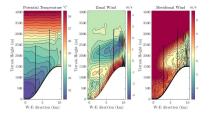
A new $K - \varepsilon$ turbulence parameterization for mesoscale meteorological models

<u>A. Zonato¹</u>, A. Martilli², P. A. Jimenez³, J. Dudhia³, D. Zardi¹ & L. Giovannini¹

¹University of Trento, Trento, Italy ²CIEMAT, Madrid, Spain ³NCAR, Boulder, Colorado



Denver, January 12, 2023

Improve the **reproduction** of boundary layer dynamics at the **mesoscale**, through **novel turbulence closures**

Improve the **reproduction** of boundary layer dynamics at the **mesoscale**, through **novel turbulence closures**

Why?

Currently mesoscale models adopt 1.5 order $K - \ell$ 1D turbulence closures, mostly for numerical stability reasons.

Improve the **reproduction** of boundary layer dynamics at the **mesoscale**, through **novel turbulence closures**

Why?

Currently mesoscale models adopt 1.5 order $K-\ell$ 1D turbulence closures, mostly for numerical stability reasons.

Problems...

× Correctly define the length scale for TKE and dissipation, especially in <u>complex</u> and <u>heterogeneous</u> terrain, where the "memory effect" can be relevant

Improve the **reproduction** of boundary layer dynamics at the **mesoscale**, through **novel turbulence closures**

Why?

Currently mesoscale models adopt 1.5 order $K-\ell$ 1D turbulence closures, mostly for numerical stability reasons.

Problems...

- × Correctly define the length scale for TKE and dissipation, especially in complex and heterogeneous terrain, where the "memory effect" can be relevant
- $\times~\ell$ is commonly obtained from measurements/LES in **flat** terrain

Improve the **reproduction** of boundary layer dynamics at the **mesoscale**, through **novel turbulence closures**

Why?

Currently mesoscale models adopt 1.5 order $K-\ell$ 1D turbulence closures, mostly for numerical stability reasons.

Problems...

- × Correctly define the length scale for TKE and dissipation, especially in complex and heterogeneous terrain, where the "memory effect" can be relevant
- $\times~\ell$ is commonly obtained from measurements/LES in **flat** terrain

Idea!

Employing a $K-\varepsilon$ closure in order to avoid to define a mixing length scale $$^{1/12}$$

PBL equations

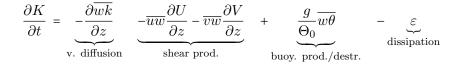
The $K - \varepsilon$ turbulence closure (1.5 order)

Mixing coefficient

The $K - \varepsilon$ turbulence closure (1.5 order)

Mixing coefficient

© PROGNOSTIC Turbulent Kinetic Energy (K) equation

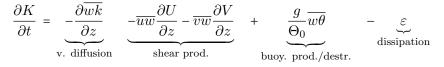


The $K - \varepsilon$ turbulence closure (1.5 order)

Mixing coefficient

 $\nu_{\chi} = \mathbf{c}_{\mu} \frac{\mathbf{K}^2}{2}$

© PROGNOSTIC Turbulent Kinetic Energy (K) equation



© **PROGNOSTIC** Dissipation Rate (ε) equation

$$\frac{\partial \varepsilon}{\partial t} = \underbrace{-\frac{1}{\sigma_{\varepsilon}} \frac{\partial \overline{\varepsilon} \overline{w}}{\partial z}}_{\text{v. diffusion}} - \underbrace{\left[\frac{c_1 \left(\overline{u} \overline{w} \frac{\partial U}{\partial z} + \overline{v} \overline{w} \frac{\partial V}{\partial z} \right) - \frac{c_3 g}{\Theta_0} \overline{w} \overline{\theta} \right]}_{\text{shear+buoy. prod./destr.}} \underbrace{\frac{\varepsilon}{K}}_{1/\tau} - \underbrace{\frac{c_2 \varepsilon}{K}}_{1/\tau}$$

Tuning the standard $K-\varepsilon$ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)

$$\nu_H = \frac{\nu_M}{Pr}$$
 $Pr = 1 + (Pr_0 - 1) \exp\left[\frac{-3(z - 0.1h)^2}{h^2}\right]$

Tuning the standard $K - \varepsilon$ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)

$$\nu_H = \frac{\nu_M}{Pr}$$
 $Pr = 1 + (Pr_0 - 1) \exp\left[\frac{-3(z - 0.1h)^2}{h^2}\right]$

b) Dissipation dependence on the eddy scale (Zeng et al., 2020)

Buoy prod = Buoy prod +
$$c_4 \min\left(1, \sqrt{\frac{Ri}{c_5}}\right) N\varepsilon$$

Tuning the standard $K - \varepsilon$ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)

$$\nu_H = \frac{\nu_M}{Pr}$$
 $Pr = 1 + (Pr_0 - 1) \exp\left[\frac{-3(z - 0.1h)^2}{h^2}\right]$

b) Dissipation dependence on the eddy scale (Zeng et al., 2020)

Buoy prod = Buoy prod +
$$c_4 \min\left(1, \sqrt{\frac{Ri}{c_5}}\right) N\varepsilon$$

c) Counter-gradient term for the heat flux

1)
$$\overline{w\theta} = -\nu_H \left(\frac{\partial\Theta}{\partial z} - \gamma\right) \qquad \gamma = C \frac{\overline{w\theta}_s}{w_\star h} \qquad (NL)$$

Tuning the standard $K - \varepsilon$ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)

$$\nu_H = \frac{\nu_M}{Pr}$$
 $Pr = 1 + (Pr_0 - 1) \exp\left[\frac{-3(z - 0.1h)^2}{h^2}\right]$

b) Dissipation dependence on the eddy scale (Zeng et al., 2020)

Buoy prod = Buoy prod +
$$c_4 \min\left(1, \sqrt{\frac{Ri}{c_5}}\right) N\varepsilon$$

c) Counter-gradient term for the heat flux

1)
$$\overline{w\theta} = -\nu_H \left(\frac{\partial\Theta}{\partial z} - \gamma\right) \qquad \gamma = C \frac{\overline{w\theta}_s}{w_\star h}$$
 (NL)

2)
$$\overline{w\theta} = -\nu_H \frac{\partial \Theta}{\partial z} + \Phi_{cg}(K_\theta) \quad \frac{\partial K_\theta}{\partial t} = -\frac{\partial \overline{wK_\theta}}{\partial z} - \overline{w\theta} \frac{\partial \Theta}{\partial z} - \varepsilon_\theta \quad (\mathbf{L})$$

Numerically speaking...

Numerically speaking...

Neglecting vertical diffusion + variable change

$$X = \frac{K}{\varepsilon} \qquad Y = \varepsilon^{\alpha} K^{\beta} \qquad A = c_{\mu} \left(S^2 - \frac{N^2}{Pr} \right) \qquad B = c_{\mu} \left(c_1 S^2 - c_3 \frac{N^2}{Pr} \right)$$

Numerically speaking...

Neglecting vertical diffusion + variable change

$$X = \frac{K}{\varepsilon} \qquad Y = \varepsilon^{\alpha} K^{\beta} \qquad A = c_{\mu} \left(S^2 - \frac{N^2}{Pr} \right) \qquad B = c_{\mu} \left(c_1 S^2 - c_3 \frac{N^2}{Pr} \right)$$

$$\frac{\partial X}{\partial t} = -CX^2 + (c_2 - 1) \tag{1a}$$

$$\frac{\partial \ln Y}{\partial t} = (\alpha A + \beta B) X - (\alpha + \beta c_2) \frac{1}{X}$$
(1b)

...analytical solution!!

Numerically speaking...

Neglecting vertical diffusion + variable change

$$X = \frac{K}{\varepsilon} \qquad Y = \varepsilon^{\alpha} K^{\beta} \qquad A = c_{\mu} \left(S^2 - \frac{N^2}{Pr} \right) \qquad B = c_{\mu} \left(c_1 S^2 - c_3 \frac{N^2}{Pr} \right)$$

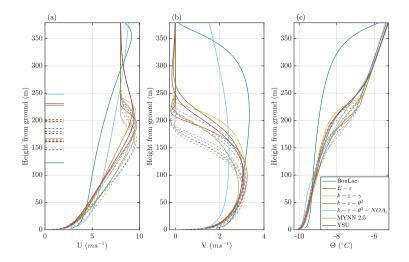
$$\frac{\partial X}{\partial t} = -CX^2 + (c_2 - 1) \tag{1a}$$

$$\frac{\partial \ln Y}{\partial t} = (\alpha A + \beta B) X - (\alpha + \beta c_2) \frac{1}{X}$$
(1b)

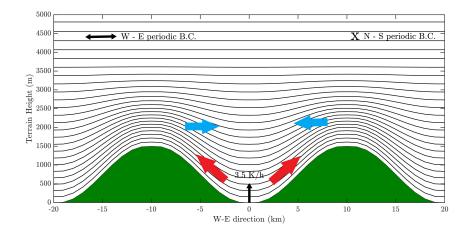
...analytical solution!!

After solving the system, **diffusion** is calculated, and **advection** is applied to \mathbf{K} , ε and θ^2

1D - Stable - GABLS2 - LES (2 m) vs RANS (1 km)

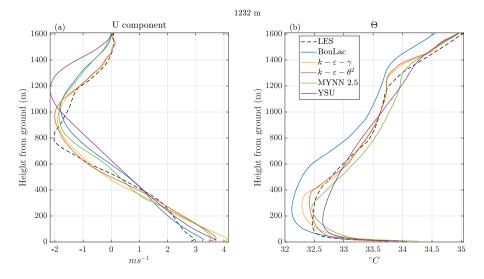


2D - LES and RANS simulation Set-Up

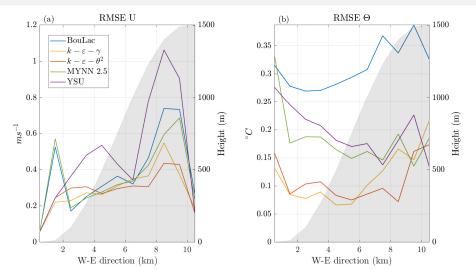


Setup

2D - Complex terrain - LES (50 m) vs RANS (1 km)

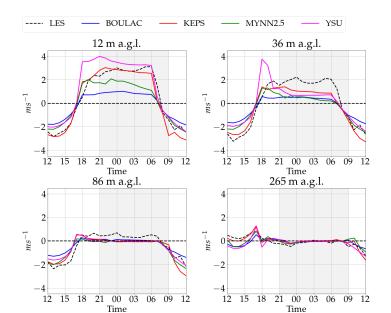


2D - Complex terrain - LES (50 m) vs RANS (1 km)



Results

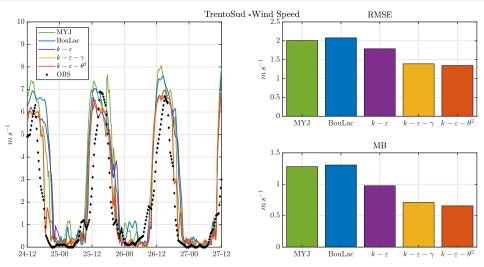
3D - Complex terrain - LES (100 m) vs RANS (1 km)



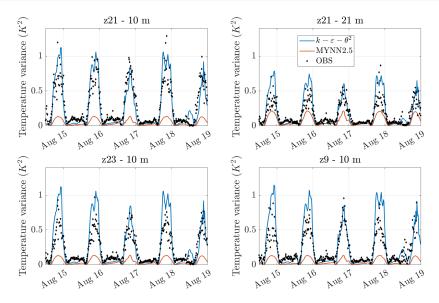
Results

9/12

Real 3D - SIM vs OBS - 10-m wind speed



Real 3D - WFIP2 - Temperature Variance



Results

✓ The new tuned $k - \varepsilon$ outperforms other PBL models. The best results are shown by the scheme with temperature variance prognostic equation. We can deduce that:

- ✓ The new tuned $k \varepsilon$ outperforms other PBL models. The best results are shown by the scheme with temperature variance prognostic equation. We can deduce that:
 - a) The inclusion of a prognostic equation for ε ("memory effect") improves the results with respect to the use of a diagnostic ℓ ;
 - b) Model **locality** improves the simulations, especially at increasing levels of complexity;

- ✓ The new tuned $k \varepsilon$ outperforms other PBL models. The best results are shown by the scheme with temperature variance prognostic equation. We can deduce that:
 - a) The inclusion of a prognostic equation for ε ("memory effect") improves the results with respect to the use of a diagnostic ℓ ;
 - b) Model **locality** improves the simulations, especially at increasing levels of complexity;
- \checkmark (Hopefully) available in the next **WRF** version!

- ✓ The new tuned $k \varepsilon$ outperforms other PBL models. The best results are shown by the scheme with temperature variance prognostic equation. We can deduce that:
 - a) The inclusion of a prognostic equation for ε ("memory effect") improves the results with respect to the use of a diagnostic ℓ ;
 - b) Model **locality** improves the simulations, especially at increasing levels of complexity;
- \checkmark (Hopefully) available in the next **WRF** version!

- ✓ The new tuned $k \varepsilon$ outperforms other PBL models. The best results are shown by the scheme with temperature variance prognostic equation. We can deduce that:
 - a) The inclusion of a prognostic equation for ε ("memory effect") improves the results with respect to the use of a diagnostic ℓ ;
 - b) Model **locality** improves the simulations, especially at increasing levels of complexity;
- \checkmark (Hopefully) available in the next **WRF** version!

Reference: A. Zonato, A. Martilli, P. A. Jimenez, J. Dudhia, D. Zardi & L. Giovannini, A new $K - \varepsilon$ turbulence parameterization for mesoscale meteorological models, Monthly Weather Review, 2022.

Acknowledgments and funding: Atmospheric boundary-layer modeling over complex terrain (ASTER) project.