On the Information Value of Additional Data and Expert Knowledge in Updating Imprecise Prior Information

Pertisau, September 2002

Thomas Augustin

University of Bielefeld thomas@stat.uni-muenchen.de

www.stat.uni-muenchen.de/~thomas

- What is updating?
- How to learn from data? (inference)
- How to make optimal decisions?
- What's the value of additional information?

1. Updating and Bayesian Statistics

- Two paradigms
- [P1] Every uncertainty can adequately be described by a classical probability distribution \Rightarrow prior distribution $\pi(\cdot)$ for a parameter
- [P2] After having observed the sample $\{x\}$, the posterior $\pi(\cdot|x)$ contains all the relevant information. Every inference procedure depends on $\pi(\cdot|x)$, and only on $\pi(\cdot|x)$.
- Paradigm [P2] can be justified by decision theoretic arguments: Decision functions with minimal risk under prior $\pi(\cdot)$ can be constructed from considering optimal actions with respect to $\pi(\cdot|x)$ as 'updated prior'.

optimality with respect to prior risk

optimality with respect to posterior loss

inference = decision

Aim of the talk

- General: develop a comprehensive framework for decision making under partial prior information (imprecise prior instead of [P1])
- In particular, study a straightforward adoption of [P2] used in sensitivity analysis, in the robust Bayesian approach and in imprecise probability theory (Walley's generalized Bayes rule)
- 1. Updating and Bayesian Statistics
- 2. Classical Decision Theory
- 3. Decision Making under Interval Probability– Basic Concepts
- 4. The Robust Bayesian Approach/Walley's GBR
- 5. How to Calculate Decision Functions Minimizing Prior Risk?
- 6. Concluding Remarks

2. Classical Decision Theory

The Basic Decision Problem

no-data problem (on finite spaces)

- set $M = \{a_1, \ldots, a_s, \ldots, a_n\}$ of actions,
- possibly $\Lambda(IA)$ set of randomized actions

$$a(\cdot) = (\lambda(a_1), \dots, \lambda(a_s), \dots, \lambda(a_n))$$

- ullet set $\Theta = \{ artheta_1, \, \dots, \, artheta_j, \, \dots, \, artheta_m \}$ of *states* of nature
- precise loss function

$$\begin{array}{cccc} l & : & (I\!\!A \times \Theta) & \to & \mathbb{R} \\ & & (a, \vartheta) & \mapsto & l(a, \vartheta) & , \end{array}$$

represented in an loss table

- associated random variable l(a) on $(\Theta, \mathcal{P}o(\Theta))$
- Aim: Choose an optimal action $a^*!$

Data problem

- Incorporate additional information from a sample!
- Choose an optimal strategy!
- What is the value of a certain information?

Information on ϑ_j from an experiment where the probability depends on ϑ_j :

For every j a classical probability $p_j(\cdot)$ is given

Often $p_j(\{x_i\})$ is interpreted as $p(\{x_j\}|\{\vartheta_j\})$.

decision functions (strategies)

• describing randomized action in dependence on the observation $\{x_i\}$

$$d: \{x_1, \ldots, x_k\} \rightarrow \Lambda(\mathbb{A})$$
 $x_i \mapsto d(x_i) = a$.

- randomized decision functions $d(x_i, a_s)$; classical probability to choose a_s if $\{x_i\}$ occurs.
- D set of all decision functions
- ullet associated random variable $\mathrm{l}(d, artheta_j)$ on (Ω, \mathcal{A})
- risk of $d(\cdot)$

$$R(d, \vartheta_j) := \mathbb{E}_{p_j} \left(l(d, \vartheta_j) \right).$$

• New decision problem $(\mathcal{D}, \Theta, R(\cdot, \cdot))$.

The value of the information experiment

loss of the optimal action in the no-data problem

risk of the optimal decision function in the data problem

value of information

Always nonnegative.

Optimality criteria

1) Minimax optimality

- In the no-data problem: $\max_{\vartheta \in \Theta} l(a, \vartheta) \to \min$
- In the data problem: $\max_{\vartheta \in \Theta} R(d, \vartheta) \to \min$
- 2) Bayes optimality with respect to prior $\pi(\cdot)$ on $(\Theta, \mathcal{P}o(\Theta))$.
 - In the no-data problem: $\mathbf{E}_{\pi}(l(a,\vartheta)) \to \min$
 - In the data problem: $\mathbb{E}_{\pi}(R(d,\vartheta)) \to \min$

"Main theorem of Bayesian decision analysis"

• Optimal $d^*(\cdot)$ can be obtained by solving, for every observation $\{x\}$, the no-data problem with the posterior $\pi(\cdot|x)$ as the 'updated prior'.

optimality with respect to prior risk

=

optimality with respect to posterior loss

 For maximin solutions NO reduction of the data problem to no-data problems possible.

3. Decision Making under Interval Probability – Basic Concepts

Ellsberg's Experiments

- Ellsberg's (1961, Quart. J. Econ.)
- Ellsberg (2002, Series of most influential Harvard theses)
- Does the difference between an ideal lottery situation and the general decision situation under uncertainty matter?
- Urn with balls of three different colours: one with known proportion, two with partially unknown proportions
- participants express preferences which can not be modelled by any classical probability measure
- deliberate (not only empirical!) violations of the axioms of (classical) probability!
- Conclusion: (Classical) probability is insufficient to adequately model ambiguous uncertainty.

Ambiguity

- Ellsberg (1961, Quart. J. Econ.)
 Ellsberg (2002, Series of most influential Harvard theses)
- in psychology, management science and economics
 - * bibliography: Smithson (1999, tech. report)
 - * collection of important papers: Hamouda & Rowley (1997, Edward Elgar)
 - * in principle even in Knight (1921) & Keynes (1921)
- in statistics
 - * Walley (1991, Chap. & Hall, Ch. 5)
 - * Weichselberger (2001, Physica, Ch. 1, 2.6)
 - * ISIPTA Proceedings (1999, 2001)
 - * Special volumes Statistical Papers (2002), J.Stat.Plan.Inf. (2002)
- in artificial intelligence
 - * Uncertainty in Artificial Intelligence Proceedings (Annual)

Basic decision theoretic framework

Generalized concept of probability to model ambiguous uncertainty

General framework for decision making under ambiguous uncertainty

www.stat.uni-muenchen.de/ ~ thomas

Generalized Probabilities to Handle Ambiguity

Probability and uncertainty as a two-dimensional phenomenon: (ideal type separation of two overlapping phenomena)

uncertainty

ideal randomness

+ ambiguity

Mainly two approaches

- sets of classical probabilities
- for every event A interval [L(A); U(A)] \Rightarrow non-additive set functions $L(\cdot)$ and $U(\cdot)$ The interval width reflects the extent of ambiguity
 - * P(A) = [a; a]: classical probability, situation of ideal randomness

: increasing ambiguity

* P(A) = [0; 1]: complete ignorance

Axiomizing interval probability

- Classical probability $p(\cdot)$: set-function satisfying Kolmogorov's axioms
- interval probability $P(\cdot) = [L(\cdot), U(\cdot)]$
- look at the *relation* between the dual pair of non-additive set functions $L(\cdot)$ and $U(\cdot)$ and the structure \mathcal{M} , i.e, the set of all classical probabilities $p(\cdot)$ compatible with $[L(\cdot), U(\cdot)]$

$$\mathcal{M} := \{ p(\cdot) \mid L(A) \le p(A) \le U(A), \quad \forall A \in \mathcal{A} \}.$$

Here: consider only assignments with:

$$\mathcal{M} \neq \emptyset$$
 and

$$\inf_{p(\cdot)\in\mathcal{M}} p(A) = L(A) \wedge \sup_{p(\cdot)\in\mathcal{M}} p(A) = U(A), \ \forall A \in \mathcal{A}.$$

- * lower and upper probability (Huber & Strassen (1973, Ann. Stat.))
 - * envelopes (Walley & Fine (1982, Ann. Stat.), Denneberg (1994, Kluwer))
 - * coherent probability (Walley (1991, Chap. & Hall))
 - * F-probability (Weichselberger (2000, Int. J. Approx. Reas.; 2001, Physika))
- M: structure (Weichselberger), (in co-operative

slightly more general: Walley (1991, Chapm. & Hall): imprecise previsions obtained from interval-valued expectations = linear partial information (Kofler & Menges (1976, SpringerLN Econ); Huschens (1985, R.G. Fischer); Kofler (1989, Campus))

Special Case: Capacities of Higher Order

- * Belief-functions (totally monotone probabilities), corresponding to a basic probability assignment (Shafer (1976, Princeton UP), Yager, Fedrizzi und Kacprzyk (1994, Wiley))
- * Neighborhood models in robust statistics (pseudo capacities, Choquet-capacities)(Huber (1981, Wiley), for a survey (and extensions): Augustin (2001, J. Stat. Plan. Inf.))
- * Probability intervals (PRI) (Weichselberger & Pöhlmann (1990; Springer LN AI))
- * Other common names 'supermodular' (Denneberg (1994; Kluwer)) or 'convex' (Jaffray (1989, OR Letters))

Expectation

Classical expectation for $X(\cdot) \geq 0$:

$$\mathbb{E}X = \int X dp = \int p(\{\omega \mid X(\omega) > t\}) dt$$

Two possible ways to generalize this for F-probability $P(\cdot) = [L(\cdot), U(\cdot)]$ with structure \mathcal{M}

• "outer method": substitute $p(\cdot)$ by $L(\cdot)$ and $U(\cdot)$ (Choquet integral, fuzzy integral)

$$\mathbb{E}_L X := \int_0^\infty L(\{\omega \mid X(\omega) > t\}) dt.$$

• "inner method": refers to the structure; considers $\inf_{p(\cdot)\in\mathcal{M}}$ and $\sup_{p(\cdot)\in\mathcal{M}}$ (here in what follows)

$$\mathbb{E}_{\mathcal{M}}X := \left[\mathbb{E}_{\mathcal{M}}X, \mathbb{E}_{\mathcal{M}}X \right]$$
$$:= \left[\inf_{p(\cdot) \in \mathcal{M}} \mathbb{E}_{p}X, \sup_{p(\cdot) \in \mathcal{M}} \mathbb{E}_{p}X \right]$$

Theorem (e.g, Denneberg (1994, Kluwer, Prop. 10.3)):

In the case of two-monotone probability both definitions coincide.

Therefore: In the case of two-monotonicity everything said here is also valid for the

Basic decision theoretic framework

Generalized concept of probability to model ambiguous uncertainty

General framework for decision making under ambiguous uncertainty

- classical decision theory can only deal with the two – both unrealistic – extreme cases
 - complete probabilistic knowledge

 (i.e knowledge of a single classical probability) or
 - complete ignorance
- + Now modeling of arbitrary intermediate steps becomes possible. The true level of know-ledge can be adequately represented.

Generalized Expected Utility/Loss

- Def.: Generalized expected loss
 - * basic decision problem $(\mathbb{A}, \Theta, l(\cdot))$
 - * F-probability $\Pi(\cdot)$ on $(\Theta, \mathcal{P}_o(\Theta))$ with structure \mathcal{M} .

Then, for every pure action $a \in \mathbb{A}$ and for every randomized action $a \in \Lambda(\mathbb{A})$, resp.,

$$\mathbb{E}_{\mathcal{M}} l(a)$$

is the *generalized expected loss* (with respect to the prior $\Pi(\cdot)$).

• Notice: $\mathbb{E}_{\mathcal{M}}\mathbf{l}(a)$ is an interval-valued quantity. If a linear ordering is desired \longrightarrow rep-resentation

- easiest choice: $\mathbb{E}_{\mathcal{M}} l(a) \mapsto {}^{\mathsf{U}} \mathbb{E}_{\mathcal{M}} l(a)$
 - * a^* is optimal iff

$$\bigcup_{\mathbf{L}} \mathbf{l}(a^*) \leq \bigcup_{\mathbf{L}} \mathbf{l}(a), \quad \forall a \in \Lambda(\mathbf{L}).$$

- * strict ambiguity aversion
- * Gamma-Minimax criterion (e.g., Berger (1984, Springer, Section 4.7.6), Vidakovic (2000, in Rios-Insua & Ruggeri (eds.)),
- * Maxmin expected utility model (Gilboa & Schmeidler (1989, J. Math. Econ.))
- * MaxEMin criterion (Kofler & Menges (1976, SpringerLN Econ); Kofler (1989, Campus))
- * For two-monotone capacities: Choquet expected utility (e.g., Chateauneuf, Cohen & Meilijson (1997, Finance))

The two classical decision criteria are contained as border cases:

- * perfect probabilistic information, no ambiguity: $\mathcal{M} = \{\pi(\cdot)\} \longrightarrow \text{Bayes optimality with respect to } \pi(\cdot).$
- * Completely lacking information, $\Pi(B) = [0; 1]$, for every $B \in \mathcal{P}o(\Omega) \setminus \{\emptyset, \Theta\}$, ('non-selective or vacuous prior'); leads to the

Data problem under interval probability:

ullet Now, for every j, an F-probability field

$$P_j(\cdot) = [L_j(\cdot), U_j(\cdot)]$$

with structure \mathcal{M}_i is given.

- risk of the decision function $d(\cdot)$
 - * Given $\vartheta_j: \mathbb{E}_{\mathcal{M}_j}\left(\mathbf{l}(d,\vartheta_j)\right)$ represented by

$$\mathbf{R}(d) := {}^{\bigcup} \mathbb{E}_{\mathcal{M}_j} \left(\mathbf{l}(d, \vartheta_j) \right)$$

* with prior structure ${\mathcal M}$ look at

$$\mathbb{E}_{\mathcal{M}}\left(\mathbf{R}(d)\right)$$

represented by

$$^{\cup}\mathbb{E}_{\mathcal{M}}\left(\mathbf{R}(d)\right)$$

The value of the information experiment

loss of the optimal action in the no-data problem

risk of the optimal decision function in the data problem

value of information

4. Robust Bayesian Procedures Generalized Bayes Rule

• classical statistics:

data problem with prior
$$\pi(\cdot)$$

no-data problem with updated prior $\pi(\cdot|x)$ \Rightarrow posterior contains full information

 Generalization: Robust Bayesian Inference (Survey: Wasserman (1997, Enc. Stat. Sc., Update 1))

with

$$\mathcal{M}_{|x} = \{\pi(\cdot|x)|\pi(\cdot) \in \mathcal{M}\}$$

and $\Pi(\cdot|x) = [\underline{\pi}(\cdot|x), \overline{\pi}(\cdot|x)]$ derived from it.

- Used in Kofler & Menges' (1976) theory of partial information
- Strong justification by coherence axioms (Walley (1991): Generalized Bayes Rule)
- intuitively very plausible
- elegant modelling of prior-data conflict (Walley (1991, Ch. 1))
- successive updating: use $\Pi(\cdot|x)$ as a new prior in handling now observations

BUT

- Decision theoretic justification is lost.
- Decision functions constructed via the posterior structure may have higher risk.
- optimality with respect to imprecise prior risk
 potimality with respect to imprecise posterior loss
- $\stackrel{?}{\Longrightarrow}$ The imprecise posterior does not contain all the relevant information !?!?

WHY?

Decision functions constructed via the posterior structure may have higher risk

- First (counter)example: Vacuous prior(" $\Pi(\cdot) = [0,1]$ ")
 - * Minimax decision function $d^*(\cdot)$ minimizes prior risk.
 - * Vacuous posterior for every observation (we do not learn from the data!); minimax action a^* minimizes posterior loss for every observation
 - * Usually $d^* > (a^*, \dots, a^*)$
- Representation theorem: Optimal decision functions with respect to an imprecise prior $\pi(\cdot)$ are always minimax solutions (in a different decision problem)
- Imprecise posteriors may be dilated (Seidenfeld & Wasserman (1993, Ann.Statist.))
 This leads often to a negative value of information.

$$[\underline{\pi}(\cdot|x), \overline{\pi}(\cdot|x)] \supset [\underline{\pi}(\cdot), \overline{\pi}(\cdot)], \forall x$$

Representation Theorem: Optimal decision functions with respect to an imprecise prior $\pi(\cdot)$ are always minimax solutions (in a different decision problem):

Consider

- ullet a basic decision problem $(I\!A, \Theta, l(\cdot, \cdot))$ with
- ullet prior structure ${\cal M}$ and
- (precise) sampling information $(p_{\vartheta}(\cdot))_{\vartheta \in \Theta}$
- i) An action a^* is optimal optimal with respect to the prior structure $\mathcal M$

iff

it is maximin action in the decision problem $(\mathbb{A}, \mathcal{M}, \tilde{l}(\cdot, \cdot))$ with

$$\tilde{l}: (IA \times \mathcal{M}) \to \mathbb{R}$$

$$(a, \pi) \mapsto \tilde{l}(a, \pi) := \mathbb{E}_{\pi}(l(a, \vartheta))$$

ii) A decision function $d^*(\cdot)$ is optimal iff

 $d^*(\cdot)$ is maximin decision function in the decision problem $(\mathcal{D}, \mathcal{M}, \tilde{R}(\cdot, \cdot))$ with

$$\tilde{R}: (\mathcal{D} \times \mathcal{M}) \to \mathbb{R}$$

 $(d, \pi) \mapsto \tilde{R}(d, \pi) := \mathbb{E}_{\pi}(R(d, \vartheta)).$

Proof:
$$\max_{\underline{\pi(\cdot)} \in \mathcal{M}} \underline{\mathbb{E}_{\pi}(l(a, \vartheta))}$$

Remarks

 Optimal decision functions have all the ((un)pleasant) properties of minimax solutions.

Neither

* equivalence of posterior loss and prior risk

nor

* essentially completeness of unrandomized actions (also for robust Bayesian solutions!)

can be expected.

- Representation similar to Schneeweiß's (1964)
 representation of a no-data problem.
- Extensions to interval-valued sampling model and Hurwicz-like criterion.
- Framework for decision making with second order probabilities.

5. How to Calculate Decision Functions Minimizing Prior Risk?

- Vidakovic (2000, in Rios-Insua & Ruggeri (eds.))
- Noubiap & Seidel (2001, Comp. Stat.& Data Anal.), (2001, Ann. Stat)
- On finite parameter spaces solution via a single linear programming problem available (Augustin (2001, ISIPTA-Cornell))

Consider finite sample spaces. Minimize

$$\text{UE}_{\mathcal{M}} \left(\text{UE}_{\mathcal{M}_j} (l(d, \vartheta_j)) \right) = \max_{\pi \in \mathcal{M}} \left(\sum_{j=1}^m \max_{p_j(\cdot) \in \mathcal{M}_j} \left(\sum_{i=1}^k \left(\sum_{s=1}^n \underbrace{l(a_s; \vartheta_j)}_{\text{given}} \cdot \underbrace{d(x_i; a_s)}_{\text{unknown}} \right) \cdot \underbrace{p_j(\{x_i\})}_{\in \mathcal{M}_j} \cdot \underbrace{\pi(\{\vartheta_j\})}_{\in \mathcal{M}_{\pi}} \right) \right)$$

w.r.t.
$$\sum_{i=1}^{n} d(x_i, a_s) = 1, d(x_i, a_s) \ge 0 \ \forall i, s.$$

• Make this problem linear: auxiliary variables g for ${}^{U}\!\mathbb{E}_{\mathcal{M}_{i}}$, as well as g_{j} for ${}^{U}\!\mathbb{E}_{\mathcal{M}_{i}}$.

 $g \longrightarrow \min$ with respect to

$$\sum_{i=1}^{k} \left(\sum_{s=1}^{n} l(a_s, \vartheta_j) \cdot d(x_i, a_s) \right) \cdot p_j(\{x_i\}) \leq g_j$$

$$\forall p_j(\cdot) \in \mathcal{M}_j; \ \forall j \in \{1, \dots, m\}$$

$$\sum_{j=1}^{m} g_j \cdot \pi(\{\vartheta_j\}) \leq g$$

$$\forall \pi(\cdot) \in \mathcal{M}$$

$$\sum_{j=1}^{n} d(x_i, a_s) = 1, \ d(x_i, a_s) \geq 0 \ \forall i, s.$$

objective function and constraints are linear in a finite number of variables, but still NO linear programming problem. M and M: are uncountable!

Some Properties of Structures on Finite Sample Spaces:

- ullet $\mathcal M$ is a convex polyhedron.
 - * \mathcal{M} is closed.
 - * The set $\mathcal{E}(\mathcal{M})$ of the **extreme points** (vertices) is non-empty, finite, and it uniquely determines \mathcal{M} .
- Treatment of typical problems of interval probability with linear programming:
 Weichselberger (1996, Huber-Festschrift).
- Calculation of $\mathcal{E}(\mathcal{M})$:
 - * Algorithm from the theory of convex polyhedra. (Intersection of k hyperplains)
 - * For two monotone and totally monotone probability closed form available:

$$\mathcal{E}(\mathcal{M}) = \{ p_{\varsigma}(\cdot) \mid \varsigma \in \Upsilon \}$$

with

$$p_{\varsigma}(\{\omega_{\rbrace}) = L\left(\bigcup_{j=1}^{i} \omega_{\varsigma(j)}\right) - L\left(\bigcup_{j=1}^{i-1} \omega_{\varsigma(j)}\right),\,$$

for all i = 1, ..., k and Υ as the set of all permutations of $\{1, ..., k\}$.

Lemma $P(\cdot) = [L(\cdot), U(\cdot)]$ F-probability with structure \mathcal{M} and extreme points $\mathcal{E}(\mathcal{M})$.

$$\mathbb{E}_{\mathcal{M}} X = \left[\min_{p(\cdot) \in \mathcal{E}(\mathcal{M})} \mathbb{E}_{p} X ; \max_{p(\cdot) \in \mathcal{E}(\mathcal{M})} \mathbb{E}_{p} X \right] .$$

Corollary (Vertice reduction lemma)

For every real g,

$$\bigcup \mathbb{E}_{\mathcal{M}} X \leq g \iff \mathbb{E}_{p} X \leq g, \quad \forall p(\cdot) \in \mathcal{E}(\mathcal{M}).$$

Use the vertice reduction lemma to reformulate the task as a linear optimization problem:

$$g \longrightarrow \min$$

under the constraints

$$\sum_{i=1}^{k} \left(\sum_{s=1}^{n} l(a_{s}, \vartheta_{j}) \cdot d(x_{i}, a_{s}) \right) \cdot p_{j}(\{x_{i}\}) \leq g_{j}$$

$$\forall p_{j}(\cdot) \in \mathcal{E}(\mathcal{M}_{j}); \ \forall j \in \{1, \dots, m\}$$

$$\sum_{j=1}^{m} g_{j} \cdot \pi(\{\vartheta_{j}\}) \leq g$$

$$\forall \pi(\cdot) \in \mathcal{E}(\mathcal{M})$$

$$\sum_{j=1}^{n} d(x_{i}, a_{s}) = 1, \ d(x_{i}, a_{s}) \geq 0 \ \forall i, s.$$

- Single linear programming problem
- Easy calculation of optimal decision functions
- Easy proof of existence of solutions and of the convexity of the set of optimal decision functions
- further insights by dualization!
- also for Choquet Expected Utility in case of two-monotone capacities or belief functions
- optimal unrandomized actions by integer

6. Further Work

- Detailed understanding of the problems of Robust Bayesianism.
 How to 'update' in decision making?
- Extension to infinite sample spaces using results by Rüger, Utkin
- Apply dualization:
 - * → least favorable constellations
 - * for hypothesis testing:
 Generalization of the Generalized NeymanPearson Lemma (Augustin (1998, Vandenh. & R., Ch. 5))
- Use more sophisticated interval ordering to model general ambiguity attitudes (for the no-data problem: Augustin (2002, Stat. Papers))
- sequential decision making, but be careful!
 - * backward induction: Hermanez (1999, ISIPTA99-Ghent), de Cooman (2002, Workshop Munich)
 - * 'sophisticated versus step by step optimal': Jaffray (2002, J. Stat. Plan. Inf.)
 - * for sequential testing: Augustin & Pöhlmann

- What is updating?
- How to learn from data? (inference)
- How to make optimal decisions?
- Does $[\underline{\pi}(\cdot|x), \overline{\pi}(\cdot|x)]$ deserve to be called posterior, since
 - it does not contain the full information from a sample and
 - it leads to suboptimal decisions?
- Implicit definition of posterior ??

or

- Separate updating/inference and decision in an uncompromising way!
- But check for potential paradoxes (statistical estimating and testing problem can be formulated as inference as well as decision problems.)