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Zusammenfassung
Experimente in der Atom-, Molekül- und optischen Physik nutzen die kontrollierte Licht-
Teilchen-Wechselwirkung, um den inneren und den Bewegungszustand der Teilchen zu
kontrollieren und zu manipulieren. Die Streuung von Photonen an Teilchen induziert
dissipative und reaktive Kräfte, die die Schwerpunkts Bewegung der Atome effizient
kühlen und die Teilchen in optischen Potentialen, die durch die elektromagnetischen
Lichtfelder erzeugt werden, einfangen. Schließt man Licht und Teilchen in einem optischen
Resonator ein, wird das von den Lichtfeldern erzeugte optische Potential nichtlinear
an die Dichteverteilung des Gases gekoppelt. Für ausreichend starke Laserbeleuchtung
induziert die kollektive Streuung des Lichts durch die Teilchen oft einen Phasenübergang
in einen Zustand mit kristalliner Ordnung. Diese Anordnung maximiert das in die Kavität
gestreute Licht. In solchen Anordnungen induzieren Photonen über Mehrfachstreuung an
verschiedenen Teilchen Korrelationen und weit reichende Zweikörperwechselwirkungen,
was wiederum die Entstehung selbstorganisierter Strukturen begünstigt.

Diese Arbeit leistet einen zentralen Beitrag zu einer erweiterten Klasse von Modellsys-
temen, die sich auf die dynamische Selbstordnung von ultrakalten Gasen aus mehreren
Komponenten in optischen Resonatoren konzentrieren. Während sich frühe Versuchsauf-
bauten und viele theoretische Modelle auf bosonische und Spin polarisierte Quantengase
beschränken, werden wir uns in dieser Arbeit mit Effekten beschäftigen, die aus der
Kopplung zwischen den inneren und äußeren atomaren Freiheitsgraden durch die Wech-
selwirkungen mit Hohlraumphotonen resultieren.

Zuerst untersuchen wir die Selbstorganisation der Spin Freiheitsgrade in fermionischen
Spinorgasen in optischen Ringresonatoren. In Analogie zu Spin polarisierten Fermi-Gasen
treibt die Erhöhung der Pumpstärke über einen kritischen Schwellenwert das System
in einen superradianten Zustand. Dadurch brechen antiferromagnetische Spin- und
Dichtewellen spontan die kontinuierliche Translationssymmetrie des Hamilton-Operators,
die eng mit der Resonator Geometrie verbunden ist. Die Rolle der Quantenstatistik in
diesem System wird durch das Verhalten der Zweikörper-Impulskorrelationsfunktionen
enthüllt. Im Konkreten induziert das Pauli-Prinzip eine unvermeidliche Antikorrelation
der Impulse zwischen Atomen im gleichen Zustand. Die Photonen im Resonatorfeld
induzieren mittels Ramanübergängen dann Korrelationen zwischen den äußeren und den
inneren atomaren Freiheitsgraden. In Summe sind dann verschiedene Teilchen mit gleichen
Spin- und Impulszuständen maximal antikorreliert, während positive Korrelationen
zwischen Atomen mit entgegengesetzten Spins auftreten. Solche Korrelationen übertragen
sich durch den Impulsübertrag bei der Streuung eines Photons dann zu höheren Impulsen.

In einem weiteren Kapitel zeigen wir dann, wie bestehende Schemata zur Simulation
künstlicher Eichtheorien erweitert und verbessert werden können, indem die dynamis-
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che Kopplung zwischen Atomen und Hohlraumlichtfeldern genutzt wird. Letztendlich
werden die zugehörigen Eichfelder dadurch vollständig dynamisch. Der erste Schritt
in diese Richtung besteht in der Realisierung des Hohlraum-vermitteltem Nächsten-
Nachbar-Tunnelns durch gezielte Resonanz-Zweiphotonen-Raman-Übergänge zwischen
verschiedenen Plätzen eines extern vorgeschriebenen Gitters. Dazu betrachten wir ein
zweidimensionales spinloses Fermi-Gas, das von zwei unabhängigen transversalen Laser-
strahlen gepumpt wird und mit einer Einzelmode eines linearen Resonators wechselwirkt.
Die räumliche Verteilung des Pumplaserlichts prägt der atomaren Wellenfunktion hier
eine Aharonov-Bohm-Phase auf. Somit simuliert das System die physikalischen Eigen-
schaften von Elektronen in einem periodischen Potential und einem externen Magnetfeld.
Dies reproduziert die Quanten-Hall-Physik. Die dynamische Kopplung zwischen den
fermionischen Atomen und den Hohlraumphotonen unterscheidet dieses System von
seinem Festkörper-Gegenstück und Realisierungen mit statischen optischen Gittern und
Laserfeldern. Das Eichfeld entsteht hier spontan nur in der superradianten Phase. Dies
induziert eine Verzerrung des Energiespektrums, die von der nichtlinearen Kopplung zwis-
chen der Amplitude des Hohlraumlichtfeldes und der kinetischen Energie des atomaren
Gases herrührt.

Die Realisierung der vollen Dynamik eines effektiven Eichfeldes erfordert hier eine
weitere Erhöhung der Komplexität des betrachteten Systems. Das Isolieren einer Seite des
zweidimensionalen Gitters und mittels Implementation von Spin aufgelösten gerichteten
Tunneln lässt sich damit ein vollständig dynamisches Eichpotential realisieren. Zwei
unterschiedliche Hohlraummoden, die an jeweils einen eigenen Hyperfeinzustand ankop-
peln vermitteln dadurch das atomare Tunneln in entgegengesetzte Richtungen. Die
Phase der Hohlraummoden wird der Wellenfunktion wie eine dynamische Arahonov-
Bohm-Phase eingeprägt, die dabei intrinsisch an den atomaren Zustand koppelt. Diese
Kopplung induziert indirekt eine Dichte- und Stromabhängigkeit des entstehenden Eich-
felds, da die Dichte des atomaren Gases auf die Hohlraumresonanz zurückwirkt. Mittels
dispersiver Kopplung sich mit der Dichte die Frequenz jeder Mode proportional der
Besetzung im entsprechenden Hyperfeinzustand. Im stationären Bereich korreliert die
Entstehung eines solchen Eichfeldes mit der dynamischen Stabilisierung persistenter
Teilchenströme. Hingegen führen periodische zeitabhängige Ströme zu Eichpotentialen
die einem zeitabhängigen synthetischen magnetischen Fluss entsprechen. Dies induziert
wiederum eine elektromotorische Kraft in Analogie zum Faraday’schen Induktionsgesetz.
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Abstract
Experiments in atom, molecular and optical physics routinely exploit light-matter in-
teraction to control and manipulate the state of the particles. Scattering events with
photons induce dissipative and reactive forces that efficiently cool the center of mass
motion of the atoms, and trap the particles into the potential landscape created by the
electromagnetic light fields. By placing the particles to an optical resonator, the trapping
potential generated by the light fields is non-linearly coupled to the density distribution
of the gas. The collective scattering of the emitters induces a phase transition to a state
with crystalline order for sufficient strong pumping, thus maximizing the light scattered
into the cavity. In such set-ups photons indirectly induce correlations and long-range
two-body interactions, favouring the emergence of self-organized structures.

This Thesis aims to contribute to a new class of studies that focus on the dynamical self-
ordering of multi-component ultra-cold gases coupled to light fields in optical resonators.
While early experimental set-ups and theoretical models restricted themselves to bosonic
and spin-polarized quantum gases, in this Thesis we will deal with effects arising from
the coupling between the internal and external atomic degrees of freedom induced by the
interactions with cavity photons.

First, we investigate spin self-organization phenomena in spinor fermionic gases coupled
to ring resonators. In analogy to spin-polarized Fermi gases, increasing the pump
strength above a critical threshold drives the system into a superradiant state. Alongside,
antiferromagnetic spin and density waves spontaneously break the continuous translational
symmetry of the Hamiltonian that is intimately related to the cavity geometry. In this
system the role of quantum statistics is exposed by the two-body momentum correlations.
In fact the Pauli principle induces an inevitable anticorrelation among atoms in the
same state. Cavity photons correlate the external and the internal atomic degrees of
freedom through the Raman scattering from the pump to the cavity. As a result, particles
occupying the same spin and momentum states are maximally anticorrelated, while
positive correlations arise among atoms with opposite spins. Such correlations are then
propagated at higher momenta when an atom experiences a momentum kick by scattering
a photon.

Next, we show how to improve existing schemes for simulating artificial gauge theories
by taking advantage of the dynamical coupling between atoms and cavity light fields.
Ultimately, this will render the gauge field completely dynamic. The first step in this
direction consists of realizing cavity-mediated nearest-neighboured tunneling by tuning
to resonance two-photon Raman transitions between different sites of an externally
prescribed lattice. To this extent, we will consider a two-dimensional spinless Fermi gas
pumped by two independent transversal laser beams and interacting with a single-mode
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of a linear cavity. The profile of the pumping lasers imprints an Aharonov-Bohm phase
on the atomic wavefunction. Hence, the system simulates the physics of electrons in a
periodic potential and an external magnetic field, reproducing the quantum Hall physics.
The dynamical coupling between the fermionic atoms and the cavity photons distinguishes
this system from its solid-state counterpart and realizations with static optical lattices
and laser fields. The gauge field spontaneously arises in the superradiant phase leading
to a distortion of the energy spectrum, which stems from the non-linear coupling between
the cavity-mode amplitude and the kinetic energy of the atomic gas.

The realization of a fully dynamical gauge field requires increasing a step further the
system complexity. Isolating one leg of the two-dimensional lattice and implementing
spin-resolved directional tunnelings, realizes a completely dynamical gauge potential.
Two distinct cavity modes, addressing their own hyperfine state, mediate the atomic
tunneling in opposite directions. The phase of the cavity modes is imprinted on the wave
function like a dynamic Arahonov-Bohm phase that intrinsically couples to the atomic
state. This coupling indirectly induces a density dependence in the emerging gauge field
as the atomic gas density acts back on the cavity resonance by shifting the frequency of
each mode according to the occupation in each hyperfine state. In the stationary regime,
the emergence of such a gauge field stems from the stabilization of persistent particle
currents. Periodic time-dependent gauge potentials result in a time-dependent synthetic
magnetic flux and induce an electromotive force in analogy to Faraday’s law of induction.
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1 Introduction
In the midst of the first quantum revolution in the early 20th century, “the coldest
place on Earth” was located in Leiden in the physics laboratory of Onnes. Experiments
reaching temperatures of a few Kelvins lead to the liquefaction of Helium in 1908 [1.1].
Later-on the measurement of a vanishing electrical conductivity in a solid Mercury wire
set the discovery of superconductivity in 1911 [1.2]. Meanwhile Einstein complemented
the pioneering work of Bose and introduced to the world the phenomenon of Bose-
Einstein Condensation in 1925 [1.3]. A year later, in 1926, Fermi [1.4] and Dirac [1.5]
independently derived the statistical distribution of identical particles obeying to the
Pauli exclusion principle, henceforth named as fermions. In 1933, the lambda point of
the superfluid transition in Helium was observed for the first time [1.6]. Following the
experiments of Kapitza in 1938 [1.7], London proposed that the superfluid nature of
liquid Helium could be traced back into the phenomenon of Bose-Einstein Condensation
(BEC) [1.8]. The relationship between the two phenomena remained rather elusive, since
the estimated critical temperature for Bose-Einstein Condensation Tc ∼ mK at standard
densities was well below the temperature at which superfluidity was observed in Helium.
In addition Bose-Einstein Condensation was predicted for an ideal non-interacting gas,
while Helium was a strongly correlated liquid. Nonetheless, it was apparent that the
behavior of matter at low temperatures exhibited extraordinary new features. These
phenomena are a manifestation of the quantum nature of matter which becomes manifest,
when indistinguishability effects between identical particles require all atomic degrees of
freedom to be treated quantum mechanically.

For a quantum gas to be degenerate, the thermal de Broglie wavelength must larger
than the inter-particle spacing and the range of the inter-atomic interactions. It is not
surprising that it was only after the newfound awareness that atoms can stay in the gaseous
phase even at very low temperatures [1.9], that an intense experimental activity starting
with hydrogen and progressing to alkali atoms lead to the observation of degeneracy in
dilute quantum gases. The diluteness of the gas was a crucial to prevent three body losses
and ensure low energy two-body scattering processes. The quest to quantum degeneracy
required an intense technological progress with the further development of suitable cooling
and trapping techniques, which ultimately lead to the first experimental realization of
a Bose-Einstein Condensate in 1995 for Rubidium atoms [1.10, 1.11]. Shortly after, in
1999, a Fermi gas of Potassium-40 was cooled toward degeneracy [1.12].

Since the groundbreaking experiments in Fermi and Bose gases, atom optics developed
as an interesting and fertile environment for engineering and quantum simulating systems
of very different nature [1.13–1.15]. The idea of simulating one system by using another
was first brought forward by Feynman in his 1982 lecture [1.16]. Solving quantum models
which are computationally too challenging for a classical computer requires to build
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1 Introduction

a quantum device able to simulate its physics. The success of quantum simulating
platforms came with an increasing technological progress that allowed to fully control
the atomic state. The realization of Feshbach resonances [1.17, 1.18] allowed to control
the strength of the interatomic interaction and set the beginning of an era, where
typical models from many-body theory could be experimentally tested. Remarkable
examples are the realization of the Mott insulator phase [1.19], which constitutes one
of the first experimental realization of the Bose-Hubbard model, or the exploration of
the BCS-BEC crossover [1.20, 1.21], which confirmed the fermionic superfluidity in cold
atoms [1.22]. The realization of optical lattices enabled to generate perfect crystals of
light serving as flawless periodic potentials for atoms [1.23]. With these achievements
atom optics established itself as a perfect platform for quantum simulation effectively
realizing Feynman’s proposal.

1.1 Ultra-cold atoms in cavity QED

The incredible achievement of atom optics has been driven by the astonishing accuracy
and precision in the manipulation of the atomic properties at the single atom level. In
this perspective, light-matter interaction proved to be one of the most powerful tools for
the modification and control of the atomic quantum states [1.24]. Quantum simulation
set-ups extensively use laser light in a variety of applications ranging from the generation
of optical lattices and trapping potentials to state manipulation and cooling. When
the externally prescribed laser fields are replaced by the dynamical electric field of a
quantized mode in an optical resonator, interaction effects are strongly enhanced due to
the augmented scattering probability between an atom and a photons [1.25]. In a cavity
the interaction between light and matter becomes dynamical. That is, the back-action of
the radiation emitted by atom on itself needs to be taken into account [1.26]. As a result,
the atomic motion becomes dynamically coupled to the electromagnetic field radiated
into the cavity and intricate new non-linear effects arise [1.27].

Fascinating collective effects can be observed, when an ensemble of N atoms collectively
interacts with a single mode of an optical resonator, showing e.g. Dicke superradi-
ance [1.28]. The first realization of such a model goes back to the ETH experiment in
2010 [1.29–1.31], in which one observed the self-organization of the atomic gas density
in a one component transversally driven BEC coupled to the vacuum mode of a single
mode linear cavity. Above a critical pump strength, the system undergoes a phase
transition from an homogeneous superfluid to a periodic modulated density. At the
onset of the phase transition atoms occupy odd or even sites of the self-generated optical
potential such that the emitted radiation pattern constructively interferes and the field
scattered into the cavity is maximized. In analogy to one component BEC systems, it
was shown that a spinless Fermi gas in a linear cavity self-organizes in a periodic lattice
in the superradiant state [1.32]. The most striking difference with the bosonic case is
the predicted suppression of the critical self-organization threshold at half-filling for a
one-dimensonal system [1.33, 1.34]. In fact, the commensurability between the Fermi
momentum kF and the momentum acquired by an atom through the scattering with
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1.2 New Perspectives in Many-body cQED

a cavity photon kc, induces resonant processes such that a fermion can jump from one
side of the Fermi surface to the other without any energy cost, a phenomenon known as
Peierls instability [1.35].

1.2 New Perspectives in Many-body cQED

The realization of superradiant self-organization of a bosonic quantum gas set a milestone
after which quantum gas based cavity QED saw a rapid growth of experimental realizations
and theoretical studies with an increasing level of complexity. Using different cavity
geometries allowed to explore the concept of symmetry breaking and its consequences in a
more general fashion. A remarkable example is the observation of a superfluid-supersolid
phase transition for a BEC loaded in a crossed cavity setup [1.36]. This experiment is
one of the first demonstrations of supersolidity in Nature, and was quickly followed by
the direct experimental observation of Higgs and Goldstone excitation modes [1.37].

While the continuous symmetry, which leads to the appearance of such Goldstone
mode in this experiment is only approximate [1.38], it was later shown that ring cavities
exhibit a perfect U(1) symmetry enabling the stabilization of a real supersolid [1.39].
Shortly after supersolidity was observed for a BEC loaded in a ring cavity [1.40].

In this already rich framework, a novel and interesting direction is constituted by the
study of spinor quantum gases in optical cavities. The introduction of additional internal
degrees of freedom of the particles makes these hybrid systems even more appealing
for the study of magnetic phases and spin dynamics. Ground-breaking experiments at
ETH [1.41] and Stanford University [1.42] designed spin-dependent cavity coupling and
realized superradiant magnetic phases. In the ETH experiment a tranversally pumped
single mode linear cavity was dispersively coupled to the F = 1 manifold of a Rb87 BEC.
The experiment makes use of the vectorial component of the atomic polarizability tensor,
which distinctly couples the different magnetic sublevels mF . Therefore spin-dependent
coupling can be realized, giving rise to a phase with non vanishing magnetizaton and
uniform density. By contrast, the Stanford experiment focuses on the realization of
spin-dependent coupling using a multi-level structure of a BEC of Rb87 transversally
pumped, as proposed in Ref. [1.43]. This experiment constitutes the first realization
of dynamical spin-orbit coupling in a cavity [1.44, 1.45]: superradiance sets in above a
critical pump strength after the self-organization of the atoms in a crystalline structure
and spin waves appear. By means of spin resolved time of flight images, the experiment
reconstructed the momentum distribution of the two spin states. Above threshold a
significant population of the other spin state was observed, demonstrating that cavity
photons indeed mediates spin-dependent interactions.

As a result of such long-range interaction, a novel class of theoretical studies pro-
posed that superconducting phases can be stabilized via spin-dependent cavity-mediated
interaction in fermionic quantum gases addressed via cavity-mediated Raman tran-
sitions [1.46–1.49]. These questions posed by recent theoretical work remain so far
unanswered, as only in the last couple of years cavity QED experiments were able to
work with fermionic isotopes. As a result, only recently fermionic superradiance was
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1 Introduction

experimentally observed in Ref. [1.50]. Alongside pioneering experiments at EPFL have
opened a completely new direction, demonstrating the existence of strong two-body
correlation arising into a Lithium 6 gas coupled to a far detuned molecular state though
a cavity-mediated photon-association transition [1.51–1.53].

1.3 Outline of the Thesis

This Thesis extends the theoretical modeling of the physics of ultra-cold gases in optical
cavities beyond the state of the art of many-body cavity QED. Recent studies have
introduced a plethora of new cavity configurations which make use of multi-component
quantum gases and different cavity geometries for manipulating the dynamical symmetries
of the Hamiltonian. As a result fundamental differences in the behaviour of the system
arise and a variety of intriguing many-body phenomena can be investigated. In particular
this Thesis deals with two major research questions: the study of superradiance and
quantum phase transitions in spinor Fermi gases dispersively coupled to light fields in an
optical resonator, and the search of alternative cavity-based platforms for the realization
of artificial dynamical gauge fields.

Chapters 2-4 of this Thesis contain the necessary theoretical background and literature
review which will allow to understand more complex self-organization phenomena in
cavity QED. Chapters 5-7 feature novel results which are collected in two publications
and one pre-print.

In Chapter 2 we include some preliminary concepts and the theoretical tools that
constitute the foundation of the publications included in this Thesis. The emblematic
features of light-matter interaction in a cavity will be introduced, along with the concept
of superradiance and self-ordering phase transition for a dispersively coupled quantum
gas. We will then dig with more accuracy into two specific applications.

In Chapter 3 we will briefly sketch the physics of multi-component gases coupled to
optical resonators and cavity-induced spin-spin interactions.

In Chapter 4 we will introduce the general set-up for generating artificial gauge field
for neutral atoms. We will then highlight the advantages of cavity-mediated schemes,
and the possibility to render the synthetic gauge fields fully dynamical.

In the publication in Chapter 6 we will explore the density and spin self-ordering of
a spinor Fermi gases coupled to a transversally pumped two-mode mode ring cavity.
Above a critical pump strength, the atomic gas self-organizes in an antiferromagnetic
pattern with spontaneously emerging density and spin waves. Cavity photons mediate
strong cooperative effects between the atomic motion and the internal atomic dynamics.
Accordingly, we study correlations in momentum space for atoms in the same and opposite
spin state. Such correlations can be traced back to the propagation of the Pauli principle
to higher momenta through the interaction with the cavity modes.

In Chapter 6 we will study the properties of a spin polarized Fermi gas transversally
coupled to a single mode linear cavity on a lattice. The set-up is based on a scheme
proposed in Ref. [1.54], which constitute the first proposal of cavity-mediated synthetic
magnetic fields. The artificial gauge field spontaneously emerges in the superradiant
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regime, when a macroscopic electromagnetic field builds inside the cavity. In this
publication we investigated the phase diagram, and carried an extensive study of the
fractal energy spectrum of the system, i.e., dynamical Hofstadter butterfly.

In Chapter 7 we investigate the generation of density-dependent dynamical gauge fields
due to the coupling of a degenerate gas to two longitudinal modes of a multi-mode cavity.
The density dependence stems from the non linear shift of the cavity resonance induced
by the presence of the atoms in the cavity and requires strong light-matter interaction.
We investigate the self-consistent magnetic flux which spontaneously arise in the steady
state of the coupled system: he finite Aranov-Bohm flux piercing the ladder plaquette
lead to stabilization of atomic persistent currents. We will finally deal with the periodic
dynamical time evolution of the emerging gauge fields, which allows to simulate Faraday
induction’s law.

Concluding remarks are given in Chapter 8.
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2 Self-organization and Superradiance in
CQED

This Chapter introduces the essential concepts upon which this Thesis is founded and
presents the methods adopted throughout it. Starting from the physics of light in classical
electrodynamics, we will look at how dielectrics affect the light in a medium. Next we
will introduce superradiance as a collective classical effect appearing in atomic ensembles
coupled to optical resonators and see how this concept appears in the theoretical description
of quantum phase transitions. Finally we show that the microscopic properties of the
system can be encoded in the atomic susceptibility, presenting a generalized theory of
light-matter interaction with a field integral theory approach.

2.1 Introduction

Understanding light-matter interaction has always been a problem of significant funda-
mental interest in physics. Even before Maxwell formulated a comprehensive theory of
electromagnetism [2.1], mechanical effects of light were envisioned as the source of the
deflection of comets tails. It took almost a hundred years to observe in a laboratory that
electromagnetic waves carry momentum and thus exert forces on macroscopic objects in
the form of radiation pressure [2.2]. With the advent of the XX century, the discovery of
the atom and the formulation of quantum mechanics brought a new interpretation to
these physical phenomena. Soon after the deflection due to radiation pressure was finally
observed for atoms, by shining a lamp perpendicular onto a sodium beam and thereby
deflect it [2.3].

In the second half of the XX century the discover of the laser [2.4] and the development
of progressively more sophisticated spectroscopy techniques enabled the measurement of
atomic energy levels with high precision. It was apparent that not only does light act on
a mechanical level, but that it also affects the atomic internal structure by shifting and
broadening its energy levels. Light-exerted dissipative and reactive forces are used today
to manipulate the atomic state. Atoms are cooled to temperatures of the order of the
nanokelvin, and forces arising from spatial light shift gradient generate traps, mirrors,
and optical lattices.

Just as light is a source of perturbation for the atoms, so is the atomic medium for the
electromagnetic field. An atom interacting with nearly resonant monochromatic light can
often be effectively described by a two-level system. The electromagnetic field couples to
the selected transition through the atomic dipole moment. In the low intensity regime,
the atom stays in the ground state, and electrons are bound to the attractive potential
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2.2 Light-matter interaction in dielectric materials

generated by the nuclei. The quantum picture then coincides with a semi-classical
description of the atom as a driven oscillating dipole that modifies the electromagnetic
field around it via three fundamental processes: emission, absorption, and dispersion. As
a result, atoms perturb the electromagnetic field by attenuating its intensity and affecting
the propagation speed of light in the medium. In Section 2.2 we will see that these effects
can be connected to a single parameter, the electronic susceptibility of the medium.

Although the atomic medium modifies the propagation of light, the field changes are
not strong enough to substantially act back on the atoms in free space. Specifically,
the cross-section of the photon scattering process limits the probability that a scattered
photon interacts again with the same or a closeby atom [2.5]. It is an intriguing question,
whether the light-matter coupling can become strong enough for the back-action of the
radiation emitted by the dipole on itself to induce substantial effects. In Section 2.3 we
will show that placing a polarizable particle in a cavity can significantly enhance the
interaction between light and matter, i.e. atoms and photons. Despite the atoms being
linearly polarizable, the enhanced coupling of the atom-photon dynamics in a cavity
generates a nonlinear field response.

In a cavity, the collective increase of the atom-light interaction for large atomic
ensembles ultimately leads to superradiance, i.e. light scattering proportional to the
atom number squared. When mechanical effects of light, i.e. photon momentum, are
taken into account, the electromagnetic field couples to the center of mass motion of the
atoms. As a result, superradiance derives from the self-organization of the atomic density
into a self-consistent optical potential generated from the constructive interference of the
field radiated by each atomic emitter [2.6]. In Section 2.4 we will interpret this process
as a second order phase transition with the self-organized atomic density playing the role
of an order parameter. We will show that the transition point is uniquely determined by
the atomic susceptibility, and we will retrace the same topics introduced at the beginning
of this Chapter from a completely new perspective.

2.2 Light-matter interaction in dielectric materials

Different materials react differently in response to applied electromagnetic fields. While
conductors develop currents due to the numerous free charges in the medium, insulating
materials cannot conduct electricity because their electrons are tightly bound to the
nuclei. Such materials, also know as dielectrics, are still affected by electromagnetic fields,
and develop a polarization in response to an applied electric field. Specifically, each
dielectric material is composed of many small dipoles, and a dipole moment is induced by
the external driving field. The following section describes the origin of the polarization
in dielectric materials, and how different media affect the light propagation properties in
the medium.
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2.2.1 Polarizible media
To understand the origin of the dielectric polarization, it is necessary to look at how a
dipole moment can develop in a medium [2.7]. Some molecules like water vapor feature
an asymmetric charge distribution and thus posses a permanent electric dipole moment,
which aligns directly along the applied electromagnetic field. For neutral atoms the
charge distribution is symmetric, and the origin of the dipole moment is less obvious as
it needs a relative shift of the electrons with respect to the nucleus.

An atom constitutes of a positively charged core and a surrounding electronic density.
An applied electric field will stretch the charge distribution pushing the electrons and
the nuclei in opposite directions. The displacement of the center of the negative charge
distribution from the core behaves like a dipole. For an incoming wave the dipole oscillates
at the same frequency of the incident electric field, absorbing power from it and scattering
it into other free space modes, see Figure 2.1. If a charge q has been displaced by δr, the
dipole moment per atom is defined as p = qδr. For N atoms per unit volume, the total
dipole moment per unit volume defines the polarization vector of the medium P = Nqδr.

If the applied electric field E is weak, we can approximate the displacement as being
linear in the electric field. The polarization vector then reads as

P = ε0χeE, (2.1)

with ε0 the permittivity in vacuum. The electric susceptibility χe is a parameter that
varies from material to material, and describes how the medium reacts in response to the
applied electric field.

A simple way to understand the origin of the susceptibility is by considering a spring
model of the atom (Lorentz oscillator) [2.7]. One can think that the electron is held by
a spring to the nuclei, oscillating at a natural frequency ω0 and emitting radiation at
a rate γ. The parameter γ encloses dissipative effects and represents the spontaneous
emission coefficient of the excited state appearing in a quantum picture. An external
electric field applies an additional force onto the oscillator so that the equation of motion
for the displacement reduces to a simple driven-damped harmonic oscillator,

m(δr̈ + γδṙ + ω2
0δr) = qE, (2.2)

with δr the displacement parallel to E. Assuming that the electric field E oscillates at a
single frequency ω, we can solve for δr,

δr = q/m

ω2
0 − ω2 + iγω

E. (2.3)

The induced dipole moment of the atom is

p = α(ω)E, (2.4)

and
α(ω) = q2/m

ω2
0 − ω2 + iγω

(2.5)
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is the atomic polarizability. The atomic polarizability is complex, and its real and
imaginary part take the simple form of a dispersive and absorptive lineshape, as shown
in the inset of Figure 2.1. The first determines the phase shift experienced by the electric
field, as the dipole behaves as a refractive medium. The latter quantifies the power
absorbed by the dipole from the drive and determines the attenuation of the electric field.
Knowing the atomic polarizability, the susceptibility of the gas can be easily derived as
χe(ω) = α(ω)/ε0.

Usually, dielectric media are much more complex than the Lorentz model described
above. Even for the simplest case of a dilute atomic gas, many atomic transitions couple
to the light fields resulting in different resonance frequencies contributing to the total
polarizability. Such resonances are located in the optical domain as they depend on
the energy spacing between different electronic transitions. It is even more difficult for
dense ensembles, where each atom is surrounded by a bubble of other dipoles very close
to each other. In dense ensembles, the modification of the local electromagnetic field
acting on the central dipole and self-consistent effects acting on the macroscopic electric
field cannot be neglected. In the course of this Thesis, we will deal only with ultra-cold
dilute gases. The concept of atomic susceptibility will be recurrent along this Thesis.
By the end of this Chapter we will extend these concepts and look at the response of a
quantum gas with either fermionic or bosonic statistics. Ultimately, we will show that
when the electromagnetic field couples to the mechanical atomic degrees of freedom, the
polarizability will acquire a new set of resonances due to the mechanical coupling of light
with the motional atomic degrees of freedom.

2.2.2 Propagation of light in a dielectric medium
Let us now discuss how the propagation properties of light are affected by the presence
of the dielectric medium. By combining the Maxwell equations,

∇ ·E = −∇ ·P
ε0

, c2∇×B = ∂

∂t

(
E + P

ε0

)
, (2.6)

∇×E = −∂B
∂t
, ∇ ·B = 0, (2.7)

we can derive a wave equation for the propagation of the electric field, E, which only
depends on the polarization P,

∇2E− 1
c2
∂2E
∂t2

= − 1
ε0
∇(∇ ·P) + 1

ε0c2
∂2P
∂t2

. (2.8)

Assuming that the dielectric is isotropic and that the polarization vector is pointing in
the same direction as the electric field, we can look for wave-like solution of the equation
above. Considering am incoming wave propagating in the êz direction and linearly
polarized along the êx direction, E = êxE0e

i(kz+ωt), results into the Helmholtz equation(
−k2 + ω2

c2

)
E0 = − ω2

ε0c2P0 (2.9)
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2 Self-organization and Superradiance in CQED

Figure 2.1: A polarizable particle in free space develops an induced dipole moment,
p = 1

2pêzeiωt + c.c., (here schematized as a blue arrow). The atom is driven
by a transverally incident electric field E = 1

2 êze−iωt + c.c lineraly polarized
in the êz direction. The dipole oscillates at the same frequency ω of the
driving electric field E. The radiation absorbed by the dipole is emitted all
directions, Edip, and can be collected into a Gaussian mode of interest M of
the free electromagnetic spectrum propagating in a direction perpendicular to
the incident field E, and with waist w(x = 0) = w0. The mode amplitude is
EM. The strength of light-matter interaction in free space is set by the ratio
between the power emitted into the full solid and the power collected into
the mode M. This ratio defines the single atom cooperativity in free space
Cfs = 2PM/P4π. Inset: The response of the atom is embedded in the atomic
susceptibility χe, which in the rotating wave approximation, ω − ω0 � ω0,
acquires a Lorentzian absorption (solid black line) and dispersion profile
(dashed gray line).
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for a uniform polarization, that is ∇·P = 0. For a linearly polarizable media, P = ε0χeE,
we can finally derive the wave vector k at which the wave needs to propagate for the
electromagnetic wave to be solution of Equation 2.9,

k2 = ω2

c2 (1 + χe) . (2.10)

The result above shows that the phase velocity of the wave

v = ω

k
= c√

1 + χe
= c

n
, (2.11)

is reduced compared to the propagation velocity in vacuum by the refractive index of the
medium,

n2 = 1 + χe. (2.12)

The refractive index intrinsically depends on the susceptibility of the medium, and thus
on the polarizability. Upon decomposing it in his imaginary and real part n = n′ + in′′,
the solution for the wave equation reads as

E = êxE0e
iω(t+nz

c
) = êxE0e

−n
′′z
c eiω(t+n′z

c
). (2.13)

The electromagnetic wave amplitude is exponentially decreasing along the propagation
direction E0e

−n
′′z
c and travelling at a speed n′/c. The imaginary part of the index of

refraction determines the attenuation of the electric field due to the absorption of the
medium, and the real part of the index of refraction determines the dispersive effects
which modify the propagation speed in the dielectric.

2.3 Cooperative phenomena in atomic ensembles
In the previous section we have seen that an atom driven by an electric field behaves
like a dynamic dipole, absorbing power from the driving electric field and scattering it
over the full solid angle. The strength of the atom-photon coupling in this process is
determined by the single particle cooperativity

Cfs = 6/(k2w2). (2.14)

The cooperativity Cfs regulates all aspects of light-matter interaction [2.25], from the
absorption and the dispersive phase shift induced by the atoms on the light, to the fraction
of the field power scattered into a single Gaussian mode of the free electromagnetic
spectrum. In free space, the cooperativity is set by the ratio of the cross-section of
a resonant photon-atom scattering process, σ0 = 6π/k2, and the scattered beam area,
A = πw2/2. Typically the scattered mode only subtends a small fraction of the full
solid angle, so that the beam waist, w, is much larger than the wavelength, λ = 2π/k.
As a result, the cooperativity in free space is upper bounded, Cfs � 1, and light-
matter interaction is typically too weak to induce non-linear effects in the atom-photon
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dynamics. This raises the question, whether is it possible to coherently enhance light-
matter interaction, so that the back-action of the radiation emitted by the dipole acts
back on the dipole itself. While coupling radiation to an ensemble of N atoms enhances
the cooperativity by a factor NCfs, it does not fundamentally change the scattering
cross-section per atom. In the following section we will see how the coupling of polarizible
particles to the electromagnetic fields in an optical resonator can provide a coherent
enhancement of the light-matter interaction.

2.3.1 Optical resonators

An optical resonator consists of two or more highly reflective mirrors, which are arranged
such that the propagating light is forced to come back to its origin. As photons go back
and forth between the mirrors, the power of the cavity electromagnetic field is largely
amplified. However, the light inside the resonator can only freely propagate at few specific
wave-vectors, km, that are commensurate with the cavity length,

ωm = ckm = 2π c

λm
= 2πm c

2L. (2.15)

Here, L is the length of the resonator, 2L is the round trip distance and m is a natural
integer. Only a discrete number of equally-spaced modes can be amplified in a cavity. The
separation distance between the frequency, ωm, of two consecutive longitudinal modes
set the free spectral range of the cavity, δωFSR/2π = c/2L. Depending on the resonator
geometry and on the curvature of the mirrors, each longitudinal mode is accompanied
by a family of transversal modes in the form of Laugerre-Gaussian or Hermite-Gaussian
modes [2.8]. Despite taking into account the transversal profile can be of interest [2.9],
in the following of this Thesis we will restrict atomic ensembles coupled to a single, or a
pair, of longitudinal TEM00 Gaussian modes.

The inherent losses that arise from the diffraction and imperfections of the mirrors are
another fundamental characteristic of the physics of light fields propagating in optical
resonators. For a Fabry-Perot resonator, which consists of two parallel mirrors placed at
distance L from each other, the quality of the cavity is embedded in the finesse,

F = π
√
R

1−R2 , (2.16)

and is a feature of the cavity which only depends on the reflectivity of the mirrors R.
Here, we define R and iT as the reflection and transmission coefficient of the mirrors
with, R2 + T 2 = 1. The finesse set the lifetime of the electromagnetic field inside cavity,
and determines the cavity decay rate coefficient,

κ = δωFSR
2F ∼ T 2 c

L
, (2.17)

for a highly reflective cavity T 2 � 1.
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2.3.2 Light-matter interaction in a cavity

A polarizible particle in an optical resonator

Let us now consider a polarizable particle positioned at an antinode of a cavity mode
of frequency ωc. An electric field Ein drives the atom and propagates in the direction
perpendicular to the cavity axis, as shown in Figure 2.2. The fraction of the field emitted
by the atom, which is scattered into the cavity can be expressed by projecting the radiated
field over the small angle subtended by the cavity [2.25],

EM = iβE = i
k

πw2
α

ε0
E . (2.18)

Here, α is the atomic polarizability introduced in the previous section, w is the waist of
the cavity mode, and k is the wave-vector of electromagnetic field propagating into the
cavity. In contrast to the scattering in free space, where the atom would only feel the
effects of the incident field Ein, the field E driving the dipole includes both the incident
and cavity field,

E = Ein + Ec. (2.19)

The confinement of the electromagnetic radiation by the cavity mirrors increases the
scattering probability of the photons in a mode with the atom. The particle scatters
photons into the cavity, and the resonator amplifies the electromagnetic field so that it
becomes strong enough to self-consistently drive the atom. The stationary condition for
the field inside the resonator then reads as

Ec = 2EM +R2e2ikLEc. (2.20)

The first term of the Equation (2.20) represents the field scattered by the atom into the
forward and backward direction, EM. The second term represents the propagated cavity
field after one trip and takes into account two consecutive reflections at the mirrors and
the phase acquired during propagation, e2ikL. For highly reflective mirrors R � T , the
phase factor can approximated as R2e2ikL = 1− T 2 + 2iT 2∆c/κ, with κ = T 2c/L the
cavity decay rate.

By writing the scattered field in terms of the driving field E , we can derive the stationary
electric field in the cavity:

Ec = iβ
2Ein
t2

1
1− 2i∆c

κ −
4iβ
t2

. (2.21)

The intensity emitted into the cavity is equal to the intensity transmitted through one of
the mirrors, Ic = cε0/2T 2|Ec|2, and the intensity emitted in free space in absence of the
cavity is given by I4π = cε0/2|Ein|2/Cfs. The ratio between the two quantities

Ic
I4π

= C(
1 + Im(4β)

t2

)2
+
(

∆c
κ −

Re(4β)
t2

)2 (2.22)
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2 Self-organization and Superradiance in CQED

Figure 2.2: A single polarizible particle (in blue) is placed at an antinode of a single mode
in a linear cavity. The atom is driven by the the cavity electromagnetic field
Ec and an incident field Ein, linearly polarized along the êy direction. The
projection of the electromagnetic field emitted by atom into the cavity is EM.

describes the enhancement of the scattering into the cavity compared to free space. The
power emitted into free space is presence of the cavity is strongly enhanced (or suppressed)
compared to free space by a factor proportional to a newfound cooperativity,

C = 4Cfs
T 2 = 4FCfs

π
. (2.23)

In comparison to free space the cavity cooperativity is enhanced by a factor proportional
to the finesse of the cavity, 4/T 2 = 4F/π. This enhancement arises from the constructive
interference of the radiation emitted by the single dipole on different round trips of the
light, before photons are lost from one of the mirrors. Interestingly, the enhancement of
the light field can be seen as resulting from the constructive interference of an atom with
itself at a later time.
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2.4 Self-organization Phase Transition

Collective response in atomic ensembles

Let us now briefly comment on the behavior of N atoms identically coupled to a cavity
mode in the same scattering configuration of Figure 2.2. The position occupied by the
atoms along the cavity axis will affect the emission, however Equation (2.22) still applies
upon substituting the single atom parameters, β and C, with the collective coefficients,

βN = β
N∑
j=1

cos2(kxj), and CN = C

∣∣∣∣∣∣
N∑
j=1

eikzi cos(kxj)

∣∣∣∣∣∣
2

, (2.24)

here rj is the position of the j particle in the cavity volume [2.25]. The form factor∑
j cos2(kxj) determines the absorptive and dispersive properties of the atomic ensemble.

The intensity of the light scattered into the cavity is collectively enhanced by a form
factor ∼∑N

j=1 e
ikzi cos(kxj), which measures the ordering of the atomic distribution with

respect the wavelength λ = 2π/k of the cavity mode. For a perfectly ordered ensemble all
particles are kept λ apart and there is an overall CN = N2C enhancement of scattering
compared to the single atom case. This effect arises in atomic ensembles due to the
collective interference of the field scattered by each emitter: when the atoms are ordered
in a perfect lattice they emit in phase with each other, maximizing the scattering into the
mode EM. The power emitted into the mode then scales as N2 which set the superradiant
properties of the scattering into the cavity. Superradiance hence arise as a phenomenon
based on constructive interference of the radiation emitted by the individual atoms. If
particles are allowed to move, light forces can act on the particles favoring the emergence
of the optimal lattice structure in a self-organized manner. Then self-organization arise
as a phase transition which sets by increasing the power of the incident laser as we will
see in the next section.

2.4 Self-organization Phase Transition

The previous section showed that cooperative effects in atomic ensembles lead to the
superradiant scattering into an optical resonator. In this context, superradiance and
self-organization are interpreted as classical non-linear phenomena.

Nevertheless, there is an explicit connection between the build-up of a coherent
classical electromagnetic field inside the cavity and the emergence of an atomic order
parameter that measures the spatial ordering of the atomic cloud. Self-organization and
superradiance provide yet another example of spontaneous symmetry breaking.

This section aims to bridge quantum optics and condensed matter physics. We will
look at the superradiant scattering into the cavity within the framework of classical
phase transitions, and introduce the numerical and analytical techniques adopted in
the following Chapters. To this extent the simplest system of a transversally pumped
atomic gas in a linear cavity will provide a pedagogical example to study superradiance
and self-organization in ultra-cold atomic gases. We will then reconnect to classical
electromagnetism and show that, independently of the microscopic details of our models,
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2 Self-organization and Superradiance in CQED

each medium is ultimately a polarizable material whose interaction with light fields is
completely determined by its susceptibility.

2.4.1 Ultra-cold atoms dispersively coupled to a single mode cavity
Consider an ensemble of ultra-cold two level atoms with internal states {|g〉 , |e〉} of energy
ωg = 0 and ωe = ωa. An optical transverse pump of frequency ωp and intensity Ωp drives
the atomic transition. The driving laser is back-reflected by a mirror placed on-axis with
the laser along a direction êp with respect to the cavity axis. The atomic transition is also
coupled to a cavity mode with frequency ωc and coupling strength g0 = ℘

√
ωa/2~ε0V,

where ℘ is the dipole moment relative to the addressed atomic transition and V is the
effective cavity mode volume.

Within the rotating wave approximation the system is described by the Hamiltonian

Ĥ ′ = −~∆câ
†â+

∑
σ=g,e

∫
drψ̂†σ(r)

[
−~2∇2

r
2m + Vext(r)− ~∆aδσ,e

]
ψ̂σ(r)

+ ~
∫
dr
{
ψ̂†e(r) [Ωp cos(kp · r) + g0â cos(kc · r)] ψ̂g(r) + h.c.

}
(2.25)

Here, ∆a = ωa − ωp and ∆c = ωc − ωp are the atomic and cavity detuning in the frame
rotating at the pump frequency ωp, and Vext(r) is an harmonic trapping potential. The
operator ψ̂g(e)(r) destroys a particle in the ground (excited) state at position r, and can
either follow bosonic or fermionic commutation rules depending on the atomic species
adopted. The bosonic operator â destroys a photon from the cavity field.

Following the discussion in the previous section, the atom-cavity system should be
treated as an open system due to the photon losses through the mirrors. The evolution of
the density matrix of the system can be then describes with a master equation approach

ˆ̇ρ = − i
~

[Ĥ ′, ρ̂] + L̂cρ̂, (2.26)

with ρ̂ denoting the density matrix of the full system and

L̂cρ̂ = −κ
(
â†âρ̂+ ρ̂â†â− 2âρ̂â†

)
(2.27)

being the Liouville operator which describes decay processes from the cavity at a rate 2κ.
In the dispersive regime when the atomic detuning ∆a is the fastest time scale, the

excited state is only virtually populated and its dynamics can be adiabatically eliminated.
This gives rise to an effective Hamiltonian for the ground state and photons only,

H = −~∆câ
†â+

∫
drψ̂†(r)

[
−~2∇2

r
2m + Vext(r) + Vopt(r)

]
ψ̂(r), (2.28)

where ψ̂(r) ≡ ψ̂g(r) is the destruction operator for a particle in the ground state level at
position r. Note that the model is general at this point, and the shape of the Hamiltonian
is independent on the specific quantum statistics of the particles.
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Figure 2.3: Typical experimental set-up for the observation of the self-organization phase
transition in a quantum gas coupled to a single Gaussian mode of a linear
optical resonator. An harmonic trap Vext(r) confines the atomic gas into the
cavity. A transversal back-reflected pump Ωp polarized along the direction
êp drives an atomic transition |g〉 ↔ |e〉. The effective optical potential
generated by the dispersively coupled cavity field can be seen as a projection
on the x-y plane on the left hand side. The Z2 symmetry breaking coincides
in this case with the emergence of one of the two possible optical lattices
which correspond to the phase locking of the intra-cavity field to the external
pump laser, with a relative phase φa = 0 or φα = π. The two check-board
lattices correspond to a density configuration which is localized at even or
odd sites of the emerging cavity potential.

In the dispersive regime the interaction between the electromagnetic fields and the
atomic medium appears as an optical potential acting on the center of mass motion of
the atoms,

Vopt(r) = ~Ω0 cos2(kp · r) + ~U0 cos2 (kc · r) â†â+ ~η0(â† + â) cos (kp · r) cos (kc · r) .
(2.29)

There are three main contributions to the optical potential Vopt(r). The first term,
∼ ~Ω0 cos2(kp · r) creates a λp/2 periodic optical lattice generated by the incident pump
laser along the transversal direction. The depth of the optical lattice is set by the two-
photon Rabi frequency, Ω0 = Ω2

p/∆a. The second term, ∼ ~U0 cos2 (kc · r) â†â, is a λc/2

17



2 Self-organization and Superradiance in CQED

periodic optical lattice generated along the cavity axis, êc, through the consecutive photon
absorption and emission into the cavity mode. The depth of this potential dynamically
depends on the number of photons in the cavity, U0〈â†â〉, with U0 = g2

0/∆a being the
single photon lattice depth. The third term, ∼ ~η0(â† + â) cos (kp · r) cos (kc · r) is an
interference potential generated by scattering of photons from the pump to the cavity,
and it is controlled by the two photon Rabi frequency, η0 = g0Ωp/∆a. The interference
lattice is confined in the plane intercepted by the cavity axis êc and the pump axis êp.
If the wave-vector of the pump, kp = kêy, is perpendicular to the cavity wave-vector,
kc = kêx, the optical lattice is a λ ∼ 2π/k periodic check-board potential in the x− y
plane with primitive vectors a = λ(nê+ +mê−, ), and ê± = (êx ± êy)/

√
2., as indicated

in Figure 2.3.
While the pump lattice is a static periodic potential, whose depth is set by the power

of the external pump laser ∝ Ωp, the cavity generated potentials are dynamical. Namely,
the amplitude of the cavity electromagnetic field 〈â〉 intrinsically depends on the spatial
structure of the atomic cloud. When the cavity field is strong, atoms localize at the
minima of the potential, and the cloud develops a density modulation. The emerging
crystalline structure maximizes the scattering into the cavity and triggers a runaway
process. The more atoms self-organize in the dynamical optical potential the more
photons are scattered into the cavity, thus strengthening the cavity-generated potential
and the atomic crystalline structure.

Perhaps one of the most intriguing aspects of the atomic self-organization in such
dynamical potentials is that the emerging density pattern breaks the symmetries of
the Hamiltonian. The potential Vopt(r) = Vopt(r + a) possesses an intrinsic discrete
translational symmetry due to its periodic nature, which can be coupled to the gauge
freedom for the phase rotation of the photonic operator, â→ âeiφ, to form a global Z2
symmetry. In particular, the Z2 transformation which leaves the Hamiltonian invariant
is a translational symmetry x → x + λ/2 combined with a π phase rotation of the
photonic operators â → −â. This transformation corresponds to two distinct optical
lattices shifted in the êx direction by λ/2, and to two distinct density configurations
with particles occupying either even or odd sites of a checkboard optical lattice. The two
states are energetically degenerate, and the collapse of the system to one of them is an
example of spontaneous symmetry breaking in an open driven-dissipative system.

2.4.2 Mean-field

A common method for studying self-organization phenomena in a cavity is based on a
mean-field approximation of the atom-photon system. In essence, quantum effects due
to atom-photon correlations that result into non-classical states of light are disregarded.
Instead, the light fields inside the resonator are treated as classical coherent states,
〈â〉 ≡ α. In the adiabatic limit for the photon dynamics, ∆c, κ� max[g0, U0], photons
evolve on a much faster timescale with respect to atoms and instantaneously adapt to
the atomic configuration by reaching a steady state.

The steady state value of the intra-cavity field amplitude, α = 〈â〉, is then derived by
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2.4 Self-organization Phase Transition

averaging the Heisenberg equation of motion for the photon destruction operator,

i~
∂α

∂t
= −~ (∆c − U0N2kc + iκ)α+ ~η0Θ = 0, (2.30)

and is directly determined by the atomic mean-field averages, Θ and N2kc . Here we have
defined N2kc =

∫
dr cos2(kc · r)n(r) and Θ =

∫
dr cos(kc · r) cos(kp · r)n(r) as the integral

overlap between the atomic density n(r) = 〈ψ̂†(r)ψ̂(r)〉 and the cavity generated optical
potentials. The atomic average, Θ, measures the self-ordering of the atomic state in the
interference lattice, ∝ cos(kc · r) cos(kp · r), and acts as a source term for the light fields
inside the cavity. When the cavity is empty, α = 0, the density is uniform and Θ = 0. By
increasing the tranversal probe intensity, η0, more photons are scattered into the cavity,
atoms accumulate at the minima of a stronger interference potential, and the density
develops a structural modulation. In this regime the cavity field develops a coherent
amplitude α and the average Θ is non-vanishing. The atomic average Θ then acts as an
order parameter for a phase transition from a dark to a superradiant state.

In this context, the atomic average of an observable Ô is defined as an expectation value
over the atomic ground state, O = 〈GS|Ô|GS〉. The ground state however intrinsically
depends on the stationary electromagnetic field inside the cavity, α. In order to fully
solve the problem, the ground state must be determined with an iterative self-consistent
procedure.

The single particle Hamiltonian Hα can be diagonalized for a given value of the intra-
cavity amplitude α, and the ground state can be written as a tensor product of single
particle wave-functions with eigenenergies εαi ,

Ψ̂α
GS(r) = Πiφ

α
i (r)ĉαi . (2.31)

Here ĉαi is the destruction operator in an eigenstate of the Hamiltonian with energy εi,
following either bosonic or fermionic statistics. The generic creation operator can be
expanded in terms of the eigenstates of the Hamiltonian

ψ̂(r) =
∑
i

φαi (r)ĉαi , (2.32)

and density can be written as

n(r) =
∑
i

|φαi (r)|2nFD(B)(εαi ), (2.33)

and
nFD(B)(εαi ) = 1

e(εαi −µ)/kbT ± 1
(2.34)

is either the Fermi-Dirac or Bose statistics depending on the atomic species adopted.
Note that at this point the statistical nature particles must be specified. Beneath this
requirement lies the underlying assumption that, despite the full system being an open
system and photons being in non-equilibrium stationary state, the atomic state still
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2 Self-organization and Superradiance in CQED

follows an equilibrium thermal distribution. This is a direct consequence of the separation
of the time-scales dynamics mentioned at the beginning of this section.

At zero temperature bosons form a Bose-Einstein Condensate with atoms collectively
occupying the lowest single particle state, n(r) = N |φα0 (r)|2. The ground state of the
system can be then easily found with a self-consistent iterative procedure, where the
lowest energy state is iteratively optimized until the equation for photon amplitude
converges,

α = η0
∆c − U0N2kc + iκ

∫
cos(kc · r) cos(kp · r)|φα0 (r)|2dr. (2.35)

While bosons all contribute to the superradiant scattering into the cavity, for fermions
only particles around the Fermi surface can contribute to superradiance. In fact, the
Pauli principle suppresses scattering processes to states that are already occupied. Upon
diagonalizing the Hamiltonian Hα, the photon amplitude α and an additional equation
for fermions fixing the number of particles N must be iteratively solved,

α = η0N

∆c − U0N2kc + iκ

∫
cos(kc · r) cos(kp · r)|φαi (r)|2nFD(εαi )dr, (2.36)

N =
∫
n(r)dr =

∑
i

∫
|φαi (r)|2nFD(εαi )dr. (2.37)

The reliability of the mean-field method is based on the scaling with the volume as,
∼ 1/V , of the corrections beyond mean-field which in the thermodynamic limit are
strongly suppressed, N → ∞, V → ∞ and N/V = const [2.10]. The mean-field is
then valid in the superradiant regime where the coherent build up of a classical field is
guaranteed by the constructive interference of the atomic radiation pattern.

2.4.3 Symmetry breaking and Landau theory

As shown in the previous section, the system undergoes a phase transition from a dark
to a superradiant state by increasing the transversal pump intensity, η0. The amplitude
Θ measures the crystalline order of the atomic ground state, and smoothly evolves from
a vanishing value in the disordered phase to a finite value in the ordered phase. The
amplitude Θ acts as an order parameter for a phase transition discerning the phase
with structural order from the disordered one. The resulting atomic ground state is not
invariant under the symmetry operation of the system Hamiltonian, i.e., it breaks the
symmetry of the Hamiltonian.

The transition from the ordered to the disordered state is an example of quantum phase
transition driven at T = 0 by increasing an external control parameter, here represented
by the strength of the transversal drive η0. The general classification of phase transitions
is a problem that dates back to the beginning of the XX century motivated by the
discovery in 1932 of the “lambda” transition in superfluid helium [2.11]. Phase transition
were first catalogued by Ehrenfest [2.12] in terms of first or second order transition
based on the appearance of a discontinuity at the first or second order derivative of the
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2.4 Self-organization Phase Transition

Figure 2.4: a) Free energy of a |Θ|4-theory for different values of the second order coeffi-
cient a and b = 1, in arbitrary units. The spontaneous symmetry breaking
manifests itself at a < 0 (blue dashed-dotted line) with the development
of two distinct minima in the free energy. The point a = 0 set the critical
threshold for a second order phase transition (gray dashed line). b) Typical
functional behavior of a mean field order parameter Θ upon assuming that
the second-order coefficient has a dependence a ∼ a0(ηc − η0) on the external
control parameter η0. The smooth increase of the order parameter across the
transition point is an indication of a second order phase transition.

thermodynamical potential (i.e., free energy). This classification is rather obsolete today
but the terminology remained intact over time. Instead, the modern classification of
phase transitions relies on the presence of latent heat and on the behavior of the order
parameter across the transition point.

• In a first order phase transition the increase of the order parameter is discontinuous
across the transition point. The transition is accompanied by absorption or release of
latent heat, and often exhibits hysteresis. Among this class are included transitions
in which the system change abruptly from one internal symmetry to another, such
as the liquid-crystal transition or the modification of a crystal structure in two
different symmetry classes.

• In a second order phase transition the order parameter continuously evolves from
zero to a non-vanishing amplitude across the transition point. The system gores
from a disordered phase to an ordered state with the ground state breaking the
symmetry of the Hamiltonian. Examples of this transition include superconductivity,
superfluidity in a interacting Bose gases or the Curie ferromagnetic transition.

The modern classification of phase transition strongly relies on the new scheme de-
veloped by Landau, who was the first to emphasize the relation between symmetry and
phase transitions. He developed a phenomenological approach which deals with the
macroscopic features of a system, typically embedded into the order parameter, Θ, and
conceals all the microscopic structural details into an effective phenomenological theory.
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2 Self-organization and Superradiance in CQED

By assuming that the energy is a smooth continuous functional of the order parameter,
the free energy can be expanded in powers of the order parameter in proximity of the
transition threshold where the order parameter is small,

F [Θ] = F0 + aΘ2 + bΘ4 + cΘ6 + o(Θ8), (2.38)

where F0 is the free energy of the disordered state. In the expansion, the linear term
in the order parameter is associated with an external static driving field and has been
neglected. Since we will deal with systems that possess an inversion symmetry, Θ→ −Θ,
we have also neglected other higher odd powers in the order parameter, which vanish as
they would already break the symmetry of the Hamiltonian.

The free energy is illustrated for the simplest case of c = 0 in Figure 2.4. The free energy
exhibits a single minimum at Θ = 0 for a > 0, and a double minima at Θ = ±

√
−a/2b

for a < 0. The point a = 0 set the point at which the phase transition occurs.
Let us now consider the case where the order parameter Θ measures the self-organization

of the atomic density in the cavity generated interference potential. If we assume that
second order coefficient would scale with the pump intensity as a ∼ a0(ηc − η0) and η0 is
the strength of the external pump laser, the condition η0 = ηc will determine the threshold
for a second order phase transition from a dark to a superradiant phase. The scaling of the
second order coefficient with the pump strength η0 will be demonstrated more rigorously in
the next section. In particular we will derive the macroscopic phenomenological coefficient
a, b and c introduced in this section in terms of the parameters of the microscopic theory,
which are embedded in the Hamiltonian (2.28).

Construction of the Energy Functional

Let us consider the Hamiltonian for a non interacting ultra-cold gas dispersively coupled
to a single cavity mode introduced in Section 2.4.1,

H[ψ†, ψ, α∗, α] = −~∆c|α|2 +
∫
drψ̂†(r)

[
−~2∇2

r
2m + Vext(r) + V α

opt(r)
]
ψ̂(r). (2.39)

The Hamiltonian is an indirect functional of the order parameter Θ through the steady
state cavity field amplitude,

α = η

∆c − U0N2kc + iκ
Θ. (2.40)

The free energy of the system is defined as

F = − 1
β

ln
[ Z
Z0

]
(2.41)

where β = 1/kBT is the inverse temperature, Z is the partition function of the system

Z =
∫
D(ψ†, ψ)D(α∗, α)e−S[ψ†,ψ,α∗,α] =

∫
D(ψ†, ψ)D(α∗, α)e−βH[ψ†,ψ,α∗,α], (2.42)
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2.4 Self-organization Phase Transition

and Z0 is the partition function of a non-interacting atomic gas for an empty cavity.
In vicinity of the transition point the order parameter is small and we can expand the

action S perturbatively in powers of the mean-field amplitude α (thus indirectly of the
order parameter Θ). The action can be cast in terms of the atomic propagator G−1(r, τ),

S[ψ†, ψ, α∗, α]
β

= −~∆c|α|2 +
∫
dr
∫
dτψ̂†(r)G−1(r, τ)ψ̂(r), (2.43)

We can derive an effective theory for the photon field only by integrating out the fermionic
degrees of freedom through Gaussian integration [2.13],

S[ψ†, ψ, α∗, α]
β

= −~∆c|α|2 + ln tr[G−1(r, τ)]. (2.44)

If G0(r, τ) = G(r, τ)|α=0 is the atomic propagator in absence of photons, the total
propagator G(r, τ) is perturbatively expanded as,

tr lnG−1 = tr lnG−1
0 (1 + G0Λα) = tr lnG−1

0 −
∞∑
n=0

1
2n(G0Λα)2n, (2.45)

where

Λα(r) = ~U0 cos2 (kc · r) |α|2 + ~η0(α∗ + α) cos (kp · r) cos (kc · r) (2.46)

is a matrix that self-consistently depends on the photon amplitude α. Note that only
even contribution to the free energy survive and that we have omitted the space and
imaginary time index of the Green function for brevity.

The zero order contribution tr lnG−1
0 (r, τ) recovers the free energy of the non interacting

atomic gas without cavity photons. The second order term reads as

− 1
2tr lnG0ΛαG0Λα = −~2η2

0(α+ α∗)2

2 tr ln〈G0(r, τ)η(r)G0(r′, τ ′)η(r′)〉+ o(|α|4), (2.47)

with η(r) = cos (kp · r) cos (kc · r) being the space profile of the interference potential.
Note that the trace subtends the integration over both space and imaginary time.

The quantity on the right hand side of equation (2.47) is related to density susceptibility
of the medium as we will see in the next section,

χ2 = ln〈G0(r, τ)η(r)G0(r′, τ ′)η(r′)〉, (2.48)

and represents the response of the medium to the density perturbations generated by the
cavity electromagnetic field.

The total action expanded up the second order in α is,

S(2)[α∗, α]
β

= −~∆c|α|2 −
~2η2

0χ2(α+ α∗)2

2 . (2.49)
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2 Self-organization and Superradiance in CQED

Figure 2.5: 1) Sketch of the interaction vertex between cavity photons and atoms. The
solid black arrows represent the atomic propagator at momentum k and
the red arrow represent the propagator for a photon with momentum kc.
Left: Typical interaction vertex of the scattering process from the pump to
the cavity restricted to a one dimension along the cavity axis. A particle
propagating with wave-vector k scatter a photon from the cavity into the
pump and experiences a momentum kick k + kc. Right: Typical interaction
vertex of the scattering process from and to the cavity restricted to a one
dimension along the cavity axis: a particle with wave-vector k absorbs and
emits a photon into the cavity and is scattered to the k + 2kc momentum. b)
Sketch of atomic susceptibility χ2, χ4,kc and χ4,2kc in terms of one of the four
possible momenta combination contributing to it from the scattering with a
photon with momentum kc.

Above the critical point the quadratic action becomes unstable and the expansion must
be carried out up to the fourth order. The relevant terms scaling with |α|4 are

−1
2tr ln(G0Λα)2 = −~2U2

0 |α|4

2 tr ln〈(G0(r, τ)U(r))2〉+ o(|α|6) (2.50)

−1
4tr ln(G0Λα)4 = −~2η4

0(α∗ + α)4

4 tr ln〈(G0(r, τ)η(r))4〉+ o(|α|6) (2.51)

The first term (2.50) arises from the two-photon absorption from the cavity followed
a two-photon emission into the cavity, the second term (2.51) is of higher order and
describes four consecutive processes involving the scattering of pump photons into the
cavity and viceversa. These processes can graphically pictured in Figure 2.5b.

Overall the portion of the action that scales with the fourth power of α is

S(4)[α∗, α]
β

= −~2U2
0 |α|4

2 χ4,2kc −
~4η4

0(α∗ + α)4

4 χ4,kc . (2.52)

By using the relationship between the photon amplitude α and the order parameter Θ in
Equation (2.20) the energy functional can be recast in a more familiar form,

S[Θ∗,Θ]
β

∝
(
η2
c − η2

0

)
Θ2 + uΘ4 (2.53)
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with

ηc =
√
−∆2

c + κ2

2∆cχ2
and u = −η

2
0U

2
0χ4,2kc

4χ2∆c

(
1 + η4

0
η4
c

2∆2
c

U2
0

χ4,kc
χ2

2χ4,2kc

)
(2.54)

The microscopic theory and the phenomenological description of the phase transition in
the vicinity of the critical point are tied together by atomic susceptibility of second, χ2,
and fourth order, χ4,kc and χ4,2kc . The order parameter is given by

Θ =

√
−η

2
c − η2

0
u

(2.55)

To summarize we have expanded the free energy functional in powers of the order
parameters starting from the microscopic Hamiltonian of an ultra-cold gas interacting
with a quantized cavity mode. Besides, we have formally demonstrated the scaling of the
second order term as a function of the effective pump strength η0. According the previous
section, when the sign of the second order term changes from positive to negative, η = ηc,
the system undergoes a second order phase transition. The threshold ηc is uniquely
determined by the cavity parameters, {∆c, κ}, and by the second order susceptibility,
χ2. To this extent the forth order term u must be positive. If the fourth order term
becomes negative an expansion of the free energy up the sixth order is required. In these
conditions the system can undergo a first order phase transition in some regions of the
phase diagram. A similar example is given in Chapter 6, where the expansion up the
sixth order of the free energy has been carried out explicitly.

The role of the second order susceptibility

Let us now take a deeper look into the behavior of atomic susceptibility χ2 for an
ultra-cold degenerate gas coupled to a single mode of a linear cavity. For simplicity we
will only deal with non-interacting degenerate gases at T = 0, and we will restrict to
a one-dimensional case: ideally the gas is confined into a cigar shaped trap elongated
along the cavity axis so that the physics along the transversal direction can be neglected.
Hence, only longitudinal momentum kicks ∆k = ±kcx̂ are experienced by the atom by
scattering cavity photons.

At zero temperature the excitation energy for an atom in the cloud can only arise from
the absorption and emission of photons propagating at the cavity wave-vector q = ±kc.
The single particle excitation energy in this process is just the difference between the bare
atomic energies, ∆E±kc = ~2(k ± kc)2/2m − ~2k2/2m, and is a fundamental quantity
in the calculation of the density-density correlation function χD(q, ω). The density
correlation function set the response of the atomic medium to an external perturbation
propagating at a wave-vector q and with energy ω, and can be then easily calculated by
doing a re-summation of the Matsubara frequencies [2.14],

χD(q, ω) =
∑
k

nFD(B)(εk+q)− nFD(B)(εk)
~ω + εk+q − εk + i0+ . (2.56)
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2 Self-organization and Superradiance in CQED

Here, nFD(B) is the statistical distribution of the atomic gas, and εk = ~2k2/2m are the
atomic energies for an empty cavity.

At zero temperature the bosonic statistical distribution can be approximated as a
Dirac function, nB(εk) = Nδ(k = 0), and the atomic susceptibility of Equation 2.48 can
be written in terms of the density susceptibility as,

χ2 = 1
2χD(kc, 0) = − N

ER
(2.57)

The threshold for the Dicke phase transition is easily retrieved as
√
NηDicke =√

ER(∆2
c + κ2)/2∆c [2.15, 2.16]. This result can be intuitively understood if one thinks

of the scattering processes that are available when a Bose-Einstein condensate interact
with photons (see Figure 2.6). When the cavity is empty the density is uniform, and all
particles are condensed in the k = 0 state. Only two scattering processes can occur and
contribute to the susceptibility in Equation 2.48: either the whole cloud is the k = 0
momentum and acquires a momentum kick q = ±kc from the absorption (emission) of
a photon, or the atoms are in the excited state k = ±kc and are scattered back to the
k = 0 state by emitting (absorbing) a photon. The energy difference in both processes
is the recoil energy of the atomic species, ∆E = ER = ~k2

c/2m, which sets the scaling
as χ2 ∼ 1/ER of the static susceptibility for bosons. The collective atomic response
produces a coherent enhancement of the susceptibility χ2 ∼ N , scaling with the total
atom number N rather than with the density n = N/L of the condensate.

Figure 2.6: Single particle spectrum of a non interacting atomic gas, εk = ~2k2/2m, and
cavity-induced scattering processes as red arrows for bosons and fermions at
half filling, kF /kc = 1/2. For fermions the particle-hole excitations create a
hole in the Fermi sea (dark shaded area in the energy dispersion) and scatter
it above the Fermi surface. When the nesting condition is realized, kc = 2kF ,
the scattering from one side of the Fermi surface to the other is resonant
(horizontal red arrow). The adimensional atomic susceptibility χ2ER/N is
showed as a function of kF /kc for fermions as a solid black line. The nesting
of the Fermi surface induces a divergence in the atomic susceptibility at
kF /kc = 1/2. For comparison we also show the value of susceptibility for
bosons which does not depend on the density of the gas (gray dashed line).

26
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In contrast, the fermionic susceptibility exhibits a complex structure which introduces
a non trivial dependence on the atomic density n. Due to the Pauli principle each state
can only be occupied by one fermion, and due to the build up of a Fermi surface a
new length scale, set by the Fermi momentum kF , is introduced. Commensurability
effects between the the cavity wave-vector kL and the Fermi momentum kF induce a
non-trivial dependence of the susceptibility on the density of the medium [2.17]. For a
non interacting Fermi gas the density susceptibility coincides with the Lindhard function,
which describes the response of an electron gas to an electromagnetic field [2.18, 2.19].
Note however that here all the electrons are bound to the nuclei of the atoms and there
are no free charges. The shape of the polarizability arise due to the effective coupling
with the electromagnetic field in the dispersive regime which acts on the density as seen
in Section 2.4.1.

In Figure 2.6 we show the density susceptibility for a Fermi gas in one dimension as a
function of the density, n ∼ kF . The divergence of the susceptibility at kF /kc = 0.5 is a
consequence of the nesting of the Fermi surface. That is, at kc = 2kF a scattering process
with the photon induces resonant gapless excitation from one side of the Fermi surface
to the other, resulting in the divergence of the susceptibility and a drastic suppression of
the critical threshold. The nesting effect is rather fragile, and is directly smeared out by
increasing temperature, trap averaging and changing dimensionality [2.19, 2.20].

The susceptibility χ2(ω) also defines the properties of light and affects the refractive
index of the medium. This is evident if we extend the mean-field theory to the Gaussian
fluctuations δâ [2.10]. The propagator of the cavity electromagnetic field is

D−1(ω) =

 ω + δc + iκ− η2
0
2 χ2(ω) −η2

0
2 χ2(ω)

−η2
0
2 χ
∗
2(−ω) −ω + δc − iκ−

η2
0
2 χ
∗
2(−ω)

 (2.58)

with χ∗2(−ω) = χ2(ω). The poles of the cavity propagators Det[D−1(ωpol)] = 0 determine
the frequency of the collective excitations of the system which arise from the mixing
of density fluctuations at kc and photons, i.e., polariton. The phase transition to the
superradiant regime can be then interpreted as mode softening of the lowest energy
polariton branch.

2.4.4 Observation of the self-ordering phase transition
The superradiant self-organization of an atomic gas into a cavity-generated optical
potential was first experimentally demonstrated for thermal atoms at MIT in 2003 [2.21].
Laser cooled Cesium atoms self-assembled into a Bragg grating diffracting light into
the cavity. The observation of random π phase jumps in the measurement of the phase
of the out-coming light demonstrated the symmetry breaking of the Z2 symmetry of
the Hamiltonian. Later on the superradiant phase transition was observed for quantum
degenerate gases in the Zürich experiment of 2010 for the first time [2.22]. A BEC of
105 atoms was transverally pumped by a far red-detuned laser beam. The pump power
was progressively increased until the system would enter the superradiant phase and
a two-dimensional interference checkboard lattice was formed. Atoms trapped in such
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potential macroscopically populate four momentum state k±,± = (±kc;±kc), which were
measured through absorption imaging after time of flight expansion. The symmetry
breaking of translational symmetry was proven using heterodyne detection, demonstrating
the locking of the phase of the cavity field with a 0 or π relative phase with respect
to the pump field. The two phases coincide with the occupation of even or odd sites
of the resulting checkboard lattice [2.23]. The excitation spectrum and mode softening
of the k±,± momentum states in the dispersion relation of the condensate was later on
measured in [2.24].

2.5 Conclusions
In this Chapter we have examined some pivotal aspects of light-matter interaction
from a classical point of view. After highlighting the effect of dielectric materials on
the propagation of light, we showed that coupling a polarizable particle to an optical
resonator can coherently enhance the coupling between light and matter. We have
therefore described the cooperative effects established from coupling atomic ensembles to
the light fields in an optical cavity. Finally dealing with ultra-cold quantum gases, we
showed how superradiance and self-organization are linked to a phase transition where
the Z2 symmetry of the Hamiltonian is broken by the ground state.

The concepts outlined in this Chapter are fundamental for the understanding the non-
linear effects that arise from the coupled photon-atom dynamics described in the following
part of this Thesis. In particular, the next two Chapters will be devoted to extend the
theory here presented to two particular cases of study: the self-organization set up for
multi-component degenerate gases, in Chapter 3, and the generation of cavity-mediated
artificial gauge fields, in Chapter 4.

From the methodological point of view this Chapter introduces the main techniques
adopted throughout the Thesis:

• The mean-filed tool introduced through the pedagogical example of a transversally
pumped cavity will be adopted in all the publications presented in this Thesis, in
Chapter 5 and 6;

• The importance of the susceptibility of a quantum gas will be a recurrent theme
and it will appear again in Chapter 5, and in Chapter 6 where an explicit expansion
of the free energy is accomplished up to sixth order in the order parameter.
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3 Many-body physics with spinor quantum
gases in optical cavities

The previous Chapter introduced the main features of light-matter interaction within
a cavity, and important tools to study the self-organization of atomic gases in cavity
generated potentials. This Chapter focuses on self-organization with respect to the internal
degrees of freedom of multi-level atomic systems, which typically includes electron spin and
nuclear spin of the atoms. After introducing the tool of two-photon Raman transitions,
upon which most models of spin self-organization are based upon, we will discuss the
features of the superradiant phase transition in multi-level atomic systems and lay out
the future perspectives that this novel field of study has opened.

3.1 Introduction

Due to the delocalization of a photon in the electromagnetic field modes throughout the
cavity, a photon emitted by one atom can be absorbed by any other particle in the mode
at an arbitrary distance. For dispersively coupled ensembles as seen in Chapter 2, the
consecutive photon absorption and emission by two different atoms mediate long-range
two-body forces that are insensitive to the internal state of the atom. This rules out
any possibility to investigate the interplay between mechanical and internal degrees
of freedom on self-organization. Hence we need to find new spin-dependent coupling
mechanisms, which can simulate long-range interactions among particles in two different
internal states.

Multi-level atoms optically driven on independent transitions can be reduced to an
effective two-level manifold, when the excited states are far from resonance. That is, two
isolated hyperfine levels of an atom can be coupled through an effective Rabi frequency by
multiple photon optical transitions through virtually populated excited states according
to the appropriate selection rules. The resulting two-level manifold follows the same
spin algebra as a spin 1/2 and can be used for building quantum simulation devices that
simulate the behavior of electronic matter, i.e, Fermi-Hubbard model. In Section 3.2 we
will present the simplest among such multi-photon transitions schemes. It consists of a
stimulated Raman process, where two ground states of a three-level atom are coupled
through a far detuned excited state by a two-photon transition, i.e., a so called lambda
scheme. In such conditions the two ground state levels are coupled by an effective
two-photon Rabi frequency, realizing a ”spin”-dependent term in the Hamiltonian, where
the population of the spin- or pseudospin- components is not conserved. When the
underlying Raman process is enhanced by a cavity mode, the coupling between atom
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3 Many-body physics with spinor quantum gases in optical cavities

Figure 3.1: Stimulated Raman transition in a three-level system: an atom goes from
a ground state |g1〉 to a second ground state |g2〉 via the absorption of a
photon at frequency ω1 and stimulated emission of a photon of frequency
ω2. Inset: The system effectively behave like a two-level system interacting
with a monochromatic light of frequency ω = ω1 − ω2 and Rabi frequency
Ωeff = Ω1Ω2/2∆e

and photons becomes non-linear and dynamical, in analogy to the conventional self-
organization schemes. We will show in Section 3.3 the simplest and most general cavity
configuration, which allows to generate a spin-dependent coupling Hamiltonian. Such
effective realizations of spinor interactions pave the way for the simulation of quantum
magnetism, spin-orbit coupling and long-range spin-spin interactions in cavity systems.

3.2 Stimulated Raman transition
Stimulated Raman processes are the main tool adopted in typical set-ups for the realization
of spin self-organization in multi-level atomic system. A stimulated Raman process is a
two-photon transition which resonantly couples two atomic ground state levels, say |g1〉
and |g2〉, via the consecutive absorption and stimulated emission from two independent
laser fields. A typical lambda transition as shown in Figure 3.1 is the most basic example
of such processes. The ground state |g1〉 (|g2〉) is coupled to a far detuned excited state
|e〉 via a laser field of Rabi constant Ω1 (Ω1) and frequency ω1 (ω2). If the frequencies of
the driving lasers are very far detuned from the excited state. ∆e � Ωi, ω , the system
effectively behaves like a two-level atom excited by a monochromatic light with excitation
frequency ω = ω1 − ω2, and with effective Rabi frequency

~Ωeff
2 = ~Ω1Ω2

4∆e
. (3.1)

For atomic systems, the same coupling could alternatively be realized by direct coupling
of the two hyperfine states through a microwave driving field. However, the advantage
of using optical transitions relies in the simultaneous coupling to both the internal and

30



3.3 Multi-component atomic gases coupled to optical cavities

Figure 3.2: Typical set-up for the study of spin self-organization in a), and atomic level
structure adopting a butterfly pumping configuration in b). Two independent
transversal pump lasers of Rabi frequency Ω1 and Ω2 drive two independent
transitions of ultra-cold gas prepared in an equal mixture of two hyperfine
states, say |g1〉 and |g2〉. The Bragg scattering into the cavity favours the
emergence of complex spin textures, and the emerging optical lattice potential
traps the atoms at its minima inducing a density modulation as well. On the
bottom side of b) a sketch of an anitferromagnetic spin texture is shown.

external degrees of freedom. In fact, for two counter-propagating lasers the photon
scattering process induces an appreciable momentum transfer ~(k1 − k2) ∼ ~2k1, which
finds numerous applications from laser cooling and momentum distribution measurement
thorough Bragg scattering methods, to coherent population trapping and phase imprinting
on the atomic wave-function [3.1].

3.3 Multi-component atomic gases coupled to optical cavities

A very general theoretical model that takes into account both density and spin self-
ordering can be found in Ref. [3.2]. In order to avoid the trapping of population in the
dark state for the lambda transition scheme, a repumping mechanism from the second
ground state to the first is needed. Then to avoid the problem of a decoupled dark state,
it is preferable to adopt two independent stimulated Raman transitions, also known as
butterfly scheme, as shown in Figure 3.2b.

When the excited state is adiabatically eliminated, the effective Hamiltonian reduces
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3 Many-body physics with spinor quantum gases in optical cavities

to the spin 1/2 manifold, Ĥ = ∆câ
†â +

∫
drΨ̂†(r)ĤeffΨ̂(r). Here the components of

the vector Ψ̂(r) =
(
ψ̂↑(r), ψ̂↓(r)

)
are the atomic destruction operator for a particle at

position r and with spin σ, and â is the photon destruction operator. The Hamiltonian
density then is given by:

Ĥeff = ~
(
−~∇2

2m + δ + V̂↑(r) ΩR(r)
Ω̂∗R(r) −~∇2

2m + V̂↓(r)

)
, (3.2)

with δ being the effective frequency difference between the two pseudospin states. In
analogy with the self-organization of a one component quantum gas, there is a periodic
potential acting on the density

V̂σ(r) = ~
|Ωσ(r)|2

∆e
+ ~Uσ cos2 (kc · r) â†â (3.3)

which include the pump generated potential, with Ωσ(r) being the space profile of the
classical pump lasers, and the cavity generated optical lattice with depth, Uσ = g2

σ/∆e.
Raman scattering processes between the cavity and the pump lead to local spin flips,

which are driven by an effective two-photon Rabi frequency

Ω̂R(r) = η∗↑(r)â+ η↓(r)â†, (3.4)

where we have defined ησ = gσΩσ/∆e. Then the steady state cavity amplitude is

α = 〈â〉 =
∫
dr [η↑(r)s−(r) + η↓(r)s+(r)]

∆c + iκ−
∫
dr [U↓(r)n↓(r) + U↑(r)n↑(r)] (3.5)

where nσ(r) = 〈ψ̂†σ(r)ψ̂σ(r)〉 and s(r) = 〈Ψ̂†(r)τ̂ Ψ̂(r)〉 are the local atomic density average
and local spin average with, τ̂ , being the vector of Pauli matrices.

The steady state value of the cavity field can be directly plugged in the Hamiltonian
Ĥ, giving rise to effective spin-spin interactions which include long-range Heisenberg-type
terms, ŝ(r′) · ŝ(r), favouring ferromagnetic or antiferromagnetic ordering, and more
complex Dzyaloshinskii-Moriya-type couplings, ŝ(r′)× ŝ(r), favouring chiral states such
as skyrmions and spin spirals [3.3].

Adopting different pumping schemes allows the simulation of a plethora of different
spin interacting models. Several theoretical studies demonstrated the self-organization in
magnetic structures above a critical pump intensity when ultra-cold gases are coupled
to single or multi-mode cavities. These structure range from ferro- and ferri-magnetic
spin lattices as shown in an early proposal [3.4], to antiferromagnetic spin waves [3.5].
More complex schemes adopting several modes result in cavity mediated spin orbit
coupling leading to spin-spirals [3.6], and spin-helix or supersolid spin-density-wave in
two dimensions [3.7]. In the blue detuning, introducing a polarization gradient along
the cavity axis allows to investigate the competition between long-range density-density,
spin-density and spin-spin interactions, thus implementing a generalized t-J-V-W model
with even richer phase diagram [3.8]. From a completely different perspective, the cavity
can also stabilize spin liquid states in frustrated systems [3.9].
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From the experimental point of view, the typical level structure shown in Fig. 3.2 is at
the base of the realization of an open Dicke model in Ref. [3.10], which constitutes the
first observation of superradiance spin self-organization for thermal atoms. More recently,
a superradiant spin density wave in a spinor BEC coupled to an optical resonator above
a critical pump strength was observed [3.11], which constitute the first experiment to
realize a dynamical spin-orbit coupling in a cavity.

3.4 Concluding remarks
In this Chapter we reviewed some aspects of the superradiant self-organization in multi-
component quantum gases. We introduced the physics of Raman transition as a tool for
generating photon spin-dependent couplings that affects the center of mass motion of the
atoms. The coupling to a cavity results into effective long-range spin-spin interactions
which stabilize exotic states of matter such as spin liquids, ordered magnetic structures,
and topological chiral states.

This Chapter introduces the fundamental concepts which will be relevant for the
publication in Chapter 5, where we will study the properties of the self-organization
phase transition for a spinor Fermi gas coupled to a two-mode ring cavity. In this
system spin-resolved two-body correlations arise between particles in momentum states
differing by the cavity wave-vector, thus remarking the significance of two-photon Raman
transitions for the coupling between internal and external degrees of freedom of the
atoms.
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4 Emulating artificial gauge fields in cold
atom lattices

This Chapter introduces the concept of artificial gauge fields relevant for the dynamical
examples presented in Chapters 6 and 7. After briefly introducing the concept of gauge
freedom with electromagnetic potentials as an example, we will describe how gauge fields
can be implemented on a lattice. We will deal then with the problem of how to generate
synthetic gauge fields for neutral atoms, and what are the advantages in coupling ultra-cold
atoms to the electromagnetic fields in a cavity rather than in free space.

4.1 Introduction

In the previous Chapters we have discussed symmetry breaking mechanisms in the context
of superradiance and self-organization of an ultra-cold gas coupled to an intra-cavity
electromagnetic field. The symmetries that we have discussed so far are global. That
is, the symmetry operation acts at every point in space and time the same way, and
is associated to some conserved quantity in the system [4.1]. In the context of the self-
organization phase transition in a linear cavity, the Z2 symmetry associated in Chapter 2
with the transformation â → −â is coupled to a translational shift x → x + λ of the
whole space, which identically acts on each position of the particle the same way. Such
Z2 symmetry guarantees the conservation of the number of excitations in the system.

Along with global symmetry operations, local transformations that leave invariant the
Hamiltonian can only act on a single point in space and time. Among these there is a
particular set of transformations, which are not associated with any conserved quantities,
but rather they are mathematical operations that do not induce any measurable physical
consequences. These constructs are called gauge freedom, and are often associated to the
presence of redundant degrees of freedom in the way we describe Nature.

To illustrate a trivial example of gauge freedom we can consider the choice of a
coordinate system or of the temperature scale [4.2]. The choice of Cartesian or a spherical
coordinates will affect the form of the equations of motion describing the dynamics of an
object in space, but it will not change its actual physical trajectory. Similarly, choosing
to use the Celsius or Fahrenheit temperature scale will not change the temperature of
an object. These choices are completely arbitrary and do not affect the physics of the
system.

In fact the term gauge freedom was first conceived by Hermann Weyl in 1919 as
eichinvarianz in his book Raum, Zeit und Materie, where the term eich refers to a change
in scale of a measurement device [4.3]. Weyl introduced this concept in an unsuccessful
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4.2 Maxwell electromagnetism and gauge transformations

attempt to unify gravity with electromagnetism, after realizing the invariance of the
general relativity equations under a local transformation. With the advent of quantum
mechanics Schrödinger derived the equation of motion for a charged particle in an external
electromagnetic field [4.4], and Fock demonstrated that the quantum mechanical wave
equation is invariant under a local symmetry transformation provided the wave-function is
transformed accordingly [4.5]. We will see these concepts in more detail in Section 4.3. At
that point Weyl soon realized that the concept of gauge invariance. which he coined years
back ties together electricity and matter, rather than electricity and gravity. Since then
the term gauge invariance or gauge symmetry was accepted by the scientific community.
The principle of gauge freedom became a touchstone for modern physics, being at the
basis not only of classical electromagnetism and quantum electrodynamics, but also for
the Standard model and quantum chromodynamics.

Due to the ubiquitous presence of gauge theories throughout our modelling of Nature,
artificially recreating typical phenomena of interacting gauge potentials enables to probe
the limits of such theories. The problem of building a quantum simulator for gauge theories
requires understanding how to simulate an artificial Aharonov-Bohm phase in free space
and on a lattice, as we will see in Section 4.4. At this day ultra-cold atoms have already
proved to be a resourceful tool and quantum simulators for charged matter interacting
with static magnetic and electric fields have been successfully implemented [4.6]. We will
briefly review such schemes in Section 4.5 along with some theoretical proposals adopting
optical cavity potentials. We will show that in hybrid light-matter systems the synthetic
magnetic field dynamically and spontaneously arises along with superradiance and could
ultimately open the possibility to a the quantum simulation of genuine gauge theories.

4.2 Maxwell electromagnetism and gauge transformations
Let us start out with the simplest of the gauge theories that we can construct, Maxwell
theory of classical electromagnetism. The physical observables of the theory such as
the electric, E, and magnetic, B, fields, are often rewritten in terms of a four-potential
Aµ = (φ,−A), with φ and A respectively being a scalar and vector potential. In a
chosen rest frame the electric and magnetic fields are related to the potentials through
the relations

E = −∇φ− ∂A
∂t

B = ∇×A, (4.1)

and the electromagnetic field action

Se.m = 1
2µ0

∫
dtdr

( 1
c2 E2 −B2

)
(4.2)

is invariant under gauge transformations of the form

φ(r, t)→ φ(r, t)− ∂χ(r, t)
∂t

, (4.3)

A(r, t)→ A(r, t) +∇χ(r, t), (4.4)
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4 Emulating artificial gauge fields in cold atom lattices

where χ(r, t) is an arbitrary local time-dependent function. The electric field and the
magnetic fields are gauge invariant as they do not depend on the choice of the function
χ(r, t).

The gauge freedom in the context of classical electromagnetism is understood as a
redundancy in the degrees of freedom of the theory. Of the four terms of the vector
potential, only three components are needed to derive the electric and magnetic fields,
given the restrictions of the Maxwell equations. One of the components of the vector
potential is thus trivial or redundant, and can be arbitrarily fixed.

4.3 Schrödinger equation in a magnetic field
Let us now discuss the significance of a gauge transformations in quantum mechanics
by considering the quantum behavior of a charged particle in an external magnetic field.
The Schrödinger equation describing the time evolution of the matter wave-function is

i~
∂ψ(r)
∂t

= 1
2m

[
(−i~∇− qA(r, t))2 + qφ(r, t)

]
ψ(r) = Hψ(r). (4.5)

Here A(r, t) and φ(r, t) are the vector and scalar potential introduced in the previous
section, and

H = 1
2m (p− qA(r, t))2 + qφ(r, t) (4.6)

is the Hamiltonian of a charged particle in minimal coupling. In quantum mechanics the
gauge potentials play a central role as the vector potential A(r, t) is directly appearing
in the Hamiltonian and coupling to the canonical momentum p = −i~∇. The electro-
magnetic potentials are, as stated above, defined only up to a gauge transformation as in
Equation 4.4. The Hamiltonian accordingly transforms under the same transformation as

Hχ = 1
2m (p− qA(r, t)− q∇χ(r, t))2 + qφ(r, t)− q∂χ(r, t)

∂t
(4.7)

At first look it would seem that the Hamiltonian and the Schrödinger equation are not
invariant under gauge transformations. However, the physics of the system must stay
the same as the electric and magnetic fields, which give rise to the physical observables
are gauge invariant.

Hence to keep physical observables invariant under the gauge transformation , the
wave-function must be also transformed according to a local time-dependent unitary
transformation

ψχ ≡ exp
(
i
qχ(r, t)

~

)
ψ. (4.8)

The transformed wave-function then satisfies the transformed Schrödinger equation of
motion

i~
∂ψχ
∂t

= Hχψχ. (4.9)

From this example we see that a gauge transformation in quantum mechanics requires
the wave-function to pick up a geometric phase, which only depends on the geometry of
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the path taken by the particle and not on the velocity of the particle itself. While it is
locally hard to observe, such geometric phase can be still measured through matter-wave
interferometry as was first proposed in 1959 by Aharonov and Bohm in a famous gedanken
experiment [4.7]. This was successfully demonstrated by Tonomura in 1982 [4.8]. The
geometrical nature of such phase is the crucial aspect that paves the way towards the
quantum simulation of synthetic gauge fields in neutral atoms [4.9].

4.4 Gauge fields on a lattice
A charged particle that moves freely in space in an external magnetic field B undergoes
a uniform oscillatory motion at the cyclotron frequency ωc = |q|B/m. If particles are
confined in a periodic potential, the magnetic length set by the minimal orbit size,
`b =

√
~/qB, and the lattice constant a determine the two important length scales of the

system. The strength of the magnetic field piercing the plaquette of the lattice can be
directly written as a ratio of these two lengths,

2π Φ
Φ0

= a2

`2b
. (4.10)

When the flux is small, the cyclotron orbit is much bigger than the lattice size and the
orbit of the charged particle will span many units cell so that lattice structure is not
felt by the particle. When the orbit becomes of the same size as the lattice cell, the
competition of the two length scales becomes important and a plethora of new effects
become observable.

To look at these effects we need to derive the lattice Hamiltonian describing the physics
of a charged particle q in a periodic lattice. Consider the basic Hamiltonian written in
the previous section,

H = (p− qA(r))2

2m + V (r), (4.11)

where V (r) = V (r + a) is an additional periodic potential with lattice constant a, the
scalar gauge potential is zero everywhere φ(r, t) = 0 and A(r) is a static vector potential.
For vanishing potential A(r) = 0, the eigenstates with energies εn,k of the system are
Bloch states φn,k(r) = eik·run,k(r) with the same periodicity of the external optical
lattice, un,k(r + a) = un,k(r).

If the optical potential is deep, it is easier to write the Bloch functions in terms of
localized Wannier states,

φn,k(r) =
∑
m

eik·Rmwn(r−Rm), (4.12)

where Rm = ma is the position of the m-lattice site .
In presence of a vector potential the wave-function acquires a phase defined by the

circulation of the vector potential over the path enclosed by it. As a result the new Bloch
wave function,

φ̃n,k(r) =
∑
m

e
i q~

∫ r
Rm

A(r′)dr′
eik·Rmwn(r−Rm), (4.13)
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4 Emulating artificial gauge fields in cold atom lattices

Figure 4.1: Sketch of a 2D optical lattice pierced by a magnetic field. The flux on a single
plaquette Φ depends on the values of the Peierls phases φx,ym,n at links between
the plaquette vertices.

has acquired a phase proportional to the vector potential A as, ∝ q
~
∫ r

Rm
A(r′)dr′ . The

Hamiltonian in the new localized basis is

H =
∑
n,m

J̃n,mb̂
†
nb̂m + J̃∗n,mb̂

†
mb̂n, (4.14)

with the hopping parameter defined as

J̃n,m = −
∫
drφ̃∗n,k(r)

[
(p− qA(r))2

2m + V (r)
]
φ̃n,k(r) (4.15)

' −ei
q
~

∫ Rm
Rn

A(r′)dr′
∫
drφ∗n,k(r)

[
p2

2m + V (r)
]
φn,k(r) (4.16)

' −Jn,me
i q~

∫ Rm
Rn

A(r′)dr′
. (4.17)

In presence of a static vector potential A(r) the tunneling amplitudes Jn,m of the
Hubbard Hamiltonian [4.10] have to acquire a phase shift which depends on the local
value of the vector potential at the links between the sites. This procedure is also known
in literature as Peierls substitution [4.11]. The total flux enclosed by a contour C is

ΦB = − e
~

∮
C

A(r) · dr. (4.18)

For a 2D optical lattice in the tight-binding limit the Hamiltonian can be written as

H2D = −J
∑
m,n

(
eiφ

x
m,n b̂†m+1,nb̂m,n + eiφ

y
m,n b̂†m,n+1b̂m,n + h.c.

)
, (4.19)
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4.4 Gauge fields on a lattice

Figure 4.2: a) A 2D lattice in a uniform magnetic field with constant flux Φ for each unit
cell. The effective magnetic unit cell is shown for p/q = 1/3 as a shaded gray
area. The blue and red arrows respectively show the tunneling along the Jx
and Jy direction. b) Fractal energy spectrum of the Hofstadter Hamiltonian.

where the phases, φx(y)
m,n = −qAx(y)

m,n/~, depend on the vector potential at the links. The
total flux piercing one unit cell can then be written in terms of the Peierls phases as

Φ = φxm,n + φym+1,n − φ
x
m,n+1 − φym,n. (4.20)

4.4.1 Hofstadter model

The simplest case of a uniform magnetic flux piercing a 2D lattice is known in literature
as Harper-Hofstadter problem [4.12]. In the Landau gauge A(r) = −Byux, the Peierls
phase breaks the transnational invariance along the y direction while preserving the one
in the x direction. For rational values of the magnetic flux Φ = p/q with p, q ∈ N, the
translational invariance is restored along the y direction, if one considers an effective
magnetic unit cell enlarged by a factor q along the y-direction. As a consequence the
Brillouin zone is also reduced by a factor 1/q and the original tight-binding band splits
into q sub-bands. An example of the effective magnetic unit cell is given for p/q = 1/3 as
a gray shaded area in Figure 4.2a. The corresponding complex tunneling amplitude are
explicitly written for the same case in blue for the x-direction and red for the y-direction.
The energy spectrum as a function of p/q is shown in Figure 4.2b. The spectrum of the
Hamiltonian exhibit an interesting fractal structure also known as Hofstadter butterfly.
For small fluxes p/q � 1 the energy levels are split into an equidistant set thus retrieving
the Landau level structure of a 2D system in free space [4.13].
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4 Emulating artificial gauge fields in cold atom lattices

4.5 Generation of synthetic gauge fields in neutral atoms
The ambition of simulating the physics of a charged particle in an external magnetic field
with neutral atoms comes from the desire of reproducing and understanding predicted
phenomena that are very difficult to observe in Nature. Electrons confined in a lattice
crystal provide an indicative example of the necessity of quantum simulation: a typical
lattice constant of the order of few Ångström sets a limit on the flux per unit cell to
very small values in solid state systems. The resulting fractal energy structure predicted
by Hofstadter thus is virtually impossible to observe. One needs to resort to synthetic
artificial magnetic in ultra-cold atoms or superconducting q-bits to fully reproduce and
measure the Hofstadter spectrum [4.14].

In the context of neutral cold-atoms, different techniques were developed to simulate
artificial gauge fields. A harmonic a-spherical trap rotating close to the trap frequency
allows to balance the trapping and centrifugal forces [4.15, 4.16], so that the remaining
Coriolis force couples to the velocity field the same way the Lorentz force does for a
charged particle. Atom-light interaction provides an alternative tool to generate synthetic
geometric phases by either adiabatic following of a dressed state [4.6] or by phase
imprinting techniques [4.17]. In this context tuning the wave-length of running wave laser
beams in optical lattices revealed to be one of the best tools to generate space-dependent
Peierls phases, which result in tunable strong artificial magnetic fields. This technique
lead to the observation of the band splitting of the Hofstadter spectrum in Ref. [4.18–4.20],
and the observation of the Meissner-vortex transition in isolated ladders [4.21].

Such gauge fields are static and externally prescribed as they solely depend on the
external experimental parameters, and are not affected by changes in the atomic con-
figuration. Generating dynamical gauge fields, which would feel the back-action of the
atomic dynamics and currents, constitute the next conceptual step for the realization of
a genuine gauge theory. The ambitious goal to study strongly interacting lattice gauge
theories or exotic anyonic states requires the realization of density-dependent gauge
fields. Such dynamical gauge fields can be now realized by employing Floquet engineered
systems as proposed in Ref. [4.22]. Three independent experiments were able to simulate
dynamical gauge fields in a lattice by imprinting a density dependent Peierls phase in
2019 [4.23–4.25], thus realizing a true Z2 and Z3 lattice gauge theory.

Coupling the atomic system to a cavity provides an alternative route for realizing
dynamical gauge fields, which exploit the intrinsic non-linearity of the atom-photon
interaction in a cavity. We will introduce a few examples of such schemes in the following
paragraph.

4.5.1 Cavity-induced gauge potentials

The inability of laser-induced gauge fields to act back on the matter they are coupled to,
is based on the static nature of laser-induced gauge potentials. The resulting synthetic
electric and magnetic fields do not follow Maxwell’s equations and do not exist without the
matter to which they are coupled to. Among different approaches adopting light-matter
interaction, cavity QED based schemes allow to create gauge field, which dynamically
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depend on the state of the atoms. The first theoretical proposal for the realization of
cavity-induced gauge potential is reported in Ref. [4.26]. A dispersively coupled atomic
ensemble is confined in a quasi-one dimensional ladder and scatters photons into the
cavity via two independent Raman transition. In such scheme the atomic wave-function
acquires a geometric phase, which is imprinted by two counterpropagating running-wave
pump lasers. This phase can be directly tuned by adjusting the ratio between the pump
and the cavity wave-vector. When the cavity is empty the tunneling along the cavity
direction is suppressed. The emergence of the cavity field restores the hopping along the
cavity direction and imprints a phase on the atomic wave-function. The scheme can be
easily extended to a 2D lattice [4.27, 4.28] realizing a dynamical Hofstadter model whose
spectrum depends on the stationary value of the cavity field amplitude.

While these proposals introduce some coupling between the artificial magnetic field and
the atomic state, the gauge potential still acquires a fixed value set by the experimental
laser parameters. It therefore still remains a very interesting question, whether is
it possible to generate a fully dynamical gauge field, which is not fixed a priori but
that would be dynamically affected by the atomic state. On this line, alternative
ideas employing cavity-induced directional hopping [4.29] and a multi-mode cavity
coupling [4.30] constitute the first attempts to couple neutral atoms to a fully dynamical
gauge field.

4.6 Concluding remarks
In this Chapter we briefly introduced the notion of gauge symmetry and the physics of a
charged particle coupled to electromagnetic potentials. We discovered that the concept
of Aharonov-Bohm phase – or Peierls phases in a lattice – is crucial for the simulation
of geometric phases in neutral atoms. We have seen how the coupling to laser fields
is indeed a resourceful tool for the simulation of artificial magnetic and electric fields,
and we have reviewed some major advances in the experimental quantum simulation of
electromagnetism and lattice gauge theories. Finally we highlighted the advantages of
realizing dynamical gauge fields in optical cavities, where the emerging magnetic field
arises spontaneously along with superradiance.

This Chapter set the basic concepts upon which the publications in Chapters 6 and
7 are based. In particular, in Chapter 6 we will study the dynamical behavior of the
energy spectrum of a 2D Fermi gas in a uniform artificial magnetic field. In Chapter 7
we will generalize the system to a multi-mode cavity realizing a fully dynamical model
which ultimately will lead to the simulation of a synthetic Faraday’s induction law.
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5.1 Introduction

5.1 Introduction
Laser manipulation and control of cold atomic gases has recently seen spectacular advances
of experimental technology [5.1] as well as theoretical modelling [5.2–5.5]. In combination
with state-of-the-art cavity technology it is now possible to routinely explore the dynamics
of degenerate quantum gases in high-Q optical cavities [5.6–5.9]. Numerous intriguing
quantum phenomena ranging from spontaneous crystallization to supersolidity or non-
trivial magnetic ordering have been predicted and experimentally observed [5.10–5.14].
Although so far experiments have been limited to bosonic atoms with only one or two
internal states contributing to the dynamics, experiments using fermionic gases are well
in reach and realizable with current technology.

The opto-mechanical coupling of the atom and the cavity fields allows for dynamical
trapping of the atoms and even cavity cooling of the gas towards quantum degeneracy [5.15,
5.16]. As a decisive new feature, cavity modes can be designed to introduce tailored
long-range interactions [5.17] and dynamic gauge fields for the ultracold atoms [5.18–5.20].
Thus, atom-cavity systems have proven to be a versatile basis for quantum simulations of
exotic phases [5.10, 5.21, 5.22] with a wealth of further theoretical proposals still open for
implementation [5.23, 5.24]. Generalizations to many field modes and laser frequencies
should allow the implementation of fully connected quantum annealing [5.17, 5.25].

With the prediction of new intriguing phenomena such as Umklapp superradiance [5.26,
5.27], topologically protected edge states [5.28, 5.29], superconducting pairing [5.30, 5.31],
artificial dynamic gauge fields [5.20], unconventional momentum correlations and quantum

Figure 5.1: Schematic view of the system and the atomic-field coupling. The transitions
between two atomic ground states {|↑〉 , |↓〉} and two excited states {|e′〉 , |e〉}
are induced via two far red-detuned lasers with Rabi frequencies Ω1,2 and
two cavity field modes with coupling strengths g0e

±ikcz.
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phases in multiple dimensions [5.32–5.35], implementations of fermionic systems coupled
to cavity fields have gained more attention recently. In the present article, we propose
the realization of density and spin self-ordering for a transversely driven multi-level
Fermi gas coupled to a pair of counterpropagating degenerate modes of a ring cavity as
depicted in Fig. 5.1 [5.36–5.42]. The multi-level atomic structure allows to implement
spinor states [5.11], while the cavity geometry guarantees a continuous translational
symmetry [5.43, 5.44]. The dynamical coupling between the light fields and the atomic
states induces a transversal spin-wave texture of antiferromagnetic nature [5.45]. We
show that the common interaction of the atoms with the cavity fields results in the build
up of unexpected positive momentum correlations between the atoms.

This paper is organized as follows. In Sec. 5.2 we introduce the model. In Sec. 5.3 we
derive the mean-field coupled equations of motion and discuss our numerical approach.
We then present the main numerical results and describe the phase diagram of the
system in Sec. 5.4A. The superradiance transition threshold is analytically obtained in
Sec. 5.4B and the nature of the density and spin self-organized states is further discussed
in Sec. 5.4C. Section 5.5 is devoted to analyse the photon-induced momentum correlations
between the atoms. Concluding remarks are presented in Sec. 5.6.

5.2 Model

Consider an ensemble of transversely-driven ultracold, fermionic four-level atoms coupled
to two modes of a ring cavity as shown in Fig. 5.1. The two atomic ground states
{|↑〉 , |↓〉} with energies {~ω↑, ~ω↓ = 0} are coupled to two excited states {|e〉 , |e′〉} with
energies {~ωe, ~ωe′} through the interaction with the cavity fields and two external
classical pump fields. The energy difference between the two ground states can be tuned
by an external longitudinal magnetic field Bz. The atoms are assumed to be strongly
confined in the transverse directions, therefore, their motion is restricted along the
cavity axis. The ring cavity supports a pair of degenerate counterpropagating modes
â±e

±ikcz with the same linear polarization and frequency ωc, and opposite wave-numbers
±kc = ±2π/λc. Here, â+ (â−) is a bosonic field operator annihilating a photon in the
forward (backward) propagating cavity mode. The atoms are pumped from the side by
two lasers with frequencies {ωp1, ωp2} and opposite circular polarization, where we have
chosen the quantization axis along the cavity axis. The two classical laser fields with
Rabi frequencies Ω1 and Ω2 drive the transitions |↓〉 ↔ |e〉 and |↑〉 ↔ |e′〉, respectively.
Without loss of generality we take both Rabi frequencies to be real. The cavity fields â±
couple both transitions |e′〉 ↔ |↓〉 and |e〉 ↔ |↑〉, with coupling strengths g0e

±ikcz.

In the limit where the pumps and cavity fields are far detuned from the atomic excited
states |e〉 and |e′〉, only virtual excitations are created and the system can be effectively
described as a spin-1/2 system {|↓〉 , |↑〉}. As discussed in 5.A, this system is described
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5.2 Model

by the effective time-independent Hamiltonian

H =
∑

σ∈{↑,↓}

∫
dz Ψ̂†σ(z)

[
− ~2

2m
d2

dz2 + ~δσ + Ûσ(z)
]
Ψ̂σ(z)

+
∫
dz ~η̂R(z)

[
Ψ̂†↑(z)Ψ̂↓(z) + Ψ̂†↓(z)Ψ̂↑(z)

]
− ~∆c(â†+â+ + â†−â−), (5.1)

where Ψ̂σ(z) are fermionic field operators fulfilling the anti-commutation relation

{Ψ̂σ(z), Ψ̂†σ′(z
′)} = δ(z − z′)δσ,σ′ . (5.2)

The effective detunings between the two spin states and the pump fields are denoted as
δ↓ = 0 and δ↑ = ω↑ +Bz − (ωp2 − ωp1)/2, respectively. That is, ~δ ≡ ~(δ↑ − δ↓) defines
the effective energy splitting between the two spin states.

In this model photons interact with atoms via two fundamental mechanisms. The
scattering of photons by the atoms between the two cavity modes â± induces a potential
with λc/2 periodicity,

Ûσ(z) = U0σ(â†+â+ + â†−â− + e−i2kczâ†+â− + ei2kczâ†−â+), (5.3)

with U0↑ = ~g2
0/∆e and U0↓ = ~g2

0/∆e′ , where ∆e = (ωp1+ωp2)/2−ωe and ∆e′ = ωp1−ωe′ .
On the other hand, scattering of photons from the pumps into the cavity modes by
the atoms results in spin flipping processes with ±~kc momentum kicks to the atoms
described by the λc-periodic Raman coupling term

η̂R(z) = η(â+e
ikcz + â−e

−ikcz + â†+e
−ikcz + â†−e

ikcz). (5.4)

We have considered the balanced Raman coupling configuration η ≡ Ω1g0/∆e = Ω2g0/∆e′ ,
where η is the two-photon Rabi frequency.

The last line in the Hamiltonian (5.1) represents the energy contribution of the two
cavity modes â±, where the cavity detuning is ∆c = (ωp1 + ωp2)/2− ωc. Cavity losses
will be phenomenologically included in the equations of motion for the field operators
â± via the cavity decay rate κ [5.46]. Note that contact two-body interactions between
atoms are assumed to be negligible throughout this work.

The processes acting on the spin and the density degrees of freedom are characterized by
competing periodicity. The periodic potentials Ûσ(z) [Eq. (5.3)] favour the organization
of the atoms in a λc/2-periodic structure. By contrast, the position dependent Raman
coupling η̂R(z) [Eq. (5.4)] favours a spin texture with λc periodicity. Therefore, the
Raman coupling term defines the periodicity of the Hamiltonian and the size of the
Brillouin zone [−kc/2, kc/2].

The Hamiltonian (5.1) is invariant under the parity transformation of the photonic
operators â± → −â± and the π-rotation of the local transverse spin of the system
Ŝx(z)→ −Ŝx(z) and Ŝy(z)→ −Ŝy(z). Here, the total local spin operator is defined as

Ŝ(z) =
(
Ψ̂†↑(z), Ψ̂

†
↓(z)

)
τ

(
Ψ̂↑(z)
Ψ̂↓(z)

)
, (5.5)
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5 Antiferromagnetic self-ordering of a Fermi gas in a ring cavity

where τ = (τx, τy, τz) is the vector of the Pauli matrices. The combination of parity
and spin inversion yields a discrete Z2 symmetry. In addition, the Hamiltonian (5.1)
is invariant under the simultaneous transformations z → z + ∆z and â± → â±e

∓ikc∆z,
yielding a continuous U(1) symmetry. Any arbitrary displacement of the position of the
atom can be compensated by a phase shift of the photonic operators. This continuous
U(1) symmetry is a specific character of the ring cavity geometry [5.47]. In fact, in a
ring cavity the intensity maxima of the cavity fields can sit at any position on the cavity
axis, realizing a continuous translational symmetry. This is in sharp contrast to linear
cavities where the cavity fields must have a node on the mirrors to satisfy the boundary
conditions, giving rise to a discrete Z2 symmetry [5.28].

Therefore, the Hamiltonian (5.1) possesses a U(1) × Z2 symmetry, which is sponta-
neously broken at the onset of the superradiant phase transition with the emergence of a
self-organized density and spin texture, as will be shown in the following. In contrast to
single component quantum gases [5.48, 5.49], where the phase transition is driven by a
density order parameter, here the spin self-organization plays the fundamental role in
the superradiant process [5.23, 5.50, 5.51]. In other words, the cavity modes can only be
populated for a non-vanishing spin order parameter.

5.3 Self-consistent mean-field method
In order to determine the steady state of the system we employ a self-consistent mean-
field method. The atomic state is dynamically coupled to the cavity-photon dynamics,
see 5.B. The large cavity detuning |∆c| and cavity linewidth 2κ dictate a fast dynamical
evolution of the cavity fields, which at each moment adiabatically follows the atomic
state [5.52]. On the other hand, the fermionic dynamics evolve in the self-consistent
potentials and the Raman field created by the cavity modes (and pump lasers). At a
given value of the cavity fields 〈â±〉 = α±, the atomic dynamics can be described by a
single-particle Hamiltonian. Upon making a Bloch ansatz for the single-particle wave
function ψnqσ(z) = eiqzunqσ(z) [5.53], the atomic field operators can be expanded in the
basis of the Bloch functions,

Ψ̂σ(z) =
∑
n,q

ψnqσ(z)ĉnq. (5.6)

Here ĉnq is a fermionic operator which annihilates a particle in the nth band with
quasi-momentum q and unqσ(z) are λc-periodic functions. Therefore, the single particle
problem is solved by diagonalizing the Hamiltonian within one unit cell [0, λc = 2π/kc]
with periodic boundary conditions. We aim to determine the eigenvalues εnq of the
coupled Schrödinger equations for the functions unq↑(z) and unq↓(z),

[ ~2

2m
(
i
d

dz
− q

)2
+ ~δ↑ + U↑(z)

]
unq↑(z) + ~ηR(z)unq↓(z) = εnqunq↑(z), (5.7a)[ ~2

2m
(
i
d

dz
− q

)2
+ ~δ↓ + U↓(z)

]
unq↓(z) + ~ηR(z)unq↑(z) = εnqunq↓(z), (5.7b)

46



5.3 Self-consistent mean-field method

where the quasi-momentum q lies in the first Brillouin zone, q ∈ [−kc/2, kc/2].
The chemical potential µ of the system has to be determined self-consistently by fixing

the total number of particles

N =
∑
σ

∫ L

0
dz nσ(z), (5.8)

where
nσ(z) =

∑
nq

|unqσ(z)|2nF (εnq) (5.9)

is the local atomic density in the σ-spin state with nF (ε) = 1/[1 + e(ε−µ)/kBT ] being the
Fermi distribution. We assume thermal equilibrium between the two spin states and
therefore use the same chemical potential µ for both states throughout the calculation.

Equations (5.7) are solved in a self-consistent way in combination with the stationary
values of the cavity fields α±. As discussed in 5.B, the stationary field amplitudes are
given by

α+ = 2η(∆̃c + iκ)
(∆̃c + iκ)2 − U2

0 |N2kc |2
(
Θ∗ +

U0N ∗2kc
∆̃c + iκ

Θ
)
, (5.10a)

α− = 2η(∆̃c + iκ)
(∆̃c + iκ)2 − U2

0 |N2kc |2
(
Θ + U0N2kc

∆̃c + iκ
Θ∗
)
. (5.10b)

Here we have defined the effective shifted cavity detuning ∆̃c = ∆c − U0N and the
atomic averages

N2kc =
∫
dze2ikczn(z), (5.11)

and
Θ =

∫
dzeikczSx(z), (5.12)

where Θ is the spin order parameter driving the superradiant phase transition. Indeed, a
non-vanishing Θ is required for non-zero cavity fields in Eqs. (5.10). Here,

n(z) = n↑(z) + n↓(z) (5.13)

is the total atomic density and

Sx(z) = 1
2
∑
q,n

[
u∗nq↑(z)unq↓(z) + u∗nq↓(z)unq↑(z)

]
nF (εqn) (5.14)

is the average local spin component in the x-direction. These atomic averages can also
be interpreted as the probabilities of photon-atom scattering processes. In fact, N2kc
is the probability that an atom absorbs a photon and then re-emits it in the opposite
direction receiving a 2~kc momentum kick without changing its internal state. On the
other hand, Θ is the probability of scattering a photon from a pump laser into a cavity
mode where the atom changes both its internal and external states, with a momentum
exchange of ~kc.
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Figure 5.2: (a) Intra-cavity amplitudes of the two modes α+ (α−) as a function of the
rescaled pump strength

√
Nη/ωr for the effective energy splitting δ = 0

shown as grey (dashed black) curves. Inset: relative phase ∆φ = φ+ − φ−
of the two modes for 200 realizations demonstrating the U(1) symmetry
breaking. Parameters: {δ,

√
Nη} = {0, 2.7}ωr. (b) Phase diagram of the

system. The color encodes the amplitudes |α±|/
√
N of the fields. Below

threshold, the system can be either a mixed Fermi (MF) gas or a polarized
Fermi (PF) gas, separated by a dashed red line. Above threshold, we find
a superradiant state with antiferromagnetic character (AF-SR). The red
solid line is the analytical result (5.19) for the critical pump strength. (c)
Global longitudinal magnetization (5.15) of the system. Cavity parameters:
{∆c, κ, U0N} = {−20, 10,−8}ωr.

5.4 Superradiant phase transition

In the following, we characterize the phase diagram of a Fermi gas at fixed density,
kF /kc = 1/2, i.e., half filling, with kF being the Fermi momentum. The single-particle
Hamiltonian is diagonalized within one unit cell with periodic boundary condition and fifty
quasi-momenta q (equivalent to a lattice of Nc = 50 sites) at finite temperature kBT =
0.05~ωr = 0.2kBTF . Here, TF is the Fermi temperature, defined as kBTF = ~2k2

F /2m,
and ωr = ~k2

c/2m is the recoil frequency. The cavity is red detuned, ∆c = −20ωr. The
presence of the Fermi gas induces a shift of the cavity frequency proportional to the
refractive index, U0N = −8ωr. For a fixed value of the refractive index, the effective
shifted cavity detuning ∆̃c = ∆c − U0N = −12ωr is still in the red detuned regime. The
cavity linewidth is chosen as κ = 10ωr.

5.4.1 Phase diagram

In Fig. 5.2(a) we show the amplitudes |α±|/
√
N of the two cavity fields as a function of

the rescaled pump strength
√
Nη/ωr for the degenerate case, where the effective level

splitting vanishes, δ = 0. In our mean-field picture, in the superradiant phase the cavity
fields are coherent states, 〈â±〉 = α± = |α±|eiφ± . The two modes are symmetrically
coupled to the two atomic transitions and hence are equally populated. Their amplitudes
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5.4 Superradiant phase transition

grow monotonically across the transition point, hinting to the occurrence of a second order
phase transition. Above threshold the field amplitudes scale as ∼ η3/2 which differs from
the ∼ η1/2 power law exponent found in conventional self-organization in standing-wave
cavities [5.54, 5.55]. The phase difference of the two modes, ∆φ = φ+ − φ−, can acquire
any value between 0 and 2π as shown in the inset of Fig. 5.2(a), where the relative phase
of the two fields is shown for 200 realizations at fixed parameters. The relative phase
uniformly distributes on a circle, demonstrating the continuous U(1) symmetry breaking.
This implies that the minima of the optical potential generated by the interference of
the two cavity modes can be located anywhere within one unit cell. The translational
symmetry is therefore connected with the relative phase of the two modes and the system
possesses a full U(1) symmetry.

In Fig. 5.2(b) the amplitudes of the two modes are shown as a function of the effective
level splitting δ/ωr and the rescaled pump strength

√
Nη/ωr. At each fixed δ the

transition to the superradiant state, indicated by the solid red line, is of second order.
Note that the critical threshold grows with increasing atomic energy spacing δ. In
Fig. 5.2(c) we show the global magnetization

m = N↑ −N↓
N

, (5.15)

of the atomic gas in the same parameter space, where Nσ =
∫ L
0 dznσ(z). Below the

superradiant transition threshold the Fermi gas is in a trivial phase where the population
imbalance is governed by the energy difference δ between the two spin states. In fact,
this parameter acts as an effective longitudinal magnetic field, orienting the spin of the
particles in its direction. For δ = 0 the system is not magnetized, m = 0. With increasing
δ, an increasing amount of atoms align with the effective magnetic field and the system
is an incoherent mixed Fermi (MF) gas, 0 < m < 1. The mixed phase is arising from
the incoherent superposition of the atoms in the two spin states. It is a direct result
of the thermalization of the atoms in the Zeeman sub-levels. The studied system can
thermalize via two-body contact interactions, incoherent decay or Raman transitions
induced by thermal photons or vacuum fluctuations. For δ > ωr all particles are aligned
in the same direction and the system becomes a polarized Fermi (PF) gas with m = 1. In
the superradiant regime, the magnetization of the system gradually decreases, evolving
towards an ordered state of antiferromagnetic character with zero magnetization m = 0,
which exhibits superradiant photon scattering (AF-SR).

5.4.2 Transition threshold

Due to the continuous change of the order parameters α± across the critical point, the
superradiant phase transitions can be described within the framework of the Landau
theory of second-order phase transitions [5.56]. The transition threshold can be obtained
by expanding the free energy in powers of the order parameter and requiring that the
coefficient of the second order term vanishes at the critical point. Integrating out fermionic
degrees of freedom [5.27, 5.50, 5.51], the free energy as a functional of the cavity-field
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order parameters α± is expressed as

F [α∗±, α±] = −∆̃c

(
|α−|2 + |α+|2

)
− η2Nχm|α∗+ + α−|2. (5.16)

Here only terms up to second order in α± are retained and

χm =
∑
k

nF (εk+kc↑)− nF (εk↓)
εk↓ − εk+kc↑

(5.17)

is the magnetic susceptibility of the Fermi gas, where εk↑ = ~2k2/2m − µ + δ and
εk↓ = ~2k2/2m− µ are the bare energies of the two fermionic spins before the transition.

We express the free energy as a functional of the atomic order parameter Θ using
Eq. (5.10). In a first-order approximation we neglect the contribution of the mixing of the
two cavity fields due to scattering processes which stem from the optical potentials Uσ(z).
This approximation is well justified in our parameter regime U0|N2kc |/∆̃c � U0N/∆̃c ∼ 1
at the onset of the phase transition. The quadratic free energy in terms of the atomic
order parameter therefore takes the form

F [Θ∗,Θ] ∼
(
1− η2

η2
c

)
|Θ|2, (5.18)

where
√
Nηc =

√√√√∆̃2
c + κ2

2∆̃cχm
(5.19)

is the critical pump strength, which depends on the cavity parameters ∆̃c and κ and on
the magnetic susceptibility χm. At zero temperature and for the degenerate case δ = 0,
the divergence of χm leads to a strong suppression of the transition threshold. In fact, the
scattering of a photon from the pump into the cavity by an atom results in a kc = 2kF
momentum transfer, causing the atom to scatter from one side of the Fermi surface to
the other. This process requires nearly no energy cost and leads to a vanishing critical
pump strength at T = 0. In order for this to occur, the nesting condition kc = 2kF
must be satisfied, in analogy to polarized fermions in linear cavities [5.26–5.28, 5.34]. A
finite temperature washes out the divergence of the magnetic susceptibility, resulting in
a finite, although small threshold. In analogy to the one component case, superradiance
should be robust against thermal fluctuations. At high temperature, the atomic system
can be described as a classical gas following the Boltzmann statistics. An expansion
of Eq. (5.19) for high temperatures reveals a T 1/2 scaling of the transition threshold.
For sufficiently high pump strengths, this should still allow to observe the transition
to the magnetic state. In addition, the presence of a finite energy splitting δ shifts
the nesting wave-vector, resulting in an increase of the critical threshold in comparison
to δ = 0, where the nesting condition perfectly holds. Similarly deviations from the
nesting condition, due to trapping inhomogeneities or the incommensurability between
the cavity wave-vector and the Fermi momentum, increase the critical threshold but
preserve superradiance, as it is shown in 5.C. The critical threshold (5.19) is shown in
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5.4 Superradiant phase transition

Figs. 5.2(b) and 5.2(c) as a red solid curve separating the superradiant regime from
the trivial phase. The analytic threshold is consistent with the numerical result. Small
deviations from the theoretical prediction for big level spacing δ can be attributed to
neglected terms scaling with U0|N2kc |/∆̃c in the analytic calculation.

5.4.3 Self-organization
In Fig. 5.3 we illustrate the structure of the Fermi gas in the superradiant phase by
analysing the behaviour of the local density and spin of the system. Figure 5.3(a)
illustrates the local spin vector 〈Ŝ〉 [cf. Eq. (5.5)] as a function of the position along the
cavity axis within one unit cell. The individual Sx(z) and Sz(z) components are shown
in Fig. 5.3(b). Note that the spin of the system always lies in the {Sx, Sz} plane, i.e.,
Sy(z) = 0. A non-vanishing Sz(z) component is induced by the effective energy spacing
δ acting as an effective longitudinal magnetic field. In addition, the Raman coupling acts
as a transversal magnetic field in the x-direction, which adiabatically drives the Sx(z)
spin component [5.3]. The optical potential Uσ(z) favors a λc/2-periodic density pattern,
as shown in Fig. 5.3(c).

For intermediate pump strengths, the system is weakly self-organized and the spin
texture is characterized by the presence of a transversal λc-periodic spin wave in the
x-direction, Sx(z), and a longitudinal λc/2-periodic spin wave in the z-direction, Sz(z),
see Fig. 5.3(b). The Sx(z) component spontaneously emerges from the interference of two
counterpropagating photon-induced spin waves. The phenomenon has common features
with itinerant antiferromagnetism in Chromium and Chromium alloys [5.57–5.59]. At
very high pump strengths, the system is strongly self-organized and gradually evolves
toward an antiferromagnetic state in a more conventional sense. The corresponding
state arises from the freezing of the spin degrees of freedom, which would result in a
reduced entropy per particle in the self-organized state. The global magnetization drops
to zero (see Fig. 5.2(c)) and the Sz(z) component becomes negligible. In this regime the
optical potentials Uσ(z) localize the atoms, resulting in the emergence of a λc-periodic
antiferromagnetic lattice order similar to bosonic atoms inside linear cavities [5.3, 5.23].

The position of the density peaks within the unit cell is arbitrarily chosen, indicating
the spontaneous U(1) symmetry breaking. However, for a given density configuration,
the ground state is twofold degenerate. In Fig. 5.3(a) we show the two degenerate spin
textures (black and red). The Z2 symmetry breaking corresponds to the realization of
one of the two possible spin textures.

The spin and density structures induce a metal-insulator transition which can be
observed in the appearance of a gap in the atomic band structure. In Fig. 5.4, we show
the band structure for different δ both in the superradiant regime (solid curves) and below
threshold (dashed curves). The spin gap can open at any quasimomentum q, where the
original |↑〉 and |↓〉 bands cross each other. In particular, at δ = 0, where the two states
{|↑〉 , |↓〉} are degenerate, the gap opens at the edges of the Brillouin zone q = ±kc/2.
Increasing δ the gap opening gradually shifts toward zero until reaching the critical value
δ = ωr. In fact, by increasing the effective spin energy spacing the bands of the two
states are gradually pushed apart, until for δ = ωr the |↓〉 states becomes energetically
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Figure 5.3: Atomic structure above threshold, η > ηc. (a) Spin texture within one unit
cell [0, λc] in the {Sx, Sz} plane: note that Sy(z) = 0. The two possible
spin textures are shown in black and red for a given density configuration,
exhibiting the Z2 symmetry of the system as described in the main text.
(b) Individual local spin components Sx(z) and Sz(z), and (c) total atomic
density distribution n(z) = n↑(z) + n↓(z). Parameters:

√
Nη = 2.7ωr and

δ = 0.6ωr. Other parameters as in Fig. 5.2.

more favourable and the system becomes fully polarized. For δ > ωr the spin gap opens
between higher bands. However, the presence of the self-consistent optical lattices Uσ(z)
favours the opening of a density gap at q = 0, which preserves the insulating state.

5.5 Momentum correlations

Studies of momentum correlations between two particles in ring cavities revealed a strong
coupling between the light fields and the atomic motion [5.60, 5.61]. In particular, while
classical particles show a strong damping of the center-of-mass motion and anticorrelated
momenta, quantum particles tend to correlate their motion [5.61]. Quantum simulations
of particles with Fermi or Bose statistics show momentum anticorrelation and correlation,
respectively [5.16]. The momentum correlation coefficient for two atoms in spin states σ1
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5.5 Momentum correlations

Figure 5.4: Atomic band structure both below threshold (dashed gray) and above the
ordering transition (black solid). The position of the chemical potential
(red line) indicates a metal-insulator transition. The red arrows show the
quasimomentum q at which the insulating gap opens. The energy splitting is
(a) δ = 0ωr, (b) δ = 0.6ωr, (c) δ = 1.2ωr and (d) δ = 1.7ωr.

and σ2 is defined as
Cσ1σ2 = 〈k1k2〉σ1σ2 − 〈k1〉σ1〈k2〉σ2

∆k1∆k2
, (5.20)

where Cσ1σ2 = 1 (Cσ1σ2 = −1) indicates perfect correlation (anticorrelation) between the
two particle momenta. The expectation values in Eq. (5.20) read

〈k1k2〉σ1σ2 =
∫∫

dk1dk2 k1k2 ρ2(k1, σ1; k2, σ2), (5.21a)

〈k1〉σ1 =
∫

dk1 k1 ρ1(k1σ1), (5.21b)

where ρ2(k1, σ1; k2, σ2) is the two-body density matrix in momentum space and ρ1(k1, σ1)
is the one-body density matrix.

In Fig. 5.5(a), we show the momentum correlation coefficient (5.20) for increasing
pump strength for the degenerate case δ = 0 (the results do not change qualitatively
for finite level splitting). Below threshold, particles with the same spin (black and grey
curves in Fig. 5.5(a)) show perfectly anticorrelated momenta, C↑↑ = C↓↓ = −1. However,
as the threshold is surpassed by increasing the pump strength, the two-photon scattering
with ±2kc momentum transfer enhance the correlations between comoving particles with
the same spin, eventually leading to uncorrelated momenta.

By contrast, the momenta of particles in opposite spin states (blue curve in Fig. 5.5(a))
are uncorrelated below threshold, C↑↓ = C↓↑ = 0. In the superradiant regime, however, the
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Figure 5.5: (a) Correlation coefficient for the same (gray and dashed black) and opposite
spin directions (blue) as a function of the rescaled pump strength

√
Nη/ωr at

the effective energy splitting δ = 0. The red dot represents the pump value for
which the two-body density matrix is shown. The two-body density matrix
ρ(k1, σ1; k2, σ2) in momentum space for δ = 0 and

√
Nη = 2.7ωr for particles

with (b) the same spin and (c) opposite spins. The red lines show the position
of the Fermi surface below transition, kF = 1/2kc . The thermal background
strongly deviates from the trivial phase, evolving from a perfect square below
the threshold to a smooth circle above ηc. The interaction between cavity
photons and fermions is responsible for the appearance of the off-diagonal
dips at k1 = k2 ± kc and k1 = k2 ± 2kc. The white arrows are guides to the
eye for emphasising the off-diagonal dips.

scattering processes from the pumps to the cavity induce unexpected positive correlations.
These positive correlations saturate for intermediate pump strengths and vanish in the
limit of very strong pump strengths.

The behaviour of the correlation coefficient Cσ1σ2 in Fig. 5.5(a) can be understood
from the two-body density matrix in momentum space, shown in Figs. 5.5(b) and 5.5(c).
There, the thermal background is visible as a smooth circle extending outside the Fermi
surface below threshold (±kF ), indicated by the red lines. In the superradiant phase
the scattering of photons by the atoms leads to the population of higher momentum
states. Hence, the momentum distribution loses its sharpness and acquires tails at higher
momenta which are responsible for the observed shape. In addition, forbidden states
revealed by the dips along the diagonal, k2 = k1, and the shifted diagonals, k2 = k1± 2kc,
appear in the two-body density matrix with the same spin, see Fig. 5.5(b). Likewise, for
particles with opposite spins dips at k2 = k1 ± kc develop (Fig. 5.5(c)).

These diagonal dips can be understood as a consequence of the Pauli principle for
fermions in a ring cavity. The Pauli principle forbids particles with the same spin
to occupy the same momentum state, which explains the diagonal dip k2 = k1 in
Fig. 5.5(b). The off-diagonal dips are then a manifestation of the Pauli principle at
higher momenta, indicating the absence of two-particle states that cannot be created via
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the interaction with the cavity photons because the required initial state is prohibited
by the fermionic statistics. Since the state |k1, σ1; k2 = k1, σ2 = σ1〉 is forbidden by the
Pauli principle, the Hamiltonian (5.1) cannot populate states with opposite spins and
momenta k2 = k1 ± kc or same spin and momenta k2 = k1 ± 2kc. The propagation of the
Pauli principle to higher momenta then forbids states with the same spin and momenta
differing by even multiples of the cavity wave-vector, |k1, σ1; k2 = k1 ± 2jkc, σ2 = σ1〉
(j ∈ N0), and states with opposite spin and momenta differing by odd multiples of kc,
|k1, σ1; k2 = k1 ± (2j + 1)kc, σ2 = −σ1〉. These higher-order dips become visible as the
momentum distribution broadens in momentum space.

For intermediate pump strengths above threshold the thermal background only moder-
ately surpasses the T = 0 Fermi surface. The forbidden states, i.e., the overlap of the
off-diagonal dips with the thermal background, then mainly consist of counterpropagating
pairs. This leads to an excess of co-moving particles in the Fermi gas, which causes an
increase of the momentum correlation coefficient (5.20) above threshold, both for particles
having the same or opposite spin (Fig. 5.5(a)). However, the correlations increase faster
for particles having opposite spin than for particles in the same spin state, since for the
former the first off-diagonal forbidden states pertain to smaller momenta (k2 = k1 ± kc)
than for the latter (k2 = k1 ± 2kc). With increasing pump strength, however, the mo-
mentum distribution broadens and the off-diagonal dips include a balanced contribution
of both counterpropagating and co-moving pairs, leading to a decrease in correlation and
eventually to uncorrelated particle momenta, C↑↓ = 0, far above threshold.

5.6 Conclusion and Outlook

We explored the self-ordering of a fermionic gas coupled to the light fields of a tranversally-
pumped ring resonator. The system is characterized by a continuous U(1) translational
symmetry and a disc rete Z2 spin inversion symmetry. The combined U(1)×Z2 symmetry
is spontaneously broken at the onset of a superradiant phase transition where the cavity
modes become macroscopically populated. Above the transition threshold the atomic gas
self-organizes in an state with antiferromagnetic character with spontaneously emerging
density and spin waves. On a mean-field level, a very similar phase diagram could be
realized for bosonic species. The effect of the quantum statistics is fundamental for low
photon numbers where the mean-field approximation breaks down, which gives rise to
new phases [5.32]. Within our level of approximation the essential signature of the Fermi
statistics is found in the two-body momentum correlations.

In fact, cavity photons mediate strong cooperative effects between the atomic motion
and the internal atomic dynamics. We accordingly observed strong correlations in
momentum space: atoms in the same spin state show anticorrelation while atoms with
opposite spin are characterized by unexpected positive correlations. Such correlations
can be traced back to the propagation of the Pauli principle to higher momenta through
the interaction with the cavity modes. Their nature is therefore a direct consequence of
the fermionic statistics and can lead to the generation of strongly entangled states [5.62].

In conclusion, our system allows to explore a wealth of novel and interesting phenomena
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where the light fields are dynamically coupled to the atomic state. Such systems represent
an optimal platform for the study of strongly correlated systems in many-body physics
and condensed matter. In particular, the possibility of inducing a BCS-type pairing [5.63–
5.65] with cold atoms in optical cavities paves the way to the realization of light-induced
superconductivity under controllable conditions and will be object of our future studies
[5.66–5.68]. In addition, interesting competing effects between the cavity wavelength and
the density length-scale can be found at different filling factors, leading to the emergence
of incommensurate spin and density structures. The role of inter-particle interactions,
neglected in this work, has to be investigated as well [5.31].
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Appendices

5.A Derivation of the many-body Hamiltonian
We consider a four-level fermionic atom coupled to two degenerate modes of a ring
cavity, as represented in Fig. 5.1. The atomic motion is restricted along the cavity axis
(z-direction). The four states {|↓〉 , |↑〉 , |e〉 , |e′〉} have energies {~ω↓ = 0, ~ω↑, ~ωe, ~ωe′},
respectively. The atom is pumped from the side by two lasers with frequencies {ωp1, ωp2}
and Rabi frequencies Ω1 and Ω2. The pumping lasers drive the transitions |↓〉 ↔ |e〉
and |↑〉 ↔ |e′〉, respectively. The cavity fields â± couple both transitions |e′〉 ↔ |↓〉 and
|e〉 ↔ |↑〉. The single-particle Hamiltonian for this system is

H1(t) =
∑

i∈{↑,e,e′}
~ωi |i〉 〈i|+ ~ωc

(
â†+â+ + â†−â−

)
+ ~

(
Ω1e

iωp1t |↓〉 〈e|+ Ω2e
iωp2t |↑〉 〈e′|+ h.c.

)
+ ~g0

(
eikczâ+ |e′〉 〈↓|+ e−ikczâ− |e′〉 〈↓|+ eikczâ+ |e〉 〈↑|+ e−ikczâ− |e〉 〈↑|+ h.c.

)
.

(A5.1)

In order to eliminate the explicit time dependence we perform a unitary transformation to
a frame where the lowest ground state |↓〉 is at rest. Applying the unitary transformation

U(t) = exp
{
i
[(ωp1 + ωp2

2
)
(â†+â+ + â†−â−)

]
t

}
× exp

{
i
[(ωp1 + ωp2

2
)
|e′〉 〈e′|+ ω1 |e〉 〈e|+

(ωp2 − ωp1
2

)
|↑〉 〈↑|

]
t

}
, (A5.2)

the time-independent Hamiltonian H̃1 = UH1U
† + i~(∂tU)U † is

H̃1 =
∑

i∈{↑,e,e′}
−~∆i |i〉 〈i| − ~∆c

(
â†+â+ + â†−â−

)
+ ~

(
Ω1 |↓〉 〈e|+ Ω2 |↑〉 〈e′|+ h.c.

)
+ ~g0

(
eikczâ+ |e′〉 〈↓|+ e−ikczâ− |e′〉 〈↓|+ eikczâ+ |e〉 〈↑|+ e−ikczâ− |e〉 〈↑|+ h.c.

)
,

(A5.3)

where ∆↓ = 0, ∆↑ = (ωp2 − ωp1)/2−ω↑, ∆e = (ωp1 +ωp2)/2−ωe, ∆e′ = ωp1−ωe′ are the
detunings of the four levels after the unitary transformation and ∆c = (ωp1 + ωp2)/2−ω↑
is the cavity detuning.

For large atomic detunings, the excited states are adiabatically eliminated and the
Hamiltonian reduces to the one of a spin-1/2 system,

H̃ =
∑

σ∈{↓,↑}

[
~δσ + U0σ

(
â†+â+ + â†−â− + â†+â−e

−2ikcz + â†−â−e
−2ikcz

)]
|σ〉 〈σ|

+ ~η (|↑〉 〈↓|+ |↓〉 〈↑|)
(
eikczâ+ + e−ikczâ− + h.c.

)
− ~∆c

(
â†+â+ + â†−â−

)
, (A5.4)
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with δ↓ = 0, δ↑ = ω↑ − (ωp2 − ωp1)/2, U0↑ = ~g2
0/∆e and U0↓ = ~g2

0/∆e′ , and for the
balanced case η ≡ Ω1g0/∆e = Ω2g0/∆e′ .

The many-body Hamiltonian for non-interacting particles is

H =
∫
dz
(
Ψ̂†↑(z), Ψ̂

†
↓(z)

)
H̃

(
Ψ̂↑(z)
Ψ̂↓(z)

)
, (A5.5)

where Ψ̂σ(z) are fermionic field operators fulfilling the anti-commutation relation
{Ψ̂σ(z), Ψ̂†σ′(z′)} = δ(z − z′)δσ,σ′ . Finally, by adding an external longitudinal magnetic
field B = (0, 0, Bz) we obtain Hamiltonian (5.1) in the main text.

5.B Heisenberg equations of motion for the cavity fields
The Heisenberg equations of motion for the photonic field operators are

i~∂tâ+ = [â+, H]

= −~(∆c − U0N + iκ)â+ + U0

∫
dze2ikczn̂(z)â− + ~η

∫
dzeikczŜx(z), (A5.6a)

i~∂tâ− = [â−, H]

= −~(∆c − U0N + iκ)â− + U0

∫
dze−2ikczn̂(z)â+ + ~η

∫
dze−ikczŜx(z).

(A5.6b)

Here, n̂(z) = Ψ̂†↑(z)Ψ̂↑(z) + Ψ̂†↓(z)Ψ̂↓(z) is the atomic density operator and Ŝx(z) =
[Ψ̂†↑(z)Ψ̂↓(z) + Ψ̂†↓(z)Ψ̂↑(z)]/2 is the local spin operator in the x-direction. When the
photonic operators evolve on a faster timescale with respect to the atomic dynamics, we
can consider the stationary value of the photonic operators and express the mean-field
average 〈â±〉 = α± as a function of mean-field atomic averages. The former equations
become

−~(∆c − U0N + iκ)α+ + U0N2kcα− + ~ηΘ = 0, (A5.7a)
−~(∆c − U0N + iκ)α− + U0N ∗2kcα+ + ~ηΘ∗ = 0. (A5.7b)

Here, N2kc and Θ are the atomic averages defined in the main text in Eq. (5.11) and
Eq. (5.12), respectively. The spin order parameter Θ plays the fundamental role in
the superradiant phase transition. Note that a macroscopic cavity field can only be
induced by the emergence of a spin self-ordered state (non-vanishing Θ). In contrast,
the density self-ordering (non-vanishing N2kc) does not act as a source of cavity photons
in Eqs. (A5.7) but only induces the mixing between the two modes α±. By solving the
coupled Eqs. (A5.7) we obtain Eqs. (5.10) in the main text.

5.C Dependence of the transition threshold on the filling factor
The analysis presented in the main text was performed for half filling kF /kc = 1/2. Here
we would like to show the effect of different filling on the phases presented above. This
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5.C Dependence of the transition threshold on the filling factor

can most easily be done by looking at the dependence of the critical pump strength on the
filling factor (see 5.C.1). For finite temperature the threshold is suppressed at half-filling
due to the nesting condition, as it was already mentioned in the main text. The presence
of harmonic confinement introduces inhomogeneities, influencing the atomic susceptibility
as already noticed in [5.32]. Despite harmonic confinement, commensurate effects are
still visible in the critical pump-cavity detuning curve when the nesting condition holds
in the trap center. From 5.C.1 it can be seen that despite the fact that the critical pump
strength is higher at filling factors different from half-filling, the system will still undergo
a superradiant phase transition at threshold. Therefore, the predicted phases can in
general be observed for different filling factors. Similar characteristics were found in
single component Fermi gases for both red and blue detuning with respect to the atomic
transition frequency [5.26, 5.28].

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Figure 5.C.1: Critical threshold at fixed temperature for different filling factors, as ob-
tained from Eq. (5.19).
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Energy bands of electrons in a square lattice potential threaded by a uniform
magnetic field exhibit a fractal structure known as the Hofstadter butterfly.
Here we study a Fermi gas in a 2D optical lattice within a linear cavity with
a tilt along the cavity axis. The hopping along the cavity axis is only induced
by resonant Raman scattering of transverse pump light into a standing
wave cavity mode. Choosing a suitable pump geometry allows to realize the
Hofstadter-Harper model with a cavity-induced dynamical synthetic magnetic
field, which appears at the onset of the superradiant phase transition. The
dynamical nature of this cavity-induced synthetic magnetic field arises from
the delicate interplay between collective superradiant scattering and the
underlying fractal band structure. Using a sixth-order expansion of the free
energy as function of the order parameter and by numerical simulations we
show that at low magnetic fluxes the superradiant ordering phase transition is
first order, while it becomes second order for higher flux. The dynamic nature
of the magnetic field induces a non-trivial deformation of the Hofstadter
butterfly in the superradiant phase. At strong pump far above the self-
ordering threshold we recover the Hofstadter butterfly one would obtain in a
static magnetic field.

doi: 10.1103/PhysRevB.100.224306
†The author of this thesis performed all analytical and numerical calculations presented in this work.
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6.1 Introduction

6.1 Introduction

In the last decade, advancements in the manipulation of cold atomic gases enabled to
engineer Hamiltonians emulating the physics of effective gauge fields [6.1, 6.2]. The
development of rotating traps [6.3, 6.4] allowed to overcome the challenge of coupling the
external degrees of freedom of neutral atoms to an effective vector gauge potential as for
charged particles. More sophisticated techniques based on light-matter interaction [6.5,
6.6] and lattice shaking [6.7, 6.8] were also developed to imprint a position-dependent
geometric phase onto the atomic wave-function, analogous to the Aranov-Bohm phase of
electrons in an external magnetic field [6.9]. The Hofstadter model [6.10, 6.11] was shortly
after implemented for cold atoms in optical lattices by employing a laser-assisted tunneling
scheme [6.12, 6.13, 6.18]. The realization of such an artificial magnetic field in lattice
geometries [6.14, 6.15] allows one to explore the realm of topological many-body states of
matter [6.16–6.18]. The most notable examples include measuring the Chern number of
non-trivial topological bands [6.19] and realizing the Meissener phases for neutral atoms
in ladder geometries [6.20]. More recently, new techniques exploiting internal degrees of
freedom as synthetic dimension have been developed [6.21, 6.22] and are candidates for
the observation of the quantum Hall effect even in four dimensions [6.23].

The experimental realization of lattice models with effective gauge potential is of great
interest for engineering synthetic gauge theories [6.24]. Experimental realizations so
far implemented static gauge fields which can be finely tuned by varying experimental
parameters, but are not dynamically affected by the atomic back-action. However, in
order to simulate a genuine gauge theory, quantum matter needs to be dynamically
coupled to a gauge (bosonic) field and the back-action of the matter dynamics onto
the gauge field should be accounted for. A first step in this direction is to use density-
dependent synthetic gauge fields [6.25, 6.26], which were recently observed for a BEC in
a shaken optical lattice [6.27, 6.28]. A Z2 lattice gauge theory was also experimentally
realized [6.29, 6.30].

Optomechanical systems [6.31, 6.32] as well as cold atoms in optical cavities [6.33]
provide another natural route to the realization of a dynamical gauge theory in a
controllable and accessible environment. This hinges on the non-linearity of these
systems, where photons (phonons) feel the back-action of the atomic motion (photons).
In view of the experimental realization of a strongly interacting Fermi gas coupled to a
cavity [6.34] and the recent observation of a dynamical spin-orbit coupling in a BEC in a
linear cavity [6.35–6.38] , theoretical proposals [6.39–6.47] for dynamical gauge fields are
now in reach by experiments.

Here we study dynamical cavity-supported synthetic magnetic fields for fermions in an
external optical lattice [6.12]. Atoms are driven by two transverse counter-propagating
lasers and can scatter photons into the cavity. The hopping along the cavity axis is
suppressed by a potential gradient. By choosing proper laser detunings, it can be
activated by resonant Raman scattering of pump photons into a single resonant standing
wave mode of the cavity [6.27]. Each pump laser here is responsible for a particular
hopping direction. Above a critical pump strength, the collective buildup of the cavity
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Figure 6.1: Geometry sketch to realize a dynamical version of the Harper-Hofstadter
Hamiltonian: a 2D Fermi gas in a rectangular lattice within a single-mode
optical cavity is transversely illuminated by two counter-propagating laser
beams of orthogonal polarization. The shaded area in the lattice represents
the unit cell for φ = 2π/3.

field enables resonant coherent tunneling. In addition, for any closed loop in the atomic
trajectory, a geometric phase proportional to the enclosed area is imprinted onto the
atomic wave-function, in analogy to the phase acquired by electrons in a magnetic field.

The onset of the superradiant phase transition and the appearance of a synthetic
magnetic field depends strongly on the phases imprinted, which can be tuned by setting
the ratio between the lattice constant and the pump field wavelength B ∝ dy/λc. This is
due to an intricate interplay between superradiant scattering generating the synthetic
magnetic field and the emerging fractal energy bands corresponding to this field. Such
cavity-induced atomic back-action on the effective gauge potential is very different to
existing free-space implementations. Interestingly, as shown below, the onset of the
superradiant phase transition (and hence appearance of the synthetic magnetic field)
exhibits a first-order behavior at low fluxes, where the energy bands are Landau-like,
while it becomes second-order for high flux. The energy spectrum itself carries the signs of
the non-linearity of the atom-light interactions and the dynamical nature of the magnetic
field, resulting in the emergence of peculiar structures compared to the commonly known
energy spectrum, i.e., Hofstadter butterfly [6.11].

The paper is organized as follows. In section 6.2 we introduced the detailed system
model. The physical results are summarized in section 6.3, where we focus on the bulk
properties of the system at half-filling. Here the gas behaves as a metal or semi-metal
depending on the value of the magnetic flux in a plaquette. We show the phase diagram,
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6.2 Model

the energy spectrum and we investigate the point of change of the phase transition from
first to second order. Our final considerations are reported in section 6.4.

6.2 Model
We consider a Fermi gas confined in a two dimensional (2D) optical lattice of lattice
constant, d = {dx, dy}, in the tight binding regime. Hopping in the x-direction is
suppressed by an additional energy gradient ~∆ between neighbouring sites. This can be
realized by adding a constantly accelerated optical lattice, a magnetic field, or an electric
field gradient along the x-direction. We consider only a single internal atomic transition
|g〉 ↔ |e〉 of frequency ω0. The hopping in the x-direction is restored via two-photon
resonant scattering processes mediated by cavity photons, where the resonance condition
is ωc ' ω1 +∆ = ω2−∆ [6.12]. Here, ω1 and ω2 are the frequencies of the two transversal
laser pumps; see Fig. 6.1.

Our model Hamiltonian in tight-binding approximation in a reference frame rotating
at the average pump frequency ωp = (ω1 + ω2)/2 then reads: [6.27],

H =− Jy
∑
l,m

(f †l,m+1fl,m + H.c.) (6.1)

− ~η(a+ a†)
∑
l,m

(e2iπmγf †l+1,mfl,m + H.c.)

− ~∆ca
†a.

Here Jy is the hopping amplitude in the y-direction, η = Ω1g0/δ = Ω2g0/δ is the two
photon Rabi coupling with δ = ωp − ω0 the atomic detuning with respect to the average
pump frequency, g0 is the bare coupling strength of the cavity mode to the atomic
transition and ∆c = ωp − ωc is the cavity detuning with respect to the average pump
ωp. Note that only resonant Raman scattering terms are retained in the Hamiltonian.
Further details are presented in Appendix 6.A.

The spatial phase dependence of the pump lasers imprints a site-dependent tunneling
phase γm = mγ = mkL/(2π/dy). Hence, hopping around a plaquette, the wave-function
acquires a total phase φ = 2πγ, which can be related to an electron moving in a periodic
potential threaded by a magnetic field of strength |B| = 2πγ/(d2

ye).
The effective magnetic field breaks the translation symmetry of the original lattice and

the Hamiltonian is invariant under a combination of discrete translation and a gauge
transformation, i.e., magnetic translation. In particular, when γ = p/q is a rational
number with p and q being two integers, and the energy spectrum splits into q sub-bands,
which cluster in a highly fractal structure known as Hofstadter butterfly [6.11].

In contrast to free space setups the hopping amplitude in the cavity-direction depends
on the cavity field amplitude and the effective magnetic field appears only for non-zero
cavity-field. Here the coherent amplitude 〈a〉 = α is determined by the steady-state
solution of the mean-field equation:

∂α

∂t
= −(∆c − iκ)α− ηΘ = 0, (6.2)
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where
Θ =

∑
l,m

(
e−2iπγm〈f †l,mfl−1,m〉+ e2iπγm〈f †l,mfl+1,m〉

)
(6.3)

is the atomic order parameter, which reveals emergent currents of equal number of left
and right moving atoms along the cavity axis. The order parameter Θ needs to be
self-consistently determined by diagonalizing the Hamiltonian at fixed amplitude α,

Θ = 2
N2
k

∑
m

q∑
s=1

∑
k∈B.Z.

nF (εs,k) cos(2πmγ)|vs,k(m)|2. (6.4)

Here εs,k and vs,k(m) are the eigenvalues and eigenstates of the Harper equation [6.10]

Jy[eikywk(m+ 1) + e−ikywk(m− 1)]+
2η(α+ α∗) cos(kx − 2πmγ)wk(m) = εwk(m). (6.5)

We use the following Ansatz for the atomic wave-function Ψ(l,m) = eikxleikymwk(m),
with wk = ∑

csvs,k(m) a linear superposition of the eigenstates of the Hamiltonian.
Equations (6.4) and (6.5) are solved self-consistently within the reduced Brillouin zone

kx ∈ [−π, π] and ky ∈ [−π/q, π/q], for a magnetic unit cell with periodic boundary condi-
tions in x and y directions. We focus on the contribution of the bulk to the superradiance,
neglecting boundary effects which appear in a pair of chiral edge states [6.27].

6.3 Results

6.3.1 Phase diagram

For weak pump η
√
N the system is in the uncoupled normal state (N), i.e., the atoms form

a collection of independent chains in the y-direction and the cavity is empty. Increasing
the effective pump strength the system exhibits a transition to a superradiant (SR) state,
where photons are resonantly scattered into the cavity mode and the hopping in cavity
(x)-direction builds up.

The stationary cavity-field amplitude is depicted in Fig. 6.1. It grows continuously
above the superradiant threshold for large magnetic flux (0.21 < γ < 0.5) but displays
a non-continuous jump at lower γ < 0.21. In order to better understand the change
from a second to a first order phase transition, as presented in Appendix 6.B, we expand
the free energy of the system in the Landau form up to sixth order in the atomic order
parameter:

F ∼(1− 4∆c

∆2
c + κ2χ1η

2)|Θ|2 − 8∆3
c

(∆2
c + κ2)3χ3η

6|Θ|4 (6.6)

− 64∆5
c

3(∆2
c + κ2)5χ5η

10|Θ|6.
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6.3 Results

Figure 6.1: Phase boundary (red line) as function of effective flux γ/2π = p/q and rescaled
pump field η

√
N using the field amplitude modulus |α|/

√
N as background

color. Note that p/q is discrete and rational, with 1 < p < 7 and 1 < q < 15.
The field amplitude is determined self-consistently for a Fermi gas at half-
filling at fixed finite temperature kBT = 0.5ER, where ER = ~2k2

c/2m is the
recoil energy. At small fluxes, γ < 0.21, the system exhibits a first-order
phase transition, while for bigger fluxes it is of second order. The solid red
line shows the analytical result for the critical threshold and the red dashed
line the beginning of the region of hysteresis.

The effective optical response of the Fermi gas after cycles of absorption and emission
of cavity photons is determined by the static susceptibilities, χi (Fig. 6.1). The linear
susceptibility χ1 determines the phase transition threshold

√
Nηc =

√
∆2
c + κ2

4∆cχ1
N, (6.7)

which is shown as a red solid line in Fig. 6.1. The sign of χ3 determines the order of the
phase transition.

In particular, for strong magnetic fields we have χ3 > 0 and the transition is of the
second order. The atoms then behave like a Kerr medium [6.48], inducing an intensity
dependent shift of the refractive index, n = n0 +n2I, with n2 = −8χ3η

2∆3
c(∆2

c +κ2). For
decreasing magnetic field the third order susceptibility monotonically decreases becoming
negative at γ ' 0.21, which renders the transition first order (bottom panel of Fig. 6.1).
In this regime higher order susceptibilities only slightly depend on the magnetic flux
γ. In fact the atomic orbit size significantly exceeds the unit cell of the original lattice,
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6 The Hofstadter Butterfly in a Cavity-Induced Dynamic Synthetic Magnetic Field

Figure 6.1: Atomic susceptibilities, χ1 (red), χ3 (black) and χ5 (blue) at kbT = 0.5ER.
The third order susceptibility χ3 becomes negative below p/q = 0.21, signaled
by the dashed black line.

making the lattice structure negligible. The system then exhibits a universal behaviour
and the band structure corresponds to Landau levels in free space.

6.3.2 First-order transition

At low γ the emergent magnetic field has only little influence on the system dynamics.
The temperature and the presence of an open Fermi surface then play a fundamental role
in order to unravel the physical origin of the first order behaviour of the phase transition.
By inspection of the temperature dependence of χ3 for a Fermi gas at half-filling, we can
identify an important change around γ ≈ kF /kL = 1/4 (Fig. 6.2(a)). The susceptibility
χ3 is either positive at any temperature, or becomes negative at low temperature. The
two regions are separated by the red solid line in Fig. 6.2(a).

In the latter case the phase transition becomes first order at low temperatures. This
coincides with the regime where scattering one photon keeps the atomic momentum
state within the same first Brillouin zone of the original lattice (normal scattering). In
contrast, the transition becomes second order when the photon scattering is an Umklapp
process (Fig. 6.2(b)), i.e., by inverting the direction of the atomic motion, a momentum
transfer (G = nkL) to the optical lattice is required. However, the occupation of higher
energy states at higher temperature can favour the Umklapp processes at the expense
of direct scattering enhancing the rate to scatter to the next Brillouin zone even for a
small momentum transfer. This explains why at higher temperature a second order phase
transition occurs and the critical temperature at which this happens increases for small
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γ (Fig. 6.2(a)).
These results are confirmed by the numerical simulations at lower temperatures,

kbT = 0.05ER. The re-scaled cavity amplitude as function of the pump strength either
grows continuously around the threshold for γ = 1/3 (black line in Fig. 6.2(c)), or exhibits
a jump at the critical point for γ = 1/4 (blue dashed line in Fig. 6.2(c)). For γ = 1/3
the rescaled amplitude shows an additional jump at higher pumps η > ηc, hinting that
an additional first order transition inside the superradiant phase can appear. Such
transition occurs when the cavity-induced hopping exceeds the hopping in the y-direction,
Jx/Jy = η(α+ α∗) = 1. The two superradiant states are characterized by the same order
parameter but different isothermal compressibility, κT = (1/ρ2)∂ρ/∂µ, where ρ is the
density of the Fermi gas. This divides the superradiant region into two phase zones: SRI

-0.5 0.0 0.5 1.0 1.5
- 1

0

1

- 1

0

1

Figure 6.2: (a) Third order susceptibility, χ3, as a function of the temperature and
effective magnetic flux, 2πγ = 2πp/q, with 1 < p < 6 and 1 < q < 13. The
red line corresponds to zero susceptibility, separating positive and negative
regions. (b) An atom at the Fermi surface is scattered after absorbing a
photon to a higher energy state, via an Umklapp (top panel) or a normal
process (bottom panel). The process is depicted using two Brilliouin zones of
the original lattice. Cavity field amplitude (c) and isothermal compressibility
(d) at kbT = 0.05ER, for γ = 1/3 (solid black) and γ = 1/4 (dashed blue).
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6 The Hofstadter Butterfly in a Cavity-Induced Dynamic Synthetic Magnetic Field

Figure 6.3: Atomic order parameter at T = 0.5ER for γ = 1/12 as a function of the
effective pump η

√
N . The arrows shows the hysteresis loop and the dotted

line represent the metastable solution. The insets show a qualitative picture
of the free energy in the different regimes.

and SRII. In many respects this suggests a liquid-gas type of transition between the
SRI and SRII phases, as confirmed by the rapid growth of density fluctuations that can
be inferred from the divergence of the compressibility at the critical point (Fig. 6.2(d)).
The transition is reminiscent of the case observed for fermions in linear cavities without
external optical lattice [6.49]. In the latter case, however, the transition was driven by
the coupling to an additional degree of freedom, in a process similar to the Larkin-Pimkin
mechanism [6.50].

6.3.3 Hysteresis

For small magnetic flux the system exhibits a bi-stable hysteresis behaviour near the
superradiant threshold ηc. The hysteresis loop and a qualitative picture of the free energy
in the different regions are shown in Fig. 6.3. As can be seen in the insets, below the
threshold

η1 = ηc√
1− χ2

3/(12χ1χ5)
, (6.8)

the solution with α = 0 (empty cavity) is the only minimum of the free energy. Between
η1 < η < ηc the free energy has three minima, either local or absolute. The solution for
α 6= 0 is metastable for η1 < η < η2, with

η2 = ηc√
1− 3χ2

3/(8χ1χ5)
. (6.9)
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Figure 6.4: Energy spectrum as function of flux p/q for four different pump strength
η
√
N = {1.1, 1.2, 1.3, 1.4}ER from top left to bottom right corner at kbT =

0.5ER. The spectrum initially shows singular shapes and reduces to the
conventional Hofstadter butterfly at strong pump.

Between η2 < η < ηc, the zero field solution α = 0 is metastable and finally ceases to be
a minimum at ηc, where the system becomes superradiant.

6.3.4 Dynamical Hofstadter Butterfly

Figure 6.4 shows the energy spectrum as a function of the magnetic flux p/q for increasing
pump strength η

√
N . The magnetic field, B ∼ p/q, emerges spontaneously with the

cavity field amplitude and leads to the opening of q − 1 gaps in the band structure. As
the superradiant phase is entered already at lower pump power for stronger magnetic
field, the gap opening progressively extends toward p/q = 0 as the pump is increased.

The different structures visible in the energy spectrum strongly depend on the pump
strength. At low pump strength (top panels of Fig. 6.4) the gaps organize in the shape
of a small butterfly confined in the region of large magnetic fields 0.21 < γ < 0.5. The
gaps close at the boundary of this region, where the amplitude of the cavity field is
infinitesimally small. When the pump is increased the Hofstadter butterfly is entirely
retrieved (right-bottom panel in Fig. 6.4) like in a static optical lattice. The gaps
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6 The Hofstadter Butterfly in a Cavity-Induced Dynamic Synthetic Magnetic Field

will gradually close, generating a 1D tight-binding in the x-direction with bandwidth,
2Jx = 2η(α+ α∗). In fact, the system evolves toward a regime of very weakly coupled
1D chains in the x-direction, for which the magnetic field can be gauged out.

The distortion of the energy spectrum, compared to the conventional Hofstadter
butterfly [6.11], is due to the dynamical nature of the coupling between atoms and cavity
photons. At a fixed magnetic field, the system spontaneously chooses the most favourable
amplitude of the cavity field, i.e, the effective hopping parameter, Jx = η(α+α∗). As the
system becomes superradiant the effective Lorentz force exerted by the artificial magnetic
field favours the tunneling in the x-direction, resulting in an asymmetry of the tunneling
amplitudes. Therefore, the energy spectrum can be seen as the superposition of different
Hofstadter butterflies with asymmetric hopping, Jx − Jy. While the fractal structure is
preserved by the form of the Hamiltonian as the hopping phase is not cavity-dependent,
the size of the gaps are set by the ratio of the hopping parameters and are characterized
by a non-trivial dependence on the magnetic flux 2πp/q.

This is illustrated in Fig. 6.5(a), where the hopping ratio Jx/Jy is shown as a function
of the magnetic flux for different pump strengths. In the weak pump regime (black and
dark blue lines) the dynamic butterfly is a superposition of static Hofstadter butterflies
with very different effective hopping amplitudes. The hopping in the x-direction grows

Figure 6.5: (a) Effective cavity induced hopping as a function of flux p/q at different
pumping strengths. Parameters: η

√
N = {1.1, 1.2, 1.3, 1.4, 1.5}ER in black,

dark blue, light blue, yellow and red respectively. (b) Fermi surface at γ = 1/3
for kbT = 0.5ER for η

√
N = 1.2ER (left) and η

√
N = 1.3ER (right).
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as the magnetic field is increased but remains rather small compared to the hopping in
the other direction. As a consequence the curvature of the band structure and the Fermi
surface align along y-direction, see left panel in Fig.6.5(b).

As the pump is increased, the field amplitude and the hopping in the x-direction
become almost independent of the magnetic flux (red and yellow line in Fig 6.5(a)). In
this regime the kinetic energy in the x-direction dominates and the Fermi surface aligns
along the cavity axis. Note that at low temperature this is accompanied by the onset of a
first order transition within the superradiant phase, SRI-SRII, as shown in the previous
section.

6.4 Conclusions and Outlook
We have shown that non-linear coupling between atomic motion and a cavity field mode
offers a new perspective on the generation of synthetic dynamical magnetic fields. In
contrast to free space, the gauge field emerges spontaneously via maximizing the light
scattered into the cavity and changing the atomic density configuration. The complex
interplay between the fractal structure of the energy bands and the superradiant scattering
thus generates new shapes for a dynamical Hofstadter butterfly.

Note that atoms are coupled only to a specific wave-length of the light field determined
by the chosen cavity mode. As shown recently employing several distinct cavity modes
the system gets more freedom and a global symmetry can “emerge” in a cavity-QED
system [6.51]. Therefore, generalization of our studied system to multi-mode cavities
and in particular a ring or fiber geometry [6.52] could allow to fully reproduce the
minimal coupling of a charged particle to a local U(1) gauge potential. Making use of
the dynamical coupling between light and atoms in cavity systems is a promising route
toward the experimental realization of synthetic dynamical gauge fields. Moreover, on a
different level, the mediation of long-range two-body interactions due to the exchange of
photons can lead to the observation of exotic states, as particles with anyonic statistics
in fractional quantum Hall states.
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Appendices

6.A Effective Hamiltonian
Consider atoms loaded into a 2D optical lattice of lattice constant, d = [dx, dy]. The
hopping along x-direction is at first suppressed due to the potential offset ∆ between
adjacent lattice sites and then restored thanks to the cavity- and laser-assisted hoppings.
The hopping along y-direction is due to the kinetic energy of the atoms. Let us just focus
in the x-direction and consider three generic lattice sites labeled n− 1, n, and n as in
Fig. 6.A.1. First consider only transitions which involves the atomic excited state in site
n, that is, |en〉. The Hamiltonian H = H0 +Hint reads (~ = 1),

H0 = −(ω0 + ∆)σn−1 − ω0σn − (ω0 −∆)σn+1 + ωca
†a, (A6.1)

Hint = Ω2e
−ikye−iω2tσ+

n−1 + g0 cos (kxn)aσ+
n Ω1e

ikye−iω1tσ+
n+1 + H.c., (A6.2)

where σn−1 = |gn−1〉 〈gn−1|, σn = |gn〉 〈gn| , σn+1 = |gn+1〉 〈gn+1|, σ+
n−1 = |en〉 〈gn−1|,

σ+
n = |en〉 〈gn|, σ+

n+1 = |en〉 〈gn+1|. For simplicity a two-photon resonance is assumed
ωc = ω1 + ∆ = ω2 −∆ in the following and k ≡ kc ' k1 ' k2.

Applying the unitary transformation U = exp {−i[ω2σn−1 + ωp(σn − a†a) + ω1σn+1]t}
to the Hamiltonian H yields,

H̃ = δ(σn−1 + σn + σn+1) + [Ω2e
−ikyσ+

n−1g0 cos (kxn)aσ+
n + Ω1e

ikyσ+
n+1 + H.c.],

(A6.3)

where δ = ωc−ω0 ∼ ωp−ω0, with ωp = (ω1 +ω2)/2 the average pump frequency.Here we
have made use of the relations Uσ+

n−1U
† = eiω2tσ+

n−1 etc. and H̃ = UHU † + i(∂tU)U †.
We find the stationary values of the operators σ+

n−1, σ+
n , σ+

n+1 by setting to zero the the
Heisenberg equation of motion i∂tO = [O, H̃] upon assuming a large detuning δ

σ+
n−1 '

1
δ

(Ω∗2eikyσn−1 + Ω∗1e−ikyσn+1,n−1 + g0 cos (kxn)a†σn,n−1),

σ+
n '

1
δ

(Ω∗2eikyσn−1,n + Ω∗1e−ikyσn+1,n + g0 cos (kxn)a†σn),

σ+
n+1 '

1
δ

(Ω∗2eikyσn−1,n+1 + Ω∗1e−ikyσn+1 + g0 cos (kxn)a†σn,n+1), (A6.4)

where σn,n−1 = |gn〉 〈gn−1|, σn+1,n−1 = |gn+1〉 〈gn−1|, σn+1,n = |gn+1〉 〈gn|, etc. Here we
have also assumed a negligible population of the excited state, |en〉 〈en| ' 0, due to the
large detuning δ.

Substituting Eq. (A6.4) back in the Hamiltonian (A6.3) yields the effective Hamiltonian,

H̃
(n)
eff = 2

δ
{g2

0 cos2 (kxn)a†aσn +[Ω2g0e
−iky cos (kxn)a†σn,n−1

+ Ω∗1g0e
−iky cos (kxn)aσn+1,n + H.c.]}, (A6.5)
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Figure 6.A.1: Three generic lattice sites along x direction.

where the constant terms proportional to Ω1 and Ω2, and terms involving next nearest
neighbour scattering σn+1,n−1 have been omitted.

Considering now transitions which involve the states |en±1〉 results in the following
contributions to the {n− 1, n, n+ 1} manifold,

H̃
(n−1)
eff ∝ 2

δ
{g2

0 cos2 (kxn−1)a†aσn−1 + [Ω∗1g0e
−iky cos (kxn−1)aσn,n−1 + H.c.]},

H̃
(n+1)
eff ∝ 2

δ
{g2

0 cos2 (kxn+1)a†aσn+1 +
[
Ω2g0e

−iky cos (kxn+1)a†σn1,n + H.c.
]
}. (A6.6)

Assuming Ω1 = Ω2 = Ω ∈ R and λc = 2π/k = dx, the total effective Hamiltonian takes
the form,

H̃eff = 2
δ

∑
n

{g2
0 cos2 (kxn)a†aσn + Ωg0(a+ a†)

[
e−iky cos (kxn)σn,n−1 + H.c.

]
}, (A6.7)

or in the second-quantized tight-binding formalism

H̃eff = a†a
∑
n,m

εn,mc
†
n,mcn,m

+ (a+ a†)
∑
n,m

(
Jxn,me

−ikymc†n,mcn−1,m + H.c.
)

+ Jy
∑
n,m

(
c†n,mcn,m−1 + H.c.

)
, (A6.8)
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where the hopping along the y direction is now also included. The matrix elements are
given by,

εn,m = 2g2
0
δ

∫∫
dxdy cos2 (kx)|W (x− xn)W (y − yn)|2

= 2g2
0
δ

∫∫
dx cos2 (kx)|W (x− xn)|2,

Jxn,me
−ikym = 2Ωg0

δ

∫∫
dxdyW ∗(x− xn)W ∗(y − yn)e−iky cos (kx)W (x− xn−1)W (y − ym)

= 2Ωg0
δ

∫
dx cos (kx)W ∗(x− xn)W (x− xn−1)

×
∫
dye−ikyW ∗(y − ym)W (y − ym), (A6.9)

where W (X−R) = W (x−xn)W (y−ym) is the ground state Wannier function describing
particles localized at the site [n,m].

6.B Free energy expansion
In order to derive an effective Landau theory for the atomic order parameter Θ, as defined
in the main text, we start from the the action of the system expressed in momentum
space

S[α, α∗,c†kx,ky , ckx,ky ] = ∆c|α|2 + 1
βV

∑
n,kx,ky

(iωn − 2Jy cos(ky)) c†n,kx,kycn,kx,ky (A6.10a)

− η(α+ α∗) 1
βV

∑
kx,ky

(
e−kxc†kx,kyckx,ky+γ + e−kxc†kx,kyckx,ky−γ

)
.

Note that only the static component of the bosonic field α is retained, which is linearly
related to the atomic order parameter by the equation of motion α = −ηΘ/(∆c− iκ). We
integrate out fermionic degrees of freedom, obtaining an effective action for the photonic
field only, Seff [α, α∗] = ∆c|α|2 + tr lnĜ−1. The trace operator

tr lnĜ−1 = tr lnG−1
0 −

∑
n

1
2ntr(G0Γ)2n (A6.11)

is obtained by perturbatively expanding the Green function G(k, iωn) around the zero
order one

G−1
0 =



. . . 0 0 0 0
0 iωn − 2Jy cos(ky − γ) 0 0 0
0 0 iωn − 2Jy cos(ky − γ) 0 0
0 0 0 iωn − 2Jy cos(ky − γ) 0
0 0 0 0 . . .


(A6.12)
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where the perturbative term is given by the interaction matrix

Γ = −η(α+ α∗)


0 e−ikx 0 0 0
eikx 0 e−ikx 0 0
0 eikx 0 e−ikx 0
0 0 eikx 0 e−ikx

0 0 0 eikx 0

 (A6.13)

Here, iωn = π(2n + 1)/β are fermionic Matsubara frequencies. By keeping up to the
sixth order in α, the effective free energy is

F = ∆c|α|2 − η2χ1(α+ α∗)2 − η4

2 χ3(α+ α∗)4 − η6

3 χ5(α+ α∗)6, (A6.14)

or in powers of the atomic order parameter, Θ, reads

F ∼ (1− 4∆c

∆2
c + κ2χ1η

2)|Θ|2 − 8∆3
c

(∆2
c + κ2)3χ3η

6|Θ|4 − 64∆5
c

3(∆2
c + κ2)5χ5η

10|Θ|6 (A6.15)

The free energy depends on the cavity properties and the coupling with the atoms is
enclosed inside the susceptibilities

χ1 = 1
β

∑
n,k∈B.Z.

Gk(iωn)Gk+γ(iωn) (A6.16a)

χ3 = 1
β

∑
n,k∈B.Z.

[G2
k(iωn)G2

k+γ(iωn) + 2Gk−γ(iωn)G2
k(iωn)Gk+γ(iωn)] (A6.16b)

χ5 = 1
β

∑
n,k∈B.Z.

[G3
k(iωn)G3

k+γ(iωn) + 3G2
k−γ(iωn)G3

k(iωn)Gk+γ(iωn) (A6.16c)

+ 3Gk−γ(iωn)G3
k(iωn)G2

k+γ(iωn) + 3Gk(iωn)G2
k+γ(iωn)G2

k+2γ(iωn)Gk+3γ(iωn)]

The susceptibilities shown in the main text are numerically calculated by truncating the
summation over the Matsubara frequencies until convergence with fixed chemical potential
µ = 0, same for the matrices G0(k, ωn) and Γ(k) which are summed in momentum space
over the original Brillouin zone [−π/dx, π/dy].

6.B.1 Expansion of the susceptibility for low magnetic fluxes
In order have a better understanding of the physics at low magnetic fluxes, we have
analytically computed the expressions for the susceptibilities χ1 and χ3. The first order
susceptibility is

χ1 =
∑

k∈B.Z.

nF (εk+γ)− nF (εk)
εk+γ − εk

, (A6.17)

with εk = Jy cos(k), the tight binding energy along the y-direction where we set µ = 0
for half filling. We expand χ1 for small γ

χ1(γ � 1) =
∑

k∈B.Z.

[
− βnF (cos(k)) [1− nF (cos(k))]

]
(A6.18)
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Note that the linear term vanishes and the main contribution to the linear susceptibility
is a constant, which is proportional to the compressibility of a 1D chain of fermionic
particles in the tight binding regime. As nF (ε) is the probability that the state ε is
occupied, while 1−nF (ε) is the probability that the state ε is not occupied, their product
represent the scattering amplitude of a scattering process between two state of the same
energy, which at very low temperature is only possible from one side to the other of the
Fermi surface. The next contribution to χ1 is quadratic and this behaviour can also be
observed in the plot of the susceptibilty χ1, see Fig 6.1 in the main text. Note that at the
zero order, in γ we don’t see the effect of the magnetic field but rather the temperature,
dimensionality and filling play the fundamental role.

The third order χ3 susceptibilty represents the response of the medium to three
photon processes, through cycles of multiple emission and absorption. The full analytics
expression is

χ3 =
∑

k∈B.Z.
−2nF (εk+γ)− nF (εk)

(εk+γ − εk)3 + n′F (εk+γ)− n′F (εk)
(εk+γ − εk)2

+ 2 nF (εk−γ)
(εk−γ − εk)2(εk−γ − εk+γ) − 2 nF (εk+γ)

(εk+γ − εk)2(εk−γ − εk+γ)

+ 2 nF (εk)
(εk−γ − εk)(εk − εk+γ)

( 1
εk − εk+γ

+ 1
εk − εk−γ

)
− 2 n′F (εk)

(εk−γ − εk)(εk − εk+γ)
(A6.19)

In a linear cavity photons are in a superposition state of two conterpropagating
momenta. The interaction with the cavity photons induces two type of processes. The
first line refers to cycles of absorption and emission where the scattering processes always
involve interactions with the same momentum component of the photon field. The other
lines, refer to scattering processes in which a redistribution of photons between the two
momentum component are involved. At the lowest order in γ, the susceptibility χ3
becomes

χ3(γ � 1) =
∑

k∈B.Z.

β3

6 nf (εk)[1− nf (εk)]

× [1− 6nf (εk) [1− nf (εk)]] . (A6.20)
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We propose a novel type of a Bose-Hubbard ladder model based on an open
quantum-gas–cavity-QED setup to study the physics of dynamical gauge
potentials. Atomic tunneling along opposite directions in the two legs of
the ladder is mediated by photon scattering from transverse pump lasers to
two distinct cavity modes. The resulting interplay between cavity photon
dissipation and the optomechanical atomic back-action then induces an
average-density-dependent dynamical gauge field. The dissipation-stabilized
steady-state atomic motion along the legs of the ladder leads either to a
pure chiral current, screening the induced dynamical magnetic field as in
the Meissner effect, or generates simultaneously chiral and particle currents.
For sufficiently strong pump the system enters into a dynamically unstable
regime exhibiting limit-cycle and period-doubled oscillations. Intriguingly,
an electromotive force is induced in this dynamical regime as expected from
an interpretation based on Faraday’s law of induction for the time-dependent
synthetic magnetic flux.
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7 Open Quantum-System Simulation of Faraday’s Induction Law via Dynamical
Instabilities

7.1 Introduction

Among alternative approaches to induce dynamical gauge potentials, quantum-gas–cavity-
QED setups stand out owing to the intrinsic dynamical nature of cavity fields [6.1, 6.2].
Many interesting phenomena have been predicted to arise in systems with cavity-induced
dynamical gauge potential, from the dynamical appearance of a vector potential at the
onset of superradiance [6.3, 6.4] to a dissipation-induced dynamical Peierls phase [6.5]
and the Meissner-like expulsion of a magnetic field [6.6]. The prediction of cavity-induced
dynamic spin-orbit coupling [6.7–6.14] and its recent realization [6.15] has opened a new
avenue for engineering dynamical gauge potentials alongside free-space schemes and
experiments [6.16].

Motivated by the recent experimental realization of the dynamical spin-orbit cou-
pling [6.15] and a two-mode Dicke model [6.17], here we propose a novel cavity-QED
scheme for the implementation of an average-density-dependent dynamical gauge potential.
In particular, we develop a ladder model [6.18] with cavity-assisted counterpropagating
longitudinal atomic tunnelings as shown in Fig. 7.1. A dynamic gauge potential appears
at the onset of the superradiant photon scattering from two transverse pump lasers into
two cavity modes owing to dissipation-induced phase shifts of cavity photons. In contrast

Figure 7.1: Sketch of the setup. (a) A spinor BEC is loaded into a 1D tilted external
optical lattice perpendicular to the axis of a linear cavity. Neighbouring sites
are Raman coupled via two cavity modes with strengths Ga,b and transversely
applied laser fields with amplitudes Ωa,b. A microwave couples the two atomic
states locally with strength Ω. (b) Sketch of the atomic level structure and
of the two independent two-photon Raman transitions inducing directional
atomic hopping between neighboring lattice sites. (c) Scheme of the effective
mapping of the spinor BEC in the 1D lattice in panel (a) into a two-leg Bose-
Hubbard ladder with cavity-assisted longitudinal hoppings and microwave-
generated transverse tunneling.
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to previous works [6.3–6.5], we take into account the optomechanical back-action of
the atomic dynamics, leading to an average-density-dependent dynamical magnetic flux
when the optomechanical back-action shifts significantly the cavity resonances and conse-
quently the dissipation-induced photonic phases. The system exhibits three steady states:
Photon-balanced Meissner (PB-M) and vortex (PB-V) states and a photon-imbalanced
biased ladder (PI-BL) phase. In addition, the phase diagram of the system features a
region of highly nonlinear dynamics with no steady state. Two stable dynamical phases
are identified in this region with limit-cycle and period-doubled oscillations. Remarkably,
an electromotive force is induced naturally in this regime, mimicking Faraday’s law of
induction.

7.2 Model
Consider a spinor Bose-Einstein condensate (BEC) inside a linear optical cavity. The BEC
is strongly confined by a deep external optical lattice to a one dimension perpendicular
to the cavity axis at anti-nodes of two distinct cavity electromagnetic modes, â and b̂; see
Fig. 7.1(a). The natural tunneling of atoms along the lattice is suppressed by applying an
external potential gradient δ [6.19]. A directional hopping is restored by two independent
resonant two-photon Raman transitions as shown schematically in Fig. 7.1(b): The
ground pseudospin state |↓〉 (|↑〉) is coupled, respectively, by Rabi rates Ga (Gb) and Ωa

(Ωb) to a far detuned excited state |e〉 via the cavity mode â (b̂) with resonance frequency
ωa (ωb) and an out-of-plane transverse pump laser with frequency ωpa (ωpb). The two
pseudospin ground states are coupled on-site with a rate Ω through a radio-frequency
drive with frequency ωrf .

For large atomic detuning, the excited state can be adiabatically eliminated. By only
retaining resonant scattering terms, the effective Hamiltonian reads [6.20],

Ĥ = −~η
L∑
j=1

(â†ĉ†↓,j+1ĉ↓,j + b̂ĉ†↑,j+1ĉ↑,j + H.c.)

− ~Ω
L∑
j=1

(ĉ†↑,j ĉ↓,j + H.c.)

+ V

2

L∑
j=1

∑
σ=↑,↓

N̂σ,j(N̂σ,j − 1) + γV
L∑
j=1

N̂↓,jN̂↑,j

− ~(∆a − UN̂↓)â†â− ~(∆b − UN̂↑)b̂†b̂, (7.1)

where ĉσ,j is the atomic bosonic annihilation operator for pseudospin σ at site j, and
N̂σ = ∑

j N̂σ,j = ∑
j ĉ
†
σ,j ĉσ,j . The effective model (7.1) constitutes a spinor Bose-Hubbard-

type Hamiltonian with cavity-induced dynamical spin-orbit coupling. It can be effectively
mapped into a two-leg Bose-Hubbard ladder of length L, with one of the two pseudospin
states acting as a synthetic dimension [6.21]. In this spirit, the first row of the Hamiltonian
corresponds to the motion of the atoms along the longitudinal direction (i.e., legs) of
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the ladder. The forward tunneling amplitudes, t̂a(b) ≡ ~ηâ†(b̂), are restored by scattering
photons from the pump (cavity) into the cavity (pump) at a rate η = GaΩa/∆e = GbΩb/∆e,
with ∆e = ωp − ωe being the effective atomic detuning from the average pump frequency
ωp = (ωpa + ωpb)/2. The second line can be interpreted as a transversal hopping along
rungs of the ladder, with tunneling amplitude set by the radio-frequency coupling Ω.
The third line takes into account repulsive two-body on-site atomic interactions, with V
being the strength of intra-species interactions and γ parameterizing the ratio between
the strength of inter- and intra-species interactions. The last two terms represent the free
energy of the photon fields with the cavity detunings defined as ∆a(b) = −ωp±ωrf/2−ωa(b),
where in the following we assume ∆ ≡ ∆a = ∆b. The cavity resonances are shifted by
the atomic medium UN̂σ, where U = G2

a/∆e = G2
b /∆e is the dispersive shift per atom.

7.3 Average-density-dependent dynamical gauge potential and
synthetic magnetic field

Let us now describe the mechanism by which a dynamical gauge potential can arise when
the photon-assisted tunnelings t̂a,b are restored. We recall that on a lattice, the coupling
of a charged particle Q to a vector potential A is approximately described by adding
a phase to the tunneling amplitudes, known as the Peierls phase [6.22]. Peierls phase
is fixed by the circulation of the vector potential along the path enclosing the unit cell
of the lattice, and reduces to the Aharonov-Bohm phase in the continuum limit [6.23].
Therefore, the magnetic flux piercing a plaquette of the lattice is readily written as,
ΦB =

∫
unit cell A · dl

For neutral atoms the vector potential (or the Peierls phase) must be synthetically
engineered via externally tailoring the atomic tunneling amplitudes. Here our scheme
exploits the superradiant scattering of photons into the cavity to achieve this. In
particular, in the superradiant phase the collective synchronized emission of photons
results in a macroscopic occupation of the two cavity modes, which can be treated
as classical electromagnetic fields. The cavity fields are thus described by coherent
states [6.24], â → 〈â〉 ≡ α = |α|eiφα and b̂ → 〈b̂〉 ≡ β = |β|eiφβ , and the tunneling
amplitudes for the lower and upper leg respectively reduce to c-numbers ta = ~η|α|eiφα
and tb = ~η|β|e−iφβ . Note that the chosen pumping geometry is equivalent to make a
well defined gauge choice where the the transverse component of the vector potential
along the rungs A⊥j = 0 vanishes, and its longitudinal component along the two legs
coincide with the phases of the cavity fields A‖a,j ∝ φα and A‖b,j ∝ −φβ . Hence, the total
phase acquired by the atomic wavefunction around a closed loop along one plaquette is

Φ = φα + φβ. (7.2)

The dynamics of the atoms is equivalent to the one of charge particles Q threaded by
the magnetic flux ΦB = ~Φ/Q = Φ0BΦ/2π with Φ0B = h/Q.

In the adiabatic limit for the photonic dynamics [6.1, 6.2], the cavity fields can be
slaved to the atomic degrees of freedom and be obtained from the stationary solution of
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the Heisenberg equations of motion, α = −ηΘ↓/(∆a −UN↓ + iκa) and β = −ηΘ∗↑/(∆b −
UN↑ + iκb), where κa,b are the decay rates of the cavity fields and Nσ = 〈N̂σ〉. This
prescribes the phase locking between the photons and the average atomic hopping
operators, Θσ = ∑

j〈c
†
σ,j+1cσ,j〉. Up to a global phase which can be gauged out, the

phases of the cavity fields are uniquely determined [6.20],

φα(β) = arctan
(

κa(b)
∆a(b) − UN↓(↑)

)
. (7.3)

The atomic ladder acts as a refractive medium for the light inside the resonator, and
dispersively shifts the cavity resonances, i.e., ∆a(b) − UN↓(↑). Remarkably, the magnetic
flux ΦB ∝ φα + φβ becomes non-linearly dependent on the atomic leg density via
UNσ ∝ Nσ/2L = n̄σ.

In order to unveil the effect of the cavity-induced magnetic field, let us first consider
the single-particle physics. The atomic part of the Hamiltonian (7.1) can be diagonalized
to yield the single-particle atomic energy bands,

ε±(q)
~

= −ηF+ + U

2 nph ±

√
Ω2 +

(
ηF− −

U

2 ∆nph

)2
. (7.4)

Here we have defined F±(q) = |α| cos(q+φα)±|β| cos(q−φβ), nph = nα+nβ = |α|2 + |β|2
as the total number of photons, and ∆nph = nα − nβ as the photon-number difference.
The atomic quasi-momentum q is minimally-coupled to the phases φα,β of photons, as
expected. The system exhibits different behaviors depending on ∆nph. For the photon-
balanced (PB) case, ∆nph = 0, the lowest energy band has either a single minimum at
q = 0 or symmetric double minima at q = ±qm 6= 0. The atomic ground state corresponds
to a Meissner (M) and a vortex (V) phase, respectively. For the photon-imbalanced (PI)
case, ∆nph 6= 0, the energy bands become asymmetric, with the lowest band developing
a single minimum at a nonzero quasi-momentum, q = qm 6= 0. Consequently, the
atomic ground state develops an atomic population imbalance in the two legs, which
spontaneously breaks the Z2 reflection symmetry of the system corresponding to the
invariance under the exchange of the cavity modes â ↔ b̂† and ladder legs ĉ↑,j ↔ ĉ↓,j .
We identify this state as the biased ladder (BL) phase [6.25–6.27].

We find the steady state of the system by looking at the long-time dynamics of the
coupled Heisenberg equations of motion with periodic boundary conditions [6.20]. The
steady-state phase diagram in the ∆–η parameter plane is mapped out in Fig. 7.1(a) for
N = 1. Typical self-consistent energy bands are presented in Fig. 7.1(b), while Fig. 7.1(c)
shows a horizontal cut through the phase diagram. In this non-interacting low-density
regime n̄ = n̄↓ + n̄↑ = 1/2L � 1, the optomechanical back-action UNσ of the atomic
medium on the cavity resonances is negligible. Therefore, the magnetic flux ΦB is almost
density independent and can only be tuned by varying the cavity parameters ∆ and κ;
see the inset of Fig. 7.1(a).

By increasing the ladder density n̄ = N/2L, the dispersive shift UNσ becomes sig-
nificant, and hence the density dependence of the induced magnetic flux ΦB becomes
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Figure 7.1: Single-particle phase diagram. (a) The steady-state phase diagram in
the {

√
Nη/κ,∆/κ} parameter plane. The system exhibits three distinct

phases: Photon-balanced Meissner (PB-M) and vortex (PB-V), and photon-
imbalanced bias ladder (PI-BL) states. The color map indicates the photon
imbalance ∆nph. The red dashed curve separating the PB-M and the PB-V
states has been obtained analytically (see Supplementary Material). The
three phases intersect in a tricritical point indicated by the brown dot.
Inset: The synthetic magnetic flux ΦB/Φ0B as a function of ∆/κ. For
∆/κ = −0.5, (b) typical band structure ε±(q) in each phase corresponding
to
√
Nη/κ = {0.08, 0.50, 1.00}, respectively, and (c) photon amplitudes as

a function of the pump strength. Other parameters are set to L = 51,
U = ∆/2L, Ω = 1, and V = γ = 0.

apparent. Figure 7.1(a) shows for weak on-site interactions the stationary value of the
magnetic flux ΦB/Φ0B as a function of the average atomic density n̄ = N/2L and the
pump strength

√
Nη for cavity detuning, ∆ = −6κ. The gray color indicates a dynam-

ical region with no steady-state solution, which will be discussed in more detail later.
Figure 7.1(a) shows that density effects become relevant for higher fillings, where the
two cavity modes are dispersively shifted closer to resonance. The total photon number
nph and the relative photon number difference |∆nph|/nph are shown in Figure 7.1(b)
and (c), respectively. The system exhibit phase transition from a photon balanced to
a photon imbalanced phase when the pumping strength is increased (white solid line
in Figure 7.1). Note that for large cavity detunings only weak magnetic fields can be
stabilized in the system ΦB/Φ0B < 0.15, which do not support a PB-V phase-transition
at weak pumping.
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7.4 Superradiance and persistent currents
Since each photon scattering process is accompanied by a directional atomic tunneling
along the legs of the ladder, stationary currents flowing in opposite directions are
generated in the superradiant phase; see the sketch in Fig. 7.1(c). Dissipation plays
an essential role in the generation of these currents [6.5]. By inspection of the leg
currents, J↓ = −iη∑j〈a†ĉ

†
↓,j+1ĉ↓,j − H.c.〉 and J↑ = −iη∑j〈b̂ĉ

†
↑,j+1ĉ↑,j − H.c.〉, one

sees that for the steady state the leg currents are proportional to the photon number
of the respective coupled modes, J↓ = −2κ|α|2 and J↑ = 2κ|β|2. The chiral current
is, therefore, determined by the total number of photons leaked out of the cavity,
Jc = J↓ − J↑ = −2κnph, while the photon number difference identifies the net particle
current, Jp = J↓ + J↑ = −2κ∆nph. The current patterns are illustrated schematically
in Fig. 7.1(d). At weak pumpings, a Meissner phase is stabilized with a pair of equal,
counterpropagating currents flowing along the two legs. At stronger pump strengths a net
particle current is driven by the photon imbalance in the biased ladder phase [6.25–6.27].

7.5 Dynamical instabilities and Faraday’s induction law
We now take a closer look into the grey region of Fig. 7.1, where the system exhibits a
highly nonlinear dynamics (NLD). A full characterization of the dynamical phases and
their stability will be presented elsewhere. When the long-time dynamics is characterized
by periodic oscillation of the cavity field amplitudes [see Fig. 7.2(a) III and (b) III], the
system behaves like a limit-cycle oscillator. Self-sustained periodic oscillations of the
cavity modes spontaneously emerge in the absence of an external periodic drive, breaking
the continuous time-translational symmetry [6.28]. The time-translational symmetry
breaking in driven-dissipative systems has been recently interpreted as a dissipative
time crystal [6.29, 6.30]. The system also exhibits a period-doubling bifurcation at
stronger pumping, that can be traced back into the appearance of an additional halved
frequency component above the main limit-cycle oscillation frequency, possibly leading
to chaos [6.31].

The nontrivial dynamics of the photonic phases shown in Fig. 7.2 leads to a time-
dependent magnetic flux ΦB(t). This in turn induces an electromotive force E(t) =
−∂ΦB(t)/∂t = −(Φ0B/2π)∂Φ(t)/∂t, with

∂Φ(t)
∂t

= 2∆− UN − K↓
2|α|2 −

K↑
2|β|2 , (7.5)

and the average longitudinal kinetic energies, K↓ = −2ηRe(α∗Θ↓) andK↑ = −2ηRe(β∗Θ∗↑).
The time evolution of the magnetic flux and the induced electromotive force are shown
in the insets of Fig. 7.2(a) I and (b) I. The time-dependent electromotive force drives
periodically the atomic population between the two legs, apparent from the oscillat-
ing chiral Jc and particle Jp currents as well as the emergent oscillating rung current
J⊥ = −iΩ∑j〈ĉ

†
↑,j ĉ↓,j −H.c.〉; see Fig. 7.2(a) II and (b) II. In contrast to the steady-state

results the photon-number counts are no longer an exact measurement of the leg currents
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Figure 7.1: Many-body phase diagram. (a) The non-equilibrium phase diagram in the
{
√
Nη/κ, n̄} parameter plane. For the chosen cavity detuning ∆/κ = −6, the

system exhibits only two of the steady-state phases of Fig. 7.1(a): the PB-M
and the PI-BL states. The two phases are separated by the solid white line.
The gray area indicates a region of dynamical instability with no steady state
[cf. Fig. 7.2]. The color map indicates the steady-state synthetic magnetic flux
ΦB, clearly showing average-density dependence. The total photon number
nph (b) and the photon number difference ∆nph/nph (c) are shown in the
same parameter plane. Photon number saturates the scale in the bright blue
region in (b). (d) Typical current patterns in the PB-M and the PI-BL states.
The parameters are the same as Fig. 7.1, except V N = 1, γ = 0.1.

(cf. panels II and III in Fig. 7.2). One can think of the residual currents as induction
currents which oppose the variation of the magnetic flux, thus mimicking Faraday’s law
of induction with neutral particles [6.32].

7.6 Experimental considerations.

Our proposal can be realized by driving two optical transitions of 87Rb atoms as in
Ref. [6.15]. In an experiment, several atomic ladders can be isolated from single rows of
a 2D optical lattice in the plane intercepted by the cavity axis and the y direction. The
size of the ladder in the y direction is strictly limited by the cavity waist w0. Assuming
a transversal size of 2w0 ∼ 150 µm, an atomic cloud of `y ∼ 70 µm, and an optical
lattice with the lattice constant a = λ851nm/2 = 0.426 µm, the ladder would have
Nu.c = `y/a ∼ 160 unit cells. Upon redistribution of the cloud into the 2D lattice, and
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Figure 7.2: Periodic nonlinear dynamics in the unstable parameter regime (NLD), for
high densities n̄ = 1.42. The phase space trajectories of the two cavity-mode
amplitudes α (gray) and β (black) for long-time dynamics with

√
Nη/κ = 1.3

(a) and 1.55 (b) [outside of the phase diagram of Fig. 7.1]. Insets in panels
(I): Time evolution of the magnetic flux (black) and e.m.f (dashed gray).
Time evolution of the induced chiral Jc (black), particle Jp (dashed gray),
and rung J⊥ (dotted blue) currents (II), and of the total photon number nph
(black) and the photon number difference ∆nph (dashed gray) (III). Panel (a)
exhibits stable limit-cycle oscillations, while panel (b) shows period-doubled
oscillations. Other parameters are same as Fig. 7.1 for N = 140.

assuming a longitudinal cloud size of `x ∼ 2`y, the filling of the 2D lattice can be varied
in a range of ν = N/(`x`y) ∈ [0.1, 2] for an atomic cloud of N ∼ 0.05− 1.1× 105 atoms,
respectively. A lattice filling ν = 2 would correspond to a ladder density n̄ = 1. The
impact of the dispersive shifts UNσ on the cavity resonances is significant in the strong
light-matter coupling limit. A good measure of the coupling strength is provided by the
parameter UN/κ, expressing the ratio between the coherent and incoherent processes in
the system. For a high-finesse cavity with a linewidth of 2κ = 17 kHz, U = 91 kHz as in
Ref. [6.33], and N = 4×105 atoms, the optomechanical back-action would be of the order
of UN/κ ∼ 2.5 > 1, a desired range to observe the predicted phenomena. The critical
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advantage of our scheme is that the phase diagram can be non-destructively measured
by monitoring photons leaking out of the cavity. The steady-state atomic currents can
be obtained from the population count of the two cavity modes at the detector. The
magnetic flux can be inferred through homodyne detection by measuring the phase of
the two mode with respect to a probe laser.

7.7 Conclusions
We studied the emergence of an average-density-dependent dynamical U(1) gauge potential
when the motion of neutral atoms is strongly coupled to two high-Q cavity modes. The
gauge potential stems from the delicate interplay between the optomechanical atomic
back-action on the cavity fields and photon dissipation into the environment. It differs
from previously studied cavity-induced gauge potentials which do not feature any atomic-
density dependence [6.3–6.5, 6.7–6.13, 6.13–6.15, 6.34]. The resulting complex interplay
of atomic currents and the induced gauge potential can create dynamical instabilities
with stable limit-cycle and period-doubled oscillations. This behaviour can be interpreted
as an effective oscillating electromotive force according to Faraday’s law of induction.
Our proposed scheme offers a unique possibility to explore these exotic nonequilibrium
phenomena in state-of-the-art quantum-gas–cavity-QED experiments.
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7.A Effective Hamiltonian

Appendices

7.A Effective Hamiltonian
Internal level structure and pumping configuration.—Le us consider a three-level atom
{〈↓| , 〈↑| , 〈e|} with frequencies, ω↓ < ω↑ < ωe, placed in a multi-mode linear cavity with
the cavity axis oriented along the x̂ direction. The atom interacts with two distinct cavity
modes, â and b̂, with frequencies ωa and ωb, and is transversally pumped in the ẑ direction
by two independent lasers of frequencies ωpa and ωpb, and intensities Ωa and Ωb. The two
atomic pseudospin ground states, {〈↓| , 〈↑|}, are coupled by a radio-frequency laser with
frequency ωrf and intensity Ω. Note that we consider the atom located at a fixed position
at one of the shared maxima of intensity of the cavity fields, cos(kaxj) = cos(kbxj) = 1.
Hence, any space-dependence along the cavity axis due to the mode function of light
fields is dropped out in the discussion below. The total Hamiltonian of the internal
degrees of freedom only reads

H(t) = ~ω↓ |↓〉 〈↓|+ ~ω↑ |↑〉 〈↑|+ ~ωe |e〉 〈e|+ ~ωaâ†â+ ~ωbb̂†b̂ (A7.1)

+
[
−~Ωe−iωrft |↑〉 〈↓|+

(
~Ωae

−iωpat + ~Gaâ
)
|e〉 〈↓|+

(
~Ωbe

−iωpbt + ~Gbb̂
)
|e〉 〈↑|+ H.c.

]
.

(A7.2)

Introducing the average pump frequency ωp = (ωpa+ωpb)/2, we recast the Hamiltonian
in a time-independent form by applying a unitary transformation to an appropriate
co-rotating frame,

U(t) = exp
{
i

[
−ωrf

2 |↓〉 〈↓|+
ωrf
2 |↑〉 〈↑|+ ωp |e〉 〈e|+

(
ωp + ωrf

2

)
â†â+

(
ωp −

ωrf
2

)
b̂†b̂

]
t
}
.

(A7.3)

Upon the satisfaction of the resonance condition (ωpa − ωpb) = ωrf , the time-independent
Hamiltonian, H̃ = UH(t)U † + i~(dU/dt)U †, reads as

H̃ = −~∆↓ |↓〉 〈↓| − ~∆↑ |↑〉 〈↑| − ~∆e |e〉 〈e| − ~∆aâ
†â− ~∆bb̂

†b̂

+ ~ (Ωa + Gaâ) |e〉 〈↓|+ ~
(
Ωb + Gbb̂

)
|e〉 〈↑|+ H.c.

Here the atomic detunings are defined as ∆↓ = −ωrf/2−ω↓, ∆↑ = ωrf/2−ω↑, ∆e = ωp−ωe,
and the cavity detunings as ∆a = ωp + ωrf/2 − ωa and ∆b = ωp − ωrf/2 − ωb. For
large detuning ∆e, the excited state can be adiabatically eliminated and an effective
Hamiltonian is obtained for the two pseudospin ground state manifold

H{〈↓|,〈↑|} = Hc +Hd +Hs. (A7.4)

The first term of the Hamiltonian accounts for the bare energies of the photon fields,
∆a(b),

Hc =− ~∆aâ
†â− ~∆bb̂

†b̂. (A7.5)
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The second term of the Hamiltonian

Hd =
[
−~∆↓ + ~Ω2

a

∆e
+ ~G2

a

∆e
â†â+ ~Ωaga

∆e
(â+ â†)

]
|↓〉 〈↓| (A7.6)

+
[
−~∆↑ + ~Ω2

b

∆e
+ ~G2

b

∆e
b̂†b̂+ ~Ωbgb

∆e
(b̂+ b̂†)

]
|↑〉 〈↑| (A7.7)

describes the light-shifts of the two pseudo-spin energy levels induced by the interaction
of the atom with the pumping lasers and the cavity modes. In particular, ∆↓(↑) represent
the detunings of the bare atomic energies in the co-rotating frame defined by Eq.(A7.3),
and Ω2

a(b)/∆e are the light shifts induced by the pump. The third terms arise from
consecutive absorption and emission processes of cavity photons from the same mode
∼ ~G2

a(b)/∆e. The fourth terms pump the cavity by scattering photons from the pump
inside the optical resonators, shifting the atomic energy levels by ∼ Ga(b)Ωa(b)/∆e.

The last term of the Hamiltonian

Hs = ~
[
Ω + ΩaΩb

∆e
+ Ωagb

∆e
b̂+ Ωbga

∆e
â† + gagb

∆e
â†b̂

]
|↓〉 〈↑|+ H.c., (A7.8)

includes all the spin-flip processes that can take place either because they are externally
driven (as in the case of the radiofrequency Ω in the first term), or because they result
from two-photon scattering processes. In particular, the second term is a classical
Raman transition induced by the two pumps, the third term is a cavity-mediated Raman
transition determined by exchange between the pump and cavity fields, and the fourth
term is a Raman transition solely induced by the cavity fields which redistributes photons
between the two modes.

From here on, for the sake of simplicity we consider −∆↓ + Ω2
a/∆e = −∆↑ + Ω2

b/∆e,
and use a symmetric configuration of the following parameters: η ≡ Ωaga/∆e = Ωbgb/∆e

and U ≡ g2
a/∆e = g2

b/∆e.
Tight-binding model.—Now that all the relevant transitions are made explicit, we

turn to describe the setup for the realization of a two-component Bose-Hubbard model
with cavity mediated hopping. Consider an ensemble of many atoms placed in a linear
optical cavity with the same configuration pumping described in the previous section,
with the internal level structure adiabatically following the center of mass motion of
the particles. The atoms are strongly confined to one dimension at one of the shared
maxima of intensity of the cavity fields, cos(kaxj) = cos(kbxj) = 1. We can thus neglect
the motion along the cavity axis (x-direction) and along the pump direction (z-direction),
and focus solely on the one-dimensional motion along the y-direction. An accelerated
optical lattice with lattice constant λ is placed perpendicularly to the cavity axis (i.e.,
along y-direction) and strongly confines the atoms at the lattice sites. The acceleration
of the optical lattice induces a constant energy gradient, δ, between neighbouring sites
which prevents the natural hopping of particles along the lattice direction. By carefully
tuning to resonance the frequencies of the pumping lasers, it is possible to tune out
of resonance the cavity mediated spin-mixing transitions and considerably simplify the
model. In particular, with the resonance conditions, ωpa − ωa = δ and ωb − ωpb = δ,
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only the externally driven first term of Hamiltonian Hs become relevant. Besides, the
backward and forward tunneling along the lattice are directionally decoupled for the
two pseudo-spin ground states in Hd. For the lower (upper) spin state only the forward
(backward) directional tunneling is tuned to resonance with the condition, ωpa − ωa = δ
(ωb − ωpb = δ).

The Hamiltonian in the tight-binding limit reduces to

H = −~(∆a − UN↓)â†â− ~(∆b − UN↑)b̂†b̂
− η

∑
j

(â†ĉ†↓,j+1ĉ↓,j + b̂ĉ†↑,j+1ĉ↑,j + h.c.)− Ω
∑
j

(ĉ†↓,j ĉ↑,j + ĉ†↑,j ĉ↓,j). (A7.9)

The second internal ground states of the atoms effectively acts as a synthetic dimension,
and the system can be treated as a ladder where the longitudinal tunneling is mediated
by the photons, â and b̂, and the transversal hopping is set by the radiofrequency Ω.

Origin of the synthetic magnetic field.—Consider now the total phase acquired by the
atomic-wavefunction of an atom travelling on a closed trajectory along one plaquette
of the ladder. The phase of the cavity photon â† is first imprinted on the atom by
hopping between neighbouring sites of the lower leg, |j, ↓〉 to |j + 1, ↓〉. Hopping along
the synthetic direction does not imprint any phase, |j + 1, ↓〉 to |j + 1, ↑〉. In the reverse
direction on the upper leg, |j + 1, ↑〉 to |j, ↑〉, the atom will acquire the phase mediated
by the second cavity field, b̂†. Finally, the atom comes back to the initial site without
acquiring any phase, |j, ↑〉 to |j, ↓〉. It is clear that the total phase acquired by the
wave-function in the loop depends on the phases of the two modes, â† and b̂†. This
cavity-imprinted phase is responsible for the emergence of a synthetic magnetic field
piercing the ladder plaquette.

7.B Derivation of Equations 3 and 4
Derivation of the single-particle energy bands.—From here on, the photon fields will be
treated as classical coherent states, α ≡ 〈a〉 = |α|eiφa and β ≡ 〈b〉 = |β|eiφb . Within
this approximation the non-interacting atomic Hamiltonian can be easily diagonalized in
momentum space in the thermodynamic limit, ĉσ,j = ∑

q e
iqj ĉσ,q. The Hamiltonian in

momentum space reads as

H =
∑
q

+~U |α|2ĉ†↓,q ĉ↓,q + ~U |β|2ĉ†↑,q ĉ↑,q −
(
~η|α|e−i(q+φα)ĉ†↓,q ĉ↓,q + ~η|β|e−i(q−φβ)ĉ†↑,q ĉ↑,q

+ ~Ωĉ†↓,q ĉ↑,q + H.c.
)
, (A7.10)

and can be cast in diagonal form, H = ∑
q=± ε±,qγ

†
±,qγ±,q, where the two energy bands

are parametrised in terms of the photon amplitudes α and β as
ε±,q
~

= +U

2
(
|α|2 + |β|2

)
− η|α| cos (q + φα)− η|β| cos (q − φβ)

±

√
Ω2 +

[
η (|α| cos (q + φα)− |β| cos (q − φβ))− U

2 (|α|2 − |β|2)
]2
. (A7.11)
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By inspection of the band structure, it can be noted that the phases of the cavity fields,
φa and φb, couple to the atomic momentum as a vector potential and relatively shift the
minimum of the original uncoupled tight-binding bands by the value of the magnetic flux
piercing one plaquette, ΦB/Φ0B = φa + φb, with Φ0B = ~/Q being the mangnetic flux
quantum and Q the synthetic charge of atom. The presence of a transversal hopping
along the ladder rungs hybridizes the two bands, opens a gap and shifts the minima of the
band structure. For |α| = |β| =

√
nph/2, in analogy to spin-orbit-coupled BEC the band

structure is characterized by a single or double minima, which for a ladder correspond,
respectively, to the Meissner and vortex phase. The transition point from the Meissner
to the vortex phase is thus expected at the splitting of the single minima of the band
structure into two-degenerate minima. Assuming the magnetic flux ΦB/Φ0B = φa + φb is
piercing a plaquette of the ladder, the well known threshold from the Meissner to the
vortex transition can be cast in terms of the photon number, the pump strength and the
magnetic flux as,

ηc =
√

2Ω[√
nph sin( ΦB

2Φ0B
) tan( ΦB

2Φ0B
)
]
η=ηc

. (A7.12)

In our case this is a nonlinear, non-analytical equation, as the photon number intrinsically
depends on the pump strength nph = nph(η). In order to obtain the transition threshold
shown in the main text as a dashed red line in Fig. 7.1a, we have compared our numerical
results for the effective hopping, Jeff = ηnph(η) with the critical hopping Jc = ηc

√
nph(ηc)

– note that the product ηc
√
nph(ηc) is independent of the pump strength and is thus well

defined –. The critical threshold is then obtained as the first numerical point for which
the tunneling Jeff exceed the critical hopping J > Jcrit. The critical pump strength ηc
can be then readily extracted back.

Phase locking.—We now derive the steady state value of the photonic phases φa(b),
from which we show that the induced magnetic flux Φ = φa + φb acquires a dynamical
dependence on the atomic occupation of the two legs. In the adiabatic approximation
for cavity field dynamics, the photonic degrees of freedom can be cast in terms of the
atomic operators by imposing the steady-state condition on the equations of motion for
the cavity amplitudes

i
∂α

∂t
= −(∆ + iκ− UN↓)α− ηΘ↓ = 0, (A7.13)

i
∂β

∂t
= −(∆ + iκ− UN↑)β − ηΘ∗↑ = 0, (A7.14)

where we have defined Θσ = ∑
i〈c
†
σ,i+1cσ,i〉 = |Θσ|eiφσ as the average of the spin resolved
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hopping operator. By only considering the steady-state solution of these equations,

|α| = η√
(∆− UN↓)2 + κ2

|Θ↓|, (A7.15)

φa = arctan
(

κ

∆− UN↓

)
+ φ↓, (A7.16)

|β| = η√
(∆− UN↑)2 + κ2

|Θ↑|, (A7.17)

φb = arctan
(

κ

∆− UN↑

)
− φ↑, (A7.18)

we observe that the phase of the photons φa(b) and the phase of the hopping operator φ↓(↑)
are mutually dependent. Due to momentum conservation the initial state population
in momentum state is conserved. Then if particles are equally distributed among the
legs and prepared in the same momentum state k0 at t = 0, the phase of the translation
operator, Θσ(t = 0) = N/2eik0 exactly coincides with the initial momentum state k0 and
will not evolve in time due to the momentum conservation of the non-interacting system.

If we use a uniform momentum distribution, k0 = 0, the stationary phases φa(b) are
then fixed as we have reported in the main text

φa = arctan
(

κa
∆a − UN↓

)
, (A7.19)

φb = arctan
(

κa
∆b − UN↑

)
. (A7.20)

Note that these phases do not evolve arbitrarily but are fixed by the dissipation constants
and the detuning of the cavity fields. The effective detuning of the two cavity modes is
shifted by the number of atoms in each leg, which self-consistently adapts to the state of
the system. The induced effective gauge potential is therefore entirely dynamical.

7.C Weakly interacting regime

If we focus on the weakly interacting regime of two-body repulsive interactions, the
many-body atomic wave-function can be approximated as a product state of single
particle wave-functions. We can therefore substitute the atomic operators with their
mean-field amplitude ĉi,σ ↔ 〈ĉi,σ〉 = ψi,σ, which satisfy the normalization condition∑
i,σ |ψi,σ|2 = N . The dynamics of the system is then described by a set of non-linear
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equations coupled to the Heisenberg equations of motions for the cavity fields,

i
∂ψi,↓
∂t

= U |α|2ψi,↓ − ηαψi+1,↓ − ηα∗ψi−1,↓ − Ωψi↑ + V

~
|ψi,↓|2ψi,↓ + γV

~
|ψi,↑|2ψi,↓,

i
∂ψi,↑
∂t

= U |β|2ψi,↑ − η(β∗ψi+1,↑ + βψi−1,↑)− Ωψi↓ + V

~
|ψi,↑|2ψi,↑ + γV

~
|ψi,↓|2ψi,↑,

i
∂α

∂t
= −(∆ + iκ− UN↓)α− η

∑
i

ψ∗i+1,↓ψi,↓,

i
∂β

∂t
= −(∆ + iκ− UN↑)β − η

∑
i

ψ∗i,↑ψi+1,↑. (A7.21)

In the main text we solved these equations for V = 1 and γ = 0.1 and looked at the
long-time dynamics of the atomic and photonic states. As an initial condition we used a
uniform density distribution with an equal number of particles distributed in the two legs
for the atomic wave-function, and a random initial seed for the photon amplitude α and β.
Interspecies contact interactions do not qualitatively change the physics of the system but
rather push to higher energies the transition threshold for the photon-imbalanced state
and for the onset of the nonlinear dynamical regime. In contrast intraspecies interactions
do not affect the transition to the nonlinear dynamical regime, but affect the transition
threshold to the photon imbalanced regime.

7.D Derivation of Equation 5

We provide here additional insight on the dynamics of the system at strong pump and
for high densities, where the system fails to reach a stationary state. In this region the
adiabatic approximation for the cavity modes breaks down and the full time dynamics of
the coupled Heisenberg equations of motion must be taken into account. The Heisenberg
equations of motion are a set of complex equations and can be cast in terms of the
amplitudes |α|, |β| and the phases φa, φb of the cavity fields:

∂|α|
∂t

= −κ|α| − J↓
2|α| ,

∂|β|
∂t

= −κ|β|+ J↑
2|β| ; (A7.22)

∂φa
∂t

= (∆− UN↓)−
K↓

2|α|2 ,
∂φb
∂t

= (∆− UN↑)−
K↑

2|β|2 . (A7.23)

Above we have defined the mean-field average longitudinal kinetic energy for the upper leg,
K↑ = −2Re(ηβ∗Θ∗↑), and lower leg, K↓ = −2Re(ηα∗Θ↓), and the mean-field average lon-
gitudinal currents on the upper leg, J↑ = −2ηIm(Θ∗↑β∗), and lower leg, J↓ = 2ηIm(Θ↓α∗),
obtained from the current operators defined in the main text.

The equations of motion for the total number of photon, the photon number difference
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and the magnetic flux piercing the plaquette can be derived as follows,

∂nph
∂t

= −2κnph − J↓ + J↑, (A7.24)
∂∆nph
∂t

= −2κ∆nph − J↓ − J↑, (A7.25)

∂Φ
∂t

= 2∆− UN − nph (K↑ +K↓) + ∆nph (K↑ −K↓)
n2

ph −∆n2
ph

. (A7.26)

From inspection of the Eqs. (A7.24) and (A7.25) it can be directly seen that the chiral
current Jc = J↓ − J↑ and the particle current Jp = J↑ + J↓ act as a source term for
the photon number and the photon number difference. The dissipation constant κ is
responsible for the decay of their amplitude inside the cavity, as expected. The non-
trivial dynamics of the photon number induces a time-dependent leg current and a
time-dependent magnetic flux according to Eq. (A7.26). Such phenomena is therefore
reminiscent of the behaviour of charged particles in a time-dependent magnetic field
where the appearance of an electromotive force (e.m.f), E = −∂ΦB(t)/∂t, opposes to the
time variation of the magnetic flux, ΦB(t). The self-emerging electric field generating the
e.m.f is oriented along the lattice direction ŷ and is given for each leg by the variation of
the phase of the corresponding coupled photon field,

Q
~

E = −Q
~
∂A
∂t

= −
(
φ̇b
φ̇a

)
êy, (A7.27)

with A being the vector potential on links between longitudinal lattice sites.

7.E Mesoscopic ladders
In this section, we solve the few-body problem with a self-consistent exact diagonalization
method (SC-ED). We assume that the entanglement between atoms and photons is
negligible, and treat the photonic degrees of freedom semiclassically, â→ 〈â〉 → α and
b̂ → 〈b̂〉 → β. The atomic Hamiltonian Hα,β is parametrized in terms of the cavity
amplitudes and is exactly solved, giving full access to the effects of correlations induced
by two-body interactions. Throughout the section we will work with ladders of finite size
L and with conserved number of particles N .

Mesoscopic ladders.—We now briefly comment on the role of density correlations for
weak pumps, where the physics is dominated by onsite interactions. We study the few
particle physics in mesoscopic ladders using a self-consistent exact diagonalization method
with periodic boundary conditions [6.20]. Notably, two-particle correlations give rise to a
pump-strength threshold at half-filling for the onset of superradiance and appearance
of the gauge potential. We identify a transition between a PB-M and a PI-BL state by
increasing the pump strength, in agreement with the mean-field results.

For open boundary conditions on the other hand, the current conservation forces the
two cavity modes to be populated equally, thus hindering the transition to the photon-
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Figure 7.E.1: (a) Converged magnetic flux, total photon number and photon number
difference from top to bottom panel, for a ladder of length L = 5 and
increasing number of particles N = 1, 2, 3, 4, 5. (PBC). (b) Converged
magnetic flux and total photon number from top to bottom for a ladder
of length L = 5 (OBC). The photon number difference is not reported for
OBC as it vanishes identically in the parameter space. In gray regions of
dynamical instability for (a) and (b). (c) Direct comparison of the rescaled
photon amplitude of the two modes, |α|/

√
N and |β|/

√
N , for PBC (black)

and OBC (blue) for N = 2, 4, 5 in I, II and III respectively. The red (blue)
arrows on top of each panel show the pumping strengths for which the
PBC (OBC) currents are obtained in (d). Other parameters are same as
Fig. 7.1 of the main text.

imbalanced regime. However, in contrast to Ref. [6.5], the system is characterized by a
steady-state superradiant phase with loop current of the size of the whole system [6.20].

Algorithm.— The SC-ED algorithm searches self-consistent solutions of the atomic
ground state by optimizing the values of the light field amplitudes, α and β, which act
as variational parameters. The matrix elements of the atomic Hamiltonian, Hnm(α, β) =
〈n|Hα,β |m〉, are parametrized in terms of the cavity amplitudes, and written in the
many-body basis of Fock states {|n〉} = |n1↓, n2↓, ..., nL↓, n1↑, n2↑, ..., nL↑〉. Here, each
niσ represents the occupation of the lattice site, i, on the upper (σ =↑) or lower (σ =↓)
leg of the ladder. The algorithm is based on two fundamental steps which are repeated
until convergence: diagonalization and calculation of the variational parameters α and β.

The algoritm starts with the initialization of the cavity amplitudes to a random
guess, α0 and β0. The diagonalization step determines the lowest energy many-body
state,ΨGS(α0, β0), which corresponds to the atomic Hamiltonian, Hα0,β0 . As a second
step, the cavity fields αnew and βnew are up-dated according to the stationary equations
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(A7.13) and (A7.14), which are averaged over the ground state, ΨGS(α0, β0). The
convergence criteria measures the distance of the new solution to the old one, c =
1/2

√
(αnew − α0)2 + (βnew − β0)2. If the criteria is less than a certain tolerance t = 10−7,

the algorithm output is given by the converged values of the cavity amplitudes and atomic
ground state. If the criteria exceeds the tolerance, new matrix elements Hnm(αnew, βnew)
are calculated based on the new averages of the cavity amplitudes, αnew and βnew. The
procedure is repeated until convergence.

Phase diagram.— In Fig. 7.E.1 we report results for a mesoscopic ladder of size L = 5
for both periodic (PBC) and open boundary conditions (OBC). The phase diagram is
shown in Fig. 7.E.1(a) for PBC and in Fig. 7.E.1(b) for OBC for increasing pumping
strength

√
Nη and number of particles 1 < N < 5. Note that, given the small system

size and discrete number of particles, the phase diagram obtained in this section can
only be compared to longitudinal cuts of Fig. 7.1 in the main text corresponding to
densities n = {0.1, 0.2, 0.3, 0.4, 0.5}. Overall we find good qualitative agreement between
the mean field results obtained via time evolution of the Schrodinger equations and the
behaviour of the system predicted by SC-ED. In the top panels of Fig. 7.E.1(a) and
(b), the converged magnetic flux ΦB/(Φ0Bπ) shows a prominent density dependence in
agreement with the mean-field results. In the middle panels, the total photon number
nph gradually increases confirming the absence of a superradiant threshold with the
exception of N = 5. This is shown in Fig. 7.E.1(c) where the photon amplitudes |α|/

√
N

and |β|/
√
N for N = 5 are reported in full (bottom panel). The strong suppression of

the photon amplitude at half-filling implies a reduction of the kinetic energy along the
ladder direction, thus characterizing a Mott insulating state for the atoms. The bottom
panel in Fig. 7.E.1(a) shows the photon number difference ∆nph for PBC. We identify
a transition from a photon balanced regime (∆nph = 0) at weak pumping to a photon
imbalanced regime (∆nph 6= 0) at strong pumping. The two regimes are characterized by
the current patterns shown in Fig. 7.E.1(d), and correspond to the Meissner and biased
ladder current pattern also discussed in the main text. Results of ∆nph for OBC are
not reported in Fig. 7.E.1(b) because the photon number difference vanishes identically.
With OBC the boundary enforces current conservation between the two legs, resulting in
an equal photon number for the two modes and loop currents of the size of the whole
system Fig. 7.E.1(d).

Finite size effect.— We come now to describe some effects that arise due to the finite
size of the system. We identify an unusual behavior of the converged ground state for
commensurate filling N = 2 and N = 4: anomalous photon-balanced states are stabilized
and exhibit counter-propagating currents similarly to the Meissner phase [Fig. 7.E.1(d)].
For incummensurate filling N = 1, N = 3 and N = 5, the usual photon-balanced vs
photon-imbalanced transition is retrieved instead. The unusual behaviour distinguishing
odd (incommensurate) to even (commensurate) filling could depend on the finite size of
the system and the survival of such phases is thus not guaranteed in the thermodynamic
limit.
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8 Conclusions and Outlook
This Thesis studied the emergent phenomena arising in ultra-cold cold atomic ensembles
coupled to quantized light fields in optical resonators. After introducing the main
conceptual and methodological tools which fundamentally build this Thesis, we turned to
the describe the properties of the superradiant self-organization of ultra-cold atomic gases
coupled to a single cavity mode. This illustrative example not only allowed to introduce
powerful numerical and field-integral approaches to study such complex problems, but
provided a better understanding of the cooperative phenomena arising from the non-linear
coupling of the photons fields and atomic dynamics in a cavity.

Next, we extended the theory for the superradiant self-organization to spinor quantum
gases and introduced a generalized multi-level transition scheme that allows to generate
long-range photon-mediated interactions that are sensitive to the internal state of the
atoms. In such set-ups the interplay between the atomic external and internal degrees of
freedom lead to emergence of spin structures which drive the system into the superradiant
phase. We have seen an example of the formation of such spin textures for a spinor Fermi
gas coupled to two degenerate modes of a ring cavity. Here, the emerging self-ordered
state adopts an antiferromangetic character with spin and density waves propagating at
a wave-length commensurate with the cavity.

The possibility of controlling both the center of mass motion and the internal state of
the atoms provides the opportunity of simulating synthetic dynamic spin-orbit coupling,
and artificial gauge fields. To this extent we have thoroughly reviewed the fundamental
advantages of cavity-mediated schemes compared to their free space counterpart in the
simulation of gauge theories. In these systems the gauge field spontaneously arise in the
superradiant phase by the means of the coherent photon build-up, and the non-linear
atom-photon coupling allows to generate gauge fields which feel the back-action of the
matter they are coupled to, and are therefore fully dynamical.

A first step toward the simulation of a dynamical gauge theory has been addressed
by studying the physics of a Fermi gas confined in a two dimensional lattice with cavity
induced hopping. The spatial phase profile of the pumping lasers is imprinted onto the
atomic wave-function effectively simulating an Aharonov-Bohm phase. In the superradiant
regime the interplay between the fractalization of the band structure and the typical
threshold behaviour of the phase transition, result in a non-trivial deformation of the
energy spectrum compared to the well known Hofstadter spectrum.

By extending the model to a multi-mode cavity for a spinor quantum gas confined in
one dimension we were able to render the emerging gauge field density dependent and
fully dynamical. The dissipative nature of the cavity is responsible for the stabilization
of persistent particle currents. Limit-cycle oscillations of the photon field result in a
time-dependent synthetic magnetic flux which in turn induces a synthetic electromotive
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force, in a mechanism reminiscent of Faraday’s law of induction.
In summary we have shown that the non-linearity of the atom-photon coupling and

the intrinsic dissipative nature of the cavity environment lead to new phenomena that
cannot be achieved in standard laser generated potentials in free space. Therefore cavity-
generated optical potentials are a powerful tool for the quantum simulation of exotic
many-body Hamiltonians, leading to emergence of non-trivial states of light and matter.

This Thesis motivates further studies for the development of generalized quantum
simulations adopting light-fields in optical resonators. As a potential extension, one
could explore the role of interactions for the superradiant self-organization for degenerate
strongly interacting Fermi gases. This intriguing problem is also motivated the recent
advancement in the experimental community, as the first experiments adopting fermionic
species have only recently been brought forward. On this line, the realization of two-body
correlations via single photon coupling in fermions could provide a platform for the
realization of exotic pairing mechanisms in analogy to high-Tc superconductivity. This
could for instance be achieved by dispersively coupling a two particles bound state to
a molecular state through a cavity induced photo-association transition. On a more
general level similar photo-association transitions could be used to realize a superradiant
quantum chemistry simulator. Finally, new pathways are opened for the study of cavity
mediated gauge fields: an index of refraction which locally changes throughout the
medium would render the dispersive shift of the cavity inhomogeneous, and realize a local
density-dependent gauge field. This could be of particular interest for the realization of
anionic states in condensed matter systems, and in the quantum simulation of lattice
gauge theories. At last turning to non-adiabatic regimes, the exploration of the dynamics
of these non-linear quantum systems is an intriguing problem which could lead to the
discovery of new stable limit cycles regimes, which could be interpreted as time crystals,
or of relevant quantum chaotic regimes.
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[1.36] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner, “Supersolid
formation in a quantum gas breaking a continuous translational symmetry,” Nature,
vol. 543, pp. 87–90, Mar 2017.
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[5.21] J. Léonard, A. Morales, P. Zupancic, T. Donner, and T. Esslinger, “Monitoring and
manipulating higgs and goldstone modes in a supersolid quantum gas,” Science,
vol. 358, pp. 1415–1418, dec 2017.

[5.22] C. Georges, J. G. Cosme, L. Mathey, and A. Hemmerich, “Light-induced coherence
in an atom-cavity system,” Phys. Rev. Lett., vol. 121, p. 220405, Nov 2018.

[5.23] F. Mivehvar, F. , and H. Ritsch, “Disorder-driven density and spin self-ordering of
a Bose-Einstein condensate in a cavity,” Phys. Rev. Lett., vol. 119, p. 063602, Aug
2017.

[5.24] S. Ostermann, H.-W. Lau, H. Ritsch, and F. Mivehvar, “Cavity-induced emergent
topological spin textures in a Bose–Einstein condensate,” New J. Phys., vol. 21,
p. 013029, Jan. 2019.

109



References for Chapter 5
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