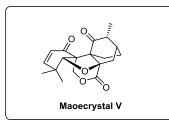
Total Synthesis of (±)-Maoecrystal V


J. Gong, G. Lin, W. Sun, C.-C. Li, Z. Yang, JACS 2010, 132, 16745-16745.

- 1) TsNHNH₂, EtOH
- 2) ethylene glycol, OHCH2CH2ONa, 180 °C
- 3) Me₂CO₃, NaH, THF, Δ
- 4) A, pyr, CHCl₃
- 5) (n-Bu₄)NBH₄, MeOH
- 6) LAH, THF

- 7) **B**, EDCI, DMAP, CH₂Cl₂
- 8) DBU, TsN₃, CH₂Cl₂
- 9) Rh₂(OAc)₄, benzene, reflux
- 10) (HCHO)_n, t-BuOK, THF

- 11) TFA, CH₂Cl₂
- 12) Pb(OAc)₄, AcOH, 0 °C
- 13) PhMe, 145 °C
- 14) NBS, benzoyl peroxide, CCl₄, reflux
- 15) Bu₃SnH, TEMPO, PhH, reflux
- 16) Zn, AcOH, THF/H₂O
- 17) Sml₂, THF, MeOH
- 18) Lindlar cat.
- 19) DMP
- 20) DBU, PhMe, 100 °C

Bamford-Stevens Reaction (in protic solvent) Step 2: Name Reaction and Mechanism?

-> via carbo cation (vs. via carbene)

Step 4: Name Reaction? Pinhey Arylation

Step 5+6: Please come up with a rationale for a 2-step strategy instead of a one-pot reduction.

DIBAL and LAH gave wrong diastereomer (1:6)

- -> also organoboranes, NaBH₄/Lewis Acid and hydrosilanes gave wrong diastereomer
- -> ammonium borhydride: desired selectivity due to directing and accelerating effect of the cationic-π-interaction between ammonium salt and the phenyl ring of the substrate, which delivers the hydride to the ketone from its top face

Step 8: Name Reaction? Usually this reaction works only for 1,3-dicarbonyl compounds. Do you know a 2-step procedure to transform simple ketones into the desired product?

Regitz Diazotransfer

(Danheiser Modification using hexafluoro ethyl acetate)

Step 18: composition of Lindlar cat.?

Pd-CaCO₃ Pb(OAc)₂

quinoline