Total Synthesis of (+)-Granatumine A and Related Bislactone Limonoid Alkaloids via a Pyran to Pyridine Interconversion

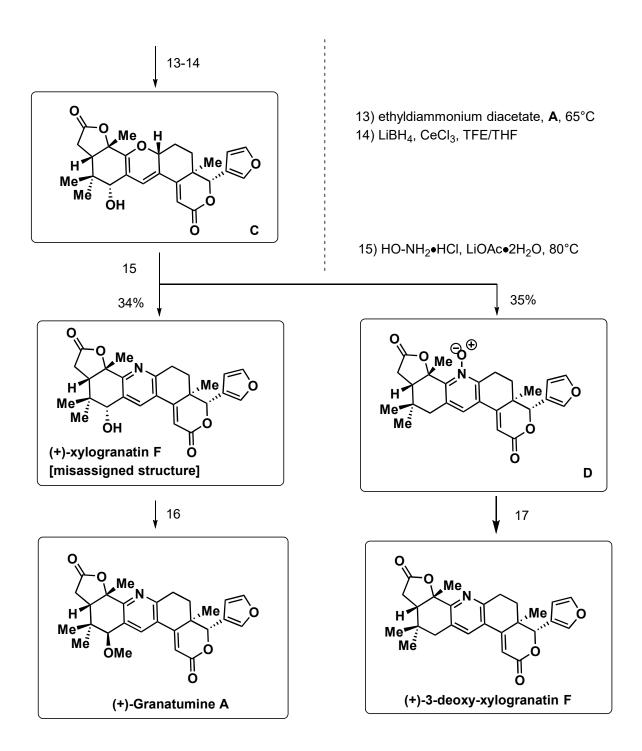
A. Schuppe, Y. Zhao, Y. Liu and T. Newhouse *J. Am. Chem. Soc.* **2019**

1) LDA(1.5 eq), ZnCl, THF, -40°C, then allyl acetate, [Pd(Allyl)Cl]₂, 60°C

- 2) LDA, 1, THF, -78 °C
- 3) Ac₂O, 2 (cat.), PhMe
- 4) LiHMDS, then Burgess reagent
- 5) SeO₂, Na2HPO4, 1,4-dioxane, 100°C
- 6) DMP

- 7) 3 (cat.), 4-PPNO, NaOCI
- 8) [Rh(cod)(OH)]₂, PhMe₂SiH
- 9) O₃, *then* Jones reagent
- 10) Pd(TFA)2, DMSO, O2, 80°C
- 11) urea•H₂O₂, DBN, H₂O
- 12) Pd(OAc)₂, XPhos, toluene

Step 1: Please provide a mechanism and two alternative approaches.


[See last page for mechanism]

Alternative approaches: Ketone to enone conversion followed by Saegusa oxidation or α -halogenation followed by elimination

Step 9: A heterocycle is formed, please provide a mechanism.

[See last page for mechanism]

Step 12: Please provide a plausible mechanims [See last page for mechanism]

Step 13: A cyclization occurs. Provide a mechanism for it and classify it.

[See last page for mechanism] Oxa- 6π electrocyclization

Step 15: Yields two products. Propose mechanisms for the formation of each

[See last page for mechanism]

Step 16 and 17: Propose conditions for the convertions.

16: SOCl₂, then NaOMe

17: Zn, CeCl₃

Note: transmetalation to Zn metal avoids Tsuji-Trost allylation products.

Step 9 Mechanism

Step 12 Mechanism

Note: one of two mechanisms proposed by Noyori et al. (Recl. Trav. Chim. Pays-Bas 107, 230-236, 1988)

Step 13 Mechanism

Note: The authors did initial computational investigations to determine the ketone regioselectivity of the electrocyclization. They found that the desired regioselectivity was kinectically and thermodinamically favored.

Step 15 Mechanism

Step 15 Mechanism (continued)