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e What is updating?
e How to learn from data? (inference)

e How to make optimal decisions?

e \What's the value of additional information?



1. Updating and Bayesian Statistics

e [ wo paradigms

[P1 ] Every uncertainty can adequately be
described by a classical probability dis-
tribution = prior distribution «(-) for a
parameter

[P2 ] After having observed the sample {z},
the posterior «(:|z) contains all the rel-
evant information. Every inference pro-
cedure depends on =« (-|z), and only on

m(-|x).

e Paradigm [P2] can be justified by decision
theoretic arguments: Decision functions with
minimal risk under prior «(-) can be con-
structed from considering optimal actions
with respect to «n(:|x) as 'updated prior’.

optimality with respect to prior risk

optimality with respect to posterior loss

inference — decision




Aim of the talk

e General: develop a comprehensive frame-
work for decision making under partial prior
information (imprecise prior instead of [P1])

e In particular, study a straightforward adop-
tion of [P2] used in sensitivity analysis, in
the robust Bayesian approach and in im-
precise probability theory (Walley's gener-
alized Bayes rule)

1. Updating and Bayesian Statistics
2. Classical Decision Theory

3. Decision Making under Interval Probability
— Basic Concepts

4. The Robust Bayesian Approach/Walley's
GBR

5. How to Calculate Decision Functions Min-
imizing Prior Risk?

6. Concluding Remarks



2. Classical Decision Theory
T he Basic Decision Problem

no-data problem (on finite spaces)

e set A={aq,...,as, ...,an} Of actions,
e possibly A(IA) set of randomized actions
a(-) = (Ma1),...,A(as),..., A(an))
e set © = {¥1, ..., Yy, ...,9n} of states of
nature

e precise /oss function

| . (Ax©) — IR
(a,9) +— Ua,¥)

e represented in an /oss table

O V; Um
ay |l(a1, 91)... (a1, ¥;)... (a1, Om)

ags l(ag, ’191) l(azs, 193) l(as, r197’)’1,)

an l(a/n, 791)... l(a/n, ’l?j)... l(a/n, ﬂm)
e associated random variable 1(a) on (©,Po(©))

e Aim: Choose an optimal action a*!



Data problem

e Incorporate additional information from a
sample!

e Choose an optimal strategy!

e \What is the value of a certain information ?

Information on 19]- from an experiment where
the probability depends on 19]-:

For every j a classical probability p;(-) is given

?‘1 p1({$}})--- pl({ﬂf-z'})--- p1({-$k})
05 | pimah) o p D) pi(akh)
O | pmz1}) - pm{zid) . pm({zr))

Often p;({x;}) is interpreted as p({z;}|{V;}).




decision functions (strategies)

e describing randomized action in dependence
on the observation {z;}

d: {:Ul,...,xk} — /\(IA)

x; — d(x;) = a .

e randomized decision functions d(z;, as); clas-
sical probability to choose as if {x;} occurs.

e D set of all decision functions
e associated random variable 1(d, ;) on (£2,.A)
e risk of d(-)

R(d,¥;) ==, (1(d, 19]-)) .

e New decision problem (D,©, R(-,-)).

The value of the information experiment

loss of the optimal action
in the no-data problem
risk of the optimal decision function
in the data problem

value of information

Always nonnegative.



Optimality criteria

1) Minimax optimality

e In the no-data problem: gnag [(a,9) — min
<

e In the data problem: max R(d,¥) — min
Ye©
2) Bayes optimality with respect to prior «(-)
on (©,Po(©)).

e In the no-data problem: E(i(a,v)) — min

e In the data problem: E;(R(d,¥)) — min

“Main theorem of Bayesian decision analysis”

e Optimal d*(-) can be obtained by solving,
for every observation {x}, the no-data prob-
lem with the posterior #(:|z) as the ‘up-
dated prior’.

optimality with respect to prior risk

optimality with respect to posterior loss

e For maximin solutions NO reduction of the
data problem to no-data problems possible.



3. Decision Making under Interval
Probability — Basic Concepts

ideal ran-
domness

Y

~——uncertainty

Y

ambiguity

Y

subjective class. prob.

Y

Zero-sum gamble

Y

subj. expected utility

Ellsberg

maximin solution

OVerpessi

Y

mistic

generalized probability —




Ellsberg’s Experiments
e Ellsberg’s (1961, Quart. J. Econ.)

e Ellsberg (2002, Series of most influential
Harvard theses)

e Does the difference between an ideal lot-
tery situation and the general decision sit-
uation under uncertainty matter?

e Urn with balls of three different colours:
one with known proportion, two with par-
tially unknown proportions

e participants express preferences which can
not be modelled by any classical probability
measure

e deliberate (not only empiricall) violations
of the axioms of (classical) probability!

e Conclusion: (Classical) probability is insuf-
ficient to adequately model ambiguous un-
certainty.



Ambiguity

e Ellsberg (1961, Quart. J. Econ.)
Ellsberg (2002, Series of most influential
Harvard theses)

e in psychology, management science and eco-
nomics

* bibliography: Smithson (1999, tech. re-
port)

* collection of important papers: Hamouda
& Rowley (1997, Edward Elgar)

* in principle even in Knight (1921) &
Keynes (1921)

e in statistics
* Walley (1991, Chap. & Hall, Ch. 5)
* Weichselberger (2001, Physica, Ch. 1, 2.6)
* ISIPTA Proceedings (1999, 2001)

* Special volumes Statistical Papers (2002),
J.Stat.Plan.Inf. (2002)

e in artificial intelligence

* Uncertainty in Artificial Intelligence Pro-
ceedinas (Annual)



Basic decision theoretic framework

_I_

Generalized concept of probability to model
ambiguous uncertainty

General framework for decision making under
ambiguous uncertainty

Www.stat.uni-muenchen.de/ =~ thomas



Generalized Probabilities to Handle Ambiguity

Probability and uncertainty as a two-dimensional
phenomenon: (ideal type separation of two
overlapping phenomena)

uncertainty

ideal randomness -+ ambiguity

Mainly two approaches

e Sets of classical probabilities

e for every event A interval [L(A);U(A)]
= non-additive set functions L(-) and U(-)

The interval width reflects the extent of
ambiguity

* P(A) = [a;a]: classical probability,
situation of ideal randomness

increasing ambiguity

* P(A) = [0; 1]: complete ignorance



AXxiomizing interval probability

e Classical probability p(-): set-function
satisfying Kolmogorov’s axioms

e interval probability P(-) = [L(.),U(")]

e |00k at the relation between the dual pair
of non-additive set functions L(-) and U(-)
and the structure M, i.e, the set of all
classical probabilities p(-) compatible with

[L(), U()]
M= {p() | L(A) <p(A) <U(A), VAeA}.

e Here: consider only assignments with:

M FZE D and
inf p(A) =L(A)AN sup p(A)=U(A),VAec A.
p(-)eEM p(-)eM

® X |lower and upper probability (Huber &
Strassen (1973, Ann. Stat.))

* envelopes (Walley & Fine (1982, Ann. Stat.),
Denneberg (1994, Kluwer))

* coherent probability (Walley (1991, Chap. &
Hall))

* F-probability (Weichselberger (2000, Int. J. Ap-
prox. Reas.; 2001, Physika))

e M: structure (Weichselberger), (in co-operative



e slightly more general: Walley (1991, Chapm. &
Hall): imprecise previsions obtained from
interval-valued expectations = linear par-
tial information (Kofler & Menges (1976,
SpringerLN Econ); Huschens (1985, R.G. Fis-
cher); Kofler (1989, Campus))

e Special Case: Capacities of Higher Order

* Belief-functions (totally monotone prob-
abilities), corresponding to a basic prob-
ability assignment (Shafer (1976, Prince-
ton UP), Yager, Fedrizzi und Kacprzyk
(1994, Wiley))

* Neighborhood models in robust statis-
tics (pseudo capacities, Choquet-capa-
cities)(Huber (1981, Wiley), for a sur-
vey (and extensions): Augustin (2001,
J. Stat. Plan. Inf.))

* Probability intervals (PRI) (Weichselberger
& Pohlmann (1990; Springer LN AI))

* Other common names ’'supermodular’
(Denneberg (1994; Kluwer)) or ‘convex’
(Jaffray (1989, OR Letters))



Expectation

Classical expectation for X (-) > O:

EX = /Xdp — /p({w | X (w) > t}) dt

Two possible ways to generalize this for F-prob-
ability P(-) = [L(-),U(-)] with structure M

e “outer method”: substitute p(-) by L(-)
and U(-) (Choquet integral, fuzzy integral)

E, X = /OOO L{w | X(w) > t}) dt.

e “inner method’: refers to the structure;

considers inf,yc g and sup,yecpq (here in
what follows)

EpX = [HEpX, YE\X]

= [ inf EpX, sup E,X]
pOIEM T pOem

Theorem (e.g, Denneberg (1994, Kluwer,
Prop. 10.3)):

In the case of two-monotone probability
both definitions coincide.

Therefore: In the case of two-monotonicity
everything said here is also valid for the

C'hhrnrvsnnt - Asarrnl



Basic decision theoretic framework

_I_

Generalized concept of probability to model
ambiguous uncertainty

General framework for decision making under
ambiguous uncertainty

e Classical decision theory can only deal with
the two — both unrealistic — extreme cases

— complete probabilistic knowledge
(i.e knowledge of a single classical prob-
ability) or

— complete ignorance

+ Now modeling of arbitrary intermediate steps
becomes possible. The true level of know-
ledge can be adequately represented.



Generalized Expected Utility/Loss

e Def.: Generalized expected loss
* basic decision problem (IA, ©,1(-))

* F-probability M(-) on (©,P,(©)) with
structure M.

Then, for every pure action a € IA and for
every randomized action a € A(IA), resp.,

E \1(a)

is the generalized expected loss (with re-
spect to the prior M(-)).

e Notice: IEE 1(a) is an interval-valued quan-
tity. If a linear ordering is desired — rep-
resentation



e casiest choice: E \l(a) — YEl(a)
* a* is optimal iff
UE \1(c*) < YEp(a), Vae A(A).
* strict ambiguity aversion

* Gamma-Minimax criterion (e.g., Berger
(1984, Springer, Section 4.7.6), Vidakovic
(2000, in Rios-Insua & Ruggeri (eds.)),

* Maxmin expected utility model (Gilboa
& Schmeidler (1989, J. Math. Econ.))

* MaxEMin criterion (Kofler & Menges
(1976, SpringerLN Econ); Kofler (1989,
Campus))

* For two-monotone capacities: Choquet
expected utility (e.g., Chateauneuf, Co-
hen & Meilijson (1997, Finance))

The two classical decision criteria are con-
tained as border cases:

* perfect probabilistic information, no am-
biguity: M = {rn(-)} — Bayes optimal-
ity with respect to «(-).

* Completely lacking information, M(B) =
[0; 1], for every B € Po(2)\{0, ©}, (‘non-
selective or vacuous prior’); leads to the



Data problem under interval probability:

e Now, for every 37, an F-probability field
P;(-) = [L;(-),U;(-)]

with structure /\/lj IS given.

e risk of the decision function d(-)
* Given 9 : ]EMj (l(d, ﬁj)) represented by
R(d) :="E (1(4, ﬁj))
* with prior structure M look at

IEr (R(d))

represented by

“E v (R(d))

The value of the information experiment

loss of the optimal action
in the no-data problem
risk of the optimal decision function
in the data problem

value of information

CHill Alvarvr/7~ AN IR ANV A



4. Robust Bayesian Procedures
Generalized Bayes Rule

e Classical statistics:
data problem with prior «(-)
no-data problem with updated prior «(:|x)
= posterior contains full information

e Generalization: Robust Bayesian Inference
(Survey: Wasserman (1997, Enc. Stat. Sc.,

Update 1))
prior structure M

+ oObservation
posteriori structures M,

with
My, = {r(|z)|x(-) € M}

and N(:|z) = [x(-|z),7(-|x)] derived from it.

e Used in Kofler & Menges’ (1976) theory of
partial information

e Strong justification by coherence axioms
(Walley (1991): Generalized Bayes Rule)

e intuitively very plausible

e clegant modelling of prior-data conflict (Wal-
ley (1991, Ch. 1))

e successive updating: use lM(:|z) as a new

nriary 1im hanmAlinvAa nmAawvwa, ~A~IkheceAryv A+ 1AN A~



BUT
e Decision theoretic justification is lost.

e Decision functions constructed via the pos-
terior structure may have higher risk.

e Optimality with respect to imprecise prior risk

=

optimality with respect to imprecise posterior |0ss

?
e — [ he imprecise posterior does not con-
tain all the relevant information 1717

WHY?



Decision functions constructed via the pos-
terior structure may have higher risk

e First (counter)example: \Vacuous prior( “N(-) =
[0,1]")

* Minimax decision function d*(-) minimizes
prior risk.

* Vacuous posterior for every observation
(we do not learn from the datal); min-
imax action a® minimizes posterior loss
for every observation

* Usually d* > (a*,...,a™)

e Representation theorem: Optimal decision
functions with respect to an imprecise prior
w(-) are always minimax solutions (in a dif-
ferent decision problem)

e Imprecise posteriors may be dilated (Sei-
denfeld & Wasserman (1993, Ann.Statist.))
This leads often to a negative value of in-
formation.



Representation Theorem: Optimal decision
functions with respect to an imprecise prior
w(-) are always minimax solutions (in a differ-
ent decision problem):

Consider
e a basic decision problem (1A, ©,1(-,-)) with

e prior structure M and
e (precise) sampling information (py(-))yeco

i) An action a* is optimal optimal with re-
spect to the prior structure M
iff
it is maximin action in the decision problem
(A, M, I(-,-)) with

[ : (AxM) - R
(a, 7) +— l(a, ) =E;((a,?)

i) A decision function d*(-) is optimal
iff
d*(-) is maximin decision function in the de-
cision problem (D, M, R(-,-)) with

R : (DxM) — R
(d. 1) — R(d 7):=E-(R(dD)).

Proof: m
)

i  Ex(@9)

> 1

ax
c M
Y




Remarks

e Optimal decision functions have all the
((un)pleasant) properties of minimax so-
lutions.

e Neither

* equivalence of posterior loss and prior
risk

nor

* essentially completeness of unrandom-
ized actions (also for robust Bayesian
solutions!)

can be expected.

e Representation similar to SchneeweiB's (1964)
representation of a no-data problem.

e EXxtensions to interval-valued sampling model
and Hurwicz-like criterion.

e Framework for decision making with sec-
ond order probabilities.



5. How to Calculate Decision Functions
Minimizing Prior Risk?

e Vidakovic (2000, in Rios-Insua & Ruggeri
(eds.))

e Noubiap & Seidel (2001, Comp. Stat.&
Data Anal.), (2001, Ann. Stat)

e On finite parameter spaces solution via a
single linear programming problem avail-
able (Augustin (2001, ISIPTA-Cornell))



Consider finite sample spaces. Minimize

k U]E/f,\f (UIEMj(l(d, ﬁj))) = max (jzlpj?“)?%
(X (3 asi 9))- oy as) )-pad)) - m({9,1))
i=1 s=1 gi\7en] unknown ]ex/l' GMZT

constr.  constr.

w.r.t. 2?21 d(xz;, as) = 1,d(x;, as) > 0 Vi, s.

e Make this problem linear: auxiliary vari-
ables g for YE 4, as well as g; for U]EMJ..

g — min with respect to
k n
o D] Was, 95) - d(xy, as) | -pj({xi}) < g5
1=1 \s=1
Vp;(-) € M;;, Vie{l,..., m}
m
gj-m({9;}) < g
J=1
V() € M

n
> d(mj, as) =1, d(zj, as) > 0 Vi, s.
Jj=1

e Objective function and constraints are lin-
ear in a finite number of variables, but still

NO linear programming problem. M and
AM - are 1tncotintablel



Some Properties of Structures on Finite
Sample Spaces:

e M is a convex polyhedron.

* M is closed.

* The set £(M) of the extreme points
(vertices) is non-empty, finite, and it
uniquely determines M.

e ITreatment of typical problems of interval
probability with linear programming:
Weichselberger (1996, Huber-Festschrift).

e Calculation of &(M):

* Algorithm from the theory of convex poly-
hedra. (Intersection of k£ hyperplains)

* For two monotone and totally mono-
tone probability closed form available:

EM) ={ps() |c €T}
with

i i—1
pc({w}) — L( U wc(y’)) - L( U wc(a’)) ’
for all e = 1,...,k and T as the set of

3l permiitations of {1 L1V



Lemma P(-) = [L(-),U(-)] F-probability with
structure M and extreme points £(M).

E X = min E,X ; max IEpX
M p(IEEM) P77 p(esMm) T

Corollary (Vertice reduction lemma)
For every real g,

VEpX <g<=E,X<g, Vp()e&EWM).



Use the vertice reduction lemma to reformulate
the task as a linear optimization problem:

g — min

under the constraints

Ek: ( ) l(as, ¥;) - d(z;, as)) -pi({zi}) < gj
= sz;(-) cE(M;), Vied{l, ..., m}
f: gj-m({9;}) < g
]:er(-) € E(M)

n
Z d(xz;, as) =1, d(x;, as) > 0 Vi, s.
j=1

e Single linear programming problem

e Easy calculation of optimal decision func-
tions

e Easy proof of existence of solutions and of
the convexity of the set of optimal decision
functions

e further insights by dualization!

e also for Choquet Expected Utility in case
of two-monotone capacities or belief func-
tions

e optimal unrandomized actions by integer

-



6. Further Work

Detailed understanding of the problems of
Robust Bayesianism.

How to 'update’ in decision making?
Extension to infinite sample spaces using
results by Ruger, Utkin

Apply dualization:
* — |east favorable constellations

* for hypothesis testing:
Generalization of the Generalized Neyman-
Pearson Lemma (Augustin (1998, Van-
denh. & R., Ch. 5))

Use more sophisticated interval ordering to
model general ambiguity attitudes (for the
no-data problem: Augustin (2002, Stat. Pa-

pers))
sequential decision making, but be careful!

* backward induction: Hermanez (1999,
ISIPTA99-Ghent), de Cooman (2002,
Workshop Munich)

* 'sophisticated versus step by step opti-
mal’: Jaffray (2002, J. Stat. Plan. Inf.)

* for sequential testing: Augustin & Pohlmann

. . e e A



What is updating?
How to learn from data? (inference)
How to make optimal decisions?

Does [x(:|z),7(-|x)] deserve to be called
posterior, since

- it does not contain the full information
from a sample and

- it leads to suboptimal decisions 7

Implicit definition of posterior 727

or

Separate updating/inference and decision
in an uncompromising way |

But check for potential paradoxes (statisti-
cal estimating and testing problem can be
formulated as inference as well as decision
problems.)



