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Abstract

In this thesis I study the influence of the interaction of multiple two level systems on
the properties of their joint system. I explain the two level system and study their
interaction. I motivate the master equation and the Hamiltonian of the system itself.
I study the pair of atoms, derive its energy states and its decay rate and show what
sub and superadiant states are. I simulate numerically the energy and decay rate of the
states with the quantum optics toolbox for the Julia programming language. Introduce
the single excitation manifold and derive a effective Hamiltonian for this model. I
use the model to describe a ring of atoms and analytically derive the eigenstates and
eigenvalues of its effective Hamiltonian. I simulate the dependency of the energy and
decay rate of the states on the radius of the ring again using the quantum optics toolbox.
I also examine the dependecy of the decay rate on the distance of the atoms in the ring.
Finally I show the intensity of the electric field of a sub- and a superradiant state of
such a ring.



2

1 Introduction 3

2 The two level system and spontaneous emission 4

3 Master equation 5

4 Pair of atoms 6
4.1 Sub- and supperradiant eigenstates . . . . . . . . . . . . . . . . . . . . . 6
4.2 Energy shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Shift of the decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Julia code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 First-Excitation 10

6 Ring of atoms 11
6.1 Analytical eigenstates and -values . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Energy shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Julia code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.5 Electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Conclusion 19

8 Appendix 20

9 References 20



3

1. Introduction

A big part of the studies in quantum optics is the understanding of the interaction
of photons with atoms. Also the interaction between quantum emitters is caused by
their dipole moments interacting with the external field and vice versa. This interaction
leads to a change in the properties like energy and decay rate of the entire system.
The magnitude and effect of the interaction depends on the geometry of the system
itself. Especially the effects called sub- and superradiance, states with a decreased and
increased decay rate and therefore photon emission are of interest. This may seem like
a very theoretical principle and mostly it is but there are also some links to reality. In
quantum computing the principle can be used to achieve a suppression of the infidelity
of quantum memory [1]. In the field of quantum information it is also important being
able to send information over long distances with a preferably small loss of information
or energy. It can be seen that interacting rings of dipole atoms show a transfer of
subradiant states between the rings with a minimal loss of information [2]. Also in the
field of biology does this theory appear. In photosynthesis the light harvesting comlexes
like LHC-I and LHC-2 are complex ring structures [3]. They use the coherent transfer
of states between such rings to transport the energy to the reaction center.
The theory of the dipole interaction between different atoms in different geometries
is therefore a very fundamental and present topic in the field of quantum optics. In
this Bachelor-Thesis I study the interaction between two level systems and examine
the effect on a pair and a ring of atoms to clearly show the appearing subraidiant and
superraidient states.
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2. The two level system and spontaneous emission

A quantum-mechanical system can be described by its Hamiltonian H. The eigenvectors
of this hamiltonien give the so called eigenstates of the system, all eigenstates build a
basis of the Hilbert space in which the system exists, that means all possible states of
the system can be described as a linear combination of these eigenstates. The eigenvalue
to a eigenstate gives the energy of the state, a measurement of the energy of the state
results always in one of these eigenvalues.
A two level system is a system whose hamiltonian has exactly two eigenstates |g〉 an
|e〉 wit eigenvalues Eg and Ee where Eg < Ee. In the following the zero-point of the
energy space is set to Eg therefore the energy difference between the two states results to
Ee − Eg = Ee = ω0. One can also define so called ladder operator. The rising operator
σ+ shifts the ground state to the exited state whereas the lowering operator σ− shifts
the exited state to the ground state.
If we describe the time dependency of the system with the time evolution operator with
is calculated from the Hamiltonian of solely the two level system it would seem that the
ground state as well as the exited are stable. This is certainly not true. The mistake
yields from the choice of the system. Because it turns out that the chosen system does
not obey energy conservation, to get the correct result for the time evolution one has
to include a external electric field with whom the atoms interact. This leads to three
phenomena:

• spontaneous emission

• induced emission

• absorption

Spontaneous emission describes the phenomena where the exited state decays into the
ground state without any external influences. The possibility of the state decaying in a
certain time interval is given by the decay rate Γ0 of the exited state. In case of such
a decay the system loses the energy trough emitting a photon into the external field.
The photon has to carry away the energy difference of the two states and therefore has
a wavelength of λ0 = hω0/2π.
It is also possible that the system makes a transition which is driven by the external
field. This is then called a induced emission if the atom goes from exited state to ground
state and a absorption if the if it goes from the ground state to the exited state.
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3. Master equation

In this chapter I want to briefly motivate the master equation. The full derivation can
be found in [4].
Now one can look at a system of N such two level systems. To derive the time evolution
of the system we start with the Hamiltonian of the atoms and their environment [4]

Htot = ω0

N∑
i=1

σ+
i σ
−
i︸ ︷︷ ︸

H0

+
∑
~k,λ

ω~kâ
†
~k,λ
â~k,λ︸ ︷︷ ︸

HF

−
N∑
i=1

~di · E(~ri)︸ ︷︷ ︸
Hint

. (1)

H0 describes the sum over all the energies of the atoms themselves. HF is the
Hamiltonian of the external field calculated by a sum over all modes and the creation
and annihilation operators â†~k,λ and â~k,λ. The last therm Hint describes the interaction
of the dipole moments of the atoms with the external field. From this Hamiltonian it
is possible to calculate the time evolution of the system of atoms without the external
field with by using the von Neumann equation

∂tρ = i[ρ,Htot] (2)

with the density operator ρ. By performing a trace over the external field, and by using
the Makov and rotating waver approximation this leads to the so called Master equation
[4]

dρ

dt
= −i[H, ρ] + L[ρ]. (3)

with the new Hamiltonian of the system [4]

H = ω0

N∑
i=0

σ+
i σ
−
i +

∑
i 6=j

Ωijσ
−
i σ

+
j (4)

where Ωij describes the energy shift caused by only the interaction between atom i and
atom j. This matrix is calculated with the help of the Greens tensor Gij which describes
the interaction of dipoles through [2]

Ωij = −3πΓ0

k0

Re(~µ∗i ·G(~ri − ~rj, ω0) · ~µj). (5)
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While Htot describes a system of N atoms where the atoms interact only with the
external field, is H now the Hamiltonian of N atoms which interact with each other.
The first sum of the Hamiltonian describes the energy of all atoms while the secon
part describes the Interaction. Because this new Hamiltonian dose not obey energy
conservation the time evolution is described by the Master equation and can not be
calculated with the help of the evolution operator or the von Neumann equation. The
second part of the Master equation is the so called Lindbald term [4]

L[ρ] =
1

2

∑
i,j

Γij

 2σ−i ρσ
+
j︸ ︷︷ ︸

recycling Term

−σ+
i σ
−
j ρ− ρσ+

i σ
−
j

 (6)

where Γij describes the shift of the decay rate caused by only the interaction between
atom i and atom j. It is also calculated with the Greens tensor through [2]

Γij =
6πΓ0

k0

Im(~µ∗i ·G(~ri − ~rj, ω0) · ~µj). (7)

The recycling therm in the Linbald equation makes sure that the total occupation
number of the system is constant, this means that if a higher state decays, its occupation
number must be distributed over the states which have the next lower energy.

4. Pair of atoms

4.1. Sub- and supperradiant eigenstates

The simplest geometry to look at, is the pair of atoms. It only depends on the distance
of the two atoms and the orientation of their dipole-moments relative to the vector that
connects the two atoms. Both two level Systems have a basis b witch spans a Hilbert
space H̃ with dimension 2. The space of the total system H of both atoms is formed
with the tensor-product of both Hilbert spaces

H = H̃ ⊗ H̃ mit dim(H) = 4 (8)

and is spanned by the basis (|gg〉 , |eg〉 , |ge〉 , |ee〉). The rising and lowering-operators of
the isolated two level system σ+ and σ− have to be expanded onto the common Hilbert
space.

σ+,−
1 = σ+,− ⊗ 1

σ+,−
2 = 1⊗ σ+,−

Now it is possible to form the Hamiltonian for the pair of atoms with the formula for
the Hamiltonian of the N-atom system 4. Because of the Symmetry under exchange of
the atoms, the equality Ω12 = Ω21 holds. The Hamiltonian can now be described as a
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matrix of the form

H =


2ω0 0 0 0

0 ω0 Ω12 0

0 Ω12 ω0 0

0 0 0 0

 .

This leads to the eigenvalues 2ω, ω + Ω12, ω − Ω and 0 and the associated eigenstates

EV (2ω0) = |ee〉

EV (ω0 + Ω12) = |S〉 =
1√
2

(|eg〉+ |ge〉)

EV (ω0 − Ω12) = |A〉 =
1√
2

(|eg〉 − |ge〉)

EV (0) = |gg〉

It can be noticed that the interaction doesn’t influence the energy of the |gg〉 and the |ee〉
state. The energy of the symmetric triplet-state |S〉 gets shifted upwards by Ω12 whereas
the anti symmetric singlet-state |A〉 gets shifted downwards by Ω12. The decay rate can
be determined with the time development [4]. This leads to two decay channels one
trough |S〉 whose decay rate is increased by Γ12 and one trough |A〉 which is decreased
by Γ12.

E

0

ω0

2ω0

Γ− Γ12

Γ− Γ12

|gg〉

|ee〉

|S〉

|A〉

Ω12

Ω12

Γ + Γ12

Γ + Γ12

A decreased decay rate leads to a smaller phonon emission rate, therefore the state with
a suppressed decay rate is called subradiant and the state with a elevated decay rate is
called supperradiant.

4.2. Energy shift

In figure 1 is the energy-shift Ω12, scaled with the decay rate of the isolated two level
system Γ0 as a function of the distance of the atoms shown. The graph ~µ ⊥ ~d describes
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the dependency for the the dipole moments directed perpendicular to the connecting
vector of the Atoms whereas ~µ ‖ ~d describes it for the parallel alignment.

Figure 1. In the figure is the dependency of the energy shift on the distance of the
atoms, for a orthogonal (blue) and a parallel (orange) alignment of the dipoles , shown.

It can be noticed that the absolute value of the energy shift increases for small dis-
tances whereas it becomes zero for large distances. For large distances the interaction
between the atoms decreases and therefore they should behave like two isolated systems
at a infinite distance whereby the energy of the sub and the superradiant state becomes
ω0.

4.3. Shift of the decay rate

In figure 2 is the shift of the decay rate, again scaled with the Γ0 for both alignments of
the dipole moments shown. Also this shift approaches zero,hence the isolated case, for
large distances. For small distances it approaches Γ0 for both orientations. This means
the decay rate of the supperradiant state nearly becomes 2Γ0,witch is the maximum
possible value for the system, whereas the subradiant decay rate approaches 0, the state
becomes nearly stable. In this case the subradiant state also gets called dark because it
shows a very suppressed photon emission.



9

Figure 2. In the figure is the dependency of the shift of the decay rate on the distance
of the atoms, for a orthogonal (blue) and a parallel (orange) alignment of the dipoles
, shown.

The sign of the energy shift depends on the orientation of the dipole moments whereas
the shift of the decay rate for small distances is in both cases positive. This means
that the state with higher energy does not always have a increased decay rate, for some
orientation of the dipole moments and distances of the atoms the subradiant state is
energetically higher then the supperradiant state.

4.4. Julia code

The following script calculates the eigenvalues and eienstates of a pair of atoms. The
energy shift and the shift of the decay rate can be calculated with the functions
Omega2_ij and Gamma2_ij.

� �
1 using QuantumOptics
2 using PyPlot;pygui(true)
3 using LinearAlgebra # for scalar product and normalize
4 using CollectiveSpins # fo Omega and Gamma Funktion
5
6 #Define gemoetry of system
7 k0 = 2pi
8 d = 2
9

10 #define positions both atoms
11 pos = []
12 push!(pos,[d,0,0])
13 push!(pos,[-d,0,0])
14
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15 #Define dipolemoment of atoms (orthogonal case)
16 dips = []
17 push!(dips,[0,0,1])
18 push!(dips,[0,0,1])
19
20 #defines basiis ,Hilbert space, and operators
21 b = NLevelBasis(2) # single two-level atom
22 σ = transition(b, 1,2) # lowering operator
23 σp = dagger(σ) # raising operator
24
25 ba = b⊗b # total hilbert space
26
27 # vector with the operators means translate operator
28 #from basis of single atom to basis of hilbert space
29 sm = [];sp=[]
30 for i = 1:N
31 push!(sm,embed(ba,i,σ))
32 push!(sp,embed(ba,i,σp))
33 end
34
35 # Omega and Gamma functions using GreenTensor() from CollectiveSpins
36 function Omega2_ij(r1, r2, µ1, µ2; k0 = 2π)
37 if r1 == r2
38 return 0.0
39 else
40 G_re = real(GreenTensor(r1 - r2, k0))
41 return -0.75 * (dot(µ1, G_re, µ2))
42 end
43 end
44 function Gamma2_ij(r1, r2, µ1, µ2; k0 = 2π)
45 if (r1 == r2) && (µ1 == µ2)
46 return 1.0
47 elseif (r1 == r2) && (µ1 != µ2)
48 return 0.0
49 else
50 G_im = imag(GreenTensor(r1 - r2, k0))
51 return 1.5 * real(dot(µ1, G_im, µ2))
52 end
53 end
54
55 Ω(i, j) = Omega2_ij(pos[i], pos[j], dips[i], dips[j]; k0 = 2pi)
56 Γ(i, j) = Gamma2_ij(pos[i], pos[j], dips[i], dips[j]; k0 = 2pi)
57
58 #calculate hamiltonian
59 H = sum(sp[i]*sm[i] for i=1:N) + sum(Ω(i, j)*sp[i]*sm[j] for i=1:N, j=1:N)
60
61 #calculate eigenstates and eigenvalues
62 λ_val,λ_vec = eigenstates(dense(H))� �

5. First-Excitation

In this chapter I am going to look at a model witch is used to simplify systems with a
larger number of atoms by looking only at the states in the so called first excitation.
For large distances the systems has to behave like N isolated two level systems. For the
none interacting case the states show a binomial distribution in the energy space. This
means that

(
N
n

)
states have an energy of nω0. This leads to a number of N states in the

first excitation with energy ω0. Now the goal is to build a system witch only includes
this N states. This system now has a dimension of N and the states in single excitation
form a basis for the new space of the system. All states in first excitation decay into
the ground state, which is not part of the new system . This means every decay in our
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new system leads to a loss of occupation in the new system. In the original system the
recycling term ensured the conservation of the occupation number, in the new system
it is not conserved anymore and the recycling therm is set to zero. This leads to [2]

dρ

dt
= −i [H, ρ]− 1

2

∑
i,j

Γij{σ+
i σ
−
j , ρ} (9)

= −i[Heff , ρ] (10)

with the commutator [A,B] = A∗B − AB∗. This effective Hamiltonian Heff describes
our new system. Because the systems occupation number is not conserved its
Hamiltonian is not hermitian and its eigenvalues are not real. The real part of the
ith eigenvalue gives the energy shift of the ith eigenstate around the single excitation
ω0 whereas the imaginary part gives the total decay rate of the ith eigenstate [2]

Heff =
∑
ij

(
Ωij −

i

2
Γij

)
σ+
i σ
−
j (11)

Ωi = Re(λi) Γi = −2 Im(λi) i = 1...N. (12)

The energies of the atoms themselves are not included in the Hamiltonian because we
now describe the system in a frame witch is rotating with the the atomic transition
frequency ω0 [2].

6. Ring of atoms

I this part I am going to use the single excitation model to examine a ring of interacting
atoms. The atoms are distributed symmetrically across the ring, this means that the
angle θ and the distance d between two neighboring atoms is equal for all atoms.

6.1. Analytical eigenstates and -values

From a numerical point of view the work would be done. With the effective
Hammiltonian 11 we aren now able to describe every system with a finite number of
particles and calculate numerically the eigenvalues to determine the shift of the energy
and the decay rate with equations 12. But the ring has a special property, because of its
strong symmetry it is even possible to calculate its eigenstates and -values analytically.
First I rewrite the effective Hamiltonian by inserting the definition for Ωij 5 and Γij 7.
This leads to

Heff =
3πΓ0

k0

∑
i,j

Gijσ
+
i σ
−
j (13)
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with

Gij = ~µ∗i ·G(~ri − ~rj, ω0)~µj. (14)

Then i perform a Fourier-Transform over the creation and annihilation operators like

σ+
m =

1√
N

∑
i

e−imθiσ+
i (15)

where θi is the angle of atom i in the ring. Now it is also possible to constitute σ+
i as a

Fourier-transform of σ+
m

σ+
i =

1√
N

∑
m

eimθiσ+
m, (16)

and insert it into the effective Hamiltonian. Doing the same for the operator σ−j i get a
effective Hamiltonian of the form

Heff =
3πΓ0

k0N

∑
m,m̃

∑
i,j

Gije
imθieim̃θjσ+

mσ
−
m̃ (17)

=
3πΓ0

k0N

∑
m,m̃

∑
i,j

Gije
imθieim̃θjeimθje−imθjσ+

mσ
−
m̃ (18)

=
3πΓ0

k0N

∑
m,m̃

∑
i,j

Gije
im(θi−θj)eiθj(m−m̃)σ+

mσ
−
m̃. (19)

Now i use the symmetry of the ring to rewrite the sum over i and j∑
j

∑
i

Gije
im(θi−θj) =

∑
j

∑
k

G1ke
imk 2π

N (20)

where the atom with index 1 is at the angle θ1 = 0. Using this it is possible to diagonalize
the effective Hamiltonian

Heff =
3πΓ0

k0N

∑
m,m̃

∑
j,k

G1ke
imk 2π

N eiθj(m−m̃)σ+
mσ
−
m̃ (21)

=
3πΓ0

k0N

∑
m,m̃

∑
j,k

G1ke
imk 2π

N δm,m̃σ
+
mσ
−
m̃ (22)

=
3πΓ0

k0N

∑
m

∑
j,k

G1ke
imk 2π

N σ+
mσ
−
m (23)

Therefore the eigenvalues of the effective hamiltonian are

λm = −3πΓ0

k0N

∑
i,j

eim∗(θi−θjGij (24)

where m =
{⌈
−(N−1)

2

⌉
, ...,

⌊
N
2

⌋}
. The corresponding eigenstates can be calculated by

using the new creation operator on the ground state

|m〉 = σ+
m |g〉 . (25)
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6.2. Energy shift

In figure 3 is the energy shift Ω in dependence of the radius of the ring for all
eigenstates in the single excitation manifold, for the perpendicular orientation of the
dipole moments, shown. In figure 4 is the energy shift Ω in dependence of the radius of
the ring for all eigenstates in the single excitation manifold, for the tangential orientation
of the dipole moments shown. It can be noticed that some states are degenerate which
means they have the same eigenvalues. This is the case for the eigenstates with m = i

and m = −i for −N
2

+ 1 ≤ i ≤ N
2
− 1 for a even number of atoms N . Also the state

with m = −N
2
has the same eigenvalue as the state with m = N

2
but they only differ

by a global phase and describe the same eigenstate.More generally said, every state
with m = i describes the same eigenstate as the state with m = i + N , because of the
rotation symmetry of the ring. Also for the ring geometry the interaction and therefore
the energy shift gets smaller for big radii and consequently larger distances of the atoms.
For small radii the absolute value of the increases. The sign of the of the shift for each
state depends on the orientation of the dipoleoments but for the perpendicular as well
as the parallel orientation the energy of half of the states get shifted upwards while the
energy of the other half gets shifted downwards.

Figure 3. In the figure is the energy shift Ω in dependence of the radius of the ring
for all eigenstates in the single excitation manifold, for the perpendicular orientation
of the dipole moments shown.
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Figure 4. In the figure is the energy shift Ω in dependence of the radius of the ring
for all eigenstates in the single excitation manifold, for the tangential orientation of
the dipole moments shown.

6.3. Decay rate

In figure 5 is the decay rate Γ in dependence of the radius of the ring for all eigenstates in
the single excitation manifold, for the perpendicular orientation of the dipole moments
shown. In figure 6 is the decay rate Γ in dependence of the radius of the ring for all
eigenstates in the single excitation manifold, for the tangential orientation of the dipole
moments shown. For large radii the decay rate approaches Γ0, hence the non interacting
case. In the perpendicular case the the decay rate of the non degenerate state m = 0

approaches 6Γ0 and the decay rate of all other states goes to zero. For the tangential
orientation the decay rate of the degenerate states m = 1 and m = −1 approaches 3Γ0

while the decay rate of the other states goes to zero. But the sum over all decay rates
gives always the maximum decay rate of NΓ0 = 6Γ0. It can also be noticed that for
different radii, different states become super and subradiant.
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Figure 5. In the figure is the decay rate Γ in dependence of the radius of the ring
for all eigenstates in the single excitation manifold, for the perpendicular orientation
of the dipole moments shown.

Figure 6. In the figure is the decay rate Γ in dependence of the radius of the ring for
all eigenstates in the single excitation manifold, for the tangential orientation of the
dipole moments shown.
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In figure 7 is the minimal decay of all states Γsub in dependence of the number of atoms
on the ring on a logarithmic scale shown. The distance d between the atom is held at
a constant value. It can be noticed that the subradiant decay rate drops exponentially
with the number of atoms on the ring.

Figure 7. In the figure is the minimal decay of all states in dependence of the number
of atoms on the ring on a logarithmic scale shown. The distance d between the atom
is held at a constant value.

6.4. Julia code

� �
1 using QuantumOptics
2 using PyPlot;pygui(true)
3 using LinearAlgebra # for scalar product and normalize
4 using CollectiveSpins # fo Omega and Gamma Funktion
5
6 #define number of atoms and size of Ring
7 N=6
8 R = 1
9

10 #define angles of atoms on ring
11 angles = []
12 for i = 1:N
13 ϕ = i*2*pi/N
14 push!(angles,ϕ)
15 end
16
17
18 #define positions of atoms on ring
19 pos = []
20 for ϕ in angles
21 push!(pos,[R*cos(ϕ),R*sin(ϕ),0])
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22 end
23
24 #define dipoles of atoms (tangential case)
25 dips = []
26 for ϕ in angles
27 push!(dips,[-sin(ϕ),cos(ϕ),0])
28 end
29
30 #define new systen mit rainsing/lowering operator from/to ground state
31 #ground state not in new system
32 bs = NLevelBasis(N+1)
33 sm = []
34 sp = []
35 for i = 1:N
36 sm_val = transition(bs,1,N+2-i)
37 push!(sm,sm_val)
38 push!(sp,dagger(sm_val))
39 end
40
41 #define analytically calculated eigenstates
42 function psi(m)
43 return 1/sqrt(N)*sum(exp(im*m*angles[j])*sp[j] for j= 1:N)*nlevelstate(bs,1)
44 end
45
46
47 #calculate effective hamiltonien
48 Ω(i, j) = Omega2_ij(pos[i], pos[j], dips[i], dips[j]; k0 = 2pi)
49 Γ(i, j) = Gamma2_ij(pos[i], pos[j], dips[i], dips[j]; k0 = 2pi)
50 H_eff = sum((Ω(i,j)-im/2*Γ(i,j))*sp[i]*sm[j] for i = 1:N,j = 1:N)
51
52
53 if N%2 != 0
54 m_min = -Int((N-1)/2)
55 m_max = -m_min
56 else
57 m_min = -Int(N/2)+1
58 m_max = Int(N/2)
59 end
60
61 #calculate all eigenvalues
62 λ_array = []
63 for m = m_min:m_max
64 ψ_m = psi(m)
65 λ_m = dagger(ψ_m)*H_eff*ψ_m
66 push!(λ_array,λ_m)
67 end� �

The Omega2_ij and Gamma2_ij function are defined the same way as in the code
of the pair, therefore the definitions where omitted in this code example. Although i
described the first excitation model in the previous chapter as a space with dimension
N i defined in the code in line 32 a N + 1 dimensional space. Because the states with
single excitation decay in to the ground state, which is not in the system i would have
had to use creation and annihilation operators and a Fock space. Therefore i added an
extra dimension for the ground state and was able to use simple lowering and raising
operators. I corrected this extra dimension by defining the ladder operators only for the
excited states.
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6.5. Electric field

The electric field of an ensemble of N two level systems can be calculated with the
general input-output equation in the time domain without external field [1]

Ê+(r) = µ0ω
2
0

N∑
i=1

G(r, ri, ω0)µiσ
+
i . (26)

Then the intensity can be calculated trough

Î =
(
Ê+
x

)†
Ê+
x +

(
Ê+
y

)†
Ê+
y +

(
Ê+
z

)†
Ê+
z . (27)

In figure 8 the expectation value of the intensity operator on the xy-plane for a
subradiant (left) and a supperradiant (right) state of a ring with 10 atoms.

Figure 8. In the figure is the expectation value of the intensity operator in the xy-
plane for a subradiant (left) and a superradiant (right) state of a ring with 10 atoms
plotted.

In figure 9 the expectation value of the intensity operator on the xz-plane for a subradiant
(left) and a supperradiant (right) state of a ring with 10 atoms.
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Figure 9. In the figure is the expectation value of the intensity operator in the xz-
plane for a subradiant (left) and a superradiant (right) state of a ring with 10 atoms
plotted.

7. Conclusion

First I looked at the single two level system and introduced some concepts like the
spontaneous emission. Then I expanded the system onto a larger number of atoms
and discussed the master equation as the time evolution of the system. Then I looked
at the Pair of atoms and calculated the eigenstates and eigenvalues of the system. I
showed that the interaction results in a subradiant and a superradiant state with a
decreased and a increased decay rate. The interaction also results in a shift of the
energy of the |S〉 and the |A〉 state. I numerically calculated the shift of the decay rate
and the shift of the energy with the help of the quantum optics toolbox for the Julia
programming language. It turned out that the energy shift increases for small distances
of the atoms and approaches zero for large distances, furthermore I saw that the sign of
the shift depends on the orientation of the dipole moments of the atoms. The shift of
the decayrate also approaches zero for large distances but for smaller distances it goes
to Γ0. Witch leads to a decay rate Γ = 2Γ0 for the symmetric eigenstate |S〉 and Γ = 0

for the anti symmetric eigenstate |A〉. The I introduced the single excitation manifold,
defined a new effective Hamiltonian of this model and discussed shortly what advantages
it brings. I introduced the geometry of the ring and showed the analytical calculation of
eigenstates and eigenvectors of the system. I again examined the proprieties of energy
and decay rate numerically. The results show that also for the ring the absolute value
of the energy shift increases for small radii. The shift is positive for half of the states
in the first excitation manifold while it is negative for the others. Which states shift
upwards depends on the orientation of the dipole moments. For large radii the energy
shift goes again to zero. The decay rate of all states with single excitation approaches
Γ0 for large radii whereas for small radii all state except for one sate or two degenerate
states become dark. The decay rate of the other state becomes NΓ0 or N

2
Γ0 in the

degenerate case. I showed that the decay rate also depends on the number of atoms on
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the ring. If the distance between the atoms on the ring is kept constant the smallest
decay rate of all states decreases exponentially with the number of atoms on the Ring.
In the end I looked at the intensity of the electric field of the ring in a subradiant and
a superradiant state. It shows, as expected, that the superradiant state produces an
electric field with much higher intensity than the subradiant one.
In summary I was able to understand the underlying theory of the interaction of multiple
two level system and the idea and the theory of the master equation. I successfully
simulated the different geometry, analyzed their propensities and was able to clearly
show the effect of sub- and supperradiance.

8. Appendix

The scripts used for the numeric calculation where all executed on Julia version 1.4.1.
For a big part of the numerical calculations I used QuantumOptics.jl,a Julia framework
developed in Helmut Ritsch’s CQED group at the Institute for Theoretical Physics of
the University of Innsbruck.It was created to simplify the simulation of different open
quantum systems. More information can be found in [5] and on the official website [6].
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