΩ2〈σ1

33σ
2
12〉

− iΩ3〈σ1
12σ

2
23〉

d

dt
〈σ1

22σ
2
22〉 = ig

(

2〈a†〉〈σ1
22σ

2
12〉 + 2〈σ1

22〉〈a†σ1
12〉 + 2〈σ1

12〉〈a†σ1
22〉 − 4〈a†〉〈σ1

22〉〈σ1
12〉
)

− 2ig
(

〈a〉〈σ1
22σ

2
21〉 + 〈σ1

22〉〈aσ1
21〉 + 〈σ1

21〉〈aσ1
22〉 − 2〈a〉〈σ1

22〉〈σ1
21〉
)

− 2Γ2〈σ1
22σ

2
22〉 + 2iΩ2〈σ1

22σ
2
12〉 − 2iΩ2〈σ1

22σ
2
21〉

3.6.4 Correlation function equations
We omit the phase factors in these equations, since this only corresponds to a variable
relabeling of some specific correlation functions.

d

dt
〈ã†ã0〉 = −i∆c〈ã†ã0〉 − 0.5κ〈ã†ã0〉 + iNg〈σ̃1

21ã0〉

d

dt
〈σ̃1

21ã0〉 = −2ig
(

〈a†〉〈σ̃1
22ã0〉 + 〈a〉〈a†σ1

22〉 + 〈σ1
22〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ1

22〉
)

− ig
(

〈a†〉〈σ̃1
33ã0〉 + 〈a〉〈a†σ1

33〉 + 〈σ1
33〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ1

33〉
)

+ iΩ2〈a〉 + ig〈ã†ã0〉 − 0.5Γ2〈σ̃1
21ã0〉 − i∆2〈σ̃1

21ã0〉 − 2iΩ2〈σ̃1
22ã0〉

− iΩ2〈σ̃1
33ã0〉 − iΩ3〈σ̃1

23ã0〉

45



3 Publication: Continuous narrowband lasing with coherently driven V-level atoms

d

dt
〈σ̃1

31ã0〉 = −ig
(

〈a†〉〈σ̃1
32ã0〉 + 〈a〉〈a†σ1

32〉 + 〈σ1
32〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ1

32〉
)

+ iΩ3〈a〉 − 0.5Γ3〈σ̃1
31ã0〉 − i∆3〈σ̃1

31ã0〉 − iΩ2〈σ̃1
32ã0〉 − iΩ3〈σ̃1

22ã0〉
− 2iΩ3〈σ̃1

33ã0〉 − 0.5γ2〈σ̃1
31ã0〉 − 0.5γ3〈σ̃1

31ã0〉

d

dt
〈σ̃1

22ã0〉 = −ig
(

〈a〉
(

〈aσ1
21〉 + 〈σ̃1

21ã0〉
)

+ 〈σ1
21〉〈ãã0〉 − 2〈σ1

21〉〈a〉2
)

+ ig
(

〈a†〉〈σ̃1
12ã0〉 + 〈a〉〈a†σ1

12〉 + 〈σ1
12〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ1

12〉
)

− Γ2〈σ̃1
22ã0〉 − iΩ2〈σ̃1

21ã0〉 + iΩ2〈σ̃1
12ã0〉 − 0.5γ2〈σ̃1

22ã0〉

d

dt
〈σ̃1

32ã0〉 = −ig
(

〈a〉
(

〈aσ1
31〉 + 〈σ̃1

31ã0〉
)

+ 〈σ1
31〉〈ãã0〉 − 2〈σ1

31〉〈a〉2
)

− 0.5Γ2〈σ̃1
32ã0〉 − 0.5Γ3〈σ̃1

32ã0〉 + i∆2〈σ̃1
32ã0〉 − i∆3〈σ̃1

32ã0〉
− iΩ2〈σ̃1

31ã0〉 + iΩ3〈σ̃1
12ã0〉 − 2γ2〈σ̃1

32ã0〉 − 0.5γ3〈σ̃1
32ã0〉

d

dt
〈σ̃1

33ã0〉 = −Γ3〈σ̃1
33ã0〉 − iΩ3〈σ̃1

31ã0〉 + iΩ3〈σ̃1
13ã0〉 − 0.5γ2〈σ̃1

33ã0〉

d

dt
〈ãã0〉 = i∆c〈ãã0〉 − 2γ2〈ãã0〉 − 0.5κ〈ãã0〉 − iNg〈σ̃1

12ã0〉

d

dt
〈σ̃1

12ã0〉 = 2ig
(

〈a〉
(

〈aσ1
22〉 + 〈σ̃1

22ã0〉
)

+ 〈σ1
22〉〈ãã0〉 − 2〈σ1

22〉〈a〉2
)

+ ig
(

〈a〉
(

〈aσ1
33〉 + 〈σ̃1

33ã0〉
)

+ 〈σ1
33〉〈ãã0〉 − 2〈σ1

33〉〈a〉2
)

− iΩ2〈a〉 − ig〈ãã0〉 − 0.5Γ2〈σ̃1
12ã0〉 + i∆2〈σ̃1

12ã0〉 + 2iΩ2〈σ̃1
22ã0〉

+ iΩ2〈σ̃1
33ã0〉 + iΩ3〈σ̃1

32ã0〉 − 2γ2〈σ̃1
12ã0〉

d

dt
〈σ̃1

13ã0〉 = ig
(

〈a〉
(

〈aσ1
23〉 + 〈σ̃1

23ã0〉
)

+ 〈σ1
23〉〈ãã0〉 − 2〈σ1

23〉〈a〉2
)

− iΩ3〈a〉 − 0.5Γ3〈σ̃1
13ã0〉 + i∆3〈σ̃1

13ã0〉 + iΩ2〈σ̃1
23ã0〉

+ iΩ3〈σ̃1
22ã0〉 + 2iΩ3〈σ̃1

33ã0〉 − 0.5γ2〈σ̃1
13ã0〉 − 0.5γ3〈σ̃1

13ã0〉

d

dt
〈σ̃1

23ã0〉 = ig
(

〈a†〉〈σ̃1
13ã0〉 + 〈a〉〈a†σ1

13〉 + 〈σ1
13〉〈ã†ã0〉 − 2〈a†〉〈a〉〈σ1

13〉
)

− 0.5Γ2〈σ̃1
23ã0〉 − 0.5Γ3〈σ̃1

23ã0〉 − i∆2〈σ̃1
23ã0〉 + i∆3〈σ̃1

23ã0〉
+ iΩ2〈σ̃1

13ã0〉 − iΩ3〈σ̃1
21ã0〉 − 0.5γ3〈σ̃1

23ã0〉
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equation is often limited by the size of the underlying Hilbert space. As
an alternative, the dynamics can also be formulated in terms of systems
of coupled differential equations for operators in the Heisenberg picture.
This typically leads to an infinite hierarchy of equations for products of
operators. A well-established approach to truncate this infinite set at the
level of expectation values is to neglect quantum correlations of high order.
This is systematically realized with a so-called cumulant expansion, which
decomposes expectation values of operator products into products of a given
lower order, leading to a closed set of equations. Here we present an open-
source framework that fully automizes this approach: first, the equations
of motion of operators up to a desired order are derived symbolically using
predefined canonical commutation relations. Next, the resulting equations
for the expectation values are expanded employing the cumulant expansion
approach, where moments up to a chosen order specified by the user are
included. Finally, a numerical solution can be directly obtained from the
symbolic equations. After reviewing the theory we present the framework
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4.1 Introduction
Numerical simulation of the time evolution of quantum systems has become a key
method in the fields of quantum optics and quantum information as analytic approaches
and solutions are only rarely available. In particular, for open systems one has to
go beyond the determination of eigenenergies and eigenstates of a given Hamiltonian
and look for the stationary solution of the corresponding system density matrix. To
study processes like quantum annealing even solutions for time-dependent Hamiltonians
are required. As there are only a finite number of building blocks for quantum optics
Hamiltonians, the desire to reduce the repeated effort for implementing quite similar
problem Hamiltonians and master equations has led to the development of several generic
numerical frameworks and developer tools in the past decades. These simultaneously
target fast coding, high memory efficiency and short execution times.

Among the most well-known frameworks are the early Quantum Optics MATLAB
toolbox implemented by Sze Tan already over two decades ago [4.1] and its first
open source successor, the Quantum Toolbox in Python (QuTiP) [4.2, 4.3]. Further
efforts to optimize code efficiency and memory use lead to C++ based software such as
C++QED [4.4]. Similar projects exist for quantum information applications and highly
correlated quantum spin systems [4.5–4.8].

More recently, based on the highly efficient Julia programming language [4.9], the
framework QuantumOptics.jl [4.10] was developed with the goal to implement a large
class of quantum optics problems and methods. All these numerical toolboxes aim to
streamline and simplify the usage of standard numerical techniques, which are generally
based on the matrix representation of quantum mechanical operators in truncated
Hilbert spaces. Equations of motion that govern the dynamics of quantum systems, such
as the Schrödinger equation for closed systems, stochastic wavefunction simulations or
the master equation for open systems then amount to solving finite sets of (stochastic)
coupled differential equations.

One practical limitation here is the growing size of the matrices representing quantum
mechanical operators in larger Hilbert spaces. A generic example is the exponential
growth of the size of the Hilbert space describing N two-level atoms (qubits) whose
state is described by a vector of a size scaling as 2N . Correspondingly, operators in this
Hilbert space are represented by matrices of the size 2N × 2N . Clearly, representing
many atoms is hardly feasible in such an approach. In some specific cases this number
has been pushed to several tens of spins [4.11], which is still well below the numbers
nowadays available in experimental implementations.

In order to treat configurations of higher numbers of subsystems, one has to apply
different techniques to reduce the problem size. One highly successful approach in
the study of lattice dynamics is based on matrix product states and the density
renormalization group [4.12, 4.13]. Given a state that describes a potentially large
composite system one can reduce the degrees of freedom to the relevant ones to represent
the state vector more efficiently thereby reducing the dimensionality of the problem.
Similar restrictions to the low energy sector of a many-body Hilbert space can lead to
sufficient accuracy in the low temperature or low excitation regime.

48



4.1 Introduction

An alternative approach follows a similar idea by neglecting quantum correlations
of higher order leading to a sufficiently accurate description in regimes exhibiting low
correlations. The starting point are the c-number differential equations describing the
dynamics of the expectation values of a given set of operators. These are generally
coupled to higher order products of these operators leading to an infinite number of
equations. In order to truncate the set of equations one can systematically approximate
the higher-order products. To this end the concept of cumulants, originally conceived
for the treatment of stochastic variables, has been generalized to operators [4.14]. The
joint cumulant of a set of operators is a measure of the correlations of those operators,
in that it vanishes if one (or a subset) of the operators is statistically independent of
the others. Neglecting quantum correlations above a certain order is then equivalent to
neglecting the joint cumulant of a set of operators.

Such order-based reductions allow for the construction of a closed set of ordinary
differential equations for the averages of operators of interest. The equations of mo-
tion for the corresponding averages are obtained from the operators which appear as
noncommutative variables, that obey prescribed fundamental commutation relations.
These commutation relations can be used in the symbolic computation of the Heisenberg
equations (for closed systems) or Quantum Langevin equations (for open systems)
in operator form, from which the equations of motion for averages can be obtained.
Neglecting the joint cumulants above a certain order generally leads to a complexity
that scales polynomially, where the leading order is determined by the point up to which
correlations are kept. In this sense a second-order treatment of N identical subsystems
requires numerically solving O(N2) equations.

As already discovered in the early days of quantum optics, the generalized cumulant
expansion approach works well in open-system problems such as lasing [4.15, 4.16]. In
the recent renewed interest in so-called superradiant lasers, where large ensembles of
particles interact via a single cavity mode, the method was extensively used with notable
success [4.17–4.26]. Furthermore, not only cavity QED systems have been calculated,
but also ensembles of interacting free-space atoms, pointing out the importance of higher
orders in specific cases [4.27–4.29].

The disadvantage of this method is that it requires the analytical computation of a
large number of equations even at fairly low orders of expansions and thus lacks the
conceptual simplicity of encoding the numerical solution of master equations via the
toolboxes mentioned in the beginning. Higher-order treatments can quickly result in a
set of equations that is too large to be manageable by hand in a reasonable amount of
time. Furthermore, for each modification one wants to implement with this approach it
is required to rederive the equations of motion for the operators before performing the
cumulant expansion up to the desired order.

In this paper, we present a framework which aims to address these issues. We developed
QuantumCumulants.jl in order to automize the derivation of equations, the cumulant
expansion to an arbitrary order, as well as the final step of numerically implementing
the resulting set of equations. It is written in the Julia language [4.9], combining a
certain ease of use with high performance. Before presenting the framework itself, we
will provide a review of the theory behind the cumulant expansion approach [4.14].
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Figure 4.1: The single-atom laser. (a) Schematic illustration of an optical resonator containing
a single atom that acts as a gain medium for the laser. (b,c) Comparison of the
dynamics when treating the single-atom laser model in a second-, fourth- and
sixth-order approximation, as well as in a full quantum model (master equation).
In (b), we show the average photon number, and (c) shows the power density
spectrum of the laser. The parameters where ∆ = κ/2, g = 1.5κ, γ = 1.25κ, and
ν = 4κ.

Next, we will highlight some details of the implementation. After that, we showcase
the capability of the framework at the hand of some examples. Finally, we provide an
overview of the framework’s limitations and an outlook on possible future changes.

4.2 Theoretical background

In this section we will set the ground for the programmatic framework by providing a
detailed review of the underlying theory.

4.2.1 A brief example

For didactic purposes, we will specify a model of a well-known example for which the
cumulant expansion approach is known to work well. We will return to this example at
each step of the approach for clarity.

Consider the simplest quantum model of a laser: a single two-level atom, acting as
gain medium, is placed inside an optical cavity, cf. Fig. 4.1(a). The coherent dynamics
of this system is described by the Jaynes-Cummings Hamiltonian,

HJC = ~∆a†a+ ~g
(

a†σge + aσeg
)

. (4.1)

Here, ∆ = ωc − ωa is the detuning between the cavity resonance frequency ωc and
the atomic transition frequency ωa. The coupling between the cavity and the atom is
governed by the frequency g. The operators σij = |i〉〈j| describe atomic transitions
between the ground state |g〉 and its excited state |e〉, whereas the field dynamics are
characterized by the photonic annihilation operator a and the creation operator a†.

The atom can spontaneously emit a photon at a rate γ, described by the damping
operator σge. At the same time, the cavity loses photons at a rate κ, which is included
with the damping operator a. Finally, gain to the system is provided by incoherently
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driving the atom from the ground to the excited state at rate ν with the ”damping”
operator σeg [see Fig. 4.1(a)].

Solving the Master equation of this system will yield the time dynamics of the density
matrix, which contains the entire information about the system. However, if we only
want to compute some specific expectation values in the end, we may not need all this
information. Rather, the task is then to find equations of motion for the averages that
allow us to solve for them directly. As we will see in the following, this can be achieved
by approximating the full dynamics, which also reduces the numerical complexity of
obtaining the average values.

4.2.2 Equations of motion in the Heisenberg picture
The starting point of any system that is to be simulated is its definition. Essentially,
this means that the Hamiltonian and corresponding decay channels (if any) are specified.
The time evolution of a system operator O is then given by

Ȯ =
i

~
[H,O] +

∑

n

[c†
n,O]

(√
γnξn(t) +

γn

2
cn

)

−
(√

γnξ
†
n(t) +

γn

2
c†

n

)

[cn,O]. (4.2)

In the above, H is the Hamiltonian describing the unitary time evolution of the system.
Additionally, the system features distinct decay channels with rates γn and corresponding
collapse operators cn. The operators ξn describe quantum noise. Eq. (4.2) is known as
the Quantum Langevin equation [4.30].

In the following, we will assume that any noise that occurs in the systems is white
noise. Then, the operators ξn in Eq. (4.2) do not contribute to any averages we compute.
Hence, if we are only interested in averages we may drop the noise terms from Eq. (4.2)
and compute

Ȯ =
i

~
[H,O] +

∑

n

γn

2

(

2c†
nOcn − c†

ncnO − Oc†
ncn

)

. (4.3)

For closed systems, i.e. γn = 0, we recover the Heisenberg equation. In the following,
we will develop a theory that allows us to obtain a closed set of c-number equations
from Eq. (4.3) by truncating the ”order” of averages (or moments) of operator products.

To illustrate, take the example of a single-atom laser. Say we would like to compute
the time evolution of the average of the field operator a. Using Eq. (4.2) in order to
derive the corresponding operator equation of motion, we see that a depends on the
atomic operators as well. Hence, we derive the equations for all occurring operators to
obtain a complete set of equations, and find

ȧ = −
(

i∆ +
κ

2

)

a− igσge, (4.4a)

σ̇ge = −γ + ν

2
σge + igaσee, (4.4b)

σ̇ee = −γσee + ν (1 − σee) + ig
(

a†σge − aσeg
)

. (4.4c)
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The above set of equations consists of operator equations. Solving these directly is
equivalent of the numerical complexity of solving a Master equation. In addition,
Eq. (4.4) is incomplete: in order to obtain correct results, we need to include the
quantum noise; i.e., the equations are stochastic operator differential equations, making
them numerically even more expensive.

Averaging over the above equations, however, makes them more tractable. The
averages of operators are simple c-numbers and we hope to obtain a set of equations
that is simple to solve in the end. For the averages of Eq. (4.4), we find

〈ȧ〉 = −
(

i∆ +
κ

2

)

〈a〉 − ig 〈σge〉 , (4.5a)

〈σ̇ge〉 = −γ + ν

2
〈σge〉 + ig 〈aσee〉 , (4.5b)

〈σ̇ee〉 = −γ 〈σee〉 + ν (1 − 〈σee〉) + ig
(

〈a†σge〉 − 〈aσeg〉
)

. (4.5c)

Now, we are confronted with another problem: averages of operator products, such as
〈aσee〉 occur in Eq. (4.5), and since in general 〈aσee〉 6= 〈a〉 〈σee〉 the set of c-number
equations is incomplete. Deriving equations of motion for those averages does not solve
the problem either, since they will couple to averages of ever longer operator products.
We thus converted the operator equations to c-number equations. However, this does
not lead to a closed set of equations and involves contributions of any order. Hence, in
order to find a full solution one would have to derive and solve infinitely many equations.

We therefore have to resort to some kind of approximation which allows for a cutoff at
higher orders. The systematic approach to do this the so-called cumulant expansion [4.14]
which we will review in the next section.

4.2.3 Cumulant expansion

At this point of the theoretical introduction, we will introduce the most essential part
of the approach used in our simulation package QuantumCumulants.jl. To this end,
we provide a short review of the generalized cumulant expansion method, which was
initially introduced by R. Kubo [4.14]. The basic idea is to truncate c-number equations
such as Eqs. (4.5) by expanding averages of higher-order operator products in terms of
products of lower order expectation values. To clarify, we call the number of operator
constituents in a product the ”order” of the product; e.g., 〈aσee〉 is of order 2.

The joint cumulant (which we denote by 〈 · 〉c) of a product of order n of the operators
{X1, ..., Xn} is given by [4.14]

〈X1X2...Xn〉c =
∑

p∈P (I)

(|p| − 1)!(−1)|p|−1
∏

B∈p

〈
∏

i∈B

Xi〉 . (4.6)

In the above, I = {1, 2, ..., n}, P (I) is the set of all partitions of I, |p| denotes the
length of the partition p, and B runs over the blocks of each partition. As a short
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example, consider n = 3, where we have

〈X1X2X3〉c = 〈X1X2X3〉 − 〈X1X2〉 〈X3〉 − 〈X1X3〉 〈X2〉
− 〈X1〉 〈X2X3〉 + 2 〈X1〉 〈X2〉 〈X3〉 .

(4.7)

Let us stress here that the cumulant of order n is given by averages of order n or lower.
Furthermore, the average of order n occurs precisely once on the right-hand-side of
Eq. (4.6).

The joint cumulant can be thought of as a general measure of correlation of operators.
The key assumption behind the cumulant expansion approach follows from Theorem I in
Ref. [4.14]. This theorem states that the joint cumulant of a set of operators is zero if any
one (or any subset) of them is statistically independent of the others. The assumption
we are making is to essentially invert this statement: instead of computing the joint
cumulant of a given order to see if it is zero, we assume that it is. Since the average of
the same order as the cumulant occurs only once in Eq. (4.6), we may rearrange the
relation to arrive at an expression of an average in terms of only lower-order averages;
i.e., if we assume the joint cumulant of order n to vanish, 〈X1X2...Xn〉c = 0, then the
average of the same order is given by

〈X1X2...Xn〉 =
∑

p∈P (I)\I

(|p| − 1)!(−1)|p|
∏

B∈p

〈
∏

i∈B

Xi〉 , (4.8)

where now P (I)\I is the set of all partitions of I that does not contain I itself. We
therefore approximate the average of order n by an expression that only involves averages
of the order n− 1 and below.

Returning to the example of n = 3, we see that when assuming 〈X1X2X3〉c = 0 in
Eq. (4.7), we arrive at

〈X1X2X3〉 = 〈X1X2〉 〈X3〉 + 〈X1X3〉 〈X2〉 + 〈X1〉 〈X2X3〉 − 2 〈X1〉 〈X2〉 〈X3〉 . (4.9)

Note that the joint cumulant of order n = 2 is just the covariance. Neglecting this is
equivalent to neglecting all quantum correlations in the system leading to the assumption
that 〈X1X2〉 = 〈X1〉 〈X2〉. This is the lowest-order mean-field approximation and renders
the dynamics of the system under consideration classical.

The relation obtained in Eq. (4.8) can also be applied recursively, if for example one
aims to express a fourth-order average as second-order terms only. Applying Eq. (4.8)
once yields an expression consisting only of third-order averages and below. Upon
repeated application, we can express the third-order terms as second-order ones, finally
leading to an expression that has no terms above the second order.

Let us now return to our example of the single-atom laser. As we have just seen, the
simplest thing we can do is a first-order cumulant expansion in which we neglect all
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correlations. The set of equations from Eq. (4.5) then becomes

〈ȧ〉 = −
(

i∆ +
κ

2

)

〈a〉 − ig 〈σge〉 , (4.10a)

〈σ̇ge〉 = −γ + ν

2
〈σge〉 + ig 〈a〉 〈σee〉 , (4.10b)

〈σ̇ee〉 = −γ 〈σee〉 + ν (1 − 〈σee〉) − 2gIm
{

〈a†〉 〈σge〉
}

. (4.10c)

The above system of equations is simple enough to solve using standard numerical
techniques. However, it does not capture any quantum mechanical properties of the
lasing setup. Furthermore, we can also see that if we consider the system to initially
have zero field (〈a〉 = 0), and no coherence stored in the atom (〈σge〉 = 0) we will never
observe any lasing action. This is a signature of the phase invariance of the considered
system: in a full quantum treatment, phase-dependent terms such as 〈a〉 are 0. Only
phase-independent operators are nonzero in this example.

We proceed by employing the cumulant expansion approach to obtain a second-order
treatment of the single-atom laser in hopes of a more accurate description. Just as
before, we derive a set of operator equations, but this time operators such as a†a are
considered. Averaging over the resulting equations, we find

d

dt
〈a†a〉 = − ig 〈a†σge〉 + ig 〈aσeg〉 − κ 〈a†a〉 , (4.11a)

d

dt
〈a†σge〉 =

(

i∆ − γ + ν + κ

2

)

〈a†σge〉 + ig
(

〈σee〉 − 〈a†a〉
)

+ 2ig 〈a†aσee〉 , (4.11b)

d

dt
〈σee〉 = − γ 〈σee〉 + ν (1 − 〈σee〉) + ig

(

〈a†σge〉 − 〈aσeg〉
)

. (4.11c)

The only term that keeps the above set of equations from being closed is 〈a†aσee〉.
Assuming that these operators are sufficiently uncorrelated, we employ the cumulant
expansion from Eq. (4.9) to find

〈a†aσee〉 = 〈a†a〉 〈σee〉 + 〈a†σee〉 〈a〉 + 〈a†〉 〈aσee〉 − 2 〈a†〉 〈a〉 〈σee〉 (4.12)
= 〈a†a〉 〈σee〉 .

In the second step we used that all phase-dependent averages vanish. Using the above
completes the set of equations from Eqs. (4.11), and we can once again numerically
solve it in a straightforward fashion. We find that it indeed provides a more precise
description of the system, nicely approximating the full quantum model, as shown in
Fig. 4.1(b) and Fig. 4.1(c).

For comparison, we also plot higher-order approximations in Fig. 4.1(b) and Fig.
4.1(c). You can see that with increasing order the approximate results converge to the
full quantum description. From that we deduce that the approach based on a cumulant
expansion is suitable for the description of physical systems. We note, however, that
the overall accuracy of the approximations and convergence with higher orders is
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strongly dependent on the chosen parameter regime. Going into a strong coupling
regime (increasing the coupling g), for example, would lead to a high degree of quantum
correlations between the atom and the cavity mode. Approximations in low order will
fail to capture these. A sufficiently accurate approximation, however, might not be
feasible since high orders lead to a large number of equations that need to be considered.

The single-atom laser considered here is already well-studied and understood. What
if we wanted to adapt the model in order to describe a more realistic lasing setup? This
could be done by, for example, adding multiple levels to the atom and considering a
more realistic driving scheme. A laser usually features a gain medium consisting of a
large number of atoms. What if we wanted to consider many atoms? The cumulant
expansion approach is well suited for this as the complexity scales polynomially rather
than exponentially with the number of atoms as in a full quantum treatment. However,
to actually investigate any changes in the model, we would have to rederive all equations
of motion, perform the cumulant expansion, complete the system of equations, and
finally implement it for numerical solution. Each step involved in this procedure is both
error-prone and tedious.

4.3 The framework
The entire procedure explained above can be automatically performed by QuantumCu-
mulants.jl. To summarize, here is the step-by-step approach with which problems can
be treated within the framework:

1. The Hilbert space of the system under consideration is defined. This is necessary
since operators acting on different Hilbert spaces commute.

2. Fundamental operators and the corresponding Hamiltonian and dissipative pro-
cesses need to be defined.

3. Equations of motion for a given set of operators are derived.

4. These equations are averaged and expanded in terms of cumulants up to a specified
order.

5. A numerical solution can be obtained directly from the symbolic set of equations.

In this section we will provide a detailed description of the basic concepts Quantum-
Cumulants.jl uses to perform these steps. For more extensive instructions on the usage
of the framework, we refer the reader to the documentation that is available online [4.31].
The source code is also publicly accessible and hosted on GitHub [4.32].

We note that the noncommutative algebra and the symbolic rewriting using commuta-
tion relations is directly implemented in QuantumCumulants.jl. Standard simplifications
are performed with the Symbolics.jl [4.33] library. In the final step, the modeling frame-
work ModelingToolkit.jl [4.34] is employed to generate fast numerical code that can be
used to obtain a numerical solution with the DifferentialEquations.jl [4.35] package.
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4.3.1 Hilbert spaces and operators

The first thing one has to specify when treating a system is the Hilbert space that
describes this system. There are currently two Hilbert spaces implemented: one that
represents the quantum harmonic oscillator, a Hilbert space of infinite dimension, called
FockSpace. The other one describes a finite set of discrete energy levels (such as atoms)
and is called NLevelSpace as it allows for arbitrarily many energy levels. Note that there
is no principal limitation that prevents the implementation of other kinds of Hilbert
spaces, but these fundamental two cover a large number of problems already (see also
Sec. 4.5.2).

A Hilbert space is a complete vector space. Choosing a basis in such a vector space
allows one to represent operators as matrices. This is commonly used in order to solve
Master equations. On a more abstract level, however, one can omit the choice of a basis,
denoting operators as noncommutative elements of the Hilbert space rather than as
matrices. This latter approach is used by QuantumCumulants.jl: operators are defined
as noncommutative variables on a specified Hilbert space. Algebraic combinations
of operators (such as addition and multiplication) are only possible if the combined
operators are defined on the same Hilbert space. To treat composite systems, one needs
to consider the product of the respective Hilbert spaces. Consider, for example, the
Jaynes-Cummings model. Let Hc be the Hilbert space of the cavity, and Ha the Hilbert
space of the atom, respectively. The operators in the Jaynes-Cummings model are then
defined as elements of the Hilbert space Hc ⊗ Ha. Strictly speaking, we would have to
define

a ≡ a0 ⊗ ✶a, (4.13)
σij ≡ ✶c ⊗ σij

0 , (4.14)

where ✶i is the identity operator on the Hilbert space Hi. Technically, a0 is the photonic
annihilation operator, and a is only its extension on the product space. This is necessary
since, e.g. the product a0σ

eg
0 , is not defined, yet the product aσeg is.

This rigorous distinction is usually omitted since the action of a on the atomic Hilbert
space is trivial (and vice-versa for σ). However, we have to take this into account
when implementing algebra necessary for operators: while they are noncommutative in
general, they commute if they act trivially on disjunct subspaces. Therefore, Quantum-
Cumulants.jl stores the information on which subspace each operator acts nontrivially
and uses it to swap operators where it is allowed to do so. In that sense, the operators
of Eq. (4.13) are stored as, e.g. a ∈ Hc ⊗ Ha acting nontrivially on 1 (the first subspace)
and σ ∈ Hc ⊗ Ha acting nontrivially on 2.
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# Load the package
using QuantumCumulants

# Define Hilbert spaces and product space
hc = FockSpace(:cavity)
ha = NLevelSpace(:atom,(:g,:e))
h = hc ⊗ ha

# Define the operators
a = Destroy(h,:a)
σge = Transition(h,:σ,:g,:e)

Code sample 1: Defining the Hilbert space and the fundamental operators of the Jaynes-Cummings
model.

In order to treat any system in the framework, one therefore has to specify the
respective Hilbert spaces and then the operators. Note, that QuantumCumulants.jl
infers the spaces on which an operator acts nontrivially if the choice is unambiguous.
In the case of the Jaynes-Cummings model, the photonic annihilation operator can only
be defined on the first Hilbert space, as the other one is not a space representing a
quantum harmonic oscillator. If there are multiple Hilbert spaces of the same type in a
composite system, however, the space on which an operator acts nontrivially must be
explicitly specified on construction (see for example code sample 5).

4.3.2 Application of commutation relations
The basic simplification in the framework uses a few fundamental commutation relations
which are immediately applied in any calculation involving operators. On top of that,
standard algebraic simplification is performed using the Symbolics.jl [4.33] framework.
In the following, we detail which commutation relations are used. Note that we rewrite
terms such that the result adheres to normal ordering. The bosonic annihilation and
creation operators fulfil the canonical commutation relation

[a, a†] = 1, (4.15)

which is implemented such that all occurrences of the product aa† are replaced by
a†a+ 1. Products of operators describing transitions between discrete energy levels are
computed as

σijσkl = δjkσ
il, (4.16)

which either vanishes or results in another transition operator. An additional property
of these operators is that the sum over all projectors is conserved and equal to unity.
I.e, considering n levels, we have

n∑

i=1

σii = 1. (4.17)
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This property is used to reduce the number of equations by replacing one of the projectors.
By default, the projector of the first level specified is replaced in the framework.

As mentioned above, the commutation relations are applied as soon as operators are
combined in a multiplication. This is a deliberate design choice since it is imperative
that all possible commutation relations are applied prior to the cumulant expansion.
For example, if we were to perform a first-order cumulant expansion on the term aa†,
we would have

〈aa†〉 = 〈a†a〉 + 1 ≈ | 〈a〉 |2 + 1. (4.18)

If the commutation relations were not applied at some point, the cumulant expansion
would instead yield

〈aa†〉 ≈ | 〈a〉 |2. (4.19)

Obviously, this is incorrect as it would imply that 〈aa†〉 = 〈a†a〉.

4.3.3 Averaging and cumulant expansion

On the one hand, computing the average of an operator is straightforward: it is simply
converted to a complex number. The same is done for products of operators. For
constants involved in the product, as well as for addition, the linearity is used. For
example,

〈λ1ab+ λ2c〉 = λ1 〈ab〉 + λ2 〈c〉 , (4.20)

where a, b, and c are operators and λi ∈ ❈.
On the other hand, the cumulant expansion is more involved, as has been described

in Sec. 4.2. The framework implements the expansion using a programmatic version
of Eq. (4.8). To this end, standard combinatoric functions from the mathematical
Combinatorics.jl library are employed [4.36].

4.3.4 Additional features

Here, we will provide a brief overview of some convenient features that QuantumCumu-
lants.jl offers.

Automatic completion of systems

So far, we have dealt only with the single-atom laser. In second-order, this led to a
comparatively small number of equations. It was thus easy to see which equations
of motion were necessary in order to arrive at a complete set of equations. However,
when dealing with many equations, this might no longer be so simple. Even for small
systems, though, we would like to avoid the iterative work of looking for averages that
are missing from the equations, and adding them to the set.
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The framework offers an automized version of this procedure: using the complete
function, it will look for any averages that occur on the right-hand-side in a system of
equations and check whether the equations of motion are already there. If not, it will
derive the necessary equations and add them to the set. Essentially, this means that
the only thing the user needs to provide is a starting point, namely the equation for at
least one average of interest, and the order at which the equations should be truncated.

An additional noteworthy feature in this automatic completion is that the user can
provide a custom filter function, which specifies whether an average should be included.
This can be very useful if certain averages should be excluded from the completion
algorithm since it can significantly speed up the program as symbolic rewriting operations
are reduced. For example, you can use this to neglect phase-dependent terms that are
actually zero in a laser model (cf. code sample 4).

Two-time correlation functions

As the name suggests, this type of correlation function depends on two different time
parameters. For example, in order to compute the spectrum shown in Fig. 4.1(c), we
need to consider the correlation function defined by

g(t, τ) = 〈a†(t+ τ)a(t)〉 . (4.21)

The spectrum is then determined by taking the Fourier transform of Eq. (4.21). This
correlation function depends not only on the time t but also on the delay τ . The
detailed method with which the correlation functions and spectra are computed is rather
extensive, and we refer to Appendix 4.7.1 for details.

The basic idea is that the equation of motion for a two-time correlation function such
as the one in Eq. (4.21) is determined by the equation of motion of the operator that
depends on the delay τ , which is also known as the quantum regression theorem. Deriving
this equation will usually lead to couplings with other two-time correlation functions.
Ultimately, one obtains a system of equations involving correlation functions, whose
initial values are determined by the state of the original system under consideration
at time t. For example, at τ = 0, the correlation function in Eq. (4.21) is equal to the
average cavity photon number at time t. If the state of the system is known at time t
one can then solve for the correlation function.

The entire procedure of finding the equations that govern a two-time correlation
function and generating the code necessary to find a numerical solution is implemented
in QuantumCumulants.jl with the CorrelationFunction type. Furthermore, spectra can
be computed from correlation functions with the Spectrum functionality.

Mixing orders

In certain systems it might make sense to use different orders of the cumulant expansion
in different context. For example, one could envision a situation where a laser model
involving a cavity mode and many atoms should be treated such that the atoms are
approximately independent of one another, but build up some correlations with the
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cavity field. Thus, it makes sense to expand all expectation values involving atomic
operators only to first order, whereas cavity mode expectation values as well as cavity-
atom expectation values (such as 〈a†σge〉) are kept up to the second order. This approach
can be quite useful since then the number of equations scales only linearly with the
atom number, whereas in second order it would already scale quadratically.

Mixed orders can be used within the framework simply by providing a vector instead
of a single integer as the order parameter in the cumulant expansion. Each entry in
that vector corresponds to the order of the subsystem of the product space. The order
to be applied to an average is then determined by the action on the respective subspace.
If an average acts on multiple subsystems, the order is chosen according to a function
which by default picks the maximum (note that this can be changed by the user).

4.4 Examples

In this section we will showcase the framework’s usefulness by implementing a few
examples. Note that similar examples can also be found in the documentation [4.31].
Before we dive into more involved examples, let us briefly show the one used in Sec. 4.2.
In code sample 2, we see how one can implement a single-atom laser model in the
framework.
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using QuantumCumulants

# Define hilbert space and fundamental operators
hf = FockSpace(:cavity)
ha = NLevelSpace(:atom,(:g,:e))
h = hf ⊗ ha
@qnumbers a::Destroy(h) σ::Transition(h)

# Hamiltonian and collpase operators
@cnumbers Δ g γ κ ν
H = Δ*a'*a + g*(a'*σ(:g,:e) + a*σ(:e,:g))
J = [a,σ(:g,:e),σ(:e,:g)]
rates = [κ,γ,ν]

# Derive a set of second-order equations
eqs = meanfield(a'*a,H,J;rates=rates,order=2)
eqs_completed = complete(eqs)

# Convert to an ODESystem and solve numerically
using OrdinaryDiffEq, ModelingToolkit
@named sys = ODESystem(eqs_completed)
u0 = zeros(ComplexF64,length(eqs_completed))
p = (Δ, g, γ, κ, ν)
p0 = (0.5, 1.5, 1.25, 1, 4)
prob = ODEProblem(sys,u0,(0.0,20.0),p.=>p0)
sol = solve(prob,RK4())

# Compute the spectrum
c = CorrelationFunction(a', a, eqs_completed; steady_state=true)
S = Spectrum(c,p)
ω = range(-π,π,length=301)
s = S(ω,sol.u[end],p0)

Code sample 2: The single-atom laser example implemented with QuantumCumulants.jl.

Let us stress here that the code shown in code sample 2 is actually more general than
what has been discussed in Sec. 4.2. In particular, one could consider a higher-order
approximation simply by editing one line in the script when completing the system of
equations, e.g.

eqs_completed = complete(eqs;order=4)

will use a fourth-order cumulant expansion. The script will produce and solve the
equations as well as compute the spectrum of the laser. In fact, the results computed in
code sample 2 were used in the graphs shown in Fig. 4.1(b) and Fig. 4.1(c).

4.4.1 A laser with a three-level pump scheme
Here, we will show how one can implement systems with atoms that feature multiple
energy levels. Consider therefore a slightly modified version of the single-atom laser,
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that features an atom with three levels. This is inspired by the first laser ever built,
which used Ruby as a gain medium [4.37]. There are three states, which we denote
by |1〉 , |2〉 and |3〉, respectively. The atoms are incoherently driven from the ground
state |1〉 to the state |2〉, which is the highest in energy, at a rate ν. The state |2〉 then
decays non-radiatively into the state |3〉 at a rate Γ. While the state |3〉 can also decay
to the ground state |1〉 at a rate γ, population inversion can be achieved in |3〉 so long
as Γ, ν ≫ γ. Coupling a cavity to the transition |1〉 to |3〉 allows stimulated emission
and subsequent amplification thus leading to lasing action.
using QuantumCumulants

# Hilbert space
hf = FockSpace(:cavity)
ha = NLevelSpace(:atom, 3)
h = hf ⊗ ha

# Parameters and operators
@cnumbers Δ₃ g Γ γ κ ν
@qnumbers a::Destroy(h) σ::Transition(h)

# Hamiltonian and Decay
H = Δ₃*σ(3,3) + g*(a'*σ(1,3) + a*σ(3,1))
J = [a,σ(3,2),σ(1,3),σ(2,1)]
rates = [κ,Γ,γ,ν]

# Derive equations
eqs = meanfield([a'*a,σ(3,3),σ(2,2)],H,J;rates=rates,order=4)
eqs_completed = complete(eqs)

# Solve
using OrdinaryDiffEq, ModelingToolkit
@named sys = ODESystem(eqs_completed)
u0 = zeros(ComplexF64, length(eqs_completed))
p0 = (Δ₃=>0, g=>1.8, Γ=>20, γ=>1.5, κ=>1, ν=>10)
prob = ODEProblem(sys,u0,(0.0,6.0),p0)
sol = solve(prob,RK4())

Code sample 3: Three-level pump scheme in a laser.

The Hamiltonian of this system reads

H = ~∆3σ
33 + ~g

(

a†σ13 + aσ31
)

, (4.22)

where ∆3 = ω3 − ωc is the detuning between the cavity and the lasing transition, and g
is the coupling strength between the cavity and the atom. The implementation of this
model is shown in code sample 3.

The key difference to the previous laser model is that we added an additional energy
level to the atom by specifying the underlying Hilbertspace as NLevelSpace(:atom, 3).
In general, any number of energy levels can be specified here. It would thus be simple to
generalize the model further to describe, for example, a gain medium with four levels.
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Figure 4.2: Results of the three-level laser. (a) The average photon number in the cavity
and (b) the population inversion of the lasing transition and (c) the Mandel-Q
parameter. The parameters are ∆3 = 0, g = 1.8κ, Γ = 20κ, γ = 1.5κ and ν = 10κ.

We plot the average cavity photon number in Fig. 4.2(a) as well as the population
inversion of the lasing transition in Fig. 4.2(b). As we can see, the system indeed forms
a minimal version of a laser. In addition, we also plot the so-called Mandel-Q parameter
in Fig. 4.2(c), which is defined by

Q =
∆n2 − 〈n〉

〈n〉 , (4.23)

where n = a†a and ∆n2 = 〈n2〉 − 〈n〉2 is the variance of n. This parameter is a measure
of non-classicality in that if Q < 0, the photon number variance is smaller than the
average photon number, which corresponds to sub-Poissonian photon statistics. Clearly,
in Fig. 4.2(c) Q is negative during the build-up phase of the laser and then tends towards
0. This signifies that a higher-order approximation (in this case moments up to fourth
order are kept) suffices to capture nonclassical effects such as photon antibunching.

Let us stress here just how simple a fourth-order cumulant expansion becomes when
using QuantumCumulants.jl. Deriving the 30 equations necessary for the fourth-order
description would usually be challenging. With our framework, this can be achieved
within a few lines of code and a runtime on the order of 10 seconds.

Note that the examples so far are relatively simple and (at least for low photon
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numbers) could have been treated easily using a master equation as well. The aim of
the next two examples will be to examine situations where this is no longer the case.

4.4.2 Pulsed superradiant laser

using QuantumCumulants

# Define parameters
N = 50
@cnumbers Δ g γ κ

# Define hilbert space
hf = FockSpace(:cavity)
ha = [NLevelSpace(Symbol(:atom,i),2) for i=1:N]
h = ⊗(hf, ha...)

# Define the fundamental operators
a = Destroy(h,:a)
σ(i,j,k) = Transition(h,Symbol(:σ, k),i,j,k+1)

# Hamiltonian
H = Δ*a'*a + g*sum(a'*σ(1,2,i) + a*σ(2,1,i) for i=1:N)

# Collapse operators
J = [a;[σ(1,2,i) for i=1:N]]
rates = [κ;[γ for i=1:N]]

# Derive equations for populations
ops = [σ(2,2,i) for i=1:N]
eqs = meanfield(ops,H,J;rates=rates,order=2)

# Complete but neglect phase-dependent terms
ϕ(x::Average) = ϕ(x.arguments[1])
ϕ(::Destroy) = -1
ϕ(::Create) = 1
ϕ(x::QTerm) = sum(map(ϕ, x.args_nc))
ϕ(x::Transition) = x.i - x.j
phase_invariant(x) = iszero(ϕ(x))
complete!(eqs;filter_func=phase_invariant)

using OrdinaryDiffEq, ModelingToolkit
@named sys = ODESystem(eqs)
u0 = zeros(ComplexF64, length(eqs))
u0[1:N] .= 1.0 # atoms are inverted initially
p0 = (Δ=>0.5, g=>0.5, γ=>0.25, κ=>1)
prob = ODEProblem(sys,u0,(0.0,10.0),p0)
sol = solve(prob,RK4())

Code sample 4: Laser model with multiple atoms as gain medium.

The previous examples showed comparably simple models of a laser where the gain
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Figure 4.3: Pulsed superradiant laser. (a) The average photon number and (b) the excited state
population of an atom inside the gain medium for a cavity mode coupled to N = 50
atoms that are initially in the excited state. The parameters are ∆ = g = κ/2,
γ = κ/4 and ν = 4κ.

medium consisted of only one atom. Here, we will consider a cavity mode which couples
to a number of atoms N , which are initially inverted such that they provide gain. Note
that we label the atomic ground state by |1〉 and the excited state by |2〉. The coherent
dynamics is described by the Tavis-Cummings Hamiltonian,

H = ~∆a†a+
N∑

j=1

~gj

(

a†σ12
j + aσ21

j

)

, (4.24)

where gj is the coupling rate of the jth atom. In addition, all atoms are subject to
spontaneous emission at the rate γ. The implementation of this system in a second-order
approximation for N = 50 is shown in code sample 4.

Note, that in the implementation we assumed equal couplings, i.e. g ≡ gj . This
is simply due to keeping the displayed code short and one can easily generalize code
sample 4 to individual couplings. As can be seen in Fig. 4.3(a), a gain medium featuring
N = 50 atoms leads to a substantial superradiant pulse. After an initial brief build-up
of atomic coherences, collective stimulated emission leads to a steep increase of photons
in the cavity mode. Following the initial pulse we observe oscillations in which the
atoms reabsorb photons from the cavity [see Fig. 4.3(b)] and emit them again. The
pulse size reduces over time as photons leak out of the cavity until finally no photons
and atomic excitations are left. The results shown in Fig. 4.3 are in good qualitative
agreement with the experimental demonstration of such a pulsed superradiant laser in
Ref. [4.21].

Note that the key point of this example is that we are treating a number of atoms that
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could not be investigated easily in a master equation approach as the size of the Hilbert
space would already be huge. Deriving the necessary equations for a second-order
approximation with our framework and a subsequent numerical solution takes only
minutes on any modern computer and does not require a significant amount of memory.
Increasing the atom number further to, say N = 100, code sample 4 would still finish
in a time on the order of minutes, whereas a treatment with a master equation would
be downright impossible at that point. The limiting factor for the cumulant expansion
approach ultimately is the number of equations. Specifically, the number of equations
in code sample 4 scales with the number of atoms as

neqs =
N(N − 1)

2
+ 2N + 1. (4.25)

For N = 50, as used in code sample 4, this results in neqs = 1326 equations that need
to be derived and solved.

As mentioned above, one could generalize the example to feature individual couplings
of the atoms to the cavity or dissipation rates of the atomic ensemble. While we
assumed ideal atomic positioning here, one could therefore also include fluctuations in
the positions and hence the coupling rates. To do so, you would need to compute the
time evolutions for many randomly generated atomic configurations and average over
the results. So long as the time evolution itself remains deterministic, our toolbox is
perfectly suitable for such simulations. It is important to note that in such a case the
computationally intense symbolic derivation of equations still only has to be done once.
Numerical variations of parameters can be done when setting the values for the time
evolution.

4.4.3 Optomechanical cooling of a micromechanical oscillator

In this example, we show how to implement a cooling scheme based on radiation pressure
coupling of light to a mechanical oscillator, such as a membrane. The oscillator is placed
inside an optical cavity. The cavity is driven by a laser and the resulting radiation
pressure of the cavity field effectively couples the photons in the cavity mode to the
vibrational phonons of the mechanical oscillator mode. This model is based on the one
studied in Ref. [4.38], and the Hamiltonian reads

H = −~∆a†a+ ~ωmb
†b+ ~Ga†a

(

b+ b†
)

+ ~E
(

a+ a†
)

, (4.26)

where ∆ = ωℓ − ωc is the detuning between the laser (ωℓ) driving the cavity (ωc). The
amplitude of the laser is denoted by E, the resonance frequency of the mechanical
oscillator by ωm, and the radiation pressure coupling is given by G. The operators a
and b are the photonic and phononic annihilation operators, respectively. Additionally,
photons leak out of the cavity at a rate κ.

We will consider the membrane at room temperature. Its vibrational mode is in a
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thermal state with an average number of phonons that can be estimated from

kBT = nvib~ωm. (4.27)

If the resonator has a resonance frequency of ωm = 10MHz, then the number of phonons
at room temperature (T ≈ 300K) is approximately nvib ≈ 4 × 106. Let us stress
here that treating such a large number of phonons in a master equation approach is
problematic since this number determines the cut-off which can be chosen and thus
the dimension of the Hilbert space. The averages treated in the cumulant expansion
approach, however, are independent of this cut-off. Therefore, arbitrarily large numbers
can be used (of course numerical floating-point errors may become substantial at some
point). This makes QuantumCumulants.jl an ideal candidate to treat optomechanical
problems in a high-temperature regime.
using QuantumCumulants
using OrdinaryDiffEq, ModelingToolkit

# Hilbert space
hc = FockSpace(:cavity)
hm = FockSpace(:motion)
h = hc ⊗ hm

# Operators
@qnumbers a::Destroy(h,1) b::Destroy(h,2)

# Parameters
@cnumbers Δ ωm E G κ

# Hamiltonian
H = -Δ*a'*a + ωm*b'*b + G*a'*a*(b + b') + E*(a + a')

# Derive equations
eqs = meanfield([b'*b,a'*a],H,[a];rates=[κ],order=2)
eqs_completed = complete(eqs)

# Numerical solution
@named sys = ODESystem(eqs_completed)
u0 = zeros(ComplexF64, length(eqs_completed))
u0[1] = 4*1e6 # Initial number of phonons
p0 = (Δ=>-10, ωm=>1, E=>200, G=>0.0125, κ=>20)
prob = ODEProblem(sys,u0,(0.0,60000),p0)
sol = solve(prob,RK4())

Code sample 5: Cooling of a micromechanical oscillator at room temperature.

The code implementing this model in a second-order approximation is shown in code
sample 5. Note, that in order to accurately represent a thermal state, we cannot treat
the problem in a first-order approximation since, in a thermal state, 〈b〉 = 0, but the
number of phonons is 〈b†b〉 6= 0 (with the initial value given by nvib).

In Fig. 4.4 we show how the temperature of the membrane reduces while the photon
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Figure 4.4: Optomechanical cooling of a membrane. (a) The temperature of the membrane
reduces from room temperature over time. (b) At the same time, the field in
the cavity builds up accumulating photons. The parameters were ωm = 10MHz,
∆ = −10ωm, E = 200ωm, G = ωm/80 and κ = 20ωm.

number inside the cavity builds up. The cooling works quite well, such that a final
temperature below 1mK is reached.

4.5 Limitations and Outlook
As we have shown by now, the framework can be quite useful. However, there are some
disadvantages, which we want to discuss in this section.

4.5.1 Principal limitations

First, we will provide an overview of the fundamental limits inherent to the approach.
Mean-field descriptions based on the cumulant expansion are approximations that
neglect a certain amount of quantum correlations. As such, they are not well suited
to treat problems featuring large degrees of entanglement. In principle, one could go
to ever higher orders to overcome this. However, this will polynomially increase the
number of equations and quickly becomes unfeasible. Furthermore, there are cases
where a full quantum treatment is simply necessary, and thus the mean-field approach
cannot be used.

This brings us to a related issue: there is no generic way to know for certain if
neglecting joint cumulants above a specific order is sufficiently accurate. The assumption
that neglected cumulants are zero in principle has to be checked for each system and
parameter set considered. This can only be done by actually computing the necessary
cumulants or checking for convergence when going to higher orders. Note that this is
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not always possible as a higher order means having to solve more equations.
When considering large composite systems, the number of equations increases poly-

nomially, where the leading order of the polynomial is determined by the order. For
example, N two-level atoms in second order lead to O(N2) equations, in third order to
O(N3), etc. While this is a huge improvement over the exponential scaling with 2N in a
full quantum treatment, it can still limit the treatment of many atoms in higher orders.

4.5.2 Current limitations

There are some disadvantages to the framework that can possibly be addressed by
changes in the future. One example is that QuantumCumulants.jl is currently not
able to handle expressions involving exponentials of operators or similar functions.
The exponential of an operator represents an infinite series involving all powers of its
argument. As such, it is not straightforward to form the cumulant expansion. While it
can be done for specific expressions, attempts at finding a generic way to do this for
products involving multiple exponentials and other operators have not been successful
so far.

Two more restrictions of QuantumCumulants.jl are not inherent, but the need to
address them did not arise so far. The fact that we choose normal ordering of expressions
is somewhat arbitrary and could be changed if, for example, one has a use-case that
requires anti-normal ordering. Finally, there are currently only two Hilbert spaces
implemented, namely FockSpaces and NLevelSpaces. Adding in different Hilbert spaces
can be done, of course. We note, though, that a surprisingly large number of problems
can be treated with only the two Hilbert spaces currently implemented.

4.5.3 Future changes

While QuantumCumulants.jl has already proven very useful, it is still in an early stage
of development. Things may still change and new features will be added. Here we want
to comment on the latter and mention a few possible directions.

At the very beginning when reviewing the theory, we presented the Quantum Langevin
equation (QLE), Eq. (4.2), which features quantum noise. Throughout the entire paper,
this noise was neglected as it does not contribute to averages. One possible future
development is to actually consider this noise explicitly.

On the one hand, this would open the possibility to implement an approach based on
the linearization of the operator equations around large average values. In steady state
one can then compute the covariance matrix from a first-order (mean-field) solution of
the system. This approach was used, for example, in Ref. [4.38].

On the other hand, one can convert the QLEs to c-number Langevin equations [4.39,
4.40], i.e. a set of stochastic differential equations. When the noise processes are
chosen such that they reproduce the actual correlation functions of the quantum
noise, one can obtain the second-order solutions by averaging over many trajectories.
Additionally, one does not need to rely on white noise assumptions, but colored noise
could be considered as well. Note that the ModelingToolkit.jl [4.34] framework and the

69



4 Publication: QuantumCumulants.jl: A Julia framework for mean-field equations

DifferentialEquations.jl [4.35, 4.41] library are already capable of handling stochastic
differential equations.

Both the approaches based on the treatment of noise allow the reconstruction of
second-order expectation values from a first-order solution. As such, they can be used
in systems which are too large to be treated even in second order, but still exhibit some
quantum phenomena.

Finally, another useful method exploits symmetry properties of multiple subsystem in
order to significantly reduce the number of equations. This is done, for example, in the
lasing model in Ref. [4.17] where atoms in the gain medium are assumed to be identical,
which allows for an effective description with only a few equations for an arbitrarily
large gain medium. An experimental automized version of this approach is already
implemented in QuantumCumulants.jl (see Appendix 4.7.2).

4.6 Conclusions

We developed a novel open framework called QuantumCumulants.jl written in Julia,
which automizes the analytical calculations and numerical implementation required
for generalized mean-field approximations of the dynamics of open quantum systems.
To this end we combined the symbolic handling of noncommutative variables for the
automated cumulant expansion of moments to a specified order with other libraries
offering automated code generation suitable for direct numerical solutions by standard
differential equation solvers. After showing the general principle at the hand of the
generic single atom laser model, we demonstrated the usefulness and versatility of our
toolbox in several examples.

The framework already shows promising capabilities. Yet, the implications that
it works at all go way beyond what can currently be done: the cumulant expansion
approach is a powerful tool in its own right. Making the steps behind it easily accessible
will allow a swift treatment of numerous problems that cannot be treated in a full
quantum model. As development of QuantumCumulants.jl continues, the number of
problems that can be addressed will continue to increase. Furthermore, even at points
where the number of equations becomes too large to be handled by hand, the toolbox
can still be successful. Potentially, the framework could be applied to problems not
only in quantum optics, but also in quantum information, nanophotonics, and even
condensed matter theory.
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4.7 Appendix

4.7.1 Correlation functions and power spectra

Correlation functions

Correlation functions can provide useful information about a system. The expectation
values used to compute a correlation function are special in that they generally depend
on two different times. Consider two operators A and B. Their two-time correlation
function is given by

C(t, τ) = 〈A(t+ τ)B(t)〉 . (4.28)

If the time difference τ = 0, the correlation function is just the expectation value 〈AB〉
at time t. So in order to compute the correlation function, we can evolve a system of
equations containing the expectation value at τ = 0 up to a time t. The evolution with
respect to the time delay is then determined by

d

dτ
C(t, τ) = 〈

(
d

dτ
A(t+ τ)

)

B(t)〉 . (4.29)

Hence, we can derive the set of equations required to compute the correlation function
from the equation of the operator A. Then, the same procedure as for a standard time
evolution is used: the set of equations is expanded to a certain order and completed.
Numerical code to solve the underlying differential equations is automatically generated.

As there is quite a bit of new theory involved here, let us go back to the example used
throughout Sec. 4.2, namely the single-atom laser, to clarify the procedure explained
above. The first-order coherence function of the cavity field is given by

C(t, τ) = 〈a†(t+ τ)a(t)〉 . (4.30)

The equations of motion with respect to τ are readily constructed [cf. Eqs. (4.4)],

d

dτ
〈a†(t+ τ)a(t)〉 =

(

i∆ − κ

2

)

〈a†(t+ τ)a(t)〉 + ig 〈σeg(t+ τ)a(t)〉 (4.31a)

d

dτ
〈σeg(t+ τ)a(t)〉 = −γ + ν

2
〈σeg(t+ τ)a(t)〉 − ig 〈a†(t+ τ)σee(t+ τ)a(t)〉 . (4.31b)

Using the cumulant expansion to second order together with the phase invariance of
the system, we obtain for the last term

〈a†(t+ τ)σee(t+ τ)a(t)〉 = 〈a†(t+ τ)a(t)〉 〈σee(t+ τ)〉 . (4.32)

In principle, we would have to compute the time evolution for 〈σee(t+ τ)〉 with respect
to τ together with the other equations. However, we will consider the system to be in
steady state in order to avoid having to treat this additional equation.
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Steady state

If the original system is evolved up to a time t such that it is in steady state, i.e.
expectation values no longer change after that time, the set of equations determining the
correlation function has a special property. Specifically, after the cumulant expansion has
been performed, there can only be a single term in each product on the right-hand-side
of the set of equations that depends on τ . All other terms depend on t alone, meaning
that they are constant since they no longer change after the time t. Therefore, the
system of equations from which the correlation function is computed is linear, in the
sense that it can be written as

d

dτ
y(τ) = My(τ) + d, (4.33)

where y(τ) is the vector of τ -dependent variables. The elements of the matrix M
as well as the vector d are given by steady-state expectation values and parameters,
i.e. they are independent of τ . In the case of the single-atom laser example, we have
y(τ) =

(

〈a†(t+ τ)a(t)〉 , 〈σeg(t+ τ)a(t)〉
)T

, d = 0, and

M =

(

i∆ − κ
2 ig

−ig 〈σee〉 −γ+ν
2

)

. (4.34)

Power spectra

According to the Wiener-Khinchin theorem. the spectral density associated with a
correlation function is given by its Fourier transform,

S(t, ω) = 2Re
{∫

dτe−iωτC(t, τ)

}

. (4.35)

In order to compute this, we can solve the system of equations determining C(t, τ),
subsequently taking the Fourier transform. However, if we are not interested in the
temporal behavior of the correlation function, and if the system of which we want to
compute the spectrum is in steady state, we can directly compute the spectrum from
Eq. (4.33). To this end, we define

x(s) = L {y(τ)} , (4.36)

where L denotes the Laplace transform with respect to τ . Taking the Laplace transform
of Eq. (4.33), we have

(s✶ − M) x(s) = y(0) +
d
s
. (4.37)

Note that the Laplace transform is equivalent to the Fourier transform at the point
where s = iω, i.e S(ω) = 2Re {x1(iω)}. Hence, instead of computing the time evolution
of the correlation function we can directly compute the spectrum by solving the linear
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equation

x = A−1b, (4.38)

where A = iω✶ − M and b = y(0) + d/(iω).

For the single-atom laser, solving Eq. (4.38) requires computing the inverse of a simple
2 × 2 matrix. For larger systems, the method using a Laplace transform is usually
faster than integrating a system of equations of the same size. Additionally, it avoids
numerical errors of the integration and the subsequent discrete Fourier transform.

4.7.2 Dealing with many identical subsystems

Consider a system consisting of multiple subsystems. If a subset of these subsystems
is guaranteed to be identical at any point in time the number of equations needed to
describe the whole system can be significantly reduced. In essence, instead of explicitly
describing each subsystem, we may only describe a single one and place appropriate
scaling factors at some points in the equations of motion.

For clarity, take the example from Sec. 4.4.2. The equation of motion for the average
field amplitude is

〈ȧ〉 = −
(

i∆ +
κ

2

)

〈a〉 +
N∑

j=1

gj 〈σ12
j 〉 . (4.39)

Now, given that all atoms are initially in the same state and their couplings to the
cavity mode and the environment are all equal (i.e. gj ≡ g ∀ j and similarly for γj and
νj), then we know that 〈σkℓ

j 〉 ≡ 〈σkℓ
1 〉 ∀ j. We may then rewrite the above equation and

obtain

〈ȧ〉 = −
(

i∆ +
κ

2

)

〈a〉 +Ng 〈σ12
1 〉 . (4.40)

Thus, we only need to know 〈σ12
1 〉 in order to solve the above equation, instead of all the

different 〈σ12
j 〉. Things are a bit more tricky, however, when looking at the equations

of motion for atomic expectation values or mixed atom-field expectation values. One
has to take care such that the equations reproduce the correct correlations between
individual atoms. For example, the complete set of second-order equations of the laser
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model involving many atoms reads

d

dt
〈σ1

22〉 = ig〈a†σ1
12〉 − ig〈aσ1

21〉 − γ〈σ1
22〉 (4.41a)

d

dt
〈a†σ1

12〉 = ig〈σ1
22〉 − ig〈a†a〉 + i∆〈a†σ1

12〉 − 0.5γ〈a†σ1
12〉 (4.41b)

− 0.5κ〈a†σ1
12〉 + 2ig〈σ1

22〉〈a†a〉 + ig〈σ1
21σ2

12〉 (−1 +N)

d

dt
〈a†a〉 = −κ〈a†a〉 − iNg〈a†σ1

12〉 + iNg〈aσ1
21〉 (4.41c)

d

dt
〈σ1

21σ2
12〉 = ig〈a†σ1

12〉 − ig〈aσ1
21〉 − γ〈σ1

21σ2
12〉 − 2ig〈σ1

22〉〈a†σ1
12〉 (4.41d)

+ 2ig〈σ1
22〉〈aσ1

21〉 (4.41e)

As we can see, to fully capture the correlations we need to consider not a single atom,
but two. Another noteworthy thing is that the mixed atom-field expectation value
Eq. (4.41b) couples to all but one of the atomic ensemble. Therefore, the correlations
are multiplied by N − 1.

This approach is very useful to study atom numbers that would be otherwise inacces-
sible in even a first- or second-order description. The key point is that the number of
equations is independent of the number of identical subsystems. The set of equations
shown above is similar to the one studied in Ref. [4.17], where the symmetry property
of the gain medium of a superradiant laser has been exploited to the same end as shown
here.

QuantumCumulants.jl implements an experimental version that automizes the pro-
cedure of reducing equations and finding the correct scaling factors. To this end, we
need to find the positions of the sums that occur when dealing with each subsystem
explicitly. On top of that, sums may exclude certain indices which changes the scaling
factor. Ultimately, we devised a set of rules that obtains this information based on the
action of operators on the different Hilbert spaces. Similar rules are implemented to
judge whether an expectation value can be eliminated by substitution. For example,
whenever 〈σij

2 〉 occurs in the above equations, we can replace it by 〈σij
1 〉.

Currently, this functionality is tailored to Hamiltonians of the form similar to Eq. (4.24).
To specify, we can currently treat systems comprised of many identical subsystems that
are coupled by only one common Hilbert space. In the example shown here, the identical
subsystems are the atoms inside the gain medium and they couple via the common
cavity mode. Note that the approach is not restricted to this combination of Hilbert
spaces, i.e. we could also treat a single atom coupling to many identical modes, or a
single designated mode coupling to other modes. However, this automatic procedure is
not applicable to more general problems and will be subject to changes in the future.
Hence, we consider this part of the framework experimental.

The program which derives Eqs. (4.41) automatically and solves them is shown in
code sample 6. This requires the use of a ClusterSpace which represents an arbitrary
amount of identical copies of a single Hilbert space. Note that we also need to make the
order of the problem known to the space in the beginning, as this is the actual number
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of Hilbert spaces required to describe the system properly. Another advantage of this
approach is that the equations only need to be derived once after which one can solve
the system dynamics for arbitrary numbers of atoms as N is simply a parameter in
code sample 6.
using QuantumCumulants

M = 2 #order
@cnumbers N Δ g κ γ
hf = FockSpace(:cavity)
ha1 = NLevelSpace(:atom, 2)
ha = ClusterSpace(ha1, N, M)
h = tensor(hf, ha)

@qnumbers a::Destroy(h)
# (i,j) -> levels, k -> atomic index
σ(i,j,k) = Transition(h, :σ, i, j)[k]

# Hamiltonian
H = Δ*a'*a + g*sum(a'*σ(1,2,i) + a*σ(2,1,i) for i=1:M)

# Collapse operators
J = [a;[σ(1,2,i) for i=1:M]]
rates = [κ;[γ for i=1:M]]

# Derive equation for atomic population
eqs = meanfield(σ(2,2,1),H,J;rates=rates,order=M)

# Complete but neglect phase-dependent terms
ϕ(x::Average) = ϕ(x.arguments[1])
ϕ(::Destroy) = -1
ϕ(::Create) = 1
ϕ(x::QTerm) = sum(map(ϕ, x.args_nc))
ϕ(x::Transition) = x.i - x.j
phase_invariant(x) = iszero(ϕ(x))
complete!(eqs;filter_func=phase_invariant)

using OrdinaryDiffEq, ModelingToolkit
@named sys = ODESystem(eqs)
u0 = zeros(ComplexF64, length(eqs))
u0[1] = 1.0 # atoms are inverted intially
p0 = (Δ=>0.5, g=>0.01, γ=>0.25, κ=>1, N=>500000)
prob = ODEProblem(sys,u0,(0.0,20.0),p0)
sol = solve(prob,RK4())

Code sample 6: Automatic elimination of identical subsystems. The above code derives and
solves the equations for N = 5 × 105 atoms in the gain medium.
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A suitable scheme to continuously create inversion on an optical clock
transition with negligible perturbation is a key missing ingredient required
to build an active optical atomic clock. Repumping of the atoms on the
narrow transition typically needs several pump lasers in a multi step process
involving several auxiliary levels. In general this creates large effective level
shifts and a line broadening, strongly limiting clock accuracy. Here we present
an extensive theoretical study for a realistic multi-level implementation in
search of parameter regimes where a sufficient inversion can be achieved
with minimal perturbations. Fortunately we are able to identify a useful
operating regime, where the frequency shifts remain small and controllable,
only weakly perturbing the clock transition for useful pumping rates. For
practical estimates of the corresponding clock performance we introduce
a straightforward mapping of the multilevel pump scheme to an effective
energy shift and broadening parameters for the reduced two-level laser model
system. This allows to evaluate the resulting laser power and spectrum
using well-known methods.
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5.1 Introduction

State of the art optical atomic lattice clocks achieve an excellent fractional stability of up
to 6.6 × 10−19 after one hour of averaging [5.1]. In a typical atomic clock a stable local
laser oscillator is compared to the reference transition frequency of trapped ultra-cold
atoms. Technically the local laser oscillator is stabilized by an ultra-stable macroscopic
cavity with a very good short time stability. Limitations of its stability originate from
length fluctuations due to environmental and thermal perturbations [5.2]. Currently,
these perturbations are the central limiting factor of the performance of passive atomic
clocks on the short timescale. It has been proposed [5.3, 5.4] that active optical clocks,
realized as so called superradiant lasers [5.3–5.31], can overcome this limitation. In
such a laser an ensemble of atoms with a narrow and stable transition is used as gain
medium inside an optical resonator. Since the cavity bandwidth is much broader than
the gain profile, the frequency of such a bad-cavity laser is primarily determined by the
stability of the resonance frequency of the gain medium which makes the system robust
against cavity length fluctuations.

Maintaining population inversion on the atomic clock transition is, of course, a
necessary ingredient required for continuous operation of an active optical clock laser.
One possibility to achieve this is to prepare the atoms in the upper lasing state outside
of the active lasing region and subsequently injecting them into the cavity. Such an
approach is reminiscent of the hydrogen maser [5.32, 5.33]. In the optical regime this
can be realized, for example, as an atomic beam laser [5.3, 5.18, 5.34, 5.35], where atoms
in the upper lasing state traverse the cavity.

The most common approach to maintain inversion is to continuously repump the
laser active atoms trapped within a magic wavelength optical lattice inside the cavity
[5.4–5.6, 5.19, 5.21, 5.36, 5.37]. Hence each atom can emit several photons into the
cavity and for a continuous operation, only a relatively small flux of atoms is needed to
compensate the lost atoms. This could be e.g. achieved with an optical conveyor lattice
through the cavity [5.13, 5.14, 5.35, 5.38, 5.39]. The central challenge of this approach are
the perturbations of the clock atoms due to the presence of the repumping lasers. Typical
theoretical models dedicated to superradiant clock lasers with continuous repumping
simply assume an artificial transition rate modelled as inverse spontaneous decay from
the ground to the excited lasing state [5.4, 5.11, 5.19–5.21]. This introduces an effective
homogeneous broadening of the laser line but ignores all shifts and inhomogeneous
broadening. To model this in a more realistic schemes, however, one needs to introduce
laser-induced transitions to some auxiliary intermediate levels followed by a spontaneous
decay to the upper lasing state. Naturally these lasers will introduce differential light
shifts in addition to decoherence on the clock transition. For a non-uniform pump laser
field distribution one, of course, gets inhomogeneous broadening. Besides broadening
and shifting the laser line, it will eventually modify the threshold and even inhibit lasing.
Frequency shifts lead to additional inaccuracy at least if they are not controllable and
precisely measurable, as the resulting laser frequency then differs from the bare atomic
transition. Luckily, as long as the inhomogeneous broadening is sufficiently small and
symmetric, the atoms with different energies still synchronize [5.7, 5.15, 5.30] and a
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narrow laser linewidth can be maintained. Therefore, the design of high-performance
active optical clocks with a continuous repumping scheme requires the characterization,
control and, if possible, minimization of the induced shifts and resulting decoherence.

The conceptually simplest realistic repumping scheme, the so-called three-level scheme,
includes only a single intermediate level coherently coupled to the laser ground state,
which ideally directly decays to the upper lasing level on a short time scale. Its theoret-
ical study can be drastically simplified when the auxiliary level can be adiabatically
eliminated, reducing the model to an effective two-level system subject to an effective
incoherent pump, as e.g. in Lu+ ions [5.16]. The Stark shift of the lasing transition
can be effectively added to the model. However, in most metrology-relevant neutral
atoms, as e.g. strontium or ytterbium, such an ideal intermediate level does not exist
and thus any realistic repumping scheme requires at least two laser-induced transition
steps to irreversibly excite the atoms from the lower to the upper clock state. This
has the advantage that one has more possibilities to obtain a desired pump rate with
minimal perturbation. However, it has also the disadvantage that, on the one hand, an
analytic procedure of adiabatic elimination is cumbersome, especially for systems with a
complex multilevel structure. On the other hand, a full numerical treatment, including
all the relevant levels in the laser model, significantly increases the computational cost.
Especially in time-domain simulations the characteristic time constants of the laser
active and intermediate states often differ by many orders of magnitude, requiring a
large number of time steps to be calculated.

Of course the numerical challenges become even more prominent for calculations
beyond the mean-field approximation as needed for reliable predictions of linewidth
and stability. As particularly useful models to tackle this, we will employ higher order
cumulant expansion methods [5.40, 5.41]. Luckily we see that, as in the three level case,
adiabatic elimination of the intermediate levels can reduce these multi-level systems to
a simplified effective two-level system with sufficient accuracy.

In this paper we consider a quite general multi-level repumping scheme for neutral
88Sr. We demonstrate that a proper choice of intensities and detunings of the pump
lasers can lead to a sufficiently high effective repumping rate while at the same time
frequency shifts and decoherence rates are kept small. To perform this analysis, we
introduce a numerical method to reduce the complex multi-level system to an effective
two-level system. This work is organized as follows: In Section 5.2 we review the
simplified two-level model including incoherent repumping, and describe the generalized
method used to reduce a multilevel system to a two-level one. In Section 5.3 we introduce
a repumping scheme for trapped 88Sr and calculate the effective parameters of the
equivalent two-level system. The pumping scheme includes the two lasing states and
four intermediate states. In Section 5.4 we compare the effective two-level laser model
with the full six-level laser model.
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5.2 A multistep excitation process as effective two-level system

In this section we describe the method to eliminate the intermediate states in a multi-
level scheme with continuous repumping to an effective two-level system by using the
eigenvalues of the non-hermitian Hamiltonian. The requirement on this procedure is
that the intermediates states can be adiabatically eliminated. The motivation for this
procedure is that the full laser system can be numerically very extensive for multilevel
systems, and a ”conventional” adiabatic elimination is often too cumbersome to be
handled analytically. With our method we numerically calculate first the appropriate
parameters of an equivalent two-level atom, to use them afterwards in an effective laser
model. This has the additional advantage that this simplified model has already been
studied extensively [5.4, 5.6, 5.7, 5.20, 5.21].

To establish the correspondence between the effective two-level and the multilevel
system, we investigate first a two-level atom subjected to spontaneous decay, decoherence
and incoherent pumping. In the Heisenberg representation the averaged value of an
operator Ô for an open quantum system follows the equation

d〈Ô〉
dt

=
i

~
〈[Ĥ, Ô]〉 + 〈 ˆ̄L[Ô]〉 (5.1)

where Ĥ is the Hamiltonian and ˆ̄L is the super-operator describing the dissipative
processes. Within the Born-Markov approximation ˆ̄L has the form

ˆ̄L[Ô] =
∑

j

Rj

2

(

2Ĵ†
j ÔĴj − Ĵ†

j ĴjÔ − ÔĴ†
j Ĵj

)

, (5.2)

here Ĵj are the jump operators with the corresponding rates Rj . For our two-level atom
in the rotating frame of the unperturbed atomic transition frequency the Hamiltonian
can be written as Ĥ = ~(δ1σ̂11 + δ2σ̂22), where δ1 and δ2 are the shifts from the ground
|1〉 and excited clock state |2〉, respectively and σ̂ij = |i〉 〈j|. The jump operators and
corresponding rates of the dissipative processes are listed in Table 5.1. The equations of

# jump rate description
1 σ̂12 Γ12 decay from |2〉 to |1〉
2 σ̂21 R incoherent pumping from |1〉 to |2〉
3 σ̂11 ν1 dephasing on |1〉
4 σ̂22 ν2 dephasing on |2〉

Table 5.1: Dissipative processes of the two-level scheme.
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5.2 A multistep excitation process as effective two-level system

motion for the operator averages 〈σ̂ij〉 of such a two-level atom are

∂t 〈σ̂22〉 = R 〈σ̂11〉 − Γ12 〈σ̂22〉 (5.3)

∂t 〈σ̂12〉 = −
(
R+ Γ12 + ν

2
+ iδ21

)

〈σ̂12〉 , (5.4)

where δ21 = δ2 − δ1, and ν = ν1 + ν2. From (5.3) one can easily express the incoherent
repumping rate R via the ratio of the steady-state population as

R =
〈σ̂22〉
〈σ̂11〉Γ12. (5.5)

To express the dephasing rates ν1 and ν2 we exploit the effective non-hermitian Hamil-
tonian

Ĥnh
eff = Ĥ − i~

2

∑

j

Rj Ĵ
†
j Ĵj , (5.6)

as it is used e.g. in the Monte-Carlo wave function approach [5.42–5.44]. For our
two-level system this non-hermitian Hamiltonian has the form

Ĥnh
eff = ~δ1σ̂11 + ~δ2σ̂22 − i~

2
[Γ12σ̂22 +Rσ̂11 + ν1σ̂11 + ν2σ̂22)] , (5.7)

which is already diagonal with the complex eigenvalues

E1 = ~

[

δ1 − i

2
(R+ ν1)

]

(5.8)

E2 = ~

[

δ2 − i

2
(Γ12 + ν2)

]

. (5.9)

Using these relations and equation (5.5) for the incoherent pump rate R, we can express
the shifts and decoherence rates via the eigenvalues of this effective Hamiltonian as:

δ1 = Re{E1}/~
δ2 = Re{E2}/~
ν1 = −2Im{E1}/~ −R

ν2 = −2Im{E2}/~ − Γ12

(5.10)

Therefore, to reduce a driven multilevel system to an effective two-level system with
incoherent pumping, we perform the following steps: First, we calculate the steady-state
values for 〈σ̂11〉 and 〈σ̂22〉, to obtain the effective repumping rate R from equation (5.5).
Second, we diagonalize the effective non-hermitian Hamiltonian (5.6) to get the complex
eigenvalues E1 and E2. These eigenvalues correspond to the eigenstates with the
highest overlap with the unperturbed clock states |1〉 and |2〉. Using these eigenvalues
we calculate the shifts δ1 and δ2 and the decoherence rates ν1 and ν2 according to
equation (5.10). In appendix 5.6.1 we apply this method analytically to a three-level
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5 Publication: Continuous multi-step pumping of the optical clock transition

 

Figure 5.1: Effective pump schemes: Figure (a) shows all relevant atomic levels involved in
CW pumping including the Zeeman sub-levels. Numbers show the level shifts for
B = 0.18T. The directly involved transitions are indicated by the red solid lines.
Figure (b) depicts a simplified six-level pump scheme with the relevant decay rates.
(c) describes the resulting reduced two-level laser model including the effective
emerging incoherent pump rate R and ground state Stark shift δ1. We also include
an effective dephasing with rate ν on the lasing transition. The cavity coupling is
indicated by the dashed line between |1〉 and |2〉. The decay rates are from [5.45].

system, and compare it to the ”conventional” adiabatic elimination procedure. Note
that the atoms are coupled to the cavity only on the weak |1〉 ↔ |2〉 transition, which
will not be adiabatically eliminated. Therefore the atom-cavity coupling of the reduced
system is anyway retained and we can, in a good approximation, neglect the cavity field
and perform the adiabatic elimination on a single atom. This also assumes that we
neglected direct interaction between the atoms as well as any collective coupling of the
atoms to the bath modes.

5.3 Repumping scheme for bosonic strontium
In the following we present the concrete proposed repumping scheme based on the actual
level structure of 88Sr, see figure 5.1. In order to allow for superradiant lasing we assume
a fairly strong and homogeneous magnetic field B = 0.18 T on the atoms, which induces
an effective weak electric dipole coupling between the states |1〉 = 1S0 and |2〉 = 3P0

with spontaneous transition rate Γ12 ≈ 2π · 1 mHz [5.46]. Naturally such a strong
magnetic field splits the Zeeman sub-levels quite far, such that they can be addressed
independently. To obtain sufficient population in the upper clock state |2〉 = 3P0 we
consider the following processes: The atom is pumped coherently from the ground state
|1〉 = 1S0 to |3〉 = 3P1,m=−1 and then further to |4〉 = 3S1,m=0. From there the atom
can decay into the upper lasing state |2〉 as well as into the states |5〉 = 3P2,m={−1,0+1}
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5.3 Repumping scheme for bosonic strontium

and |6〉 = 3P1,m=−1. Note that the atoms can not decay from |4〉 to 3P1,m=0, since this
transition is forbidden by angular momentum selection rules. Furthermore we combine
here the three relevant Zeeman sub-levels of the state 3P2 to one state |5〉, this does not
change the dynamics of the system, but one needs to be aware that in real experiments
three individual lasers are needed to repump the atoms from these levels.

The decay |4〉 → |2〉 is the desired final step in the excitation process. Since the
state |5〉 has a lifetime even longer than the upper clock state, we need to additionally
depopulate |5〉 to avoid trapping of too much population in this state. If the atoms
decay into the state |6〉, we can either repump it back to the state |4〉, or simply let it
decay further to the ground state. Pumping from the state |6〉 would further increase
the efficiency of the repumping process, but for simplicity we just consider spontaneous
decay to the ground state. The Hamiltonian for the pumped six-level scheme (figure 5.1
(b)) in the rotating frame of the pump lasers then is

Ĥp = −∆3σ̂33 −∆4σ̂44 −∆5σ̂55 +Ω13(σ̂13 +σ̂31)+Ω34(σ̂34 +σ̂43)+Ω54(σ̂45 +σ̂54) (5.11)

with ∆3 = ∆13, ∆4 = ∆3 + ∆34 and ∆5 = ∆4 − ∆54. We define here ∆ij = ωl
ij − ωij ,

ωij is the resonance frequency on the atomic transition |i〉 ↔ |j〉, ωl
ij is the frequency

of the pump laser on this transition and Ωij the matrix element of the laser-induced
transition. Dissipative processes for this pump scheme are described by the Liouvillian
(5.2) with the parameters listed in table 5.2. These processes include all the relevant
atomic decays, an effective phenomenological dephasing of the clock transition, as well
as the dephasing induced by the pump lasers due to a finite linewidth.

5.3.1 Scanning over repumping parameters

Using the method described in section 5.2 we analyze our Strontium six-level repumping
scheme. For high atom numbers N ≫ 1 an effective incoherent repumping rate R

# jump rate description
1 σ̂12 Γ12 decay from |2〉 to |1〉
2 σ̂13 Γ13 decay from |3〉 to |1〉
3 σ̂34 Γ34 decay from |4〉 to |3〉
4 σ̂24 Γ24 decay from |4〉 to |2〉
5 σ̂54 Γ54 decay from |4〉 to |5〉
6 σ̂64 Γ64 decay from |4〉 to |6〉
7 σ̂16 Γ16 decay from |6〉 to |1〉
8 σ̂22 ν12 general dephasing on |1〉 ↔ |2〉
9 σ̂33 + σ̂44 + σ̂55 ν13 pump laser linewidth on |1〉 ↔ |3〉
10 σ̂44 + σ̂55 ν34 pump laser linewidth on |3〉 ↔ |4〉
11 σ̂55 ν54 pump laser linewidth on |4〉 ↔ |5〉

Table 5.2: Dissipative processes of the six-level pump scheme.
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5 Publication: Continuous multi-step pumping of the optical clock transition

above Γ12 would already be sufficient for superradiant lasing [5.4, 5.15]. A larger rate,
however, leads to a higher output power and smaller linewidth, with an optimum at
R = 2Ng2/κ [5.4]. Here g is the atom cavity coupling constant and κ the photon
decay rate through the cavity mirrors. We will focus on incoherent repumping rates
R > 2π · 1 Hz, which is obviously much bigger than Γ12 = 2π · 1 mHz but not the
optimum for usual atom numbers and cavity parameters. The issue with too high
repumping rates is, that they usually require stronger pump fields which lead to bigger
level shifts on the clock transition. Shifts per se would not be a problem if they are
constant and known. However, due to uncertainties and fluctuations in the pump
process, atoms at different positions might experience different shifts, which leads to
an effective inhomogeneous broadening of the ensemble. But as long as the frequency
distribution is small enough, the atoms can still synchronize and emit light collectively
on a single narrow line [5.7, 5.15, 5.30]. For an ensemble with an inhomogeneous
frequency broadening less than the incoherent pump rate R the atoms synchronize in
the superradiant regime.

Our aim is therefore to find parameters with an effective repumping rate R > 2π ·1 Hz,
but also sufficiently small frequency shift changes of the clock transition for realistic
fluctuations and inaccuracies in the pump process. To this end we scan the effective
repumping rate R and the ground state shift δ1 on the relevant system parameters.
Note that we only get shifts of the lower clock state in our model, since no pump laser
couples to the upper clock state.

A parameter set to achieve the above goal is: Ω13 = 2π · 1.5 kHz, Ω34 = 2π · 3.3 MHz,
Ω54 = 2π ·100 kHz, ∆13 = −2π ·875 kHz, ∆34 = −2π ·5 MHz and ∆54 = −2π ·10 MHz.
The corresponding two-level system parameters are R ≈ 2π · 1.91 Hz, δ1 ≈ 2π · 5.21 mHz
and ν ≈ 2π · 3.93 Hz. These results are for pump laser linewidth of ν13 = ν34 = ν54 =
2π · 0.75 kHz and a dephasing rate on the clock transition of ν = 2π · 1 Hz. We will
use these parameters as our ”standard” parameters, i.e. whenever parameters are kept
constant in scans we use these.

Figure 5.2 shows the dependence of the effective repumping rate R and the ground
state shift δ1 on the Rabi-frequencies Ω13 and Ω34 (upper row) as well as on the detunings
∆13 and ∆34 (lower row), when the other parameters are kept constant. We do not
show here scans on ∆54 and Ω54, since the dependences of R and δ1 are very weak
over a wide range of parameters, see one-dimensional scans in appendix 5.6.2. One can
also see from these scans, that the dependence of both, R and δ1, on Ω13 is quadratic.
Therefore, the sensitivity of δ1 to variations of Ω13 is proportional to δ1, which means
one should choose a working point with δ1 close to zero (dark blue regions in Fig. 5.2
(b) and (e)), otherwise rather small fluctuations on Ω13 might lead to big variations of
δ1.

From the subplots (a) and (d) of Fig. 5.2 we can see, that there are wide regions
with an effective repumping rate R > 2π · 1 Hz. In the subplots (b) and (e) we plot
the ground state shift and additionally indicate the relevant regions with the white
line, which shows the repumping of R > 2π · 1 Hz. In the panel (c) we zoom into
an appropriate region for the Rabi-frequency scan. We see that for our parameters a
deviation in Ω34 of ±1.5% still has tolerable shifts. For Ω13 the suitable range is much
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5.4 Effective linewidth and shift in the reduced laser model

bigger.
In the panel (f) we show a proper region for the detuing scan. We chose an area with

a suitable range for ∆13 of 2π · 50 kHz and for ∆34 of 2π · 1.5 MHz. The reason to
pick this region is the following: To avoid Doppler shifts a magic wavelength optical
lattice is needed to trap the strontium atoms, but this lattice is in general only magic
on the clock transition. This means for the other transitions the upper and lower
state are not equally shifted and therefore non-clock transitions of atoms at different
positions in the lattice have shifted resonance frequencies. However, the lattice can
also be made magic on the |1〉 ↔ |3〉 transition for a linearly polarized field, if one
chooses the correct angle between the polarization axis and the quantization axis due
to the static magnetic field [5.47]. Nonetheless, this does not work simultaneously on
the |3〉 ↔ |4〉 transition, which results in an effective inhomogeneous broadening of the
transition frequency ω34 and hence in a ∆34 distribution. According to recent theoretical
estimations [5.48], the scalar and tensor dynamic polarizabilities of the (5s6s)3S1 state
at the 813 nm magic wavelength lattice are α0(3S1) ≈ −9 × 102 a.u. (atomic units) and
α2(3S1) ≈ 2 a.u., respectively. In turn, the scalar polarizabilities of the lasing states |1〉
and |2〉 at the magic wavelength are equal to a0(1S0) = a0(3P0) ≈ 2.8 × 102 a.u. [5.49].
A thermal distribution of the atoms over different vibrational states and/or lattice
sites with different potential depths will results into different shifts of the level |4〉. In
particular, a temperature of T = 5 µK corresponds to a shift of level |4〉 in the range of
approximately 0.4 MHz, which directly results in a ∆34 distribution. Therefore we need
to choose parameters with a wide suitable range for ∆34, but we can pick a point with
a rather narrow range for ∆13.

In summary, the main result in this section is that it occurs to be possible to achieve
a significant repumping rate R together with a sufficient small and insensitive shift δ1.
The optimal set of parameters will be individual for each experimental setup, but they
can be found fast with the above described method.

5.4 Effective linewidth and shift in the reduced laser model

In this section we calculate the spectrum of the superradiant laser, and demonstrate
that our six-level laser model can be replaced by an effective two-level one. The laser
model is given by N identical six-level atoms pumped inside an optical cavity. In the
rotating frame of the pump lasers and the unperturbed clock transition the Hamiltonian
can be written as

HL6 = − ∆ca
†a+

N∑

k=1

[
− ∆3σ̂

k
33 − ∆4σ̂

k
44 − ∆5σ̂

k
55 + g(a†σ̂k

12 + aσ̂k
21) (5.12)

+Ω13(σ̂k
13 + σ̂k

31) + Ω34(σ̂k
34 + σ̂k

43) + Ω54(σ̂k
45 + σ̂k

54)
]
.

Here ∆c = ω12 − ωc is the detuning between the clock transition frequency and the
cavity resonance frequency, and g is the coupling coefficient between the cavity field
and the clock transition. The dissipative processes for the atoms are listed in table
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Figure 5.2: Parameter scans of the effective pump rate R and the differential shift of the
lasing transition δ1. In the upper row (a-c) we vary the amplitudes of the two
pump lasers and in the lower row (d-f) their frequency detuning. We are targeting
regions of sufficiently high pump rate and very low shift. The white contour line
in the |δ1|-scans depicts R = 2π · 1 Hz. Figure (c) and (f) show a zoom in a
parameter region with small shifts |δ1| < 2π · 100 mHz. The white crosses indicate
the parameters fixed in the other plots.

5.2. The dissipative processes of the cavity are according to table 5.3. Using that all
atoms behave identically we derive second order cumulant equations [5.40, 5.41] for the
system variables and the correlation function [5.50]. However, we can use the adiabatic
elimination from section 5.2 to numerically reduce the six-level atom lasing model into
an effective two-level atom lasing model. This simplifies the model drastically and
increases the computational efficiency significantly. The Hamiltonian of this two-level
lasing model is

HL2 = −∆ca
†a+

N∑

k=1

[
− δk

1 σ̂
k
22 + gk(a†σ̂k

12 + aσ̂k
21)
]

(5.13)

and the dissipative processes are given by table 5.3 for the cavity and table 5.1 for each
of the N atoms individually.

In Fig. 5.3 we see the excellent agreement of the laser properties calculated from the
effective two-level lasing model and the six-level model for our standard parameters.
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# jump rate description
1 a κ cavity photon losses
2 a†a η fluctuations of the cavity resonance frequency

Table 5.3: Dissipative processes of the cavity field.

We compared these two models for many other relevant parameters, the laser properties
(FWHM, δp, n) always agreed well.

Finally, let us discuss the effect of the pump laser induced dephasing. The main
mechanism of such a dephasing is that the atoms pumped into the upper states |3〉
and |4〉 can decay into the state |1〉, instead of into the upper lasing state |2〉, see also
appendix 5.6.1. Therefore, the dephasing rate ν needs to be proportional to the effective
incoherent repumping rate R. Since the only way to get into the state |2〉 is to decay
from |4〉 and since all other transitions are driven, the most prominent process to end
up in |1〉 is via the decay into |6〉, therefore we can estimate

ν ≈ R
Γ64

Γ24
+ ν12 ≈ 1.5R+ ν12. (5.14)

For the parameters used in Fig. 5.3 we get a FWHM of ∼ 2π · 0.81 mHz. In comparison
the smallest linewidth we could theoretically get is 4g2/κ ≈ 2π · 0.21 mHz. With no
dephasing at all (ν = 0) this can, for these parameters, indeed be reached. Thus we see
that the induced dephasing has an impact on the spectrum which is not to be neglected,
but it is still reasonable. Note that the induced dephasing could e.g. be decreased in
our case by additionally pumping the transition |4〉 ↔ |6〉.

5.5 Conclusions

On the example of bosonic strontium trapped in a magic wavelength optical lattice
we show that by choice of suitable pump laser parameters, it is possible to create
significant population inversion on the clock transition with only a rather small shift
and broadening of the lasing transition and the resulting active clock line. In particular
we found a parameter regime where the induced level shifts on the clock transition are
small enough, such that the atoms can still synchronize and thus emit light collectively
in the superradiant regime, where cavity noise plays no role. To perform our scans of
the many parameters characterizing the complex multilevel system, we have developed
a fast numerical way to map the results to an effective two-level model, which can be
well interpreted. For a range of generic test cases we have seen that the spectral and
noise properties of these two models are in excellent agreement. The procedure can be
adapted straight forward to find suitable repumping parameter for other alkaline-earth
atoms.

87



5 Publication: Continuous multi-step pumping of the optical clock transition

−8 −6 −4 −2 0
ω
2π
[mHz]

0.0

0.2

0.4

0.6

0.8

1.0

S
(ω
)

δp

FWHM

six-level model

two-level model

Figure 5.3: Laser spectrum. Comparison of the the effective two-level model with the full
six-level model for a typical set of parameters. The laser properties are FWHM =
2π · 0.806 mHz (2π · 0.807 mHz for the six-level model), δp = −2π · 5.20 mHz (−2π ·
5.21 mHz) and n = 2.16 (2.15), with an inaccuracy of the effective model below 1%.
The atom number is N = 2 · 105 and the cavity parameters are κ = 2π · 75 kHz,
g = 2π · 2 Hz and η = 2π · 7.5 kHz.
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5.6 Appendix

5.6.1 Analytic adiabatic elimination on a three-level atom

Here we compare the ”conventional” adaibatic elimination with the adiabatic elimination
using the eigenvalues of the non-hermitian Hamiltonian. We apply the two methods
analytically on a pumped three-level atom to eliminate the auxiliary level |3〉.

The atom is coherently pumped on the transition |1〉 ↔ |3〉 with a Rabi frequency Ω
and laser detuning ∆3, see Fig. 5.4. We suppose that the Rabi frequency Ω as well as
the decay and decoherence rates associated with the state |3〉 (Γ13, Γ23, ν3) are much
larger than all the other rates in the system, and that the total decay rate of level |3〉
is much larger than Ω, therefore the population of the level |3〉 is much less than the
populations of the levels |1〉 and |2〉. The Hamiltonian of a single atom can be written
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Figure 5.4: Three-level scheme. The considered three-level scheme for the adiabatic elimination
of level |3〉 is depicted. The atoms are coherently pumped on the transition |1〉 ↔ |3〉
and the cavity couples on the transition |1〉 ↔ |2〉.

as
Ĥ = ~(∆2σ̂22 + ∆3σ̂33) + ~Ω(σ̂13 + σ̂31), (5.15)

where ∆2 is some shift from the unperturbed atomic transition frequency. Jump
operators and relaxation rates are listed in Table 5.4. Note that we neglect the
interaction with the weak cavity field, see section 5.2.

# jump rate description
1 σ̂12 Γ12 decay from |2〉 to |1〉
2 σ̂13 Γ13 decay from |3〉 to |1〉
3 σ̂23 Γ23 decay from |3〉 to |2〉
4 σ̂11 ν0

1 dephasing on |1〉
5 σ̂22 ν0

2 dephasing on |2〉
6 σ̂33 ν0

3 dephasing on |3〉

Table 5.4: Dissipative processes of the three-level atom.

”Conventional” adiabatic elimination

First we perform an adiabatic elimination of the level |3〉, in the ”conventional” way,
similar to the one used in [5.16]. To this end we calculate the relevant equations for
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operator averages 〈σ̂α,β〉, where α, β ∈ {1, 2, 3}:

d 〈σ̂22〉
dt

= −Γ12 〈σ̂22〉 + Γ23 〈σ̂33〉 (5.16)

d 〈σ̂12〉
dt

= −
(

Γ12 + ν0
1 + ν0

2

2
+ i∆2

)

〈σ̂12〉 + iΩ 〈σ̂32〉 (5.17)

d 〈σ̂33〉
dt

= iΩ 〈σ̂13 − σ̂31〉 − Γ3 〈σ̂33〉 (5.18)

d 〈σ̂13〉
dt

= −
(

Γ3 + ν0
1 + ν0

3

2
+ i∆3

)

〈σ̂13〉 − iΩ 〈σ̂11 − σ̂33〉 (5.19)

d 〈σ̂23〉
dt

= −
(

Γ3 + Γ12 + ν0
2 + ν0

3

2
+ i∆3

)

〈σ̂23〉 − iΩ 〈σ̂21〉 (5.20)

Here Γ3 = Γ13 + Γ23 is the total decay rate of the intermediate state |3〉. To perform
the adiabatic elimination of 〈σ̂33〉, 〈σ̂23〉, 〈σ̂13〉 we use Γ12 ≪ Γ3 and ν0

1 , ν
0
2 ≪ ν0

3 as well
as 〈σ̂33〉 ≪ 〈σ̂11〉. Introducing

Γ′ =
Γ3 + ν0

3

2
≈ Γ3 + Γ12 + ν0

2 + ν0
3

2
≈ Γ3 + ν0

1 + ν0
3

2
(5.21)

we get

〈σ̂13〉 =
−iΩ

Γ′ + i∆3
〈σ̂11〉 (5.22)

〈σ̂23〉 =
−iΩ

Γ′ + i∆3
〈σ̂21〉 (5.23)

〈σ̂33〉 =
2Ω2

Γ3

Γ′

Γ′2 + ∆3
2 〈σ̂11〉 . (5.24)

Substituting these expressions into (5.16) – (5.17), and introducing the repumping rate
R, decoherence rate ν12 and effective shift ∆21 as

R =
Γ23

Γ3

2Ω2Γ′

Γ′2 + ∆3
2 (5.25)

ν12 = ν0
1 + ν0

2 +
Γ13

Γ3

2Ω2Γ′

Γ′2 + ∆3
2 (5.26)

∆21 = ∆2 +
Ω2∆3

Γ′2 + ∆3
2 (5.27)
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we can rewrite the equations Eq. (5.16) and Eq. (5.17) as

d 〈σ̂22〉
dt

= −Γ12 〈σ̂22〉 +R 〈σ̂11〉 (5.28)

d 〈σ̂12〉
dt

= −
(
R+ Γ12 + ν12

2
+ i∆21

)

〈σ̂12〉 , (5.29)

similar to eqs. Eq. (5.3) and Eq. (5.4).

Adiabatic elimination using the eigenvalues of the non-hermitian Hamiltonian

Now we apply the procedure described in the end of Section 5.2. The simplicity of the
considered 3-level scheme allows to follow this method analytically.

The expression for the repumping rate R, see eq. (5.5), can be obtained from the
steady-state expression of 〈σ̂22〉 and 〈σ̂33〉,

〈σ̂22〉 =
Γ23

Γ12
〈σ̂33〉 =

Γ23

Γ12

2Ω2Γ′

Γ(Γ′2 + ∆3
2)

〈σ̂11〉 . (5.30)

The result is the same as in (5.25).
To determine the light shift and decoherence rate, one has to diagonalize the effective

non-Hermitian Hamiltonian of our 3-level system in the absence of the cavity field. The
Hamiltonian reads

Ĥnh
eff = Ĥ − i~

2

∑

j

Rj Ĵ
†
j Ĵj = ~(δ2σ̂22 + ∆3σ̂33 + Ω[σ̂13 + σ̂31]) (5.31)

− i~

2

[

Γ12σ̂22 + Γσ̂33 + ν0
1 σ̂11 + ν0

2 σ̂22 + ν0
3 σ̂33)

]

(5.32)

with the eigenvalues

E2

~
= ∆2 − i

2
(Γ12 + ν0

2) (5.33)

E1,3

~
=

∆3 − iΓ′

2






1 ∓

√

1 +
4Ω2 + 2iν0

1(∆3 − iΓ′)

(∆3 − iΓ′)2






, (5.34)

where Γ′ is defined in (5.21), and we neglected Γ12, ν0
1 and ν0

2 in comparison with Γ′. For
ν0

1 ,Ω ≪ Γ′ we can perform a Taylor expansion on the term [4Ω2 +2iν0
1(∆3 − iΓ′)]/(∆3 −

iΓ′)2 ≪ 1 and find

E1

~
≈ −Ω2(∆3 + iΓ′)

∆3
2 + Γ′2

− iν0
1

2
. (5.35)
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Using expressions (5.10), we get

∆1 = − Ω2∆3

Γ′2 + ∆3
2 (5.36)

ν1 = ν0
1 +

2Γ′Ω2

Γ′2 + ∆3
2 −R = ν0

1 +
Γ13

Γ

2Ω2Γ′

Γ′2 + ∆3
2 . (5.37)

Similarly, from (5.33) follows ν2 = ν0
2 . Therefore we obtain

ν12 = ν1 + ν2 = ν0
1 + ν0

2 +
Γ13

Γ

2Ω2Γ′

Γ′2 + ∆3
2 (5.38)

∆21 = ∆2 − ∆1 = ∆2 +
Ω2∆3

Γ′2 + ∆3
2 , (5.39)

this coincides with (5.26) and (5.27). Thus, we can see that th adiabatic elimination in
such a 3-level system performed with the help of the diagonalization of the effective non-
Hermitian Hamiltonian gives the same result as a ”conventional” adiabatic elimination.

5.6.2 One dimensional parameters scans
To get a better insight of the dependence on the different repumping parameters we
show here one dimensional scans. Fig. 5.5 shows scans on the Rabi-frequencies and Fig.
5.6 on the detunings for R and δ1.

The scans on Ω13, Fig. 5.5 (a) and (d), show a quadratic dependence of R and δ1 on
the relevant regions of Ω13 with a constant prefactor depending on the other system
parameters. A proper choice of parameters can reduce the prefactor of the ground state
shift by orders of magnitudes, while the pump rate prefactor stays almost the same. For
the Ω34-scans, Fig. 5.5 (b) and (e), we find only a relative small area at approximately
Ω34 ≈ 2π · 3.3 MHz (see inset) where a repumping rate R > 2π · 1 Hz can be achieved
and the range of the shift |δ1| is sufficiently small. For Ω54, Fig. 5.5 (c) and (f), on the
other hand, all values below 2π · 1 MHz have an almost constant R and δ1. But note
that for smaller values of Ω54 more population is trapped in |5〉, this is undesired since
less population will contribute to lasing. However, for our parameters this gets only
relevant for Ω54 < 2π · 1 kHz.

As we know from section 5.3.1 ∆13 can be controlled much more precisely than ∆34

due to the magic wavelength lattice, therefore we choose a parameter regime in which
changes of ∆34 are far less important. Fig. 5.6 illustrates this very well. Differences in
∆13 of ±2π · 25 kHz lead to shifts of ±2π · 50 mHz, whereas changes of ±2π · 0.75 MHz
in ∆34 lead only to shifts in a range of approximately 2π · 40 mHz, see Fig. 5.6 (a) and
(b) respectively. For the ∆54 dependency, Fig. 5.6 (c) and (f), we find that R and δ1 do
not significantly change for detunings between −2π · 15 and −2π · 6 MHz. Thus ∆54

does not need to be precisely controlled.
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5.6 Appendix

Figure 5.5: Line shift (upper row) and pump rate (lower row) scans for varying pump amplitudes
close to optimal operation conditions. The dependence of the ground state shift
and the repumping rate on the Rabi frequencies is shown with insets of interesting
regions. The parameters when kept constant are our standard parameters from
section 5.3.1.

Figure 5.6: Line shift (upper row) and pump rate (lower row) scans for varying pump detunings
close to optimal operation conditions. The dependence of the ground state shift
and the repumping rate on the detuings is shown with insets of interesting regions.
The parameters when kept constant are our standard parameters from section
5.3.1.
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controlled excitation. Employing the Tavis-Cummings model we find so
far unreported phenomena. Using a second order cumulant expansion we
predict that a homogeneously excited ensemble equally distributed between
odd and even sites along the cavity mode is extremely subradiant as long as
the average excitation remains below 50%, but shows pulsed emission for
inversion. The combination of these two properties enables the implementa-
tion of an efficient cavity enhanced Ramsey probing featuring a fast readout
and minimal heating with particular advantages for atomic clock transitions.
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regular superradiant self-pulsing. Additionally, we observe an increased
pulse delay time in comparison to an excitation through the cavity.
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6.1 Introduction
The phenomena of super- and subradiance originating from constructive or destructive
interference of the field radiated by an ensemble of dipoles has been studied for many
decades [6.1–6.10]. The decisive quantity is the collective dipole moment of the emitters
with respect to the system’s electromagnetic radiation modes, which, apart from the
ensemble’s quantum state determining the internal phase relations, is strongly tied to
their spatial distribution. For superradiance, phase coherence in one given emission mode
is sufficient, yet, subradiance only appears when virtually all of the emission channels
are blocked by destructive interference. While there are classical analogs of super- and
subradiance, in quantum emitters the radiation is triggered by local vacuum fluctuations
of the electromagnetic field, which are determined by the system’s geometry [6.11–6.13].
These are isotropic and homogeneous in free space, but can be modified by, e.g., placing
them in the evanescent field of a waveguide [6.9, 6.14, 6.15], inside a hollow core photonic
crystal fiber [6.16], engineering interactions for superconducting qubits [6.17], or, as in
our case putting them inside a (linear) resonator, which yields more precise control over
their interference.

Pulsed superradiant output has been demonstrated for large atomic ensembles in
optical cavities [6.8, 6.18–6.20]. Superradiant lasing [6.21–6.23] is one of the prime
applications of cavity superradiance and even self-organization [6.24] can incorporate
superradiant behavior. In contrast, subradiance is a lot harder to access experimen-
tally [6.25] and treat theoretically [6.10, 6.26, 6.27].

In order to induce cavity mediated superradiant light emission from an atomic
ensemble, it is favorable to excite the atoms through the cavity instead of from the
side, since in this case all atoms obtain the same relative phase with respect to the
cavity mode to constructively emit photons into the cavity [6.8, 6.28]. This raises the
question about the behavior of an ensemble with arbitrary or vanishing relative phases,
as it is, for example, naturally the case for a transversely driven large atomic ensemble,
homogeneously distributed along the cavity axis covering odd and even sites of the
cavity mode. On the one hand, one could intuitively think that an ensemble with
vanishing relative phase features a subradiant behavior, since the light emitted into
the cavity interferes destructively [6.24]. But, on the other hand, there is no phase
information stored in a fully excited ensemble, hence, the dynamics of atoms inverted
through the cavity or from the side must be identical in this case, i.e., the emission of a
superradiant pulse [6.8, 6.17–6.20].

In this paper we show that there is a transition between cavity super- and subradiance
for an atomic ensemble with vanishing relative phase. In particular, an inverted
ensemble emits a superradiant pulse, whereas a non-inverted ensemble features a
subradiant behavior. This can be crucial for the understanding and design of cavity
QED experiments. Utilizing this transition from cavity sub- to superradiance enables
the implementation of a cavity enhanced Ramsey spectroscopy. The central idea is
that the non-inverted ensemble is decoupled from the cavity during the free evolution
phase [6.29, 6.30], but the final readout of the inverted atoms is still performed via
the superradiant manifold. This scheme allows for a fast and precise readout, without
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6.2 Model

Figure 6.1: Cavity Sub- and Superradiance Model. We consider a homogeneous, dilute ensemble
of narrow line two-level atoms at random but fixed positions in a standing wave
optical resonator coherently driven by a transverse plane wave laser. We assume a
weak single atom but strong collective coupling regime, i.e., κ,

∑

j g
2
j /κ ≫ Γ ≫

g2
j /κ. The cavity Ramsey fringes and the photon number self-pulsing are indicated

as cavity output signals for the respective drive laser operations.

destroying the measured ensemble. Beyond that, we find a yet unreported self-pulsing of
the cavity output field upon continuously driving the ensemble, which can be explained
by the system dynamics cyclically transitioning from cavity subradiance to superradiance.
Lastly, our setup can be employed to more accessibly measure delay time statistics,
when pumping the ensemble transversally instead of through the cavity as the cavity
subradiance in this case will slow down the system’s dynamics, making the output easier
to detect.

6.2 Model

We consider N two-level atoms with a narrow transition at frequency ωa coupled to a
single mode cavity. The atoms are coherently driven with a detuning between the laser
and the atomic transition of δa = ωl − ωa, the corresponding Rabi frequency is denoted
by Ω. The cavity is detuned by δc = ωl − ωc from the laser and we have an atom-cavity
coupling of gj for the j-th atom. The system is depicted in Fig. 6.1. Its Hamiltonian in
the rotating frame of the pump laser reads

H = −δca
†a+

N∑

j=1

[

− δaσ
22
j + gj(a†σ12

j + aσ21
j ) +

Ω

2
(σ21

j + σ12
j )
]

, (6.1)

with the cavity photon creation (annihilation) operator a† (a) and the atomic transition
operator σkl

j = |k〉j 〈l|j for the j-th atom. The coherent interaction is accompanied by
dissipative processes accounted for by the Liouvillian L [ρ] in the master equation

ρ̇ = i [ρ,H] + L [ρ] . (6.2)
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Table 6.1: Dissipative Processes. The system features a damped cavity mode as well as atomic
decay and dephasing.

i Ji Ri Description
1 a κ cavity photon losses
2 σ12

j Γ decay from |2〉j to |1〉j

3 σ22
j ν dephasing of the j-th atom

In the Born-Markov approximation [6.31] we can write the Liouvillian in Lindblad
form as

L [ρ] =
∑

i

Ri

(

2JiρJ
†
i − J†

i Jiρ− ρJ†
i Ji

)

, (6.3)

with the jump operators {Ji} and their corresponding rates {Ri} shown in Table 6.1,
including cavity photon losses as well as individual decay and dephasing of the atoms.

As we are targeting narrow clock transitions the system is operated in the bad
and large volume cavity regime κ ≫ Γ with only a small single atom cooperativity
Cj = g2

j /(κΓ) ≪ 1 but a sufficiently large ensemble to enter the strong collective
coupling regime NC =

∑

j Cj ≫ 1. Typically, this parameter regime implies a very
large atom number, which does not allow for a full quantum simulation, but we can
very well treat this problem in a second order cumulant expansion [6.32, 6.33]. A
comparison with a full quantum simulation for a small atomic ensemble is shown in
Appendix 6.7.1. Additionally, we neglect dipole-dipole interaction [6.4], as our atomic
ensemble is sufficiently dilute. This also means that the individual free space decay rate
of the atoms is not affected.

Throughout the paper we calculate the dynamics in a second order cumulant expan-
sion [6.33, 6.34]. Nevertheless, the mean-field equations already contain the key physics
and therefore we present these much simpler equations for a qualitative description of
the system:

d

dt
〈a〉 = −

(

iδc +
κ

2

)

〈a〉 − i
N∑

j=1

gj〈σ12
j 〉 (6.4a)

d

dt
〈σ22

j 〉 = −Γ〈σ22
j 〉 + i

Ω

2

[

〈σ12
j 〉 − 〈σ21

j 〉
]

+ igj

[

〈a†〉〈σ12
j 〉 − 〈a〉〈σ21

j 〉
]

(6.4b)

d

dt
〈σ12

j 〉 =

(

iδa − Γ + ν

2

)

〈σ12
j 〉 + i

(
Ω

2
+ gj〈a〉

) [

2〈σ22
j 〉 − 1

]

(6.4c)

6.3 Collective Cavity Mediated Super- and Subradiance
In the following, for simplicity, we assume the atoms located close to cavity mode anti-
nodes with half of the atoms at the maxima and half at the minima of the mode function
along the cavity axis. Hence their respective effective coupling is well approximated
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6.3 Collective Cavity Mediated Super- and Subradiance

Figure 6.2: Cavity Mediated Collective Decay. Time evolution of the intra-cavity photon
number (a) and the single atom excited state population (b) after a short pulse
excitation preparing each atom in the same coherent superposition. The black
line represents an inverted ensemble with

〈
σ22
〉

= 80% excited state fraction
(≈ 3π/4-pulse) and the orange line depicts an ensemble after a π/2-pulse to create
〈
σ22
〉

= 50%. For uniform cavity coupling (dashed line) we see an immediate
superradiant population decay to the ground state creating a photon pulse in the
cavity. Cavity coupling with alternating signs (solid line) leads to a weaker and
time delayed pulse for an inverted ensemble, while the atomic excitation is almost
perfectly protected from cavity decay without inversion (solid line in (b)). We
have assumed N = 2 · 105 atoms with g = 10Γ, κ = 104Γ and δa = δc = ν = 0.

by +g and −g. As confirmed by more involved simulations, investigating a random
distribution for the atom-field coupling, this simplification already captures the essential
physics.

Inverting all atoms with a short π-pulse induces the emission of a delayed intense
light pulse due to cavity enhanced superradiant decay [6.8, 6.17–6.20]. Synchronized
stimulated emission in a cavity occurs even for a dilute ensemble, which does not
exhibit free space superradiance. Figure 6.2(a) shows typical trajectories for the
corresponding time evolution of the intra-cavity photon number

〈

a†a
〉

. When all atoms
are initially coherently prepared at

〈
σ22
〉

= 80% (black line), a superradiant pulse
emerges. Figure 6.2(b) depicts the corresponding time evolution of the excited state
population, showing the cavity mediated decay of the atoms. For comparison we display
the behavior for all atoms equally coupled to the cavity (dashed line, gj = g), similar to
the case of excitation through the cavity [6.8, 6.28], showing a much faster and stronger
pulse.

However, for the system we consider with alternating coupling (gj = (−1)jg), the
dynamics depend drastically on the population of the atoms. Interestingly, we observe
such pulsed emission for an ensemble of inverted atoms only. If the excited state
population is below 50% the atoms do not emit a significant amount of photons into
the cavity mode, see solid orange line in Fig. 6.2. Figure 6.3(a) shows the total number
of emitted photons 〈a†a〉out for different values of the initial excited state population.
Almost no photons leak through the cavity mirrors until the atoms are inverted. Again,
the dashed line represents the case of all atoms coupling equally (gj = g), resembling
a pulsed excitation of the atoms through the cavity. We see that also non-inverted
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Figure 6.3: Cavity Sub- and Superradiance. (a) Comparison of the cavity-output photon
number

〈
a†a
〉

out
= κ

∫ 〈
a†a
〉

dt (black) and peak intra-cavity photon number (blue)
as a function of the single atom excitation probability for alternating coupling
(solid line) and uniform coupling (dashed line). Note the strong suppression of
superradiant emission in the alternating coupling case as long as no inversion
is created initially. (b) Delay time of the peak photon number. For alternating
coupling the pulse appears later in general and is more delayed for decreasing
inversion, whereas for equally coupled atoms the pulse delay time increases with
growing excited state population. The circles indicate the parameters chosen
for Fig. 6.2(a).

atoms superradiantly emit photons into the cavity mode without retaining excitation.
Additionally, we plot the peak intra-cavity photon number (blue) demonstrating the
same behavior.

Figure 6.3b shows the average delay time of the peak photon number as a function of
the atomic excitation. For uniformly coupled atoms (dashed line) a higher excitation
leads to a later pulse. Whereas for alternating coupling (solid line) the delay time of
the peak increases for lower inversion and is larger in general. For a perfect π-pulse
excitation both cases lead to identical superradiant pulses in terms of delay time as well
as photon number, since for fully inverted atoms the phase of the coupling does not
matter. However, for only slightly imperfect π-pulses one already obtains much longer
delay times for a transversely excited ensemble, than for an excitation through the cavity.
Several experimental setups should allow for observing this result [6.8, 6.18–6.20, 6.28].

The origin of this subradiant suppression for a non-inverted ensemble is the destructive
interference [6.5–6.7, 6.29] of photons emitted by the atoms coupled to the cavity with
opposite g, in contrast to the widely studied synchronized superradiant emission due to
constructive interference for a large inverted ensemble [6.8, 6.18–6.20, 6.28]. Analyzing
the mean-field equations Eq. (6.4a) to Eq. (6.4c) explains the transition between cavity
sub- and superradiance qualitatively. First, from eq. Eq. (6.4a) we notice the significance
of the alternating coupling: the cumulative dipole moment of the atoms projected on
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6.3 Collective Cavity Mediated Super- and Subradiance

the cavity mode ∑j gj〈σ12
j 〉 vanishes [6.29, 6.30] and hence the gain in the cavity field

disappears. For simplicity we have chosen the same laser excitation phase for all atoms.
Yet a varying excitation phase works equally well as long as the overall relative phase
disappears. Typically, this is implicitly realized in a random spatial distribution of
a sufficiently large and dilute ensemble. It is also true for a ring-cavity featuring a
continuous atom-cavity coupling phase along the cavity axis [6.24] or for atoms coupled
to waveguides or inside hollow core fibers with appropriate spacing [6.9, 6.14–6.16].
Furthermore, we see why an excitation through the cavity is effectively the same as all
atoms equally coupled and excited from the side: with a drive through the cavity the
phase of the coherence 〈σ12

j 〉 is determined by the phase of the coupling gj , therefore
the individual parts of the sum in eq. Eq. (6.4a) all carry the same phase and do not
compensate.

By these arguments only there seems to be no difference in the behavior of inverted
and non-inverted atoms, since the sum in eq. Eq. (6.4a) does not depend on the excited
state population. Therefore we calculate the second time derivative of the cavity field
to obtain a qualitative description. By inserting Eqs. Eq. (6.4c), with 〈σz

j 〉 = 2〈σ22
j 〉 − 1

we find
d2

dt2
〈a〉 =

∑

j

g2
j 〈σz

j 〉〈a〉 + [...]
︸︷︷︸

decay

. (6.5)

For a clear view we set δa = δc = 0 and hint at the dissipative processes only. For
short times, i.e. 〈σz

j 〉 is constant, a non-zero initial field 〈a〉t=0 6= 0 leads to the following
possible solutions of eq. Eq. (6.5): for inverted atoms (〈σz

j 〉 > 0) the field increases
rapidly as a cosh function, which leads to the build up of the photon pulse, whereas for
non-inverted atoms (〈σz

j 〉 < 0) the field oscillates between zero and the initial value and
is strongly damped due to the large cavity decay rate. Having to require a non-zero
initial field is an artifact of the mean-field treatment in order to obtain a non-trivial
solution and becomes unnecessary for higher order descriptions.

6.3.1 Dicke States Representation

In the mean field approximation the total number of output photons for a non-inverted
atomic ensemble with vanishing cumulative dipole moment is exactly zero. However, a
closer investigation in second order cumulant expansion shows that there actually is
a small amount of photons released into the cavity. Another interesting aspect of the
system is that an initial inversion with

〈
σ22
〉
< 1 leads to N · (2〈σ22〉 − 1) photons only,

as shown in Fig. 6.3(a). Consequently, the atoms retain an excited state population of
1 −

〈
σ22
〉

after the pulsed photon emission into the cavity, indicated by the solid line
in Fig. 6.2(b). To explain these two features we use the Dicke states [6.1] of the atomic
ensemble, which provide an intuitive picture for our considered system.

An ensemble of N identical two-level atoms can be expressed in the basis of Dicke
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Figure 6.4: Dicke States. Population of the Dicke states for N = 40 atoms after an initial
π/2-pulse in a) and 3π/4-pulse in b). The states occupying the maximal J values
correspond to the equally coupled case (gj = g), whereas the states close to the
boundary of minimal J represent the alternating coupling case (gj = (−1)jg). The
arrow indicates the mapping between the two cases.

states |J,M〉, with

Jz |J,M〉 =
1

2

∑

j

σz
j |J,M〉 = M |J,M〉 (6.6a)

~J2 |J,M〉 =
3N

4
+

1

4

∑

j 6=k

[

σ21
j σ

12
k + σz

jσ
z
k

]

|J,M〉 = J(J + 1) |J,M〉 , (6.6b)

where |M | ≤ J and 0 ≤ J ≤ N/2 [6.1, 6.26, 6.35, 6.36]. In this description collective
decay has a particularly simple behavior, the J quantum number is unchanged, while
M is reduced. In the triangle shaped Dicke state diagram in Fig. 6.4 this corresponds
to a vertical line of decreasing M [6.26, 6.35, 6.36], where the change in M directly
reflects the number of lost excitations (photons).

The collective emission in our system is induced by the cavity, with the crucial
feature of alternating coupling. In the representation where the cavity mediated decay
is described by a vertical line, this leads to a different distribution of the J quantum
number due to the different relative phases between the atoms and the cavity field, see
Appendix 6.7.2. Figure 6.4 compares the mapping of N = 40 identically coupled atoms,
where states of maximal J are occupied exclusively, to the case of alternating cavity
coupling, where states close to the boundary of minimal J are populated predominantly.
Note that one finds very similar distributions for an incoherently pumped ensemble [6.26,
6.36]. In this representation we can explain the two features mentioned above in a
straightforward way by recalling that the collective decay decreases M to its minimally
possible value M = −J only, without changing J and releasing |J + M | photons.
Under collective decay a state |J,M = +J〉 will thus go to |J,M = −J〉, explaining the
remaining excited state population of 1 − 〈σ22〉 after the pulse. Furthermore, we obtain
the total number of released photons by summing up the emitted excitations of each
state weighted by the corresponding population. This explains the small losses after
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Figure 6.5: Atom Number Scaling. Scan of the atom number N and initial excitation 〈σ22〉t=0

for a) the peak photon number and c) the output photon number, to quantify
and define the cavity sub- and superradiance regions. b) Shows the peak photon
number for three different examples of initial excited state population. The photon
number is normalized to the one at N = 104 for the respective value of 〈σ22〉t=0

to compare the different scalings.

a coherent π/2-pulse preparation, see Fig. 6.4(a). Note that the coherent excitation
leads to a binomial distribution in M , regardless of the cavity coupling. Therefore,
the width of the distribution per atom becomes narrower as 1/

√
N for an increasing

number of atoms. Combined with the feature that the alternating coupling effectively
occupies states close to the boundary of minimal J yields a shrinking percentage of lost
excitations for a non-inverted ensemble for large atom numbers.

6.3.2 Atom Number Dependence

So far we have specified the cavity sub- and superradiance qualitatively only. A common
way of defining sub- and superradiance quantitatively is the scaling of the emitted
light with the atom number [6.1, 6.3, 6.26]. In our case there are two possibilities to
do this: the usual approach is to look at the emitted peak photon number. In Fig.
6.5(a) and Fig. 6.5(b) we see that for an inverted ensemble we obtain a large peak
photon number proportional to the atom number squared (black dashed line), and
for a non-inverted ensemble the peak is orders of magnitude smaller and increases
less than linearly with the atom number. At the threshold 〈σ22〉t=0 = 50% it scales
linearly with the number of atoms [Fig. 6.5(b) grey dashed line]. The other way of
quantifying sub- and superradiance is the total number of emitted photons through
the cavity. In Fig. 6.5(c) the output photon number scales linearly with the atom
number in the superradiant domain and is independent of N in the subradiant regime.
Therefore, the number of lost photons per atom reduces for increasing particle numbers
in a non-inverted ensemble.
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6.4 Cavity Enhanced Ramsey Probing
The suppression and delay of superradiance for a transverse excitation can be advanta-
geous for storing excitations in an atomic ensemble, however, it might also be undesired
if one is interested in fast emission of light. Thus, we can either use it to our advantage or
try to avoid it, depending on the intended behavior of the system. For example, it can be
convenient to store up to N/2 excitations in N two-level atoms in some type of quantum
battery [6.37–6.39], however, releasing this energy on demand becomes more involved for
a transverse excitation. On the other hand, if we strive for fast superradiant emission,
as in superradiant lasing [6.18, 6.19, 6.23, 6.40], a coherent drive along the cavity axis
should be preferred due to faster and stronger light emission. In any case, whether
suppression of superradiance is desirable or not, it is crucial for the understanding,
description and design of state of the art experiments [6.8, 6.18–6.20, 6.28, 6.41].

A particular application we would like to highlight in this section is a cavity enhanced
Ramsey scheme, inspired by [6.29], where this idea was first presented for free space atoms.
A transverse pump with an overall vanishing phase of the atom-cavity coupling allows for
a π/2-pulse excitation of the atomic ensemble without an immediate rapid superradiant
decay through the cavity. Combining this feature with fast direct measurements of
the number of excited atoms via the superradiantly emitted cavity photons after the
second Ramsey pulse allows for an implementation of a new cavity assisted Ramsey
spectroscopy. The crucial advantage of this scheme is that it can be very fast with no
additional manipulation of the atoms needed for the read out, hence the signal is less
perturbed. Furthermore, the atoms are not significantly heated by this measurement
and can therefore be reused, remarkably reducing the dead time between measurements.
Another advantage to other non-destructive measurements for atomic clocks [6.42–6.44]
is that the signal, i.e. the number of photons, scales linearly with the number of atoms.
So, in principle, an arbitrarily large number of atoms can be employed, drastically
increasing the signal to noise ratio.

Figure 6.6(a) shows the output signal, the total number of photons leaking through the
cavity mirrors as a function of the laser-atom detuning δa. Similar to the conventional
Ramsey method, fringes appear [6.45–6.47]. One striking difference, however, is that a
non-inverted ensemble does not produce a signal, corresponding to the flat zero-photon
regions. This narrows the FWHM of the cavity Ramsey fringes slightly compared
to the conventional Ramsey fringes [see Fig. 6.6(b)]. Including an atomic dephasing
with ν = 10Γ (dashed line) merely weakens the signal, yet, the shape of the curve is
essentially the same. By choosing δc = δa we have implicitly assumed that the cavity
is perfectly on resonance with the atomic transition. Therefore, one might wonder if
a detuned cavity impairs the signal. But, since we operate deeply in the bad cavity
regime, only shifts of the cavity resonance frequency on the order of κ are important.

Overall, this means that enhancing the Ramsey spectroscopy by adding a cavity
achieves the same (or even slightly improved) accuracy, but has the advantage of a
convenient, fast, non-destructive measurement scaling linearly in the atom number,
which can substantially reduce the measurement dead time. At this point we want to
mention that the atoms initially need to be in the ground state for each subsequent
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6.5 Self-Pulsing under Continuous Illumination

Figure 6.6: Cavity Ramsey Method. (a) Fringes in the photon number obtained via the cavity
Ramsey method with characteristic flat zero-photon regions. (b) Zoom on the
central fringe. The FWHM (π/T ) of an optimal independent atom Ramsey sequence
with waiting time T and the cavity Ramsey fringe (∼ 2π/3T ) are highlighted.
The parameters are N = 2 · 105, g = 10Γ, κ = 104Γ, δc = δa, Ω = 1000Γ and
ν = 0 (solid) or ν = 10Γ (dashed). The free evolution time between the two
π/2-pulses is T = π/100Γ. An example cavity Ramsey time evolution is shown in
Appendix 6.7.3.

measurement. As we saw in Fig. 6.2(b) a not fully inverted ensemble will retain some
population in the excited state. This means one needs to bring these atoms back to the
ground state. Unfortunately, this is not possible in a straightforward way via a coherent
drive on the clock transition only. However, there are other ways to achieve this, for
example with an induced decay via another transition or by depleting the ground state
population temporarily to some other level.

Obviously, this cavity assisted Ramsey procedure will not work for π/2-pulse excita-
tions through the cavity mirrors as all atoms would exhibit the same relative atom-cavity
phase and will therefore already decay superradiantly after the first π/2-pulse [6.8, 6.28],
corresponding to the case of equal coupling (gj = g) in Fig. 6.2 and Fig. 6.4.

6.5 Self-Pulsing under Continuous Illumination

Continuously driving the ensemble with a suitable Rabi frequency leads to striking
self-pulsing of the system as shown in Fig. 6.7(a). Yet, the explanation for this initially
surprising behavior is rather simple: as we have seen, the photon emission into the cavity
for a non-inverted atomic ensemble with vanishing relative phase is strongly suppressed.
Therefore, there is no significant cavity photon number at least until t = π/2Ω [see Fig.
6.7(b)]. But, as soon as a certain population inversion is achieved the ensemble emits a
superradiant pulse into the cavity. Subsequently, the excited state population is depleted
below 50% and the photon number quickly reduces to almost zero due to the very fast
cavity decay. Since the laser is still on, the procedure starts over and we obtain another
pulse, i.e. the system dynamically cycles from cavity sub- to superradiance. As we can
see in Fig. 6.7(a) the peak photon number reduces from pulse to pulse. This can be
explained in the Dicke state picture, where the not fully inverted ensemble retains some
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Figure 6.7: Self-Pulsing. Time evolution of the cavity photon number (a) and excited state
population (b) for a continuous drive, resulting in photon number self-pulsing. (c)
and (d) Scans over Ω, NC and δa for the peak photon number of the first pulse
[red circle in (a)]. The dashed white lines represent the threshold 2NCΓ > Ω >
|δa|, (Γ + ν)/2. The parameters when kept constant are N = 2 · 105, g = 10Γ, κ =
104Γ, δc = δa = 0, Ω = 100Γ and ν = 10.

excitation after the collective emission and hence starts over from this instead of the
ground state, which leads to less inversion for the next pulse.

Additionally, the time evolution for equally coupled atoms (dashed blue line, gj = g)
is plotted in Fig. 6.7(a) and 6.7(b). In this case the self-pulsing does not occur and the
cavity photon number reaches a steady state at 〈a†a〉 = Ω2/4g2 very quickly. The steady
state value for the excited state population (〈σ22〉 ≈ 1.7 · 10−3) is reached much later.
Note, that the system with vanishing relative phase also reaches a steady state with,
surprisingly, the same photon number 〈a†a〉 = Ω2/4g2 but at a much higher excited
state population (〈σ22〉 ≈ 0.25).

As we need an excited state population of at least 50% to observe the photon peaks,
and the atoms perform Rabi oscillations to reach this, there should be a lower bound
for the Rabi frequency Ω, depending on the laser-atom detuning δa, the atomic decay
rate Γ and the dephasing rate ν. This is exactly what we see in Fig. 6.7(c) and Fig.
6.7(d). The condition Ω > |δa|, (Γ + ν)/2 needs to be satisfied in order for the peak
intra-cavity photon number of the first pulse to appear. Furthermore, the collective
photon emission from the atoms into the cavity is determined by the frequency NCΓ.
Thus, for the superradiant photon pulse to dominate over the coherent drive, we need
to ensure that NCΓ > Ω/2. This threshold is also shown in Fig. 6.7(c) and Fig. 6.7(d).

6.6 Conclusions
We have demonstrated and quantified the suppression of cavity superradiance of a
non-inverted atomic ensemble with an overall vanishing collective cavity coupling. With
the representation of the collective atomic states in the Dicke basis we have introduced
an intuitive picture for the system, which explains the number of emitted photons and
the retained population after the superradiant emission. Compared to a longitudinal
pump through the cavity, the transverse drive leads to an increased pulse delay time. We
have proposed a particular use case for the transition from cavity sub- to superradiance
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in the form of a cavity enhanced Ramsey spectroscopy, which simplifies and accelerates
the measurement procedure. We found that the chosen operating conditions with weak
single atom coupling but strong collective coupling also induce an intriguing self-pulsing
instability for continuous drive at suitable Rabi frequencies. Interestingly the necessary
operating conditions are within reach of current experimental setups [6.18, 6.19, 6.28].

Some preliminary investigations on the influence of imperfections in the setup as
variable coupling strengths, slow atomic motion, or fluctuations in the excitation
procedure qualitatively yield very similar results for experimentally realistic assumptions.
However, a more detailed study of these and other aspects such as heating and loss is
required for a quantitative prediction of the practical system performance.
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6.7 Appendix
6.7.1 Comparison with Full Quantum Model
To ensure the validity of our second order cumulant expansion we compare the results
with a full quantum model. Of course this is only possible for a relatively small number
of atoms. To push the number of atoms as far as possible we use the Monte Carlo
wave-function method [6.48–6.50], and describe the atoms in the Dicke basis which
means that only collective atomic effects are captured. Thus, we neglect individual
atomic decay and dephasing. Figure 6.8 shows the comparison between the second
order cumulant expansion and the full quantum model for the cavity subradiance [Fig.
6.8(a)-(c)], cavity Ramsey method [Fig. 6.8(d)] and self-pulsing [Fig. 6.8(e)-(f)]. Overall,
we find a good qualitative agreement. A perfect quantitative correspondence is not to
be expected for such small atom numbers. Note that the emitted photons we obtain
in the time evolution of the full quantum treatment in Fig. 6.8(c) coincide with the
ones calculated from the population distribution of the Dicke states as described in
Section 6.3.1.

6.7.2 Dicke state mapping
If we represent the collective state of identical two-level atoms in the Dicke state basis,
the cavity induced collective decay is only described by a vertical line, i.e. merely
reducing M without changing J , if all atoms couple identically to the cavity. This is
obviously not the case for our system. However, we can transform our system in to a
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Figure 6.8: Full Quantum Model. The second order cumulant expansion (solid line) is compared
with a full quantum model (dashed line) for the cavity subradiance in (a)-(c), the
cavity Ramsey method in (d) and the self-pulsing in (e) and (f). In all plots we
used κ = 200,Γ = ν = 0 and δc = δa. For (a)-(c) the remaining parameters are
N = 20, g = 10 and δa = 0, for (d) N = 20, g = 10, Ω = 100 and T = π/10 and
for (e)-(f) N = 2 · 50, g = 4, δa = 0 and Ω = 4.

reference frame where the atoms have an alternating phase. This leads to an effective
system with equal cavity coupling for all atoms, but a relative phase between atoms.
This means for the preparation of the atoms with the coherent drive, that the phase
of the Rabi-frequency Ω is alternating, instead of the cavity coupling. To numerically
calculate the correct state occupation for N atoms, as depicted in Fig. 6.4, we prepare
two spin-N/4 particles with coherent drives of opposite phase, and combine these two
spins by, e.g., using Clebsch-Gordan coefficients.

6.7.3 Cavity Ramsey Time Evolution
Figure 6.9 shows a typical time evolution of the cavity Ramsey method for two different
detunings δa = 0 and δa = 50Γ. The measured signal corresponds to the area below the
curve of the photon number 〈a†a〉 times κ. Additionally, we plot the same quantities
for the case of equally coupled atoms (gj = g). We observe that a detuning of δa = 50Γ
does not significantly change the time evolution and therefore also the signal (the solid
and dashed orange lines overlap).
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Figure 6.9: Cavity Ramsey Sequence Time Evolution. For opposite phase coupling of two
sub-ensembles (black lines) the atomic population (middle graph) shows almost no
decay between the two Ramsey π/2-pulses depicted in the lowest graph. A pulsed
photon signal (upper graph) is obtained after the second pulse only. The maximum
photon number appears in the resonant (δa = 0, solid) case and becomes smaller
for the detuned case (δa = 50Γ, dashed). In contrast, for all atoms identically
coupled (orange lines) cavity induced superradiant decay creates an almost identical
photon signal after each pulse virtually transferring all atoms to the ground state
independent of their detuning. The parameters are chosen as in Fig. 6.6 except for
the free evolution time between the two π/2-pulses, which we set to T = π/200Γ.
The solid lines show δc = δa = 0Γ and the dashed lines depict δc = δa = 50Γ.

109





7 First experimental results on cavity sub-
and superradiance for transversely driven
atomic ensembles

In this chapter we present some yet unpublished results on the experimental implemen-
tation to study the transition from cavity sub- to superradiance. This includes a proof
of principle run of the cavity enhanced Ramsey method, theoretically proposed and
simulated in chapter 6. We find a convincing agreement between the experiment and
theoretical results already in this first try.

The experiment is conducted by Eliot Bohr and Sofus Kristensen in the group of
Jörg Helge Müller at the Niels Bohr Institute in Copenhagen, with help from Julian
Robinson-Tait and Tanya Zelevinsky. The author of this thesis simulated the theoretical
results and suggested some specific measurement procedures.

7.1 Experimental system and theoretical assumptions
In this section we introduce the relevant experimental parameters of the system using
the notation as in chapter 6. Figure 6.1 depicts a model of the considered system. A
cloud of up to fifty million 88Sr atoms with a temperature of 2µK is centered in an
optical cavity. The cavity is tuned to resonance with the 1S0 ↔ 3P1 transition at a
wavelength of λ = 689 nm. The cavity photon loss rate at this wavelength is around
κ = 2π × 800 kHz, which is much larger than the atomic decay rate Γ = 2π × 7.5 kHz.
With a vacuum Rabi frequency of g ≈ 2π × 0.8 kHz and single atom cooperativity
parameter C = 4g2/κΓ ≈ 4 × 10−4, the system is in the weak single atom C ≪ 1
but strong collective coupling regime NC ≫ 1. The atomic ensemble, initially in the
ground state 1S0, is excited on the 1S0 ↔ 3P1 transition by a narrowband laser injected
perpendicular to the cavity axis, with Rabi frequency of around Ω = 2π× 910 kHz. The
detuning δa between the laser and the atomic transition frequency is varied from shot
to shot.

Due to the low kinetic temperature of the atoms, we can assume stationary positions
during a measurement cycle. Furthermore, the atomic cloud, with a horizontal expansion
(FWHM) of 200µm and a vertical one of 100µm, is well within the cavity waist radius of
450µm. This means the only relevant position dependence for the atom-cavity coupling
g(x) = g cos(2πx/λ) is along the cavity axis. All positions along the cosine cavity
mode function are occupied almost equally for a large ensemble of atoms. However,
it turns out that considering only a few different positions with an overall vanishing
phase is already sufficient for a good theoretical modelling. This allows full numerical
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Figure 7.1: Cavity sub- and superradiance. (a) Cross-over between cavity sub- and superra-
diance at an upper state occupation fraction of 〈σ22〉t=0 ≈ 55%. We show the
integrated output photon number 〈a†a〉out and the peak photon number 〈a†a〉peak.
(b) Delay time of the superradiant pulse with respect to the excitation pulse. The
solid lines are simulation results for the following parameters: N = 20 × 106, κ =
2π × 800 kHz, Γ = 2π × 7.5 kHz, g = 2π × 0.815 kHz, Ω = 2π × 912.4 kHz, δa = 0
and the atomic positions x = [0, 1, 2, 3, 5, 6, 7, 8]λ/16. The error bars represent the
standard deviation from ten repeated measurements.

computation in a second order cumulant expansion as described in chapter 6.
For the excitation laser, we can assume that all atoms obtain the same power since

its waist is much larger than the atomic cloud. Note that each atom acquires a different
phase but this has the same effect as the overall vanishing phase for the cavity coupling.
Hence, assuming the same excitation phase for all atoms essentially yields the same
results. Moreover, the atoms will be excited with a laser pulse with almost rectangular
shape, we simulate it with a Heaviside step function.

7.2 Transition from cavity sub- to superradiance

In chapter 6 it was predicted that a coherent transverse excitation of the atomic ensemble
features a subsequent superradiant emission [7.1–7.3] only for inverted particles. Figure
7.1(a) shows this threshold behavior for the output (left-axis) and peak photon number
(right-axis). The simulation results (solid lines) agree very well with the experimental
data. Note that the only fit parameter is the amplitude of the experimental signal. We
can clearly see the transition from cavity sub- to superradiance at 〈σ22〉t=0 ≈ 55%. The
onset of superradiance slightly above inversion is due to spontaneous decay of the atoms
into free space. As predicted there is a delay time [figure 7.1(b)] for the superradiant
pulse [7.2]. If the atoms decay too much in this duration, they will reach a subradiant
state with respect to the collective cavity decay. Switching off the individual atomic
decay in the simulations (Γ = 0, not shown) shifts the threshold to 50% as expected.
The maximal output photon number is limited to about 0.8N due to the constant
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7.3 Cavity enhanced Ramsey sequence

Figure 7.2: Cavity Ramsey fringes. Experimental and simulation data of the peak photon
number signal for the cavity Ramsey method. The parameters are the same as
in figure 7.1, except the atom number is N = 30 × 106 and the positions are
x = [0, 1, 2, 4, 5, 6, ]λ/12. The error bars represent the standard deviation from ten
repeated measurements.

atomic distribution along the cavity axis. A fraction of weakly coupled atoms around
the cavity field nodes will not contribute to the superradiant emission. Moreover, we see
a slightly larger deviation between the measurement and the simulation around total
excitation. The reason for this is likely due to the excitation pulses being not perfect.
On the x-axis we plot the theoretical population after a corresponding pulsed excitation.
This does not always reliably reflect the actual excited state population of the atoms in
the experiment. Note that the results do not average for repeated measurements for
π-pulses since imperfections always lead to less inversion.

In figure 7.1(b) we plot the dependence of the superradiant pulse delay time on the
initial excited state population, which is defined as the duration from the end of the
excitation pulse to the peak of the superradiant pulse. Again, the simulation agrees well
with the experiment. The only fit parameter here is a constant offset delay of 1.6µs,
subtracted from all experimental data points. A particularly interesting property is the
increasing delay time for lower inversion. For an ensemble with an overall vanishing
phase, the duration to synchronize for the superradiant emission reduces for higher
inversion. In contrast, for an initial phase synchronized atomic ensemble, as in the case
of a drive through the cavity [7.1, 7.4], the delay time increases for higher excitation.
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7.3 Cavity enhanced Ramsey sequence
A first practical application of the population dependent transition from cavity sub-
to superradiance is to enhance the readout of the excited state population after a
Ramsey scheme [7.5]. Figure 7.2 shows the peak photon number signal for different
atom-laser detunings in a Ramsey sequence. Fringes with the predicted characteristic
flat zero-photon regions appear. The experimental data points agree qualitatively very
well with the simulation (solid line). The amplitude of the experimental data points is
scaled to fit the height of the theoretically obtained fringes.

7.4 Conclusions and outlook
We have shown preliminary experimental results demonstrating the predicted population
dependent transition from cavity sub- to superradiance in a phase symmetric prepared
clock atom ensemble and its use for a new type of a cavity enhanced Ramsey scheme.
The results agree very well with the theoretical predictions. Further measurements
on the atom number dependence and for the excited state population are planned in
the near future. Developing an optimized cavity enhanced Ramsey scheme will be a
subsequent project.
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We have theoretically studied CQED systems with large ensembles of clock atoms
coupled to an optical cavity. In the first chapter, we have introduced all necessary
building blocks, models and theoretical tools to understand the investigated systems,
with a particular focus on the description and properties of the superradiant laser.

The first two projects in my thesis were devoted to introduce and study potential
continuous atomic repumping processes for the superradiant laser. In one attempt
we have considered a rather unknown and also unintuitive mechanism for a V-level
atom, where proper coherent driving on both transitions can lead to inversion in the
more long-lived upper state. We have shown that this process can be used to create
gain for lasing, even with simultaneous cooling of the atoms. However, due to power
broadening, this laser effectively operates in the conventional good cavity regime, making
it unfortunately unsuitable as a repumping mechanism for a superradiant laser. In
another approach we have studied a multi-step repumping scheme based on the level
structure of strontium-88. We could show that an appropriate choice of the repumping
laser parameters can yield a sufficient repumping rate together with minimal light shifts
and acceptable heating rates. Furthermore, we introduced an efficient numerical method
to reduce the complex multi-level system to an effective two-level atom, which can be
utilized for other systems and atomic species.

Afterwards we have studied a system very similar to the superradiant laser, with the
essential modification being a coherent transversal drive replacing the incoherent pump.
It has turned out that it is crucial to take the alternating sign of the cavity coupling
within an atomic cloud into account. Due to the overall vanishing phase in the atomic
ensemble, a population dependent transition for the dynamics of the system emerges.
In particular, a non-inverted ensemble is subradiant with respect to cavity mediated
collective decay, whereas inverted atoms emit a superradiant pulse. For a continuous
drive in a specific regime this results in photon number self-pulsing. Furthermore,
we have proposed to utilize this transition between cavity sub- and superradiance to
enhance the readout after the Ramsey sequence for an atomic clock. The population
dependent transition as well as a proof of principle for the cavity enhanced Ramsey
scheme have been verified experimentally on the inter-combination line of strontium-88.

All of the above mentioned projects feature large open quantum systems. In order to
simulate them we have used a cumulant expansion, mostly in second order, which usually
results in tens of equations. Dealing with them was only feasible due to the toolbox we
have created, QuantumCumulants.jl, which automatically derives and implements those
equations. In our projects we have merely simulated CQED systems with the package,
however, it can be used for many other quantum systems.

In summary, we have investigated and characterized different repumping mechanism
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for steady state superradiant lasing on a narrow atomic transitions. Furthermore, we have
theoretically discovered and experimentally verified a population dependent transition
from cavity sub- to superradiance. Additionally, we have created the framework
QuantumCumulants.jl, which is already extensively used by many research groups.

The popularity of the toolbox motivates further development. A particularly useful
extension would be to include stochastic processes e.g. to describe measurement back
action or to derive quantum Langevin equations. But also implementations of additional
Hilbert spaces would be convenient, e.g. for fermions or position and momentum.

An interesting consideration for the cavity sub- and superradiance is to include Zeeman
sub-levels and light polarization. Including those leads to additional possibilities to
create destructive and constructive interference for the cavity field. The same phenomena
are also expected to emerge in waveguide systems. Furthermore, taking particle motion
into account to study the influence of light forces on the atoms could be interesting.
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A cold atomic gas with an inverted population on a transition coupled to
a field mode of an optical resonator constitutes a generic model of a laser.
For quasi-continuous operation, external pumping, trapping and cooling of
the atoms is required to confine them in order to achieve enough gain inside
the resonator. As inverted atoms are high-field seekers in blue detuned
light fields, tuning the cavity mode to the blue side of the atomic gain
transition allows for combining lasing with stimulated cavity cooling and
dipole trapping of the atoms at the antinodes of the laser field. We study
such a configuration using a semiclassical description of particle motion
along the cavity axis. In extension of earlier work we include free space
atomic and cavity decay as well as atomic dipole-dipole interactions and their
corresponding forces. We show that for a proper choice of parameters even
in the bad cavity limit the atoms can create a sufficiently strong field inside
the resonator such that they are trapped and cooled via the superradiant
lasing action with less than one photon on average inside the cavity.

doi: 10.1364/OE.27.031193

†The author of the present thesis performed all calculations and numerical simulations. D. Planken-
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9.1 Introduction

The idea of building a superradiant laser operating on an ultra-narrow optical clock
transition in a cold gas has fostered the vision of implementing the optical analog
of microwave clock masers [9.1] with a precision and accuracy improved by many
orders of magnitude [9.2–9.5]. Today, a central limitation of the best optical clock
implementations [9.6, 9.7] is noise within the mirrors of the reference oscillators [9.8]
that act as the flywheels locked to the atomic transition frequency. When operated on
the clock transition in the bad cavity regime and at low photon numbers, superradiant
lasers have been predicted to be very insensitive to these fluctuations and create an
accurate and precise frequency reference [9.3, 9.4, 9.9, 9.10].

In principle, operated at high photon numbers sufficiently above the lasing threshold,
lasers do not exhibit a fundamental limit of their linewidth [9.11, 9.12]. In practice,
however, the operational laser linewidth is determined by technical noise in the resonator
and in the active medium. Technological advances have reduced this limit down to the
order of Hz [9.13], which has lead to a growing interest in using long-lived clock states
as the gain medium in a new generation of so-called superradiant lasers [9.3, 9.14–9.16].
However, the long lifetimes, i.e. the small linewidths, of those states entail a minute
dipole moment of the involved transitions, thus making it necessary to work in the
strong collective coupling regime. In this domain, by means of synchronization through
the cavity field [9.17–9.19], a large collective dipole will build up, which can provide
the necessary gain. Here, the atoms do not need to be confined in a small volume as is
the case with Dicke superradiance [9.20], but they have to couple almost equally to the
cavity.

In the present manuscript we investigate a model of a superradiant laser where the
gain medium is self-trapped by the cavity field it creates via stimulated emission into
the resonator. At a suitably chosen detuning of the cavity above the atomic transition
frequency, the atoms will also slow down and experience a cooling within their prescribed
trap positions while simultaneously acting as the gain medium for the laser [9.21, 9.22].
Recently, very efficient cooling has been predicted involving cavity mediated collective
superradiant decay and atomic dipole-dipole interactions [9.23]. Since inverted atoms
in a blue detuned cavity are high-field seekers they are drawn to mode antinodes and
almost equal coupling can be achieved.

9.2 Model

Let us consider N identical two-level atoms confined to one-dimensional motion along
the axis of a Fabry Perot cavity. At finite temperature we can assume a classical
description of atomic motion along the cavity axis. All transition dipoles are assumed
parallel and perpendicular to the cavity axis as in a J = 0 → J = 1 transition. The
atoms couple to the cavity mode via the well known Tavis-Cummings interaction with
a strength given by the cavity mode function at the atomic position, g(ri). Given that
the atomic ensemble is closely spaced, we need to take coherent dipole-dipole energy
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Figure 9.1: Schematic of our model. We consider a confined ensemble of two-level atoms moving
along the axis of a cavity resonantly coupled to a single mode with amplitude
g(ri). The atoms directly interact via resonant dipole-dipole coupling inducing
pairwise energy exchange Ωij and collective decay with decay rates Γij . A uniform
transverse pump mechanism individually excites atoms at rate R, while the cavity
loses photons at rate κ.

exchange (Ωij) and collective spontaneous emission (Γij), which are both mediated by
the surrounding vacuum, into account. Furthermore, we assume to create population
inversion of the relevant two atomic levels via an individual transverse incoherent pump
with the rate R. In practise this has to be implemented via a multistep process involving
intermediate levels. Photons can leak through the cavity mirrors at a cavity loss rate κ
(see Fig. 9.1).

The Hamiltonian of this system in the rotating wave approximation and in the
reference frame of the atoms is

H = ~∆a†a+
N∑

i=1

~g(ri)[aσ
+
i + a†σ−

i ] +
∑

i,j:i6=j

~Ωijσ
+
i σ

−
j , (9.1)

where a† (a) is the bosonic creation (annihilation) operator which creates (annihilates) a
photon with frequency ωc in the cavity. The operators σ+

i and σ−
i are the atomic raising

and lowering operators of the ith two-level atom with transition frequency ωa. The
ith dipole couples to the cavity mode with the position-dependent coupling strength
g(ri) = g cos(kcri). The coupling constant is denoted by g and kc = 2π/λc is the wave
number of the cavity mode. The frequency Ωij quantifies the resonant dipole-dipole
energy transfer between atoms i and j. The detuning between the cavity resonance
frequency and the atomic transition frequency is given by ∆ = ωc − ωa.

Dissipative processes are accounted for by the Liouvillian L in the master equation

ρ̇ = − i

~
[H, ρ] + L [ρ] . (9.2)
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Within the Markov approximation our Liouvillian consists of three parts, namely

L[ρ] = Lpump[ρ] + Lcav[ρ] + Lcd[ρ], (9.3)

where the individual incoherent transversal pump is characterized by the pump rate R,

Lpump[ρ] =
R

2

∑

i

(2σ+
i ρσ

−
i − σ−

i σ
+
i ρ− ρσ−

i σ
+
i ), (9.4)

the cavity losses occur at the cavity decay rate κ,

Lcav[ρ] = κ(2aρa† − a†aρ− ρa†a), (9.5)

and the collective atomic decay is determined by the generalized spontaneous emission
rates Γij ,

Lcd[ρ] =
1

2

∑

ij

Γij(2σ−
i ρσ

+
j − σ+

i σ
−
j ρ− ρσ+

i σ
−
j ). (9.6)

The resonant dipole-dipole couplings Ωij and the collective decay rates Γij depend
on the interatomic distances [9.24, 9.25] and are given by

Ωij = −3Γ

4

[

(1 − cos2 Θ)
cos(karij)

karij
− (1 − 3 cos2 Θ)

(

sin(karij)

(karij)2
+

cos(karij)

(karij)3

)
]

, (9.7)

and

Γij =
3Γ

2

[

(1 − cos2 Θ)
sin(karij)

karij
+ (1 − 3 cos2 Θ)

(

cos(karij)

(karij)2
− sin(karij)

(karij)3

)
]

. (9.8)

Here, ka = ωa/c is the wavenumber corresponding to the atomic transition frequency
and Θ denotes the angle between the atomic dipoles and the distance vector between
atom i and atom j.

For the time evolution of the classical variables we have for the velocity of the ith
particle

ṙi =
pi

m
= 2ωr

pi

~k2
a
, (9.9)

and the force acting on a particle is (see Appendix 9.6.1 for details)

ṗi = −~∂ri

[

g(ri) 〈aσ+
i + a†σ−

i 〉 +
∑

j:j 6=i

2ΩijRe〈σ+
i σ

−
j 〉
]

. (9.10)

Here, we defined ωr := ~k2
a/(2m) as the recoil frequency, with m the mass of an atom.

Note that the above equations are only valid for sufficiently slow particles. This
is because we include the time dependence of the collective dipole-dipole interactions
via the time-dependent atomic positions only. Thus, Doppler shifts and other effects
depending on the velocity, or higher-order derivatives of the position, are neglected
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in the dipole-dipole coupling. Furthermore, we note that forces stemming from the
collective decay are neglected here (see Appendix 9.6.1). Additionally, since we assume
classical motion, the recoil from spontaneous emission is neglected in the kinetic energy.
This is probably the most drastic approximation made here.

9.3 Cooling and trapping properties
We investigate the stability of the system described above in the lasing regime by
showing that the atoms are cooled and trapped within the cavity field potential created
by the photons scattered from the inverted atoms. Due to the exponential scaling of
the Hilbert space dimension with the number of atoms numerical methods are limited.
Thus, we restrict ourselves to treating a sufficiently small system that still exhibits
collective effects.

We study a system with three atoms inside the cavity. The initial state is as follows.
The atoms are placed λc/2 apart at the cavity field antinodes. Furthermore, the atoms
are in the ground state and there are no photons inside the cavity. The set of initial
momenta is picked from a normal distribution that depends on the recoil frequency.
Namely, we always choose a normal distribution for the atomic momentum such that
the average kinetic energy is constant in respect to ωr. In general, the kinetic energy of
the ith particle is p2

i /(2m). Thus, if the recoil frequency is multiplied by an arbitrary
constant c (i.e. the mass is divided by c), we need to scale the momentum with 1/

√
c

in order to keep the kinetic energy constant. The standard deviation p̄0 of the initial
momentum distribution of the atoms is chosen depending on the choice of ωr according
to this relation.

To analyze the trapping and cooling properties of the system we study the time
evolution of the particle positions. In Fig. 9.2(a) we show a case where the particles
are cooled until they are cold enough to get trapped in the potential created by the
cavity field. The particles distribute themselves relatively far from each other, which
means that collective effects hardly play a role. As we aim to investigate collective
effects as well, we restrict our calculations to particle trajectories that remain in their
initially prescribed trap for the entire time evolution. We call them completely stable
trajectories, see for example Fig. 9.2(b). We refer to Appendix 9.6.3 for more details
on the stability. The momentum transfer from particle 2 to particle 3, depicted in Fig.
9.2(a), stems from the collective dipole-dipole effects.

In order to quantitatively capture the cooling process, we study the time evolution of
the particles’ kinetic energy

Ekin(t) =
∑

i

pi(t)
2

2m
, (9.11)

and average over 100 thermally distributed initial momenta. However, we consider
the completely stable trajectories only. As evident from Fig. 9.2(c) (blue line) this
kinetic energy of the stable trajectories oscillates very rapidly on the time scale of the
cooling process and thus does not yield comparable results. Therefore, we introduce
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Figure 9.2: Exemplary trajectories of three particles and their time-averaged kinetic energy loss.
In figure (a) an initially untrapped particle (green and orange line) is slowed down
by cavity cooling until it is trapped, whereas all other particles in the examples
remain close to their initial trapping position near a field antinode. The set of
initial momenta is p0 ≃ [−1.78, 3.92, 2.83]~ka in (a) and p0 ≃ [1.00,−0.73, 1.18]~ka
in (b). In (c), we see that the time-averaged relative kinetic energy does not vary
that much in time as opposed to the momentary kinetic energy exhibiting trapped
oscillatory motion. For better visibility we normalize the kinetic energy to its
initial value. The parameters are N = 3, ωr = 0.1Γ, ∆ = 10Γ, g = 5Γ, κ = 10Γ
and R = 8Γ for all three figures.

the time-averaged kinetic energy Ēkin(t), which is obtained by taking the midpoints
between two adjacent extrema of the kinetic energy as seen in Fig. 9.2(c) (orange line).
The parameter we use in order to characterize cooling or heating is

Ērel
kin(t) =

Ēkin(t)

Ēkin(0)
, (9.12)

which we call time-averaged relative kinetic energy.
We scan over the experimentally most accessible parameters using the procedure

described above for three different ωr. The thermally distributed initial kinetic energy
corresponds to a normal distribution of the initial momenta. As discussed above, in
order to ensure that the particles start with the same average kinetic energy for all
values of ωr we scale the standard deviation p̄0 of the momentum distribution. We
choose p̄0 = 2~ka for ωr = 0.1Γ, p̄0 = 2/

√
10~ka for ωr = 1Γ and p̄0 = 2/10~ka for

ωr = 10Γ. Fig. 9.3 shows the scan over ∆ and R as well as over g and R for all three
values of ωr. Every value of Ērel

kin(t) above 1.0 corresponds to heating and is artificially
fixed to 1.0, as these are points of little interest.

We observe that only trajectories with ∆ > 0 realize cooling, which corresponds
to the expected blue detuning of the cavity mode with respect to the atoms. This
is due to the fact that atoms inside a cavity favour the emission of photons near the
cavity resonance frequency [9.26]. An atom in a blue detuned cavity emits photons at a
frequency higher than its transition frequency. Therefore, the atom has to exert energy
in order to lose a photon into the cavity, which it does by losing kinetic energy. The
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Figure 9.3: Cycle-averaged relative kinetic energy change after an evolution time of 500 atomic
lifetimes as function of various operating parameters. We show scans over ∆ and
R in (a),(b) and (c) and vary g and R, respectively, in (d),(e) and (f) for different
ωr. The parameters when kept constant are N = 3, ∆ = 5Γ, g = 5Γ, and κ = 10Γ
and t = 500/Γ.

atoms feel an effective friction force that is largest at the points where the cavity field
is maximal (high-field seeking). As can be seen from the scans, there is an optimum
for the detuning where the cooling is maximal. This is similar to the maximal force
in the process of Doppler cooling. The force is also proportional to the excited state
population of the atoms. The cooling is thus best when the pump is sufficiently strong
to keep the atoms inverted at almost all times.

Furthermore, we can see that atoms with a larger ωr reach a lower relative kinetic
energy during a fixed cooling time. On the one hand, this means that lighter particles
are cooled down faster. On the other hand, their initially larger velocities make them
more difficult to trap, i.e. more trajectories are unstable (see Appendix 9.6.3). Heavier
atoms (smaller ωr) are easier to trap for the same initial kinetic energy (see Fig. 9.8),
even though they do not cool as much during the observed time interval. Note the
difference between cooling and trapping here: heavier atoms can still be trapped if they
cool poorly, since even a larger kinetic energy in this case oftentimes corresponds to
a relatively small velocity insufficient for the particles to climb the potential walls of
the trapping potential created by the cavity field. Since they start with a lower initial
velocity, however, the cooling is much slower. The inverse line of argument holds for
lighter atoms: they are more difficult to trap, but if they are trapped the cooling is
more efficient.

Finally, as can be seen in Figs. 9.3(d)-9.3(f), the coupling to the cavity mode should
not be too large in order for the system to cool the atoms. This can be explained
by the growing probability of the atoms absorbing photons from the cavity, which
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causes heating. Hence, the coupling strength should always be well below the cavity
loss rate, such that it is much more probable for a photon to leave the cavity than to
be reabsorbed. Higher pump strengths can also counteract the heating. If the atoms
are pumped strongly they are inverted at almost all times and thus cannot absorb an
incident cavity photon. Note that the red areas in Fig. 9.3 with ∆ > 0 are mainly
caused by extremely slow initial atoms. In these cases the atoms do remain trapped,
even though they are heated (note again the difference between cooling and trapping).
They are initially so slow that the noise stemming from the cavity field causes heating
inside their trap. If the atoms here started with a larger kinetic energy (temperature),
they would indeed be cooled. However, they would then also be fast enough to leave
their initial traps.

At this point we would like to emphasize again that we describe the system in a
semiclassical treatment and we neglect the recoil arising from spontaneous emission.
Since the absolute values of the particles’ momenta are around ~ka we need to view
the cooling and trapping results critically, especially for ωr = 1Γ and ωr = 10Γ. Note,
though, that the recoil heating would only have an effect here since we formulate the
superradiant laser regime in terms of a toy model. Specifically, the spontaneous emission
rate is taken to be in the limit where Γ ≪ κ. However, it is still chosen much larger
than it would be for realistic clock atoms in order to avoid numerical difficulties due
to different timescales. While we choose Γ ∼ 10−1κ, a more realistic choice would be
Γ ∼ 10−6κ. In that case, a spontaneous emission event is so rare that the recoil can be
safely neglected. Still, the fact that we do not include recoil effects for our choice of
parameters may be viewed as a rather drastic simplification in our model.

9.3.1 Collective cooling effects

Let us now investigate the relevance of the collective effects for the cooling process.
Therefore, we set Ωij = 0 and Γij = δijΓ, and compare this independent cooling to
the collective cooling from above. In order to acquire collective effects we find that we
need to extend the cooling time by orders of magnitude. In Fig. 9.4 we see the time
evolution of Ērel

kin for collectively interacting atoms in comparison to independent ones.
The main result from Fig. 9.4 is that independent atoms will always reach a lower

final kinetic energy for long cooling times. In the collective case the atoms push or pull
each other away from the cavity field antinodes and thus their displacement amplitude
is larger. Therefore, their kinetic energy is bigger on average. Until approximately
Γt = 5000 the collective line is slightly below the independent line, for ωr = 0.1Γ. The
reason for this is that parts of the kinetic energy are absorbed into the dipole-dipole
interaction potential. The fact that there is a minimum below the final value in the
collective case stems also from the dipole-dipole interaction. The minimal temperatures
in the two collective cases shown in Fig. 9.4 are reached at approximately the same
time in units of ωr.

As we mentioned in the beginning, we restrict our considerations to N = 3 due to
the exponential growth of the Hilbert space. Let us still comment on what one might
expect for a larger number of atoms in terms of cooling. In [9.23], it has been shown
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Figure 9.4: Comparison of motional cooling in time with and without direct dipole interaction.
We compare the motional energy loss for collectively interacting (solid lines) and
independent atoms (dashed lines) showing Ērel

kin for both cases. The independent
case describes atoms far apart from each other. The parameters are N = 3, ∆ = 5Γ,
g = 5Γ, κ = 10Γ and R = 8Γ for both, ωr = 0.1Γ and ωr = 1Γ.

that efficient cavity cooling can be achieved without direct dipole-dipole interactions
between the atoms. Rather, the interactions there stem from the cavity mediated dipole
coupling. These findings in combination with the result shown in Fig. 9.4 suggest
that the limit imposed on the final kinetic energy by direct dipole-dipole coupling will
be more pronounced for larger atom numbers. More precisely, the cooling without
direct dipole-dipole interactions yields lower final kinetic energies with growing atom
number [9.23]. The larger energy due to the displacement caused by direct dipole-dipole
interactions should thus cause an increasing difference to non-interacting atoms.

9.4 Laser properties
After having established that the system is stable for a given set of parameters, we
proceed by analyzing its lasing properties. To this end we study the cavity spectrum, the
average photon number as well as the second-order correlation function. Furthermore,
we look at the atomic inversion. We use the density matrices at Γt = 500, which describe
a quasi-stationary final state, in order to calculate the properties mentioned above.

9.4.1 Laser spectrum

The laser spectrum can be calculated as the Fourier transform of the first order correlation
function g(1)(τ) = 〈a†(t+ τ)a(t)〉. According to the Wiener-Khinchin theorem [9.27],
we have

S(ω) = 2Re
∫ ∞

0
dτe−iωτg(1)(τ). (9.13)

Appendix 9.6.2 provides details on how the spectrum is calculated in our semiclassical
approximation. Most of the spectra are well described by a Lorentzian distribution (see
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Figure 9.5: Properties of the emitted laser light as a function of different system parameters.
We depict scans for the peak frequency shift δ0 from the atomic resonance in (a)
and (b), the laser linewidth γ in (c) and (d), the average photon number n in (e)
and (f), and the bunching parameter g(2)(0) in (g) and (h). We focus on values of
∆ ≥ 5Γ, since below this threshold the particle motion shows few stable trajectories
only (see Fig. 9.8). The remaining parameters are the same as in Fig. 9.3.

Fig. 9.7). Thus, we determine the full width at half maximum (FWHM) γ and the
offset to the atomic resonance frequency δ0. The dependency of the linewidth γ and the
offset δ0 on our scan parameters is depicted in Figs. 9.5(a)-9.5(d). We show these plots
for one choice of the recoil frequency only, namely ωr = 1Γ, since they are qualitatively
identical for the other two choices of ωr. The central observation from Figs. 9.5(a)-9.5(d)
is that the laser offset δ0 is much smaller than the corresponding detuning ∆ for all
parameters. Mathematically, this means that the slope of the offset’s dependency on the
detuning (cavity pulling coefficient) is smaller than one. For a conventional laser in the
good cavity regime the cavity pulling coefficient is approximately one. In our case it is
roughly between 0.1 and 0.2, depending on the pump rate R. In addition, the linewidth
γ does not vary much with the detuning. The significance of these two features is that
the spectrum of the superradiant laser depends less on cavity fluctuations than the
spectrum of a normal laser, which is the expected behaviour. Between ∆ = 5Γ and
∆ = 15Γ the frequency offset grows as expected, but for larger detunings it seems to
reduce. The reason for this is that too large detunings lead to the formation of a distinct
second peak approximately at the cavity resonance frequency, as shown in Fig. 9.6.
Therefore, in these cases we determine the frequency close to the atomic resonance only,
which almost vanishes.

The incoherent drive effectively broadens the atomic transition, resulting in an actual
linewidth of R+ Γ. We hence plot the FWHM in units of this effective atomic linewidth
in Fig. 9.5(c) and Fig. 9.5(d). One can see that there are areas where the laser
linewidth is even lower than the effective atomic linewidth. This is the case for high
pump strengths and small detunings. The smallest laser linewidth, however, is achieved
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Figure 9.6: Appearance of a second maximum in the spectrum for large atom cavity detuning.
For detunings larger than ∆ = 25Γ a second peak emerges at the cavity resonance
to the right-hand side of the atomic peak. For ∆ = 50Γ this peak is almost
completely separated. This shifts the average of the emitted intensity towards
the cavity resonance. We call the offset from the atomic transition frequency δa
and the one from the cavity resonance δc. The parameters are N = 3, ωr = 0.1Γ,
g = 5Γ, κ = 10Γ and R = 10Γ for both, ∆ = 25Γ and ∆ = 50Γ.

for small pump rates. We can also see that, for all stable parameters, the laser linewidth
is well below the cavity linewidth, γ < 2κ. The linewidth and the offset grow with
increasing pump strength, which implies that the narrowest laser spectrum featuring
a low frequency shift is achieved at small pump rates just above the lasing threshold.
The atom-field coupling does not affect the offset, but the linewidth grows with it.

We note that the lasing properties shown in Fig. 9.5 are almost identical for the
three different ωr, which indicates that the laser properties do not change dramatically
compared to a laser with fixed particle positions as described in [9.4]. To further support
this statement we calculate the spectrum in the same manner as before, but for fixed
atomic positions (r1 = 0, r2 = λc/2 and r3 = λc). Comparing the resulting spectrum to
the one with moving atoms, we find an almost perfect overlap. Therefore, the atomic
motion appears to merely change the effective atom-field coupling, which does not
significantly alter the spectrum.

9.4.2 Photon number, second-order correlation and population inversion

Besides the spectrum we also calculate other characteristic quantities of a laser. Specifi-
cally, we compute the average intra-cavity photon number,

n = 〈a†a〉 , (9.14)

and the second-order correlation function at zero time delay,

g(2)(0) =
〈a†a†aa〉
〈a†a〉2 . (9.15)
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Finally, the population inversion of the atoms is relevant as well. The overall excitation
is given by

pe =
N∑

i=1

〈σ+
i σ

−
i 〉 (9.16)

where inversion is achieved if pe > N/2.
Figs. 9.5(e)-9.5(h) depict n and g(2)(0) as functions of the scan parameters for ωr = 1Γ.

The most significant feature is that we always have less than half a photon on average
inside the cavity. The figure also shows that the most photons are created and the
field is most coherent (g(2)(0) = 1) for small detunings, large pump strengths and large
atom-field coupling. This behaviour coincides with that of a conventional (good-cavity)
laser. The excited state population is always above 1.5, and we note that the overall
scan of the atomic excitation is similar to that obtained for a conventional laser.

Comparing the cooling and the lasing scan, we find that the optimal lasing point
does not coincide with the best cooling, specifically for the pump strength dependency.
We therefore conclude that there is a certain trade-off between the optimal cooling and
lasing regimes.

9.5 Conclusions

We have seen that even less than one average intra-cavity photon can be sufficient in
order to accumulate excited state atoms dynamically at positions of maximal light
coupling, i.e. at field mode antinodes, in the blue-detuned regime. For a sufficient
pumping one can thus achieve population inversion and gain which subsequently leads
to superradiant lasing. This behaviour is stable with respect to forces and heating
induced by dipole-dipole interaction. The output spectrum of such a laser exhibits a
very low sensitivity to cavity length fluctuations with a linewidth determined by the
atomic linewidth broadened by the pump rate. We have obtained these results by means
of a semiclassical model, in which we have treated the atomic states as well as the
cavity field mode quantum mechanically, whereas the atomic motion has been described
classically.

Overall, for sufficiently slow atoms, the atomic motion only marginally affects the
operating conditions and output characteristics of such a laser. In particular, its spectral
and coherence properties remain almost unchanged as long as the photon numer is low.
This is a promising result for the construction of a superradiant laser, where inverted
atoms are moved through the cavity by an optical lattice conveyer belt. It seems that
using as many atoms as possible with a weak pump and a large bandwidth cavity is the
optimal way to operate such a device. Note, that we have used a rather generic rate
based spatially uniform pumping scheme. This should be refined and modeled in more
detail for future considerations.
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9.6 Appendix
9.6.1 Semiclassical master equation for dipole-dipole interacting atoms
In the following we develop the semiclassical description of our model. The internal
atomic degrees of freedom as well as the cavity mode will be described in a quantum
mechanical sense, whereas the atomic motion will be written in terms of classical
variables only. We start from a full quantum model describing the coupling of moving
two-level atoms to a cavity mode as well as to a continuum of free space vacuum modes.
The Hamiltonian reads

Htot = H0 +
∑

i

~g(r̂c
i )
(

a†σ−
i + σ+

i a
)

+
∑

k,λ

~ωkb
†
k,λbk,λ

+
∑

i

∑

k,λ

~gk,λ

(

b†
k,λσ

−
i e

−ik·r̂i + H.c.
)

+
∑

i

p̂2
i

2m
,

(9.17)

where the modes of the free space vacuum are described by the bosonic creation and
annihilation operators, b†

k,λ and bk,λ, respectively. Each wavevector k features two
polarizations λ = 1, 2. The (generally 3D) motion of the atoms is accounted for by
the position and momentum operators r̂i and p̂i. The coupling to the cavity mode is
determined by the component of the position along the cavity axis r̂c

i = kc · r̂i/kc. The
free energy part of the cavity and the atoms is given by

H0 := ~ωca
†a+ ~ωa

∑

i

σ+
i σ

−
i (9.18)

Note, that we perform the so-called independent bath assumption for the atoms and the
cavity, i.e., the cavity decay does not affect the coupling of the atoms to the environment.
Since the cavity damping does not affect the motion of the atoms directly either, we
will neglect it for now.

The density operator describing the internal atomic dynamics as well as the motional
degrees of freedom, the cavity mode and the 3D vacuum modes ρtot is then governed by
the von Neumann equation,

ρ̇tot = − i

~
[Htot, ρtot]. (9.19)

Essentially, the semiclassical approximation consists of two assumptions. First, we
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assume that there are no correlations (entanglement) between the motion and the
remaining degrees of freedom. Secondly, we will assume that the motion is classical such
that all expectation values factorize. The assumption that there are no correlations
between the motion and the remaining degrees of freedom amounts to setting

ρtot(t) ≈ ρacf(t) ⊗ ρm(t). (9.20)

On the one hand, the density operator ρacf describes the state of the atomic excitation,
the cavity, as well as the free-space vacuum modes. On the other hand, the motional
degrees of freedom are given by ρm(t). We now aim at finding an equation for the
reduced system density operator ρacf. To this end, we take the partial trace,

ρ̇acf = − i

~
trm ([Htot, ρtot]) = − i

~
[Hacf, ρacf]. (9.21)

Here, we have defined the reduced Hamiltonian

Hacf := H0 +
∑

i

g(rc
i (t))

(

a†σ−
i + σ+

i a
)

+
∑

k,λ

~ωkb
†
k,λbk,λ

+
∑

i

∑

k,λ

~gk,λ

(

b†
k,λσ

−
i e

−ik·ri(t) + H.c.
)

,
(9.22)

where we wrote

ri(t) = 〈r̂i〉 (t) = tr (r̂iρm(t)) . (9.23)

Additionally, we made our second assumption of treating the motion clasically, such
that 〈f(r̂)〉 ≈ f(r) for any function f .

The assumptions from above constitute our semiclassical approximation. We can now
proceed by eliminating the field modes. This leads to the dipole-dipole interactions
among the atoms in the form of coherent energy exchange as well as collective decay. The
only additional assumption one has to make to arrive at this is the Markov approximation
for the atomic positions. The remaining procedure remains the same and yields [9.24],

ρ̇ = trf (ρ̇acf) = − i

~
[H, ρ] + Lcd[ρ], (9.24)

with H the Hamiltonian from Eq. (9.1).

The motion of the atoms, however, is still determined by Htot via

ṗi = tr(p̂iρ̇tot) = − i

~
tr(p̂i[Htot, ρtot]) (9.25)

and equivalently for ṙi. While the velocity is given in Eq. (9.9), for the average force on
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the ith particle we have (in 1D)

ṗi = −~∂ri

∑

j:j 6=i

(

2ΩijRe〈σ+
i σ

−
j 〉 + ΓijIm〈σ+

i σ
−
j 〉
)

. (9.26)

Note that the term proportional to the collective decay does not significantly contribute
since in our system Im〈σ+

i σ
−
j 〉 ≈ 0 ∀ i, j due to almost perfect phase invariance [9.14].

9.6.2 Calculation of the spectrum

The spectrum is given by the Fourier transform of the correlation function

g(τ) = 〈a†(t+ τ)a(t)〉 . (9.27)

A common method to calculate this is to define a new density operator at time t which is
then evolved up to a time t+τ . This is also known as the optical regression theorem and
the essential steps are as follows. Let Htot be a Hamiltonian which describes the entire
system and bath dynamics. The evolution of the system is then reversible and given
by the unitary operator U(t) = exp(−iHtott/~). Thus, we can write the correlation
function as

g(τ) = tr
(

U †(t)U †(τ)a†U(τ)aU(t)ρtot(0)
)

= tr
(

a†U(τ)aρtotU
†(τ)

)

, (9.28)

where ρtot is the total density operator. Upon defining a new density operator ρ̄tot(0) :=
aρtot(t), we may write

g(τ) = tr
(

a†ρ̄tot(τ)
)

. (9.29)

The time evolution of ρ̄tot is given by the same unitary operator as before. Therefore,
eliminating the bath leads to the same master equation, but for a new operator ρ̄ = aρ.
In this way it is possible to compute g(τ) from the reduced system density operator via
the master equation.

One has to be careful when deriving the semiclassical master equation for ρ̄, though.
In particular, the force on the atoms is proportional to average values of system variables
such as 〈a†σj〉. These have to be computed from the actual density operator ρ, rather
than from ρ̄. Assuming, as before, that there is no entanglement between the atomic
motion and the remaining degrees of freedom [Eq. (9.20)] is equivalent to writing
U(t) ≈ Uacf(t) ⊗ Um(t). We can hence write

ρ̄tot(τ) = Uacf(τ)aρacf(t)U
†
acf(τ) ⊗ Um(τ)ρm(t)U †

m(τ) = ρ̄acf(τ) ⊗ ρm(t+ τ), (9.30)

where in the second step we have implicitly defined ρ̄acf(0) := aρacf(t) and have used
the fact that a does not act on the motional degrees of freedom. It is then possible
to obtain a semiclassical master equation for ρ̄ by tracing out the motion as well as
the vacuum modes. However, as can be seen from Eq. (9.30), the motional degrees of
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Figure 9.7: Lorentzian fit of the normalized spectrum. The calculated spectrum is fitted with
a three-parameter Lorentzian function. We call the FWHM γ and the offset to the
atomic resonance frequency δ0. The parameters are the same as in Fig. 9.2(b).

freedom are still determined by ρm(t+ τ). Thus, we need to compute the motion up to
a time t+ τ in a time evolution with the density operator ρ. Only then can we calculate
the proper time evolution of ρ̄ by using the previously calculated particle positions and
obtain the correlation function g(τ).

If the detuning between the cavity and the atoms is not too large, the cavity output
spectrum can be well described by a Lorentzian distribution, see Fig. 9.7.

9.6.3 Stability
In Fig. 9.8 we provide a scan of the number of completely stable trajectories, i.e.
trajectories where the atoms stay in their initial trap for the whole time evolution. As
mentioned in Sec. 9.3 we see that lighter particles with the same kinetic energy are
more difficult to trap. This is simply because they have a higher initial velocity and
therefore it is harder for the cavity field to keep them trapped. Also, it takes a certain
amount of time for the cavity to build up a sufficiently strong field which can confine
the atoms. If the atomic velocity is too large, an atom may leave its initial trap during
this build-up time.
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Figure 9.8: Percentage of completely stable trajectories. For ∆ ≤ 0 there are no stable
trajectories, because the atoms are heated and leave their initial trap. The fixed
parameters are the same as in Fig. 9.3.

133





10 Publication
Open Research Europe 1, 73 (2021)

Superradiant lasing in inhomogeneously broadened
ensembles with spatially varying coupling†

A. Bychek1, C. Hotter1, D. Plankensteiner1 and H. Ritsch1

1Institut für Theoretische Physik, Universität Innsbruck,
Technikerstraße 21, A-6020 Innsbruck, Austria

Background: Theoretical studies of superradiant lasing on optical clock
transitions predict a superb frequency accuracy and precision closely tied to
the bare atomic linewidth. Such a superradiant laser is also robust against
cavity fluctuations when the spectral width of the lasing mode is much
larger than that of the atomic medium. Recent predictions suggest that this
unique feature persists even for a hot and thus strongly broadened ensemble,
provided the effective atom number is large enough.
Methods: Here we use a second-order cumulant expansion approach to
study the power, linewidth and lineshifts of such a superradiant laser as a
function of the inhomogeneous width of the ensemble including variations of
the spatial atom-field coupling within the resonator.
Results: We present conditions on the atom numbers, the pump and
coupling strengths required to reach the buildup of collective atomic
coherence as well as scaling and limitations for the achievable laser linewidth.
Conclusions: We show how sufficiently large numbers of atoms subject to
strong optical pumping can induce synchronization of the atomic dipoles
over a large bandwidth. This generates collective stimulated emission of
light into the cavity mode leading to narrow-band laser emission at the
average of the atomic frequency distribution. The linewidth is orders of
magnitudes smaller than that of the cavity as well as the inhomogeneous
gain broadening and exhibits reduced sensitivity to cavity frequency noise.
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10.1 Introduction

Collective stimulated emission of coherent light by atoms inside an optical cavity
is a fundamental phenomenon studied for decades in quantum optics [10.1–10.7].
Even very recently a large number of theoretical and experimental studies focused on
continuous superradiance [10.6–10.15], aiming at the development of a superradiant
laser [10.16–10.22]. Such a superradiant laser typically operates in a bad-cavity regime,
where the cavity mode is much broader than the natural linewidth of the atoms
providing the gain. In the limit of low photon number operation the coherence necessary
for frequency stability is stored in the atoms rather than the cavity field. This makes the
laser frequency insensitive to thermal and mechanical fluctuations of the cavity, which
is the main limitation for conventional good-cavity lasers [10.23, 10.24]. In recent years
pulsed superradiance has been experimentally demonstrated [10.16, 10.20–10.22] and a
number of new theoretical ideas have been proposed [10.25–10.27]. However, the ex-
perimental realization of a continuous wave superradiant laser has not yet been achieved.

Effects such as frequency broadening in the gain medium are an inherent part of any
experiment. Such processes are capable of disrupting the collective interaction between
the atoms and the cavity field. In this work, we aim to offer a comprehensive study of
these potentially detrimental effects. To this end, we study a model of a superradiant
laser and focus on inhomogeneity among the atomic ensemble. The inhomogeneity is
primarily associated with a distribution of the atomic resonance frequencies leading
to stimulated emission into the cavity at a range of different frequencies. Similar
differences in the atom-field coupling due to variation in the atomic positioning are also
included in the system.

We numerically investigate the dynamics of an atomic medium with a wide range
of resonance frequencies and show how the intensity of the pumping rate can lead
to cooperative effects among the atoms such that superradiant lasing is achieved.
Furthermore, we consider atoms to have different coupling strengths to the cavity. We
also study the laser sensitivity to cavity noise.

10.2 Model

We consider an ensemble of N incoherently pumped two-level atoms inside a single
mode optical cavity as shown in Figure 10.1. In a bad-cavity regime, where the cavity
relaxation rate exceeds the natural linewidth of the atomic transition by many orders of
magnitude (κ ≫ Γ), the system constitutes a generic model of a superradiant laser. The
i-th atom couples to the cavity field with the coupling strength gi and has a resonance
frequency ωi which might be shifted from the unperturbed atomic transition frequency
ωa. Assuming that the cavity is on resonance with the unperturbed atomic transition
frequency, we describe the coherent dynamics of the system by the Tavis-Cummings
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Figure 10.1: Schematic illustration of the system. The atomic medium is placed inside the
optical resonator which has a resonance frequency ωc. Each atom features a
ground and an excited state separated by the transition energy ~ωa. The transition
couples to the cavity mode (g) as well as the environment (Γ). Additionally, the
atoms are incoherently driven from the side (R) such that they can provide gain
to the cavity mode.

Hamiltonian in the rotating frame of the cavity,

H = −
N∑

i=1

∆iσ
+
i σ

−
i +

N∑

i=1

gi(aσ
+
i + a†σ−

i ). (10.1)

Here, ∆i = ωc − ωi, σ+
i = (σ−

i )† = |e〉i〈g|i denote the raising and lowering operators of
the i-th atom, where |g〉 and |e〉 are the atomic ground and excited states, respectively,
and a† (a) is the photon creation (annihilation) operator of the cavity mode. The
dissipative processes of this system are described by the Liouvillian terms

Lκ[ρ] =
κ

2
(2aρa† − a†aρ− ρa†a)

LΓ[ρ] =
Γ

2

∑

i

(2σ−
i ρσ

+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i )

LR[ρ] =
R

2

∑

i

(2σ+
i ρσ

−
i − σ−

i σ
+
i ρ− ρσ−

i σ
+
i ),

(10.2)

representing the loss of photons through the cavity at the rate κ, the spontaneous
atomic decay with the single-atom spontaneous emission rate Γ, and the individual
incoherent pumping with the pump strength R. Thus, the full dynamics of the system
is determined by the master equation for the density matrix ρ in standard Lindblad
form

ρ̇ = −i[H, ρ] + Lκ[ρ] + LΓ[ρ] + LR[ρ]. (10.3)

Since the exponential growth of the Hilbert space with the number of atoms renders
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the solution of the master equation 10.3 intractable for N ≫ 1, we use a cumulant
expansion method [10.7, 10.28]. First, we write down the equations for operator averages
describing our system, which for a given operator O reads

d

dt
〈O〉 = i〈[H,O]〉 + κ〈D[a]O〉 + Γ

∑

i

〈D[σ−
i ]O〉 +R

∑

i

〈D[σ+
i ]O〉, (10.4)

where D[c]O =
(

2c†Oc− c†cO − Oc†c
)

/2. We note that in some cases (mentioned in
the description of the results) we additionally include cavity dephasing and atomic
dephasing described by the terms ξ〈D[a†a]O〉 and ν

∑

i〈D[σ+
i σ

−
i ]O〉, respectively. The

cavity dephasing accounts for the effective noise imposed on the system by thermal
fluctuations of the cavity mirrors, whereas the atomic dephasing models perturbations
on the lasing transition.

To obtain a closed set of differential equations we use the cumulant expansion
method [10.28] up to second order:

d

dt
〈a†a〉 = −κ〈a†a〉 + i

N∑

m=1

gm〈aσ+
m〉 − i

N∑

m=1

gm〈a†σ−
m〉

d

dt
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(
(κ+ Γ +R+ ξ + ν)/2 + i∆m

)
〈aσ+
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−
m〉

− igm〈σ+
mσ

−
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−
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d

dt
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−
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−
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dt
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−
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j 〉 − igj〈aσ+
m〉 − 2igm〈a†σ−
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−
m〉 + 2igj〈aσ+

m〉〈σ+
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−
j 〉

− (Γ +R+ ν)〈σ+
mσ

−
j 〉.

(10.5)

In order to calculate the spectrum of the cavity light field we make use of the
Wiener–Khinchin theorem [10.29], which states that the spectrum can be computed as
the Fourier transform of the first-order correlation function g(1)(τ) =

〈

a†(τ)a(0)
〉

,

S(ω) = 2Re
{∫ ∞

0
dτe−iωτg(1)(τ)

}

. (10.6)

We use the quantum regression theorem [10.30] to write down the set of differential
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Figure 10.2: (a) The mean photon number and (b) the linewidth (in units of κ) as func-
tions of the number of atoms N and pumping rate R for the parameter
set (∆, g,Γ, ξ, ν) = (0, 0.002κ, 0.001κ, 0, 0). (c-d) The cut through the white
dashed line in (a-b) for R = 0.05κ. (e-f) The mean photon number and the
linewidth as functions of the atom-cavity coupling strength g and pumping
rate R. Additional cavity dephasing occurs at the rate ξ = κ. Parameters:
∆ = 0,Γ = 0.001κ,N = 5 × 104. (g-h) The cut through the white dashed line in
(e-f): the ultra-narrow linewidth is robust to cavity dephasing ξ = κ (red solid
line) in the regime where the photon number is low. For the blue dashed line
atomic dephasing was added to the system with the rate ν = 10Γ.

equations for the two-time correlation function, which in matrix form reads,

d

dτ







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
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


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
, (10.7)

where

A = −


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

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2
−ig1 . . . −igN

2ig1(〈σ+
1 σ

−
1 〉st − 1

2
) Γ+R+ν

2
+ i∆1 . . . 0
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...

. . .
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2igN (〈σ+

N σ
−
N 〉st − 1

2
) 0 . . . Γ+R+ν

2
+ i∆N






. (10.8)

We obtain the laser emission spectrum by taking the Laplace transform of Eq. 10.7,
where the initial conditions are the steady-state solutions of Eqs. 10.5, for example
〈a†(τ = 0)a(0)〉 = 〈a†a〉st.

In this section, we suppose that all atoms in the ensemble are identical with the
same detunings {∆i} = ∆ and couplings {gi} = g to the cavity mode. This reduces
the problem to a set of four differential equations in Eqs. 10.5. The mean intra-cavity
photon number and the laser linewidth ∆ν (the FWHM of the spectrum) are depicted
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Figure 10.3: The linewidth of the emission spectrum of N = 5 × 104 atoms as a scan over
cavity dephasing (ξ) and atomic dephasing (ν). The optimal parameters are
taken from Fig. 10.2(f), where the system is in the superradiant regime for
(∆, g,Γ, R) = (0, 0.001κ, 0.001κ, 0.01κ).

in Figure 10.2 as functions of the number of atoms, pumping rate, and atom-cavity
coupling strength. Superradiance is expected in the parameter regime where the
single-atom cooperativity parameter C = 4g2/(κΓ) < 1, but the system is in the
collective strong coupling regime [10.7], where CN ≫ 1. Figures 10.2(a-d) show the
emergence of the superradiant regime as the number of atoms increases. Above the
lasing threshold the collective emission of light with an ultra-narrow linewidth is
observed. In this collective regime the phases of the atomic dipoles are synchronized via
photon exchange through the cavity which leads to the buildup of a collective dipole
among the atoms.

A key feature of such a laser is its insensitivity to thermal and mechanical fluctuations
of the cavity length, since the coherence is primarily stored in the atoms rather than
in the cavity field. To show the robustness against cavity noise we include cavity
dephasing with the rate ξ in the equations. In Figure 10.2(f) we scan the linewidth over
the coupling strength g and pumping rate R for an ensemble of N = 5 × 104 atoms.
In the superradiant regime, the laser linewidth is less than the natural linewidth of
the atomic transition and approaches the value ∆ν ∼ CΓ, which can be well below
1 mHz for the 1S0 → 3P0 transition in 87Sr, as has been pointed out in Ref. [10.7].
Furthermore, we study the influence of noise on the laser linewidth in more detail. In
Figure 10.3 we scan the linewidth over both cavity and atomic dephasing, where the
other parameters of the system correspond to the superradiant regime. One can see
that the linewidth of the superradiant laser can be extremely robust to noise sources
within a wide range.

So far the results are based on the idea of absolutely identical atoms. In the next
sections, we focus on inhomogeneity within the atomic medium. In particular, we will
consider the atoms to be subject to distinct frequency shifts and different couplings to
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Figure 10.4: Cavity output spectra for weakly driven atomic ensembles composed of several
discrete clusters with varying atomic frequencies. (a) M = 5 clusters of atoms
with the detunings ∆m = [−κ; −κ/2; 0;κ/2;κ] for different total numbers of
atoms N = 5, ..., 5000. (b) A zoom-in showing the narrowing of the central peak
in the spectrum from (a) around the resonance frequency. (c) Transition of the
spectral distribution from discrete to quasi-continuous for an increasing number
of clusters. Parameters: (g,Γ, R) = (0.002κ, 0.001κ, 0.01κ).

the resonator mode.

10.3 Atomic ensembles with inhomogeneous broadening
While the individual atoms in free space are identical and have the same transition
frequencies in principle, in practise they are often subject to individual perturbations
introducing local lineshifts, e.g. from trapping within the cavity, motion, or optical
pumping. Specifically, it can be an inhomogeneous trapping lattice or pump lasers with
a Gaussian profile. Doppler shifts would have similar broadening effects in ring cavities,
whereas in a standing-wave cavity they would generate a time-dependent atom-field
coupling which we do not consider here. In this section we study the overall effects of
inhomogeneous broadening of the gain medium on the laser properties.

In contrast to the case of identical atoms, where the atom number in Eqs. 10.5 and
10.7 only enters as a constant factor, the inhomogeneity among atomic frequencies
requires keeping track of the time evolution of each atom separately. For the solution
of the collective dynamics one then needs to solve O(N2) equations. This is only
possible for a limited atom number and we thus have to resort to further approximation
methods in order to treat larger ensembles. As a possible approach to approximate a
large ensemble with a continuous frequency distribution we combine several atoms in
subgroups representing their average atomic frequencies, which we call clusters, see also
Refs. [10.14, 10.15, 10.31]. Each atom in a cluster is assumed to be completely identical
to all other atoms in the same frequency cluster. This preserves the central physics of
the inhomogeneous broadening, but at the same time substantially reduces the number
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of equations.

First, we simulate N = 5 atoms in five clusters centered at ∆m = ωc − ωm, where
∆m ∈ [−κ : κ]. Note that this is equivalent to M = 5 frequency clusters each
containing a single atom. At low excitation the resulting cavity output spectrum
then consists of precisely five spectral lines at the frequency of each cluster. Basically,
these are five independent lasers using the same cavity mode simultaneously. If we
increase N and set the number of atoms per cluster according to a Gaussian normal
distribution with the standard deviation σ = κ, the structure of the spectrum in
Figure 10.4(a) will remain unchanged, with each peak becoming more pronounced.
In particular, in Figure 10.4(b) we observe growing collective emission among atoms
of the same cluster so that the linewidth of each peak becomes smaller as the atom
number in the corresponding cluster increases. In Figure 10.4(c) we show how
more and more lines appear as we increase the number of clusters up to M = 201
until the output merges into a single broad emission line. Note that an increase
of the collective coupling to g

√
N ∼ κ or a randomization of the individual cluster

detunings do not lead to any substantial difference in the spectral profile of the laser.
Hence, one can expect a single broadened peak in the emission spectrum in the
more realistic case of a large ensemble of atoms with a continuous frequency distribution.

So far we limited investigations to weak incoherent pumping in order to avoid
significant additional broadening of the atomic linewidth due to pumping. However,
this broadening effect can actually aid the buildup of coherences between the clusters.
When the pumping is strong enough such that the distinct spectral lines overlap, the
discrete spectral lines of the clusters merge into a single central peak (see Figure 10.5).
In other words, more intra-cavity photons and broader individual atomic gain lines
ultimately lead to a dramatic narrowing of the laser line. We attribute this effect to
a dynamical phase transition from the unsynchronized phase of the dipoles to the
synchronized one. Note that an analogous phenomenon has previously been studied
in Ref. [10.32] for two mesoscopic ensembles of atoms collectively coupled to a cavity
with opposite detunings. Furthermore, we show how an atom number imbalance at a
particular frequency in Figure 10.5(b) and overall atom number fluctuations modeled
by slight random deviations from a Gaussian distribution in Figure 10.5(c) lead to a
shift of the spectral lines. However, in the synchronized regime the lineshift of the
central peak is much smaller than its linewidth.

The collapse of the emission spectrum into a single central line occurs at a critical
pump strength Rc. This critical value strongly depends on the overall width of the
frequency distribution, but shows almost no dependence on the number of subensembles
M and the total number of atoms N . The critical transition pump strength is shown
for different standard deviations σ of the atomic frequency distribution in Figure 10.6.
The data points show the numerical results for an ensemble of N = 102 (red dots)
and N = 104 (blue circles) atoms sampled by M = 31 clusters. For comparison, we
also plot the linear (solid line) function Rc = 0.4σ. We calculate the critical pumping
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Figure 10.5: Cavity output spectra of a large inhomogeneously broadened ensemble of N = 104

atoms for different pumping rates R = 0.001κ (grey), 0.01κ (blue), 0.02κ (orange),
0.05κ (red). The ensemble is represented by M = 31 clusters with the number of
atoms per cluster chosen according to a Gaussian normal distribution (a) with the
standard deviation σ = 0.1κ, (b) when adding particle imbalance at ∆ = 0.027κ,
(c) with overall atom number fluctuations. The emission intensity is normalized
and the other parameters are chosen as ∆ ∈ [−σ : σ], g = 0.002κ, Γ = 0.001κ.

by computing the spectrum for different R. We then determine the critical value
of the pump strength as the value at which the spectrum has only a single local
maximum, i.e. all separate peaks have merged into a single spectral line. We find a
linear dependence for large inhomogeneously broadened ensembles while for narrow
ensembles a significantly lower pump strength is required.

Once the laser is operating at a single distinct emission frequency, we can characterize
the properties of the output light by the linewidth and the average photon number.
The results for different distributions of atomic frequencies are shown in Figure 10.7,
where ∆ ∈ [−3σ : 3σ] and Γ ≤ 3σ ≤ κ. Figure 10.7(a) illustrates how a narrow linewidth
appears for different σ as the number of atoms increases. Note that we chose a pumping
strength well above the critical value for a wide atomic frequency distribution (red line).
The sharp decrease of the linewidth is accompanied by an increase in the average photon
number as can be seen in Figure 10.7(b). This is indicative of a lasing threshold being
crossed at a certain number of atoms.
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Figure 10.6: Critical value of pumping above which the collective superradiant regime is estab-
lished depending on the standard deviation σ of the atomic frequency distribution.
The data points show the numerical results for an ensemble of N = 102 (red dots)
and N = 104 (blue circles) atoms sampled by M = 31 clusters. For comparison
we plot the linear (solid line) function Rc = 0.4σ as a linear approximation to
the data points. Parameters: ∆ ∈ [−3σ : 3σ], g = 0.001κ,Γ = 0.001κ.

10.4 Inhomogeneously broadened ensembles with variable
coupling strength

Up to now we have assumed that the atoms are perfectly positioned inside the cavity
such that they couple equally to the cavity mode. Let us now include spatial variations
of the atom-field coupling within the resonator. We consider the ensemble of atoms with
the position-dependent coupling strength g(x) = g0 cos(kx), where g0 is the coupling
constant, k = 2π/λ is the cavity mode wave number and x represents the position of an
atom. In order to describe the atom-field dynamics we use a similar cluster approach
as before. We assume equidistant positions for different clusters xm ∈ [0, ..., λ/4) and
corresponding couplings gm(x) = g0 cos(kxm) = {g1, g2, ..., gK}, where K is the total
number of clusters. Note, that the sign of the coupling is irrelevant in our system,
therefore we only consider couplings with gm > 0.

The dashed lines in Figure 10.7 show the results for M = 11 frequency clusters and
K = 5 clusters of different couplings. As can be seen in Figure 10.7(a), for atoms with
different couplings to the cavity mode the dependence of the linewidth on the number of
atoms remains roughly the same as for atoms equally coupled to the cavity. This holds
as long as the effective overall coupling strength geff =

√

(
∑
g2

m)/K is constant. Thus,
the linewidth is essentially unaffected by atoms having different couplings to the cavity.

Finally, let us include cavity dephasing in order to describe lasing in a large
inhomogeneously broadened ensemble in the presence of cavity noise. The spectral
linewidth and mean photon number under strong cavity dephasing at the rate ξ = κ
are depicted in Figure 10.8 (blue dashed line). Note that establishing coherence in such
a largely broadened ensemble requires sufficiently strong pumping. This subsequently
leads to a large number of photons in the cavity mode making the setup sensitive
to cavity fluctuations, see Figure 10.2(f). However, additional atomic dephasing
can actually relax the constraint on the pumping, since both incoherent pumping
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Figure 10.7: (a) Laser spectral linewidth and (b) mean photon number for inhomogeneously
broadened ensembles with different standard deviations σ and spectral widths of
atomic frequencies ∆ ∈ [−3σ : 3σ], where σ = κ/300 (green line), σ = κ/30 (blue
line), σ = κ/3 (red line) as a function of the total number of atoms. The number
of clusters is M = 31 with the number of atoms per cluster chosen according to a
Gaussian normal distribution. The dashed lines represent the results including
an additional spatial variation of the atom-field coupling g(x) = g0 cos(kx). The
ensemble is comprised of M = 11 frequency clusters and K = 5 clusters of different
couplings. The couplings are chosen such that the effective coupling strength
geff =

√
(
∑

m g2
m)/K ≡ g. Parameters: g = 0.001κ, g0 = 0.0013κ, Γ = 0.001κ.

and atomic dephasing are closely tied to the same physical effect of broadening the
atomic emission line. Thus individual atomic dephasing induce additional atom-atom
coupling by enlarging the overlap of distinct spectral lines, which finally leads to better
synchronization. Adding atomic dephasing to the system at the rate ν = 0.01κ allows
for maintaining collective interactions in the ensemble and at the same time enables a
reduction of the pump strength by one order of magnitude to R = 0.005κ. In the low
photon number regime, a linewidth on the order of the natural atomic linewidth Γ can
be achieved in the presence of strong atomic and cavity dephasing (dash-dotted grey line).

The presented results can be reproduced by using the source code
N_atoms_M_clusters_Delta.jl (see Software availability) [10.33]. The file contains an
example of the cluster approach written in Julia version 1.5.0 using the parameters in
Figure 10.5. Numerical simulations were performed with the open-source framework
Differentialequations.jl [10.34]. The toolbox QuantumCumulants.jl [10.35] has been used
to check the equations and verify the second-order cumulant expansion. The graphs
were produced using the Matplotlib library [10.36].
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Figure 10.8: Laser linewidth (upper panel) and mean photon number (lower panel) for an in-
homogeneously broadened ensemble with spatially varying coupling for σ = κ/30,
∆ ∈ [−0.1κ : 0.1κ] and R = 0.05κ (solid line). Adding various cavity dephasing
at the rate ξ = κ (dashed blue line) and ξ = 0.01κ (dotted magenta line) we can
identify an optimal atom number, above which the cavity noise overwhelms the
linewidth narrowing due to large photon numbers. The dash-dotted grey line
shows the results when adding additional atomic dephasing at the rate ν = 0.01κ.
This additional broadening allows synchronization of the individual clusters in
the weak pumping regime R = 0.005κ ultimately leading to a smaller linewidth.

10.5 Conclusions

We studied superradiant lasing when the gain medium is subject to substantial
inhomogeneous frequency broadening and variable coupling. In extensive numerical
simulations based on a second-order cumulant expansion we were able to confirm
previous predictions that sufficiently large numbers of atoms subject to strong optical
pumping can induce synchronization of the atomic dipoles over a large bandwidth.
This generates collective stimulated emission of light into the cavity mode leading
to narrow-band laser emission at the average of the atomic frequency distribution.
The linewidth is orders of magnitudes smaller than that of the cavity as well as the
inhomogeneous gain broadening and exhibits reduced sensitivity to cavity frequency
noise. We determine the operational conditions and, in particular, the best pump rate
to choose for achieving the smallest linewidth for a given atom number and cavity. The
minimum occurs not at very low photon numbers but at intra-cavity photon numbers
reaching a significant fraction of the atom number.

Typically, full synchronization requires fairly strong pumping, which increases the
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effective atomic linewidth. We determined the minimum pump strength to achieve
collective phase-locked oscillation of all atomic dipoles. Interestingly, some individual
line-broadening effects such as atomic dephasing can actually induce synchronization at
significantly lower pump rates. Furthermore, our simulations also show that variations
in the atom-field coupling strength induced by the cavity mode structure play only
a minor role for the laser stability and noise. In fact, they can be compensated by
an increase of the effective overall coupling using a larger atom number or stronger pump.

In the present work, we did not take into account collisions or dipole-dipole
interactions between atoms. The effect of dipole-dipole interactions have been studied
in a small-scale full quantum model in Ref. [10.9] and do not appear too detrimental.
Moreover, collisions could even have a positive effect on synchronization [10.37] but
a quantitative prediction is complicated. So far our model is still based on a very
simplistic effective pump description via an individual, independent and equal pump
rate for each atom. More detailed studies of optical pumping schemes including the
shifts induced by the pump light will be at the center of future studies.

10.6 Appendix. Cross-correlations between atoms in different
clusters.

As we refer to in the main text, we model a continuous atomic frequency distribution
with the standard deviation σ by choosing equidistant cluster detunings ∆m with the
number of atoms per cluster Nm given by a Gaussian distribution with the standard
deviation σ. The Heisenberg equations for an ensemble of N atoms sampled by M
clusters can be written as
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d
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−
j 〉 + ig〈a†σ−

j 〉(1 − 2〈σ+
amσ

−
am〉)

− ig〈aσ+
m〉(1 − 2〈σ+

ajσ
−
aj〉) − (Γ +R)〈σ+

mσ
−
j 〉,

(A1)
where indices a, b refer to an atom, and m, j are cluster indices. The last equation
describes the cross-correlations between atoms in different clusters. Next, we study the
phase and the amplitude of these correlations as the system reaches the steady-state.
In the weak pumping regime, the correlations are zero and therefore there is no
coherence between the distinct spectral lines of the output spectra in Figure 10.4.
However, in the synchronized regime shown in Figure 10.5(a) for R = 0.05κ, the
existing cross-correlations of the m-th cluster with the other clusters j = m..M are
presented in Figure 10.9(a).

Let us follow these correlations as the system goes from the unsynchronized phase to
the synchronized one. We study the magnitude of cross-correlations between the first
(outer) cluster and the central cluster in Figure 10.5(a) as a function of the pumping
strength. The correlations are zero in the weak pumping regime and grow with the
pumping strength as shown in Figure 10.9(b). The function reaches its maximal value
when the ensemble is fully synchronized. However, as pumping continues to grow the
correlations decrease due-to growing dephasing imposed by pumping.

10.7 Data availability
Underlying data
Figshare: Superradiant_laser_Figures. https://doi.org/10.6084/m9.figshare.15321819
[10.38].
This project contains the following underlying data:

• Data used in Figures 2-8. All data have .jld2 file extension using JLD2.jl data
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Figure 10.9: Cross-correlations between the 31 clusters presented in Figure 10.5(a). (a) Real
and imaginary part of 〈σ+

mσ
−
j 〉 correlations between atoms in the m-th and j-th

clusters on the complex plane for R = 0.05κ. (b) The magnitude of the cross-
correlations between atoms in the first and the central clusters as a function of
the pumping strength.

package in Julia.

Data are available under the terms of the Creative Commons Zero ”No rights reserved”
data waiver (CC0 1.0 Public domain dedication).

10.8 Software availability
• Source code available from: https://github.com/by-anna/Clusters

• Archived source code at time of publication: https://doi.org/10.5281/zen-
odo.4916393 [10.33]

• License: MIT License
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