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• What is updating?

• How to learn from data? (inference)

• How to make optimal decisions?

• What’s the value of additional information?



1. Updating and Bayesian Statistics

• Two paradigms

[P1 ] Every uncertainty can adequately be

described by a classical probability dis-

tribution ⇒ prior distribution π(·) for a

parameter

[P2 ] After having observed the sample {x},
the posterior π(·|x) contains all the rel-

evant information. Every inference pro-

cedure depends on π(·|x), and only on

π(·|x).

• Paradigm [P2] can be justified by decision

theoretic arguments: Decision functions with

minimal risk under prior π(·) can be con-

structed from considering optimal actions

with respect to π(·|x) as ’updated prior’.

optimality with respect to prior risk

=

optimality with respect to posterior loss

inference = decision



Aim of the talk

• General: develop a comprehensive frame-

work for decision making under partial prior

information (imprecise prior instead of [P1])

• In particular, study a straightforward adop-

tion of [P2] used in sensitivity analysis, in

the robust Bayesian approach and in im-

precise probability theory (Walley’s gener-

alized Bayes rule)

1. Updating and Bayesian Statistics

2. Classical Decision Theory

3. Decision Making under Interval Probability

– Basic Concepts

4. The Robust Bayesian Approach/Walley’s

GBR

5. How to Calculate Decision Functions Min-

imizing Prior Risk?

6. Concluding Remarks



2. Classical Decision Theory

The Basic Decision Problem

no-data problem (on finite spaces)

• set IA = {a1, . . . , as, . . . , an} of actions,

• possibly Λ(IA) set of randomized actions

a(·) = (λ(a1), . . . , λ(as), . . . , λ(an))

• set Θ = {ϑ1, . . . , ϑj, . . . , ϑm} of states of

nature

• precise loss function

l : (IA×Θ) → IR
(a, ϑ) 7→ l(a, ϑ) ,

• represented in an loss table

ϑ1 ϑj ϑm

a1 l(a1, ϑ1) . . . l(a1, ϑj) . . . l(a1, ϑm)
... ... ...

as l(as, ϑ1) . . . l(as, ϑj) . . . l(as, ϑm)
... ... ...

an l(an, ϑ1) . . . l(an, ϑj) . . . l(an, ϑm)

• associated random variable l(a) on (Θ,Po(Θ))

• Aim: Choose an optimal action a∗!



Data problem

• Incorporate additional information from a

sample !

• Choose an optimal strategy !

• What is the value of a certain information ?

Information on ϑj from an experiment where

the probability depends on ϑj:

For every j a classical probability pj(·) is given

x1 . . . xi . . . xk

ϑ1 p1({x1}) . . . p1({xi}) . . . p1({xk})
... ... ... ...
ϑj pj({x1}) . . . pj({xi}) . . . pj({xk})
... ... ... ...
ϑm pm({x1}) . . . pm({xi}) . . . pm({xk})

Often pj({xi}) is interpreted as p({xj}|{ϑj}).



decision functions (strategies)

• describing randomized action in dependence

on the observation {xi}
d : {x1, . . . , xk} → Λ(IA)

xi 7→ d(xi) = a .

• randomized decision functions d(xi, as); clas-

sical probability to choose as if {xi} occurs.

• D set of all decision functions

• associated random variable l(d, ϑj) on (Ω,A)

• risk of d(·)

R(d, ϑj) := IEpj

(
l(d, ϑj)

)
.

• New decision problem (D,Θ, R(·, ·)).

The value of the information experiment

loss of the optimal action
in the no-data problem

—
risk of the optimal decision function

in the data problem
=

value of information

Always nonnegative.



Optimality criteria

1) Minimax optimality

• In the no-data problem: max
ϑ∈Θ

l(a, ϑ) → min

• In the data problem: max
ϑ∈Θ

R(d, ϑ) → min

2) Bayes optimality with respect to prior π(·)
on (Θ,Po(Θ)).

• In the no-data problem: IEπ(l(a, ϑ)) → min

• In the data problem: IEπ(R(d, ϑ)) → min

“Main theorem of Bayesian decision analysis”

• Optimal d∗(·) can be obtained by solving,

for every observation {x}, the no-data prob-

lem with the posterior π(·|x) as the ‘up-

dated prior’.

optimality with respect to prior risk

=

optimality with respect to posterior loss

• For maximin solutions NO reduction of the

data problem to no-data problems possible.



3. Decision Making under Interval

Probability – Basic Concepts

ideal ran-

domness
� uncertainty

?

- ambiguity

? ?

subjective class. prob. zero-sum gamble

? ?

subj. expected utility maximin solution

? ?

Ellsberg overpessi mistic

generalized probability– –

generalized expected utility

?



Ellsberg’s Experiments

• Ellsberg’s (1961, Quart. J. Econ.)

• Ellsberg (2002, Series of most influential

Harvard theses)

• Does the difference between an ideal lot-

tery situation and the general decision sit-

uation under uncertainty matter?

• Urn with balls of three different colours:

one with known proportion, two with par-

tially unknown proportions

• participants express preferences which can

not be modelled by any classical probability

measure

• deliberate (not only empirical!) violations

of the axioms of (classical) probability!

• Conclusion: (Classical) probability is insuf-

ficient to adequately model ambiguous un-

certainty.



Ambiguity

• Ellsberg (1961, Quart. J. Econ.)

Ellsberg (2002, Series of most influential

Harvard theses)

• in psychology, management science and eco-

nomics

* bibliography: Smithson (1999, tech. re-

port)

* collection of important papers: Hamouda

& Rowley (1997, Edward Elgar)

* in principle even in Knight (1921) &

Keynes (1921)

• in statistics

* Walley (1991, Chap. & Hall, Ch. 5)

* Weichselberger (2001, Physica, Ch. 1, 2.6)

* ISIPTA Proceedings (1999, 2001)

* Special volumes Statistical Papers (2002),

J.Stat.Plan.Inf. (2002)

• in artificial intelligence

* Uncertainty in Artificial Intelligence Pro-

ceedings (Annual)



Basic decision theoretic framework

+
Generalized concept of probability to model

ambiguous uncertainty

=
General framework for decision making under

ambiguous uncertainty
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Generalized Probabilities to Handle Ambiguity

Probability and uncertainty as a two-dimensional

phenomenon: (ideal type separation of two

overlapping phenomena)

uncertainty

=

ideal randomness + ambiguity

Mainly two approaches

• sets of classical probabilities

• for every event A interval [L(A);U(A)]

⇒ non-additive set functions L(·) and U(·)
The interval width reflects the extent of

ambiguity

* P (A) = [a; a]: classical probability,

situation of ideal randomness

... increasing ambiguity

* P (A) = [0; 1]: complete ignorance



Axiomizing interval probability

• Classical probability p(·): set-function
satisfying Kolmogorov’s axioms

• interval probability P (·) = [L(·), U(·)]

• look at the relation between the dual pair
of non-additive set functions L(·) and U(·)
and the structure M, i.e, the set of all
classical probabilities p(·) compatible with
[L(·), U(·)]
M := {p(·) | L(A) ≤ p(A) ≤ U(A), ∀A ∈ A} .

• Here: consider only assignments with:

M 6= ∅ and

inf
p(·)∈M

p(A) = L(A) ∧ sup
p(·)∈M

p(A) = U(A) , ∀A ∈ A .

• * lower and upper probability (Huber &
Strassen (1973, Ann. Stat.))

* envelopes (Walley & Fine (1982, Ann. Stat.),
Denneberg (1994, Kluwer))

* coherent probability (Walley (1991, Chap. &
Hall))

* F-probability (Weichselberger (2000, Int. J. Ap-
prox. Reas.; 2001, Physika))

• M: structure (Weichselberger), (in co-operative
game theory: core)



• slightly more general: Walley (1991, Chapm. &

Hall): imprecise previsions obtained from

interval-valued expectations = linear par-

tial information (Kofler & Menges (1976,

SpringerLN Econ); Huschens (1985, R.G. Fis-

cher); Kofler (1989, Campus))

• Special Case: Capacities of Higher Order

* Belief-functions (totally monotone prob-

abilities), corresponding to a basic prob-

ability assignment (Shafer (1976, Prince-

ton UP), Yager, Fedrizzi und Kacprzyk

(1994, Wiley))

* Neighborhood models in robust statis-

tics (pseudo capacities, Choquet-capa-

cities)(Huber (1981, Wiley), for a sur-

vey (and extensions): Augustin (2001,

J. Stat. Plan. Inf.))

* Probability intervals (PRI) (Weichselberger

& Pöhlmann (1990; Springer LN AI))

* Other common names ’supermodular’

(Denneberg (1994; Kluwer)) or ‘convex’

(Jaffray (1989, OR Letters))



Expectation

Classical expectation for X(·) ≥ 0:

IEX =
∫

Xdp =
∫

p({ω | X(ω) > t}) dt

Two possible ways to generalize this for F-prob-

ability P (·) = [L(·), U(·)] with structure M

• “outer method”: substitute p(·) by L(·)
and U(·) (Choquet integral, fuzzy integral)

IELX :=
∫ ∞
0

L({ω | X(ω) > t}) dt .

• “inner method”: refers to the structure;

considers infp(·)∈M and supp(·)∈M (here in

what follows)

IEMX :=
[
LIEMX, UIEMX

]

:= [ inf
p(·)∈M

IEpX , sup
p(·)∈M

IEpX]

Theorem (e.g, Denneberg (1994, Kluwer,

Prop. 10.3)):

In the case of two-monotone probability

both definitions coincide.

Therefore: In the case of two-monotonicity

everything said here is also valid for the

Choquet integral.



Basic decision theoretic framework

+
Generalized concept of probability to model

ambiguous uncertainty

=
General framework for decision making under

ambiguous uncertainty

• classical decision theory can only deal with

the two – both unrealistic – extreme cases

– complete probabilistic knowledge

(i.e knowledge of a single classical prob-

ability) or

– complete ignorance

+ Now modeling of arbitrary intermediate steps

becomes possible. The true level of know-

ledge can be adequately represented.



Generalized Expected Utility/Loss

• Def.: Generalized expected loss

* basic decision problem (IA,Θ, l(·))
* F-probability Π(·) on (Θ,Po(Θ)) with

structure M.

Then, for every pure action a ∈ IA and for

every randomized action a ∈ Λ(IA), resp.,

IEMl(a)

is the generalized expected loss (with re-

spect to the prior Π(·)).

• Notice: IEMl(a) is an interval-valued quan-

tity. If a linear ordering is desired −→ rep-

resentation



• easiest choice: IEMl(a) 7→ UIEMl(a)

* a∗ is optimal iff

UIEMl(a∗) ≤ UIEMl(a) , ∀a ∈ Λ(IA) .

* strict ambiguity aversion

* Gamma-Minimax criterion (e.g., Berger

(1984, Springer, Section 4.7.6), Vidakovic

(2000, in Rios-Insua & Ruggeri (eds.)),

* Maxmin expected utility model (Gilboa

& Schmeidler (1989, J. Math. Econ.))

* MaxEMin criterion (Kofler & Menges

(1976, SpringerLN Econ); Kofler (1989,

Campus))

* For two-monotone capacities: Choquet

expected utility (e.g., Chateauneuf, Co-

hen & Meilijson (1997, Finance))

The two classical decision criteria are con-

tained as border cases:

* perfect probabilistic information, no am-

biguity: M = {π(·)} −→ Bayes optimal-

ity with respect to π(·).
* Completely lacking information, Π(B) =

[0; 1], for every B ∈ Po(Ω)\{∅,Θ}, (‘non-

selective or vacuous prior’); leads to the

maximin criterion



Data problem under interval probability:

• Now, for every j, an F-probability field

Pj(·) = [Lj(·), Uj(·)]
with structure Mj is given.

• risk of the decision function d(·)
* Given ϑj : IEMj

(
l(d, ϑj)

)
represented by

R(d) := UIEMj

(
l(d, ϑj)

)

* with prior structure M look at

IEM (R(d))

represented by

UIEM (R(d))

The value of the information experiment

loss of the optimal action
in the no-data problem

—
risk of the optimal decision function

in the data problem
=

value of information

Still always nonnegative.



4. Robust Bayesian Procedures

Generalized Bayes Rule

• classical statistics:

data problem with prior π(·)
≡

no-data problem with updated prior π(·|x)
⇒ posterior contains full information

• Generalization: Robust Bayesian Inference

(Survey: Wasserman (1997, Enc. Stat. Sc.,

Update 1))
prior structure M

+ observation x
posteriori structures M|x

with
M|x = {π(·|x)|π(·) ∈M}

and Π(·|x) = [π(·|x), π(·|x)] derived from it.

• Used in Kofler & Menges’ (1976) theory of

partial information

• Strong justification by coherence axioms

(Walley (1991): Generalized Bayes Rule)

• intuitively very plausible

• elegant modelling of prior-data conflict (Wal-

ley (1991, Ch. 1))

• successive updating: use Π(·|x) as a new

prior in handling new observations



BUT

• Decision theoretic justification is lost.

• Decision functions constructed via the pos-

terior structure may have higher risk.

• optimality with respect to imprecise prior risk

6=
optimality with respect to imprecise posterior loss

• ?
=⇒ The imprecise posterior does not con-

tain all the relevant information !?!?

WHY?



Decision functions constructed via the pos-

terior structure may have higher risk

• First (counter)example: Vacuous prior(“Π(·) =

[0,1]”)

* Minimax decision function d∗(·) minimizes

prior risk.

* Vacuous posterior for every observation

(we do not learn from the data!); min-

imax action a∗ minimizes posterior loss

for every observation

* Usually d∗ > (a∗, . . . , a∗)

• Representation theorem: Optimal decision

functions with respect to an imprecise prior

π(·) are always minimax solutions (in a dif-

ferent decision problem)

• Imprecise posteriors may be dilated (Sei-

denfeld & Wasserman (1993, Ann.Statist.))

This leads often to a negative value of in-

formation.

[π(·|x), π(·|x)] ⊃ [π(·), π(·)] , ∀x



Representation Theorem: Optimal decision

functions with respect to an imprecise prior

π(·) are always minimax solutions (in a differ-

ent decision problem):

Consider

• a basic decision problem (IA,Θ, l(·, ·)) with

• prior structure M and

• (precise) sampling information (pϑ(·))ϑ∈Θ

i) An action a∗ is optimal optimal with re-

spect to the prior structure M
iff

it is maximin action in the decision problem

(IA,M, l̃(·, ·)) with

l̃ : (IA×M) → IR
(a, π) 7→ l̃(a, π) := IEπ(l(a, ϑ)

ii) A decision function d∗(·) is optimal

iff

d∗(·) is maximin decision function in the de-

cision problem (D,M, R̃(·, ·)) with

R̃ : (D ×M) → IR
(d, π) 7→ R̃(d, π) := IEπ(R(d, ϑ)) .

Proof: max
π(·) ∈M︸ ︷︷ ︸

↑

IEπ(l(a, ϑ))︸ ︷︷ ︸
↑

new states of nature l̃(a, π)



Remarks

• Optimal decision functions have all the

((un)pleasant) properties of minimax so-

lutions.

• Neither

* equivalence of posterior loss and prior

risk

nor

* essentially completeness of unrandom-

ized actions (also for robust Bayesian

solutions!)

can be expected.

• Representation similar to Schneeweiß’s (1964)

representation of a no-data problem.

• Extensions to interval-valued sampling model

and Hurwicz-like criterion.

• Framework for decision making with sec-

ond order probabilities.



5. How to Calculate Decision Functions

Minimizing Prior Risk?

• Vidakovic (2000, in Rios-Insua & Ruggeri

(eds.))

• Noubiap & Seidel (2001, Comp. Stat.&

Data Anal.), (2001, Ann. Stat)

• On finite parameter spaces solution via a

single linear programming problem avail-

able (Augustin (2001, ISIPTA-Cornell))



Consider finite sample spaces. Minimize

UIEM
(
UIEMj

(l(d, ϑj))
)
= max

π∈M




m∑

j=1

max
pj(·)∈Mj( k∑

i=1

( n∑

s=1

l(as; ϑj)︸ ︷︷ ︸
given

· d(xi; as)︸ ︷︷ ︸
unknown

)
· pj({xi})︸ ︷︷ ︸

∈Mj

constr.

)
· π({ϑj})︸ ︷︷ ︸

∈Mπ
constr.

)

w.r.t.
∑n

j=1 d(xi, as) = 1 , d(xi, as) ≥ 0 ∀i, s.

• Make this problem linear: auxiliary vari-

ables g for UIEM, as well as gj for UIEMj
.

g −→ min with respect to

k∑

i=1




n∑

s=1

l(as, ϑj) · d(xi, as)


 · pj({xi}) ≤ gj

∀pj(·) ∈Mj; ∀j ∈ {1, . . . , m}
m∑

j=1

gj · π({ϑj}) ≤ g

∀π(·) ∈M
n∑

j=1

d(xi, as) = 1 , d(xi, as) ≥ 0 ∀i, s .

• objective function and constraints are lin-

ear in a finite number of variables, but still

NO linear programming problem. M and

Mj are uncountable!



Some Properties of Structures on Finite

Sample Spaces:

• M is a convex polyhedron.

* M is closed.

* The set E(M) of the extreme points

(vertices) is non-empty, finite, and it

uniquely determines M.

• Treatment of typical problems of interval

probability with linear programming:

Weichselberger (1996, Huber-Festschrift).

• Calculation of E(M):

* Algorithm from the theory of convex poly-

hedra. (Intersection of k hyperplains)

* For two monotone and totally mono-

tone probability closed form available:

E(M) = {pς(·) | ς ∈ Υ}
with

pς({ω}) = L




i⋃

j=1

ως(j)


− L




i−1⋃

j=1

ως(j)


 ,

for all i = 1, . . . , k and Υ as the set of

all permutations of {1, . . . , k}.



Lemma P (·) = [L(·), U(·)] F-probability with

structure M and extreme points E(M).

IEMX =

[
min

p(·)∈E(M)
IEpX ; max

p(·)∈E(M)
IEpX

]
.

Corollary (Vertice reduction lemma)

For every real g,

UIEMX ≤ g ⇐⇒ IEpX ≤ g, ∀p(·) ∈ E(M) .



Use the vertice reduction lemma to reformulate

the task as a linear optimization problem:

g −→ min

under the constraints

k∑

i=1




n∑

s=1

l(as, ϑj) · d(xi, as)


 · pj({xi}) ≤ gj

∀pj(·) ∈ E(Mj); ∀j ∈ {1, . . . , m}
m∑

j=1

gj · π({ϑj}) ≤ g

∀π(·) ∈ E(M)
n∑

j=1

d(xi, as) = 1 , d(xi, as) ≥ 0 ∀i, s .

• Single linear programming problem

• Easy calculation of optimal decision func-

tions

• Easy proof of existence of solutions and of

the convexity of the set of optimal decision

functions

• further insights by dualization!

• also for Choquet Expected Utility in case

of two-monotone capacities or belief func-

tions

• optimal unrandomized actions by integer

programming (but not essentially complete)



6. Further Work

• Detailed understanding of the problems of

Robust Bayesianism.

How to ’update’ in decision making?

• Extension to infinite sample spaces using

results by Rüger, Utkin

• Apply dualization:

* → least favorable constellations

* for hypothesis testing:

Generalization of the Generalized Neyman-

Pearson Lemma (Augustin (1998, Van-

denh. & R., Ch. 5 ))

• Use more sophisticated interval ordering to

model general ambiguity attitudes (for the

no-data problem: Augustin (2002, Stat. Pa-

pers))

• sequential decision making, but be careful!

* backward induction: Hermanez (1999,

ISIPTA99-Ghent), de Cooman (2002,

Workshop Munich)

* ’sophisticated versus step by step opti-

mal’: Jaffray (2002, J. Stat. Plan. Inf.)

* for sequential testing: Augustin & Pöhlmann

(2001, subm.)



• What is updating?

• How to learn from data? (inference)

• How to make optimal decisions?

• Does [π(·|x), π(·|x)] deserve to be called

posterior, since

- it does not contain the full information

from a sample and

- it leads to suboptimal decisions ?

• Implicit definition of posterior ??

or

• Separate updating/inference and decision

in an uncompromising way !

• But check for potential paradoxes (statisti-

cal estimating and testing problem can be

formulated as inference as well as decision

problems.)


