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Objectives

Improve the reproduction of boundary layer dynamics at the
mesoscale, through novel turbulence closures

Why?
Currently mesoscale models adopt 1.5 order K - £ 1D turbulence
closures, mostly for numerical stability reasons.

Problems...

x Correctly define the length scale for TKE and dissipation,
especially in complex and heterogeneous terrain, where the
"memory effect” can be relevant

x ¢ is commonly obtained from measurements/LES in flat terrain

Idea!

Employing a K - € closure in order to avoid to define a mixing length

scale
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The K - ¢ turbulence closure (1.5 order)

Mixing coeflicient
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Tuning the standard K — ¢ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)

-3(z- 0.1h)2]
h2

VM

vy = Pr:1+(Pr0—1)exp[
Pr

3/12



k — € turbulence closure PBL equations

Tuning the standard K — ¢ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)
vy —3(z—0.1h)2]

Vg =
Pr

Pr = 1+(Pr0—1)exp[ 2

b) Dissipation dependence on the eddy scale (Zeng et al., 2020)

R
Buoy prod = Buoy prod + ¢4 min (1, —Z) Ne
Cs

3/12



k — € turbulence closure PBL equations

Tuning the standard K — ¢ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)

-3(z- 0.1h)2]
h2

VM

vy = Pr:1+(Pr0—1)exp[
Pr

b) Dissipation dependence on the eddy scale (Zeng et al., 2020)

R
Buoy prod = Buoy prod + ¢4 min (1, —Z) Ne
Cs
c¢) Counter-gradient term for the heat flux
DW= (-n) 4 -CE ()

3/12



PBL equations

k — € turbulence closure

Tuning the standard K — ¢ closure

a) Prandtl number for the mixing coefficient (Hong et al., 2006)
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b) Dissipation dependence on the eddy scale (Zeng et al., 2020)
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c¢) Counter-gradient term for the heat flux
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2

2
X = % Y = coKB A = CM(S2—%) B = cu(c152—c3%)
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Numerically speaking...

Neglecting vertical diffusion + variable change

2

X=£ yv-ock  A=c(5-8)  B=cla-ai)

- Pr
aX
i -CX%+ (e2-1) (1a)
oY 1
; = (aA+ BB) X ~ (a+ fez) (1b)

...analytical solution!!

After solving the system, diffusion is calculated, and advection is
applied to K, € and 62
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Results

1D - Stable - GABLS2 - LES (2 m) vs RANS (1 km)
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e turbulence closure Setup

2D - LES and RANS simulation Set-Up
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Results

2D - Complex terrain - LES (50 m) vs RANS (1 km)
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k — € turbulence closure

Results

2D - Complex terrain - LES (50 m) vs RANS (1 km)
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Results

k — € turbulence closure

3D - Complex terrain - LES (100 m) vs RANS (1 km)
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turbulence closure Results

Real 3D - SIM vs OBS - 10-m wind speed
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Temperature variance (K?)

Temperature variance (K?)

k — € turbulence closure

Real 3D - WFIP2 - Temperature Variance
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