INTRODUCTION

The neurohypophysial hormone arginine vasopressin (AVP) is a cyclic nonapeptide that exhibits a high degree of functional diversity through interaction with specific receptors (currently classified into V1a vascular, V1b pituitary, V2 renal and oxytocin receptors) that belong to the G protein-coupled receptor (GPCR) superfamily [1-2]. AVP exerts a variety of physiological effects and plays therefore an important role in congestive heart failure, hypertension, edema, and the syndrome of inappropriate antidiuretic hormone secretion. Hence, central interest is being focused on the development of non-peptide antagonists for these GPCRs [3].

METHODS

Training Set: Pharmacophore models were generated using 17 structures of peptide and non-peptide ligands of the vasopressin V1a receptor exhibiting a wide range of binding affinities from 0.8 nM to 8.8 μM [4]. HypoGen and HipHop algorithm implemented in the Catalyst® [5] software.

Functions: H-Bond Acceptor, H-Bond Donor and Hydrophobic

RESULTS

The resulting pharmacophore models were used as 3D database search queries: The Derwent World Drug Index (WDI) was searched to identify potent vasopressin V1a receptor antagonists. Expectedly, several highly potent biologically active antagonists, that had not been used for the pharmacophore model generation were retrieved and the predictive power of our models was confirmed. Thus it can be expected that the other hits will also exhibit V1a activity. Moreover, this concept may also be extended to search virtual 3D databases. This approach may represent a suitable method for the design of novel V1a antagonist lead structures.

REFERENCES


Astrid.Kaltenboeck@uibk.ac.at