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1. Introduction

Thermodynamics is, in a broad sense, the study of heat and work. While attempts

at understanding such concepts have existed since the antiquity, the French physicist

Sadi Carnot is often regarded as one of the founders of thermodynamics. In a treatise

published in 1824, he analysed the e�ciency of heat engines, thereby introducing the

famous Carnot engine: an idealised heat engine giving a theoretical upper bound to the

e�ciency, known as the Carnot limit [1]. The study of thermodynamics was initially

focused on understanding steam engines, and was thus instrumental in the industrial

revolution. But even nowadays, a plethora of heat engines are commonly used, ranging

from various types of combustion engines to heat pumps and refrigeration devices [2].

Another, albeit more recent invention, which had far-reaching consequences for both

industry and the sciences, is laser technology. One of the foundational ideas behind the

laser is stimulated emission of photons [3]. While the laser would not be developed for

decades, researchers, among them Albert Einstein, already discussed the three ways of

light-matter-interaction (spontaneous emission, absorption, and stimulated emission) in

the early twentieth century. The �rst experimental realisations of lasers succeeded in the

1950s, with Charles Townes often credited for the development of the �rst functioning

prototype of a microwave laser, the so called 'maser', in 1954 [4].

In their 1959 paper [5], Scovil and Schulz-DuBois investigated whether a laser could not

only be seen as a device transforming population inversion into coherent radiation, but

also as a setup transforming a heat gradient into output power. Thus, they attempted

a thermodynamic analysis of a single-atom laser and described it as a quantum heat

engine [6]. This paper would lay the groundwork for the much later emerging theory

of quantum thermodynamics, which attempts to �nd quantum mechanical, micro-scale

analogues to the laws of classical thermodynamics.

Especially during the last decades, interest in the �eld of quantum thermodynamics has

increased. Current research includes work on quantum heat engines and refrigerators,

as well as on high-precision time-measuring devices and thermometry [7]. Researchers

are also investigating fundamental connections between quantum thermodynamics and

quantum information theory [8].

This work aims to introduce some fundamentals of quantum thermodynamics while

analysing a simple model of a quantum heat engine: the three-level laser. First,

some basics of lasers and heat engines are discussed. After an introduction to the

model of a three-level laser coupled to thermal baths, a mathematical description based

on open quantum systems is developed. Using the formalism of a Lindblad master

equation, key thermodynamic observables are introduced within the context of quantum

thermodynamics. Finally, the resulting equations are solved numerically, and the results

are discussed.
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2. Overview

The following sections introduce the ideas of lasers and heat engines, as well as the

model of a three-level laser that is used throughout the remainder of this work.

2.1. Lasers

A laser consists of two primary elements: a gain medium and an optical resonator. The

gain medium is a material with a radiative atomic transition between two atomic states

|g〉 and |e〉. When an atom of the gain medium de-excites and releases a photon from

this transition, it is captured inside the optical resonator and contributes to a cavity

light �eld. However, the gain medium can also absorb photons of the same frequency;

therefore, a laser can only function if there is population inversion. This means that the

level |e〉 which is higher in energy must have a higher population than the lower energy

level |g〉 [9].

However, considering two-level atoms is insu�cient for a functioning laser: Even if the

population was inverted initially, the populations of the two levels would equilibrate

until on average no photons are added to the �eld. Thus, no long-lasting laser action

would be possible. Any real laser, therefore, requires at least three atomic levels, with

an additional auxiliary state added [10].

Population is constantly pumped into this auxiliary state from the lower state |g〉 and
then de-excited into the upper state |e〉. If this de-excitation happens fast enough, the

population in this auxiliary state will remain negligibly small. Most importantly, this

pumping and de-excitation will lead to a non-equilibrium distribution of the population

between the |g〉 and |e〉 states. The resulting constant population inversion now allows

for long-lasting laser action [9].

As the photons are released from the gain medium via stimulated emission, they have

characteristic properties which di�er from those of other, classical light-sources such as

thermal lamps. First, the radiation comes only from a single atomic transition at a given

frequency, leading to a light �eld that is in many cases almost monochromatic. The �nite

width of the emitted frequency is due to natural broadening. This broadening is a direct

consequence of the uncertainty principle for time and energy, and can therefore not be

completely prevented. Second, the released photons also have �xed phase relations to

each other; this property of laser light is known as coherence [9].

As a measure of coherence, the second-order time correlation function g(2)(0) can be used

[9]. This function gives information on the correlation between single photon emissions.

For thermal light-sources, g(2)(0) > 1; this can be understood as photons 'bunching

together', i.e. their emissions tend to be positively correlated. For coherent radiation,

on the other hand, g(2)(0) = 1, meaning that the emissions are completely uncorrelated.

Thus, a value of g(2)(0) = 1 can be seen as a measure of coherence.
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2.2. Heat Engines

A key idea of thermodynamics is the separation of a physical system into a subsystem,

which is of primary interest, and an environment. It is then usually assumed that this

environment is signi�cantly larger than the subsystem. In this simpli�cation, any impact

of the subsystem on the internal state of the environment is assumed to be negligible.

Thus, the subsystem cannot change the environment, but the environment can change

the subsystem [11].

To allow for this in�uence of the environment on the subsystem, the partition between

them typically enables one or more types of interaction: thermal (the exchange of

energy), mechanical (the exchange of force), or chemical (the exchange of particles).

The environment itself can then also be partitioned into multiple parts. These di�erent

parts may or may not have any interaction between each other [12].

A simple heat engine consists typically of a system partitioned into four parts: The

subsystem, known as the work medium, and an environment split into a hot bath, a

cold bath, and the work environment [11]. Such a heat engine can be visualised as a

tricycle like in �gure 1.

Figure 1: A simple heat engine in the form of a tricycle: The three parts of the

environment are characterised by their respective temperatures Ti, and heat �uxes Jh

and Jc as well as power P enter or leave the work medium in the centre. The model

here depicts a cooling device, which can be seen as an inverse heat engine. Adapted

from [13].

The hot bath is characterised by a temperature Th above that of the work medium, and

is thermally connected to the work medium. Hence, heat can �ow from this hot bath

into the work medium. Inside the work medium, some transformative process takes

place. During this, part of the heat entering from the hot bath is rejected into the cold

bath, which is described by a lower temperature Tc and is also thermally connected to
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the work medium. Finally, the remaining energy leaves the work medium into the work

environment not as heat, but as work. This could be achieved as a mechanical force,

like a moving piston. So long as the heat gradient is sustained and the work process can

be repeated, this leads to a transformation of a heat gradient to mechanical work [11].

A key �gure of merit for heat engines is their e�ciency in transforming heat gradients

to power output. The e�ciency η can be obtained as [11]

η =
W

Qh

, (1)

where W is the net work performed by the heat engine in one cycle, and Qh is the heat

entering the work medium during one cycle. Considering only an in�nitesimally short

time interval yields

η =

∣∣∣∣ PQ̇h

∣∣∣∣ . (2)

Here, P = Ẇ denotes the net power leaving the system, and Q̇h the heat �ux from the

hot bath into the work medium. The absolute value is taken here to account for the

signs of power and heat �uxes, for which there are di�erent conventions. Throughout

the remainder of this work, any �ow into the subsystem will be considered positive,

while a �ow out of the subsystem will be negative.

2.3. Model

This section outlines the model of a three-level laser which is used throughout the

remainder of this work. Natural units are used, where ~ = kB = 1.

A single atom is used as the gain medium for the laser. This atom is described as a

three-level system with a ground state |g〉 and two excited states |l〉 and |p〉. The atomic

ground state |g〉 is chosen as the zero of energy; the excited states have energies ωl and

ωp, respectively. Between these atomic levels, three di�erent transitions are possible:

the lasing transition between |l〉 and |g〉, the pumping transition between |g〉 and |p〉,
and the cold transition between |p〉 and |l〉.

The atom is placed inside an optical resonator, the so called cavity. This cavity is

constructed from mirrors which are positioned in such a way that light from the lasing

transition with a frequency ωl is resonant. The resulting cavity �eld then couples to the

lasing transition.

Figure 2 shows a schematic view of the atom and cavity system. In section 3.1, the

mathematical description of this system is developed.
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Figure 2: Schematic view of the atomic three-level system inside a cavity, with an energy

scale on the left hand side. The three atomic states |g〉, |l〉, and |p〉 are connected via

the lasing (green line), pumping (red line), and cold (blue line) transitions. The cavity

mirrors are shown in grey, while the cavity �eld is indicated by a single photon.

In order to allow light to leave the cavity, one of the mirrors must have imperfections.

This is modelled by a rate coe�cient κ, which describes the rate at which photons from

the cavity �eld leak out. The photons leak into the so-called work environment which

surrounds the lasing system, i.e. the atom and cavity.

The pumping and cold transitions are driven by external radiation. This is modelled by

introducing two additional parts to the environment: a hot and a cold bath. These

are photonic baths at respective temperatures Th and Tc with frequencies ωp and

ωc := ωp − ωl, whose photon number is given by Planck's law for thermal radiation

n̄th(ω, T ) =
(

exp
(ω
T

)
− 1
)−1

, (3)

where n̄th denotes the expected number of photons at a given temperature T and

frequency ω.

The interaction strength between these baths and the transitions is modelled via rate

coe�cients Γh and Γc for the hot and cold baths, respectively. In practice, such a source

of radiation would not be monochromatic. However, a monochromatic photonic bath

could be realised by using frequency �lters that allow only resonant radiation to interact

with the atomic system [5].

Figure 3 shows a schematic of the complete system consisting of the atom and the

cavity, as well as the environment consisting of the two heat baths and the work

environment; the work environment, i.e. the exterior world, is not shown explicitly.

A mathematical description of the coupling processes between the atom-cavity-system

and its environment is given in section 3.2.
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Figure 3: Schematic view of the atom-�eld system in contact with its environment, which

consists of a hot and a cold photonic bath as well as a work environment (not shown

explicitly). The interactions with the di�erent parts of the environment are indicated

using coloured arrows.

The functioning laser can then be understood in the following way: A photon from the

hot bath leads to an atomic excitation, thereby pumping population from |g〉 to |p〉. This
state then relaxes due to its coupling with the cold bath, which leads to an emission of

a photon into the cold bath and a de-excitation of the atom from |p〉 to |l〉. Due to this
pumping and cooling, a constant population inversion between |g〉 and |l〉 is achieved.
The photons in the cavity �eld then lead to stimulated emission from |l〉 to |g〉, thereby
adding coherent radiation to the cavity �eld. Due to the mirror imperfections, photons

leak out of the cavity at a rate κ, which creates a beam of coherent laser light.

From a thermodynamic point of view, this system represents a tricycle as introduced in

section 2.2. Energy is added into the work medium, i.e. the atomic system, in the form

of heat from the hot bath. Then part of that energy is ejected into the cold bath, and the

remaining energy is extracted as work in the form of radiation. These thermodynamic

notions of heat and work are discussed in detail in section 3.3.

3. Mathematical Framework

The following sections introduce the mathematical description of the three-level model.

First, the atom-�eld Hamiltonian is treated. After that, the dissipative parts of the

model are described.

3.1. Closed System

As a �rst step towards a full description of the three-level laser, a mathematical model for

the atom-�eld system is required. The atom-�eld system is composed of three relevant

8



parts: the atomic states, the cavity �eld, and the interaction between the two. The

states which describe the atom-�eld system exist in a Hilbert space

Hsys = Hatom ⊗Hfield.

Operators acting only on the atomic or the �eld Hilbert space will be denoted in cursive,

e.g. O being an operator acting on Hatom. The corresponding operator acting on the

complete Hilbert space Hsys, which is obtained by tensorising with the appropriate

identity element 1i, will be denoted in bold face, e.g.

O := O ⊗ 1field.

A Hamiltonian describing the entire atom-�eld system will be of the form

Hsys = Hatom +Hfield +Hint, (4)

where Hatom describes the atomic three-level system, Hfield the cavity �eld, and Hint

the atom-�eld interaction. In the following, all three parts of the system Hamiltonian

will be treated separately.

First, the atomic Hamiltonian is treated. The atom can be described as a three-level

system with a Hilbert spaceHatom
∼= C3. By simply taking the projection operators |i〉〈i|

onto each of the atomic states and multiplying them with their respective frequencies,

the atomic Hamiltonian is found to be

Hatom = ωl|l〉〈l|+ ωp|p〉〈p|. (5)

The ground state vanishes in the Hamiltonian, as it was chosen as the zero of energy.

Next, the �eld Hamiltonian is covered. The cavity �eld can be understood as a quantum

harmonic oscillator whose energy levels are shifted such that the �eld ground state

coincides with the zero of energy. The Fock states {|n〉}n∈N0
can be used as a basis

for its in�nite-dimensional Hilbert space Hfield. These represent n excitations in the

oscillator, which are interpreted as photons in the light �eld [14].

Using the formalism of second quantisation, the creation operator a† and the annihilation

operator a can be introduced, which satisfy

a†|n〉 =
√
n+ 1 |n+ 1〉,

a|n〉 =
√
n |n− 1〉,

a|0〉 = 0,

[a, a†] = 1field.
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As can be seen from these relations, the number operator a†a returns the number of

excitations as an eigenvalue when acting on a Fock state |n〉.

The total energy of the �eld is simply the number of photons times the energy per

photon. As each photon has an energy ωl, the Hamiltonian for the cavity �eld can be

obtained as

Hfield = ωl a
†a. (6)

Lastly, the interaction term between the atom and �eld is treated. Assuming that the

cavity �eld only couples with the atomic transition between |g〉 and |l〉, this interaction
is equivalent to that of a two-level system interacting with a harmonic oscillator. A

standard approach to describing such a form of interaction is the Jaynes-Cummings

model. The following derivation approximately follows [15].

The atom's reduced two-state system can be understood as an electric dipole. This

can be treated in analogy to the classical case, where one obtains for an electric

dipole with dipole moment ~Dc in an external electric �eld ~Ec an interaction energy

of Edipole = − ~Dc · ~Ec. Using the formalism of canonical quantisation, the dipole moment

is replaced by the atomic dipole operator D. By introducing the atomic raising and

lowering operators

σ+
l := |l〉〈g|,
σ−l := |g〉〈l|,

the dipole operator can be written as

D = d
(
σ+

l + σ−
l

)
.

Here, d is the dipole operator matrix element

d = 〈g|D|l〉 = 〈l|D|g〉.

In order to obtain a fully quantum treatment of this dipole interaction, the electric �eld

must also be quantised. Starting from the Maxwell equations in vacuum and again

using the creation and annihilation operators a† and a, the electric �eld operator can

be expressed as

E = E0

(
a+ a†

)
,

where E0 is the magnitude of the electric �eld. For brevity, a more detailed derivation

of this quantised electric �eld is omitted here.
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The interaction Hamiltonian will then be of the form Hint = DE. Next, a

transformation from the Schrödinger picture into the interaction picture with respect

to H0 := Hatom +Hfield is performed. This transforms an operator O according to

Õ = eitH0Oe−itH0 ,

where a tilde now represents an operator in its interaction picture representation.

For example, the atomic upwards transition operator σ+
l transforms as

σ̃+
l = eitHatomσ+

l e
−itHatom

=
(
eitHatom |l〉

) (
eitHatom |g〉

)†
= eitωlσ+

l ,

where the �rst equality follows from
[
Hfield,σ

+
l

]
= 0, as these operators only have non-

trivial actions on di�erent Hilbert spaces. Similarly, the remaining operators transform

as

σ̃−
l = e−itωlσ−

l ,

ã† = eitωla†,

ã = e−itωla.

In the interaction picture, the interaction Hamiltonian is then given by

dE0

(
σ̃+

l ã
† + σ̃−

l ã
† + σ̃+

l ã+ σ̃−
l ã
)
.

The terms σ̃−
l ã
†
and σ̃+

l ã are time-independent, as the exponential prefactors cancel.

The two remaining terms, on the other hand, are time-dependent: σ̃+
l ã
† ∼ e2iωlt

and σ̃−
l ã ∼ e−2iωlt. These two fast-oscillating terms are ignored in what is called

the rotating-wave-approximation, as they are assumed to average out on the relevant

time-scale of the system. Using this approximation and transforming back into the

Schrödinger picture, the interaction term simpli�es to

Hint = g
(
σ−

l a
† + σ+

l a
)
, (7)

where g := dE0 is a constant describing the interaction strength.

Finally, putting equations (5), (6), and (7) together, the total Hamiltonian for the

atom-�eld system is obtained as
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Hsys = ωl|l〉〈l| + ωp|p〉〈p| + ωla
†a+ g

(
σ−

l a
† + σ+

l a
)
, (8)

with the projection operators

|i〉〈i| := |i〉〈i| ⊗ 1field.

Using this Hamiltonian, the atom-�eld system alone could be fully described. What is

missing so far, however, are terms describing the interaction of this atom-�eld system

with its environments � the hot and cold baths as well as the work environment. These

are discussed in the following section.

3.2. Open System

The states of the total system exist in a Hilbert space

Htot = Hsys ⊗Henv,

where Henv describes all parts of the environment. An arbitrary state on this total

Hilbert space can be described by a density operator ρtot(t). Encoded in this density

operator is a complete description of the total system's state at a given time t. Therefore,

it contains a detailed description of the internal state of both the hot and cold heat baths,

and of the work environment.

However, the part of the system whose description is of physical interest is only the

atom-�eld system; the internal state of the environment is of lesser importance. This

atom-�eld state ρ can be obtained by tracing out the environment degrees of freedom:

ρ(t) = Trenv (ρtot(t)) ,

where Trenv denotes the partial trace over the environment.

In order to now obtain the time evolution of an initial state ρ(0), a similar approach to

the prior section could be taken, where now a Hamiltonian describing the environment

could be derived. Following this, unitary time evolution would lead to the desired state

of the system at a given time t.

Instead of this explicit description of the environment, however, an implicit description

can also be used: Rather than describing the total system in terms of a total Hamiltonian

and then tracing out the 'uninteresting' environment, only the atom-�eld system is

described using the Hamiltonian of equation (8), while the in�uence of the environment

is implicitly described via some interaction terms. These interaction terms represent

energy �owing into or out of the atom-�eld system. However, this means that energy is

not preserved in the atom-�eld system, and therefore the resulting time evolution will

be non-unitary.
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Using this approach, the von-Neumann equation

ρ̇ = −i [Hsys, ρ]

is no longer su�cient to describe the time evolution of the system, as it neglects the

in�uence of the environment on the system dynamics. To account for this, a new

dissipative term is added to the time-evolution, yielding

ρ̇ = −i [Hsys, ρ] +
1

2

∑
k

(
2JkρJk

† −
{
Jk
†Jk, ρ

})
, (9)

where {·, ·} is the anti-commutator and {Jk} are a set of so-called jump operators

describing the various dissipative interactions between system and environment.

Equation (9) is known as the master equation in Lindblad form and gives a full

description of the time-development of a system that is subject to a Hamiltonian as

well as dissipative e�ects. A full derivation of the master equation can be found for

example in [15] or in [16].

However, before the master equation can be used to describe the dynamics of the three-

level laser, the various jump operators Jk need to be identi�ed �rst.

The total system includes three parts where a dissipative interaction between the atom-

�eld system and the environment occurs: the interaction at the pumping transition and

the hot bath, that at the cold transition and the cold bath, and the leaking of photons

from the cavity into the work environment. In the following, each of these is described

separately.

When considering only the pumping transition and the hot photonic bath, the atom

can e�ectively be seen as a two-level system with states |g〉 and |p〉 and only the single

transition between them. This is therefore equivalent to a two-level atom decaying in a

thermal �eld, and only two di�erent dissipative processes are possible: Either the atom

absorbs a photon from the hot bath and is excited from |g〉 to |p〉, or it emits a photon

while decaying from |p〉 to |g〉.

As shown for example in [15], the resulting jump operators are given by

Jh,1 =
√

Γh (1 + n̄th,h) σ−p

Jh,2 =
√

Γhn̄th,h σ
+
p ,

where Γh is a rate coe�cient describing the interaction strength and n̄th,h is the expected

number of thermal photons in the hot bath according to equation (3) for a temperature

Th and a frequency ωp. σ
−
p := |g〉〈p| is the lowering operator for the pumping transition,

and σ+
p := |p〉〈g| is the raising operator.

How can these jump operators be interpreted? For the downwards transition, two

additive terms appear under the square root. The 1-term represents spontaneous decay,
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while the n̄th,h-term represents stimulated emission. For the upwards transition, only

the n̄th,h-term appears, which represents an absorption process. Clearly, there can be no

'spontaneous excitation' without absorbing a photon; therefore, the upwards transition

lacks the 1-term [15].

The jump operators for the cold transition are obtained analogously:

Jc,1 =
√

Γc (1 + n̄th,c) σ
−
c

Jc,2 =
√

Γcn̄th,c σ
+
c .

Here, Γc is the rate coe�cient of the cold bath interaction, n̄th,c is the expected number

of photons at temperature Tc and the cold transition frequency ωc := ωp − ωl, and

σ−c := |l〉〈p|, σ+
c := |p〉〈l| are the transition operators for the cold transition.

Finally, a jump operator for the photons leaking from the cavity �eld into the work

environment is needed. Photons are only allowed to leave the cavity, therefore a single

jump operator su�ces. This operator is given by

Jcav =
√
κ a,

where a is again the �eld annihilation operator, representing the removal of a single

photon from the cavity �eld.

With this, all required jump operators have been described. Using them with the master

equation gives the time evolution of the three-level laser. However, before it is possible

to analyse the system as a heat engine, thermodynamic observables must be introduced.

3.3. Quantum Heat Engine

As discussed in section 2.2, the e�ciency is a key �gure of merit for heat engines. In order

to calculate it, however, some notions of power and heat �ux are required. Therefore,

the aim of this section is to derive a quantum mechanical analogue to the �rst law of

thermodynamics.

Working in the Schrödinger picture so far, the states described by density operators

were time-dependent, while observables were time-independent. At this point, however,

it is convenient to switch into the Heisenberg picture, where now observables are time-

dependent and states time-independent.

Starting from the master equation, it can be shown [13] that the time-evolution of an

observable O in the Heisenberg picture is given by

Ȯ = i [Hsys,O] +
1

2

∑
k

(
2Jk

†OJk −
{
Jk
†Jk,O

})
≡ i [Hsys,O] +

1

2

∑
k

Dk[O], (10)
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where again k runs over all dissipative terms in the master equation. The newly

introduced short-hand Dk[O] is sometimes referred to as the k-th 'dissipator' acting

on an observable O.

As the �rst law of thermodynamics can be seen as a balance equation for energy, it might

be interesting to consider the change in energy of the system as it develops according

to the master equation. Replacing O with Hsys in equation (10) yields

Ḣsys =
1

2

∑
k

Dk[Hsys],

where the commutator vanishes as Hsys of course commutes with itself.

Taking expectation values on both sides of this equation, and de�ning Ė := 〈Ḣsys〉, one
obtains

Ė =
1

2

∑
k

〈Dk[Hsys]〉.

Now, the heat �ux from the hot and cold baths, respectively, is identi�ed as

Q̇h(c) :=
1

2
〈Dh(c),1[Hsys] +Dh(c),2[Hsys]〉,

and the power is identi�ed as

P :=
1

2
〈Dcav[Hsys]〉.

It should be noted that in these identi�cations, one key assumption was made: that the

light leaking from the cavity mirrors is pure power and thus has zero entropy associated

with it. This could be understood as the work environment being arbitrarily hot, i.e.

Tw →∞ [17]. According to Clausius' formulation of the second law of thermodynamics,

heat never �ows spontaneously from a cold body to a hot one. Therefore, all the energy

�owing into the work environment must be pure power. For the purposes of this work,

it is assumed that this identi�cation is justi�ed.

With these identi�cations, one obtains

Ė = Q̇h + Q̇c + P, (11)

which is a time-derivative of the �rst law of thermodynamics. Using these new

quantum-thermodynamic observables of power and heat �ux, the e�ciency η is de�ned

analogously to the classical thermodynamic case of equation (2) via

η :=

∣∣∣∣ PQ̇h

∣∣∣∣ , (12)
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where the absolute value was taken to ensure a positive sign of the e�ciency, as power

�owing out of the system is a negative quantity, while heat �owing into the system is

positive.

Another key quantity in thermodynamics is the entropy S. In this quantum-

thermodynamic case, the entropy is taken to be the von-Neumann entropy SVN, de�ned

as

SVN := −Tr (ρ log (ρ)) . (13)

Meaningful de�nitions of the second and third laws of thermodynamics within the

context of quantum-thermodynamics are also possible (see for example [13]). However,

these go beyond the scope of this work and are therefore not included here.

Having now developed the necessary quantum-thermodynamic observables which are

required to analyse the model as a heat engine, the following section introduces the

approach to the numerical solution of the model and discusses the obtained results.

4. Results

The model of the three-level laser, which was developed in the prior sections, was

solved numerically using the 'julia' programming language and, in particular, the

QuantumOptics.jl package [18]. Unless explicitly stated otherwise, the following

parameters were used for the simulations: ωl = 1000κ, g = 50κ, Γh = Γc = 400κ,

ωp/Th = 1.5, ωc/Tc = 5 and ωp = 1.5ωl.

In the following, the results of the numerical simulation are discussed. This discussion

is roughly structured in two parts: First, the system is analysed with regards to its

functionality as a laser. Second, a closer look is taken at the thermodynamic observables.

4.1. Analysis of the Laser

The left hand side of �gure 4 shows a plot of the populations of the atomic levels as a

function of time, scaled in units of Γh. As can be seen, the population in the pumping

state |p〉 stays low throughout the entire time development, and reaches a steady state

almost instantaneously. After some initial �uctuations, the populations in |l〉 and |g〉
also approach a steady state. Most importantly, the population of |l〉 in the steady

state remains slightly larger than that of |g〉. This population inversion, as discussed in

section 2.1, is a necessary prerequisite for sustained stimulated emission of photons into

the cavity �eld.
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Figure 4: Left: atomic populations as a function of time. Right: expected number of

photons in the cavity �eld.

The right hand side of �gure 4 shows the time development of the average number of

photons in the cavity �eld, given by the expectation value 〈a†a〉 of the number operator.
Initially, the cavity �eld is prepared in a vacuum state. As the pumping and cooling

processes lead to population inversion of the |l〉 and |g〉 levels, an increasing number of

photons is emitted into the cavity �eld. Eventually, the �eld also reaches a steady state.

This can be understood as a point when the number of photons added to the �eld per

unit of time is equal to the number of photons leaking from the cavity mirror in the

same time interval.

On the left, �gure 5 shows a histogram of the photon number distribution in the steady

state (blue bars). In order to more easily compare this to the theoretically expected

Poissonian distribution, an ideal distribution was added (orange dots). As can be seen,

the observed photon statistics �t the expectation very well.
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Figure 5: Left: a histogram of the steady state photon distribution, with an ideal

Poissonian distribution in orange. Right: g2 as a function of time.

Finally, the radiation �eld emitted from a laser is expected to be coherent. As discussed

in section 2.1, the two-time correlation function g(2)(0) can be seen as a measure of

coherence. Using the previously introduced �eld creation and annihilation operators,

this function can be expressed as [9]

g(2)(0) =
〈a†a†aa〉
〈a†a〉2

. (14)

It is plotted against time on the right in �gure 5.

Initially, there are no emission processes, and therefore there is also no correlation

between them. Afterwards, the value of g(2) almost instantly reaches its steady state of

1, implying a coherent light �eld in the cavity.

All of this together shows that the laser in its steady state is functioning as expected:

The |l〉 state has higher population than the |g〉 state, thereby allowing for stimulated

emission. The cavity �eld contains coherent radiation, which leaks out of the laser

system, and the photon statistics obeys the characteristic Poissonian distribution.

It might also be interesting to analyse the impact of the strength of pumping on the

laser. To look into this, the hot bath temperature Th is varied.

As expected, for a very low heat gradient Th . 5Tc, the pumping is too weak and no

population inversion is obtained. More interestingly, the lasing action also breaks down

for very strong pumping Th � Tc. In �gure 6, the steady state photon statistics are

shown for di�erent values of Th. For ωp/Th = 0.15, the distribution already deviates
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strongly from a Poissonian distribution. For an even higher temperature, ωp/Th = 0.05,

the distribution is very close to a Bose-Einstein distribution

P (n) =
1

〈n〉+ 1

(
〈n〉
〈n〉+ 1

)n

(15)

for 〈n〉 = 4. Such a distribution is characteristic of thermal light [19].

This behaviour, while unintuitive, �ts the observations by Li et al [20]. As they argue

in their paper, a higher temperature Th does not only increase the pumping, but it also

increases the atomic decay rate, which ultimately leads to a break down of the laser

system for extreme values of Th. This e�ect could be avoided by using a four-level laser

model instead.

Figure 6: Steady state photon statistics for di�erent values of Th: On the left,

ωp/Th = 0.15; in the centre, ωp/Th = 0.06; and on the right, ωp/Th = 0.05. In the

right-hand plot, a Bose-Einstein-distribution is shown in orange.

4.2. Analysis of the Heat Engine

Figure 7 shows the time-development of the hot and cold heat �uxes (left hand side) as

well as that of the power (right hand side). As expected, the hot heat �ux is positive, as

it goes into the system, while both the cold heat �ux and the power are negative. The

power develops similarly to the photon number in the cavity. This is to be expected:

The more photons there are in the cavity �eld, the higher the number that escape the

cavity at the �xed rate κ.

After some initial oscillation, the heat �uxes almost instantaneously reach their steady

state values. The power, just like the photon number before, approaches its steady state

much more slowly. It can also be seen that the magnitude of cold heat �ux and power

together equal the magnitude of the hot heat �ux in the steady state. This has to be

the case, as in the steady state the energy of the system can no longer change.
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Figure 7: Time development of the heat �uxes (left) and of the power (right).

Using the heat �uxes and power shown above, the e�ciency was calculated according

to equation (12). Its time development is shown in �gure 8.

As the heat �uxes have almost no time development except at the very beginning, the

e�ciency curve follows the power curve closely. For the chosen parameters, it reaches

a value of 2
3
in its steady state. This is well below the Carnot limit of 9

10
. As already

shown by Scovil and Schulz-DuBois in their original paper [5], the steady state e�ciency

ful�ls

ηSS =
ωl

ωp

.

Even without any rigorous mathematical approach, this result is immediately evident

when thinking of the three-level laser as a thermodynamic tricycle: In the steady state,

the energy of the system cannot change. Therefore, for every excitation coming into the

system from the hot bath (as a heat �ux with magnitude ωp), exactly one excitation

has to leave the system into the cold bath, and one excitation has to leave into the work

environment as a photon (as power with magnitude ωl). Therefore, the ratio of power

to heat �ux must approach the ratio of the lasing to the pumping frequency in steady

state.
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Figure 8: Time development of the e�ciency η, as de�ned in equation (12).

So far, the focus was on the time development and the resulting steady state for a single

set of parameters only. For the following steady state analysis, both bath temperatures

Th and Tc are varied. Figure 9 shows the heat �uxes, the magnitude of the power, and

the von-Neumann entropy as functions of these control parameters, both scaled in units

of the lasing frequency ωl.

It can be clearly seen that the magnitudes of both heat �uxes and power show the same

qualitative behaviour: For increasing temperature gradients Th− Tc, they also increase,

while for decreasing gradients, they decrease. The range of parameters chosen here

all lead to a functioning laser; for even lower temperature gradients, the laser begins

to break down as no population inversion is achieved � instead of coherent light, only

thermal radiation is emitted. The steady-state entropy, on the other hand, shows more

complex behaviour: For any given value of Tc, there is a local maximum with regards

to Th, and vice versa.

The behaviour of the hot heat �ux and the power also clearly shows that their ratio

remains �xed in the steady state for any of the chosen parameter combinations. This

supports the earlier observation that the steady state e�ciency should depend only

on the energy levels of the atom, and not on other control parameters, such as the

temperature of the baths.
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Figure 9: Steady state heat �uxes (top row), magnitude of the power (bottom left), and

entropy (bottom right) as functions of the control parameters Th and Tc.

5. Conclusion

In this work, a single-atom three-level laser was analysed as a model of a quantum

mechanical heat engine. While the atom-�eld-system was described explicitly using

a Hamiltonian, the interaction with two heat baths and the work environment was

described via dissipative processes. Using the formalism of open quantum systems, a

master equation was used to obtain the system's time development. In order to analyse

the heat engine, some key quantum-thermodynamic observables were introduced.

Numerical simulations of the model were done using the 'julia' programming language.

The system was found to be a functioning laser in its steady state for a range of di�erent

bath temperatures, as it converted a heat gradient between the baths into population

inversion, �nally resulting in coherent radiation output. Furthermore, the cavity �eld's

photon statistics matched the expected Poissonian distribution.

22



It was also shown that the three-level laser not only breaks down for weak pumping,

but also for extremely strong pumping, i.e. at very high temperatures of the hot bath.

This is in agreement with a recent publication by Li et al [20].

The three-level laser was also found to be a functioning thermodynamic tricycle: A heat

�ux �owing into the system from the hot bath was in part rejected into the cold bath,

while the remaining energy left the system as a coherent radiation �eld. This radiation

was interpreted as the power output of the system.

Interestingly, it was seen that the steady state e�ciency of the heat engine is independent

from the bath temperatures, at least for heat gradients which allow for population

inversion. Instead, the e�ciency depends only on the ratio of the pumping and lasing

frequencies, in full agreement with the 1959 paper by Scovil and Schulz-DuBois [5].

In the future, it might be interesting to also consider a four-level laser and compare

it to the three-level model presented here. More attention might also be given to the

question whether the identi�cations of heat �uxes and power, as performed in this work,

are justi�ed.
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