
CityDrain3 - Parallel Computing in

Conceptual Urban Drainage Modelling

master thesis in computer science

by

Gregor Burger

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Master of Science

supervisor: Dr. Hans Moritsch, Institute of Computer
Science

Innsbruck, 17 November 2009

Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a
degree nor has it been submitted as part of requirements for a degree except as
fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have
received in my research work and the preparation of the thesis itself has been
acknowledged. In addition, I certify that all information sources and literature
used are indicated in the thesis.

Gregor Burger, Innsbruck on the 17 November 2009

i

ii

Abstract

The motivating factor for this work is the interest of engineers in long-term effects of urban
drainage systems which leads to complex and time consuming simulations. This thesis de-
scribes how the runtime of urban drainage modelling simulations can be reduced by applying
parallel computing on multi-core computing systems. The reader is introduced to the basic
terms and concepts used in urban drainage modelling and parallel computing. Following the
introduction an overview of the modelling concepts that provide the mathematical foundations
of urban drainage modelling is given.

The thesis describes three parallel strategies that have been developed in order to distribute
the computations on several processor cores. The three strategies are: the flow parallel strat-
egy, the pool pipeline strategy and the ordered pipeline strategy. These strategies have been
developed with a view on the structure of urban drainage models and have been implemented
within a specific simulation environment, called CityDrain3. This urban drainage software
tool was used to demonstrate the runtime and speedup effects of the three strategies. A num-
ber of different urban drainage systems were analysed to detect shortcomings and limits of
the strategies. The benchmark results reveal that the ordered pipeline strategy is capable of,
at times significantly, reducing the runtime of all tested sewer systems.

Kurzfassung

Der motivierende Faktor für diese Arbeit ist das Interesse von Ingenieuren an Langzeitstudi-
en von Siedlungsentwässerungssystemen welche zu komplexen und zeitintensiven Simulatio-
nen führen. Diese Masterarbeit beschreibt, wie die Laufzeit für Simulationen von Siedlungs-
entwässerungsmodellen reduziert werden kann, indem parallele Datenverarbeitung auf Mehr-
kernsystemen angewendet wird. Der Leser wird in die Grundlagen der Siedlungsentwässerung
und der parallelen Datenverarbeitung eingeführt. Weiters wird eine kurzer Überblick über die
verwendeten Modellkonzepte der städtischen Entwässerungsmodellierung gegeben.

In dieser Arbeit wurden drei parallele Strategien entwickelt, um die Berechnungen auf meh-
rere Prozessorkernen zu verteilen. Die drei Strategien sind: die “flow parallel” Strategie, die
“pool pipeline” Strategie und die “ordered pipeline” Strategie. Diese Strategien betrachten
dabei die Strukturen der urbanen Entwässerungsmodelle und wurden in einer speziellen Simu-
lationsumgebung, genannt CityDrain3, implementiert. Dieses Werkzeug wurde verwendet um
das Laufzeit- und das Beschleunigungsverhalten der Strategien zu demonstrieren. Verschie-
denste Kanalsysteme wurden analysiert, um die Strategien auf ihre Stärken und Schwächen
zu untersuchen. Die Resultate der Benchmarks zeigen, dass die “ordered pipeline” Strategie
in allen untersuchten Systemen die Laufzeit der Simulation teils erheblich reduziert.

iii

iv

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Urban Drainage . 2
1.3. Modelling and Simulation . 2

1.3.1. System . 4
1.3.2. Model . 5
1.3.3. Simulation . 5

1.4. Parallel Computing . 6
1.4.1. Overview . 7
1.4.2. Parallel Algorithm Design 8
1.4.3. Communication . 9
1.4.4. Parallel Architectures . 12
1.4.5. Multi-core Processors . 14
1.4.6. Parallel Performance Metrics 15
1.4.7. Challenges of Parallel Programming 16

2. Urban Drainage Modelling 19
2.1. Modelling Concepts . 19

2.1.1. Rainfall Runoff . 20
2.1.2. Hydraulic Transport . 21

2.2. Integrated Urban Drainage Modelling 23
2.3. Conceptual Modelling . 24

2.3.1. State Space Modelling . 24
2.3.2. Sewer Structure . 25

3. Methods and Implementation 27
3.1. Design . 28

3.1.1. Node . 28
3.1.2. Model . 30
3.1.3. Simulation . 31
3.1.4. Flow . 32

3.2. Sequential Simulation Run . 32
3.3. Parallel Implementation . 34

3.3.1. Flow Parallel Strategy . 35
3.3.2. Pool Pipeline Strategy . 37
3.3.3. Ordered Pipeline Strategy 39

v

3.4. Shared Flow . 45

4. Results 49
4.1. Benchmarked Systems . 49

4.1.1. Sequential Sewer System 50
4.1.2. Parallel Sewer System . 50
4.1.3. Treelike Sewer Testing System 51
4.1.4. Real World Sewer System of Innsbruck 52

4.2. The Benchmark Environment . 54
4.3. Performance Tools . 56
4.4. Results for the Core2Quad CPU 57
4.5. Results for the i7 CPU . 66
4.6. Shared Flow Comparisons . 74

4.6.1. Results Core 2 Quad . 74
4.6.2. Results i7 . 75
4.6.3. Conclusion . 76

5. Conclusion 79

Appendices 81

A. CityDrain3 Manauls 83
A.1. Users Manual . 83

A.1.1. Terms and Concepts . 83
A.1.2. Starting CityDrain3 . 87
A.1.3. Writing a Model . 89
A.1.4. Using cd3modelgen.py . 95
A.1.5. plugindoc Application . 98

A.2. Programmers Manual . 101
A.2.1. Compiling CityDrain3 . 101
A.2.2. Design Overview . 102
A.2.3. Extending CityDrain3 . 106

Submitted Papers 119

List of Figures 137

List of Tables 143

Bibliography 145

vi

Chapter 1.

Introduction

1.1. Motivation

The aim of CityDrain3 is to speed up the simulations of urban drainage mod-
elling (UDM) by using the currently untapped parallel computing power of
modern desktop machines. At the time of writing, consumer class CPUs are
composed of up to four cores which is doubled to eight, for a dual CPU system.

Civil engineers are interested in the long-term effects of Urban Drainage sys-
tems [DJ97, CKM+01]. These long-term effects must be covered by simulations.
The runtime of a simulation depends on the time span a simulation wants to
cover. If a simulation software is fast longer simulation times are possible in less
time.

Another factor influencing the simulation run-time, is the complexity of the
system under research. By using parallel computing the complexity of a mod-
elled system can be increased without increasing the simulation run-time.

UDM involves the process of gathering information of a real system, replicat-
ing the system by using model formulations and calibrating the reduced view of
the system, so that the measured system behaviour fits the numerical modelled
system. The last process can be done manually or automatically. In automatic
calibration a certain algorithm for determining the best model parameters is
used and the outcomes of the simulation run are used to determine the further
calibration steps. More parameters in a complex system require more runs until
the system is calibrated.

Uncertainty analysis with Monte Carlo simulations are computing inten-
sive, parallel computing is said to help reducing runtimes of these simula-
tions [KGNC02]. CityDrain3 reduces the runtime of a single run and therefore
allows to apply Monte Carlo simulations to more complex systems.

Integrated Urban Drainage simulations, described in Chapter 2.2, require an

1

extensive amount of computing time. Muschalla [Mus08] states several pos-
sibilities to reduce the amount of computing time it takes for running IUDM
simulations. Although parallel execution of the model simulation is not stated
in [Mus08] it fits perfectly into the list of computing time reductions.

1.2. Urban Drainage

Artificial drainage systems are essential in urban areas because of the interaction
between humans and the natural water cycle. Humans need a great amount of
water that is modified while using it in households or industry processes. This
denoted waste water includes health harming substances which must be flooded
out of the urban area. In order to save the environment the water must be
treated before it can get back into the receiving water. Urban areas tend to
develop high amounts of impermeable surface areas. Effects of these covered
areas are that rainwater may cause harm to the urban area and its inhabits.

Urban drainage systems have the functionality of draining the following two
water types:

1. Waste water is water extracted from natural resources used for various
kinds, including, drinking, washing, flushing and industrial usages. Waste
water must be drained in order to reduce health risk and reducing or pro-
hibiting the spread of diseases. Waste water contains dissolved material,
fine solids and larger solids.

2. Storm water is rain that must be drained in order to prevent flooding and
damage of urban areas and other inconveniences. Storm water contains
some pollutants from the air and run-off of built-up areas.

Beside protecting humans from the harm of waste- and storm water urban
drainage is responsible for keeping the environmental pollution caused by urban
areas low. This means that the Waste Water Treatment Plant (WWTP) is an
essential part of an urban drainage system. [BD04, Guj06]

1.3. Modelling and Simulation

This section tries to inform the reader about whats behind modelling and simu-
lation, because it is essential for understanding the rest of the presented material
in this thesis.

2

System

Experiment
with the

actual system

Experiment
with a model
of the system

Physical
model

Mathematical
model

Analytical
solution

Simulation

Figure 1.1.: Ways to study a system.(redraw from [LK97])

Modelling and simulation is as old as the human race itself. Even before
computers have existed humans tried to theorize, review, and discuss certain
ideas to play with them and in the end realize the ideas in some way or another.
Modelling and simulation allows to think about a complex system or idea in
an abstract way. Sometimes it is not possible to grasp all aspects of a system,
sometimes it is just cheaper to model in the first place. It may even be possible
that experiments with a system destroy or influence the system itself. [Bos92]

Figure 1.1 shows in which ways a system can be studied and where experi-
ments are able to be carried out. In modelling a system is a collection of entities
which interact and have a distinct goal. If one wants to gain insight of a system
to understand it better or even predict its future states, he can choose between
experimenting with the actual system, or model the system with regards to the
interests of the system. A model is an abstracted replication of a system that
allows more ways to experiment and study the system, e.g. destroy it. We
can use a physical model, for example a basin full of water to experiment with
waves. A model can also be manifested with logical relations and mathematical
formula. These kind of models are called mathematical models. Experiments
with mathematical models can either be made by using analytical solutions,
or if the formula are to complex, numerical solutions are obtained by running
simulations.

Modelling is at the heart of the human race, as a child we start by modelling
the real world of grownups in order to understand and train for our future lives,

3

e.g. girls have tea parties with their mates and boys play with model cars. Later
in our life we use several models to ease our everyday life, e.g. a map is a model
of our overly complex road system, it is an abstracted way to plan (simulate) a
way we are going to drive by car. [Bos92]

The vast range of application of modelling formed some common words which
allow to identify the characteristics of the modelling process. Some terms have
been coined which allow to talk about the certain aspects of modelling and
simulation.

1.3.1. System

A system is the process of interest, the objective of a modelling and simulation
process. It is a collection of entities which interact and are also independent
from other objects in the world. A system can be described by the following
aspects:

• a system has a function, that means it has a scope which we can recognise.

• a system is build of a collection of system elements which are related to
each other.

• a system has an identity which is lost if we divide the system into separate
parts.

These criteria of a system goal, system structure, and a system identity allows
us to differ a system from plain simple objects. For example a sand heap is not
a system because it is still a sand heap if we remove halve of the heap. [Bos92]

A system is in a certain state at a certain time, states are a collection of
variables. A system can either be discrete, which means that the states of the
system change at certain times, e.g. the queue of cars in a traffic jam has a
certain number of cars. A continuous system is one where the states of the
system change gradually, e.g. the position of an air plane heading a certain
route. [LK97, Guj08]

The easiest and most precise way to study a system is to experiment with
the system itself. But often that is not feasible (e.g. studying the artificial
ecosystem of a mixed wood would take decades), not wanted (e.g. large scale
experiments with the earth atmosphere) or simply not possible (e.g. landing a
space shuttle on the moon). Therefore we build a model of such a system so
that it is possible to state some predictions despite the unapproachability of the
real world system.

4

1.3.2. Model

A model can be a physical one, which is in most cases a simplified or minimised
copy of the original. A map of road systems or a car in a crash test are examples
of physical models. Another possibility to build a model is to use a mathematical
description. In this case we talk about a mathematical model. These kind
of models are especially easy to experiment with by using modern computer
technology. The accuracy of such models is constrained by the amount available
memory and computing power which gets raised year by year. Because of this
mathematical models tend to get detailed year by year and modelling is used in
more cases. Ten years ago nobody thought of using computers to simulate car
crashes or the wheater.

A model can have various characteristics:

• deterministic - stochastic: If a model is free of random parameter or state
changes, we speak about a deterministic model. Such a models outcome
is defined by the mathematical relations, the input and the state of the
model. If on the other hand some process involves sudden changes of
unknown outcome, we talk about a stochastic model.

• time variant - invariant : If a model reacts on the same input, and the
same environmental parameters exactly the same at a later time, we talk
about a time invariant model. A human being is time variant because he
behaves different when he gets older.

• time discrete - continuous: Natural systems are always time continuous,
but computer systems are only able to calculate in discrete time steps.
Although the time steps can be made small enough to talk about a con-
tinuous time.

• structural discrete - continuous: A model is structural discrete if we can
calculate parts of the system independently. If we have a large interaction
between the components of the system differential equations are needed
to be defined. Differential equations are strong signs that a model is
structural continuous. [Bos92]

1.3.3. Simulation

After a model is found that answers certain scientific questions the next step is
to solve the mathematical formulations that represent the system. Often it is
possible to obtain informations of a simple model by solving its mathematical
formulations analytically. Such a simple model would be newton’s first and

5

second laws of motion, that describe a flying bullet. It is possible to describe
the point and time of the impact analytically if it is known where the bullet
came from, where it heads to and how fast it is. A model may be to complex
to solve it analytically, or no analytical solution of the problem exists. In such
a case the model must be studied by using numerical simulations. [LK97]

1.4. Parallel Computing

Parallel Computing (PC) is a computer science discipline where researchers try
to find algorithms for certain problems that are able to run parallel.

As can be seen later parallel computing is not an easy task, neither find-
ing parallel algorithms nor their implementations. The main advantage of us-
ing/finding well working parallel algorithms is that one can add extra hardware
and finds his program working faster. This is especially the case when compu-
tational intensive problems are needed to be solved, that would otherwise take
an unfeasible amount of time to finish.

Beside the algorithms that need huge computing power, CPU vendors were
faced by the fact that scaling the clock rates of the classical single CPU is
neither economical nor forever possible [Gee05]. A way out of this crisis was
the introduction of the Single-Chip Multiprocessor. A CPU that is equipped
with several parallel working execution units [ONH+96]. The marketing term for
Single-Chip Multiprocessors is multi-core CPU, because of the several execution
units named cores. The introduction of multi-core CPUs had several impacts:

1. CPU vendors can further obey Moore’s law and double their transistors
per year1,

2. parallel computers moved into the consumer market and

3. applications won’t faster if they don’t get specifically tuned for multi-core
CPUs.

The work in this thesis tries to cope with the third impact in the field of urban
drainage modelling. More about the multi-core architecture can be found in the
Section 1.4.5.

The targets of parallel computing can be summarised by the following key
points:

• reduce the time to finish computations,

1actually every 18 months

6

• solve large problems in a reasonable time,

• using an array of cheaper computers to reduce costs,

• overcome memory constraints in modern CPUs (see more in Section 1.4.5),

• etc..

Before diving even further into the field of parallel computing one needs to
know some concepts and terms of parallel computing that are explained here
and used later:

Task A task describes a piece of work that needs to be done. It is a unit of
work. In parallel computing a problem is divided into tasks that are able
to run concurrently.

Thread A thread is an active entity that runs tasks independently of other
tasks. A thread is part of a process and defines a unit for scheduling.

Process A process is an active entity that contains several threads, at least one,
and has resources that are shared by these threads.

Processor A processor is the physical unit that executes processes. A processor
is used as an abstract machine that is able to run processes. It may be a
core of a multi-core CPU, a single CPU or even a separate machine in a
network of machines.

Scheduler The scheduler is a part of the operating system that assigns threads
to processors.

1.4.1. Overview

Parallel computing formed a new research discipline. With every research dis-
cipline comes a completely different set of terms that are used to describe the
work in the field. By using a real world example the common terms and some
of the problems that arise in parallel computing are described here.

Imagine, two people doing the dishes. We have two ”entities“ capable of doing
work in parallel, i.e. they can do their work at the same time, they can do their
dishes concurrent. Parallel working entities are called threads or processes, now
we have two of them in form of human beings. The type of work they do is
called the task, e.g. one is washing the other is drying the plates and cutlery.
Assigning a person to a task is called scheduling, e.g. person a is washing, person

7

b is drying. We have two choices on which way it is possible to parallelize the
task of doing the dishes, i.e. two parallelization strategies.

In the first one, everyone gets a staple of dishes and washes and drys them
afterwards. The problem here is, that there are two distinct sinks and towels
needed. If there is just one, how do they share the sink? What if one is faster
than the other, he runs out of work, which is called starving.

We could go after Ford and do it in an assembly line fashion. One grabs a
plate, washes it and gives it to the person who dries it off. Handing over the
plate is called the communication of the processes. This kind of fashion for
doing work is called a pipeline in where the stages of doing the dishes are the
pipeline stages and the date that moves from the start to the end of the pipeline
is a single plate. If the drying stage is faster than the washing stage the pipeline
is unbalanced.

In this thesis the parallel strategy is meant to be the algorithm that is capable
of running a prior sequential algorithm in parallel. The strategy is independent
of the used API or programming language and is further independent on which
hardware the algorithm is running. In other words the strategy describes the
following aspects of a parallel algorithm:

• how the work is split up into independent tasks,

• how the work is scheduled onto the processes and

• how synchronisation is happening.

Every parallel strategy has its advantages and disadvantages, coming up with
a strategy and solving its disadvantages is at the heart of parallel computing in
computer science. This thesis describes parallel strategies and the their imple-
mentations for UDM.

1.4.2. Parallel Algorithm Design

Classical algorithm design deals with the problem of finding a step-by-step de-
scription of how a problem needs to be solved. Parallel algorithms get an extra
dimension of concurrency, not just step-by-step but also side-by-side. A parallel
algorithm defines sets of steps that run concurrently. A parallel algorithm adds
the following [GGK03]:

1. Identify tasks that are able to run concurrently,

2. map these tasks onto threads and processes,

8

3. manage data exchange between the tasks,

4. manage concurrent accesses to shared resources and

5. synchronise the process and threads at various stages.

Depending on the problem that needs to be solved there are essentially two
types of parallelism:

1. Data Parallelism and

2. Task Parallelism.

A problem that can be solved by data parallelism is one where a single algo-
rithm is applied to a certain amount of data. The work for every date is almost
identical. This sort of parallelism is easier to implement and has the potential
of using more parallel infrastructure.

A task parallel problem is one where different tasks are able to run concur-
rently. This sort of problems are more difficult to solve. Task parallel problems
often require high amounts of concurrent access to shared resources and a high
amount of communication between processes.

Problems that are needed to be solved in parallel normally do not belong to a
single type, more often they are a mixture of data-parallelism, task-parallelism
and many other kinds of parallelism.

1.4.3. Communication

Parallel problems without any need of communication between processes are
called embarrassingly parallel [Fos95]. These problems are easy to solve and
do not require a high amount of skills to get implemented. The disadvantage
of these problems is that they are rare. Most problems that must be solved
parallel, for various reasons, aren’t embarrassingly parallel.

That means that most parallel problems have a high amount of communi-
cation. Designing a parallel algorithm or a parallelized version of an existing
algorithm includes to decide what, when and how to communicate. What com-
munication may occur includes:

Protection ”This data is being worked on, stop until the work has finished“.
Data exchange ”This is the answer that I came up with.“
Synchronisation ”Wait until all data has received.“ or ”Wait for all tasks to be

finished.“

9

Work assignment ”Do that!“

When communication happens is certainly restricted by the problem, but how to
communicate is another big factor that influences the implementation and per-
formance of the algorithm. The most common parallel programming paradigms
are:

1. Shared memory model
2. Message passing model
3. Data parallel model

Shared Memory Model

The first being shared address space is used by programs that are running on
shared memory systems [GGK03]. Although the shared memory paradigm has
its roots on single computer systems a hybrid form exists where a distributed
system uses a shared memory abstraction. More information on distributed
shared memory systems can be found in [PTM96, NL91]. The address space
is abstracted by a memory model that has a range of consecutive addresses.
The exchange of information happens by load and store operations on these ad-
dresses. The programmer has to pay attention on things like concurrent memory
access of two different processes. A critical section is a program fragment that
may accesses a memory region concurrently with other threads.

Concurrent access control and synchronisation happens by using locking. Dif-
ferent types of locks exist and are used in various situations.

Mutex A Mutex protects a critical section and allows just one thread to enter
the mutual section. A lock is locked at entry and unlocked at exit of the
critical section.

Semaphore A Semaphore is a Mutex which allows more than one participant
to enter a critical section. A semaphore is initialised by an integer. Every
participant decrements at enter and increments at exit. If a participant
tries to enter a Semaphore with a counter at zero, it is locked.

Conditional Variable A conditional variable allows two operations wait and sig-
nal. It can be used for synchronisation purposes, e.g. waiting for data to
arrive.

Locking can be done on various degrees of granularity. Coarse grained lock-
ing is easier but destroy performance. For example the python programming
language has a global interpreter lock (GIL) that prevents only one thread to
be executed at a time [Dav09]. Fine grained locking increases the chances of

10

programming errors, e.g. forgotten locks, forgotten unlocks, race conditions,
deadlocks, livelocks, starvation etc. [Vin07].

An alternative to using locks on a shared memory system is to use software
transactional memory (STM). STM offers optimistic locking on shared memory
systems without blocking the thread flow. In STM a critical section is marked
as atomic. If two threads act upon the same atomic memory region the actions
are reverted by a rollback. After a rollback the actions are retried until they
succeed. The idea of STM is that locks are most of the time unnecessarily
locked, i.e. no concurrent access was prevented by a lock [ST97].

Although STM has some problems that need to be overcome [CBM+08], like
a relative high overhead [SMSW09]. Beside the imperative programming lan-
guages STM is said to be beautiful and highly compositional in functional pro-
gramming languages like Haskell [BBG09].

Message Passing Model

The second approach to exchange information is the Message Passing (MP)
paradigm. Parallel applications using the MP model are divided into separate
processes often called actors [Vin07]. These actors have private memory which
is not shared with other actors. Actors exchange information based on passing
messages to each other. Therefore exchange of information is made explicit.

MP can happen synchronous or asynchronous, the basic building blocks are
send and receive operations [GGK03]. The send and receive operations can use
different blocking and buffering behaviours:

Blocking Non-Buffered In this scheme the sender is blocked until the receiver
acknowledges that the data was received. In some cases this can be very
inefficient, because the receiver waits until the corresponding site got the
data. These waiting times are known as idling overhead. Another dis-
advantage of this immediate scheme is that deadlocks appear when two
parties send data at the same time. Due to the blocking semantics they
never check for new messages and never answer each others messages.

Blocking Buffered This scheme solves some of the problems of non-buffered
blocking send/receive. The solution is to buffer the send and receive data.
The process sending the message is blocked only as long as it takes to
append the message to the buffer. The protocol of the underlying network
then assures that the messages are transmitted into the receivers buffer.
Although buffering solves the idling overhead it doesn’t solve all deadlock
problems.

11

Non-Blocking Non-blocking operations are accompanied by a check-status op-
erations. The check-status operation assures that the message has arrived
at the receiver or into the receiving buffer, depending on whether the oper-
ations are buffered or not. This scheme further reduces the idling overhead
and deadlocks are now impossible. The disadvantage of this scheme is that
the programmer must now implement more management to assure that
messages have been received.

In contrast to shared memory systems, MP is traditionally used in distributed
systems [GGK03]. But similar to shared memory left the boundaries of single
computers, MP has proven to be very efficient in the use of functional program-
ming languages.

Erlang is such a functional programming language with built-in support for
the actor model and MP. Actors run in processes which are essentially user
space threads with a very low overhead. An erlang system can easily create one
million processes in under a second on a consumer range computer [Vin07].
Actors are able to run locally or in a distributed manner [ADE92].

Programs written using MP are normally distributed and have an exclusive
separate address space. They are used in clustered environments where it comes
naturally to encapsulate data into messages and send them to other peers over
the network. The most widely used API to implement applications using MP
is the standardised Message Passing Interface (MPI). MPI is a language in-
dependent specification of a MP API, not the implementation itself. Several
implementations exist, which conform to the MPI specification.

The biggest advantage of using a MP paradigm is that all data is private,
data exchange is made explicit by passing it around. Because of this private
data scheme, locking to protect against data corruption is not needed [GGK03].

1.4.4. Parallel Architectures

Depending on the used algorithms and the needed amounts of parallel resources,
parallel applications may run on a different range of computers or group of
computers. There are two major groups of parallel computing architectures:

Shared Memory Systems are systems where the parallel elements share the
same address space. In today’s computer systems two variations are avail-
able. It is possible to combine the two variants to further increase the
performance of the system.

1. Multi-core refers to a Single Chip Multiprocessor [ONH+96] where

12

several CPU cores are unified on one die. Single chip performance
is going to stagnate because of physical limits that prevent further
frequency scaling. Instead of focusing on single chip performance (i.e.
scaling in frequency) chip vendors are packing more cores on one die
to scale in performance (i.e. scaling in cores).

2. Multiprocessor systems are computers that have more than one iden-
tical processor that share the same main memory. Multi-core is a
variant of a multiprocessor system. The classic multiprocessor sys-
tem is a Symmetric Multiprocessing System (SMP) where two or
more CPUs are combined in a single system.

Shared memory systems offer fast and low latency data exchange between
the parallel elements but are restricted in the amount of parallel exe-
cution units. Shared memory systems must explicitly manage concurrent
access to memory regions, because of this special attention is needed when
programming shared memory systems. More on the problems of parallel
programming can be found in Section 1.4.7.

Distributed/Multi-computer Systems are systems where parallel elements are
connected via networking which allows them to be distributed over a wide
range. Again two incarnations of distributed computing systems are used.
Distributed systems allow having much more parallel elements. The dis-
advantage of distributed system is that the exchange of information is
depending on the connections slower than on shared memory systems.

1. A Cluster is a group of loosely coupled computers which are con-
nected by fast computer networks. Entities in the cluster are called
nodes. A master node is responsible for scheduling the workloads on
the working nodes called the slave nodes. Scheduling and data distri-
bution is done manually by using specialised programming APIs and
tools like MPI. The most prominent example of a cluster is the one
that powers Google’s Internet search engine. Google uses a cluster of
over 15000 commodity class PCs.

The advantage of using such an architecture is a relative low price for
having high performance, compared to system built from fewer but
more expensive high-end servers [BDH03]. If more computing power
is needed it is easy to just add more nodes to a cluster.

2. A Grid is similar to a cluster in that several computers are connected
using the Internet. The big difference between a Grid and a cluster
is, that grids are geographically distributed and computing power is
considered as a resource which can be bought, has a kind of quality

13

and should be available in the same sense as the power in a power
grid [BV05]. The management of the computing resource is done by
a grid middle-ware which controls access and distributes the data to
the nodes of the grid. A grid is heterogeneous regarding its nodes
which complicates load distribution and management.

Many Core is a future architecture which is similar to the shared memory multi-
core architectures but the core number is above what can be handled by
today’s multi-core architectures. The high amounts of cores changes the
architectures, because multi-core is not able to scale to a thousands of
cores [Bor07]. Many-core had its first incarnation by using Graphical Pro-
cessing Units (GPU) for General Purpose computing (GPGPU) [LHK+04].
GPGPU uses the programmable shader units of modern GPU hardware
for general purpose computing [MLG07].

1.4.5. Multi-core Processors

In order to increase the speeds of a processor chip makers are trying to pack
more transistors into smaller chips. One can imagine that this process has to
end at some point. Chipmakers realised that in order to increase the overall
performance of a system they need to pack multiple processing cores into one
die [Gee05]. The term multi-core is a marketing term that refers to a single-chip
multiprocessor [ONH+96]. A multi-core system has several advantages over a
single core processor.

Packing multiple cores into a single die solved a lot of problems for chip
makers in order to stay true to Moore’s law. Although the overall performance
of multi-cores is better than the one for single core processors, applications need
to be adapted in order to gain from the available processing power.

In order to gain from the multiple cores in a system one needs to partition the
problems into several tasks that can run in parallel. The software component
that is able to run those tasks is called a thread. Multi-threading is a term that
can refer to either the software practise or the hardware platform able to run
multiple threads at once, like a multi-core CPU.

Every program contains at least one thread. If it contains more the program
is called a multi-threaded program. One or more threads must be managed by
the operating system, which is called the operating system thread. The lowest
level of a thread is the hardware able to run a software thread.

2005 Intel changed its business and focused on Multi-core processors for its
high end CPUs. Intel followed IBM with its Power4 [WKP+02] and Sun Mi-

14

crosystems with its Niagara architecture [KAO05]. The term “multi-core” refers
to a CPU which doubles the amount of cores on one die. While Multi-core is
a current technology and here to stay, many-core is the future direction which
researchers from the University of Berkeley concluded. Many-core is a new ar-
chitecture type featuring not two, four or eight cores but many thousands in
one die [ABC+06].

1.4.6. Parallel Performance Metrics

In order to measure the performance of parallel programs and the implemented
algorithms a common nomenclature was introduced. For introduction purposes
some of these are described here.

The first metric, which is also one that is applicable to sequential algorithms is
the execution time. The serial runtime TS is the time frame from the start to the
termination of best sequential algorithm. When parallel programs are analysed,
we often want to measure the parallel runtime TP which is the time the first par-
allel processing happens until the last parallel work item has finished [GGK03].
The parallel runtime is used here as one indication of performance presented in
the results chapter.

If the TS and TP are known and the number of parallel processing units p
we can calculate the total parallel overhead TO = pTP − TS . The total parallel
overhead allows to show how much additional time was lost because of the
parallelization. The lower this overhead is, the better the algorithm performs.

One of the often used parallel performance metric is the speedup. It is a
factor which describes how well the parallel hardware was used. The speedup
is defined as S = TS

TP
. In this thesis the speedup was used to show how well an

algorithm adapts to additional added parallel hardware, e.g. cores. Therefore
the speedup is slightly modified but reflects its original definition. The speedup
is calculated depending on the used parallel elements in use Sp = TP,1/TP,p and
is based on a single parallel item in use instead of the best sequential runtime.
The speedup is best when Sp = p which means that the speedup is equivalent
to the number of parallel elements.

A metric which normalises the speedup is the parallel efficiency E = S
p . The

efficiency shows how efficient an algorithm uses the available parallel hardware.
It summarises in a value up to 1.0, the ideal case, how efficient a parallel algo-
rithm is [GGK03].

15

1.4.7. Challenges of Parallel Programming

Programming parallel and concurrent systems involves two tasks that are essen-
tial for a good working parallel algorithm:

1. making the program correct and

2. making the program fast.

Both tasks demand a completely different set of skills when it comes to program
a sequential or a parallel program.

If a sequential program runs several times, the CPU executes the exact same
sequences of commands in every run2. This is not the case for parallel programs.
The execution order is inherently nondeterministic. Making a parallel program
correct involves taming this nondeterminism in places where it is needed to
assure that no errors can happen. Sources of such errors were never possible in
sequential programming. Some notorious and hard to fix problems of parallel
programming are [Akh06]:

Race Conditions When several threads access the same memory regions it is
often the case that the execution order of the threads accessing the memory
influences the outcome of the operation. This is called a race condition.
Even such simple operations as incrementing an Integer number can cause
race conditions. A solution to race condition is to make the operations
atomic by either using hardware supported atomic operations or protecting
the memory region with a Mutex. [NM92].

Memory Corruptions Memory corruptions are the worst case of race conditions
in which a process does not only calculate a wrong answer to a problem
but also destroys the integrity of data.

Deadlocks Deadlocks occur if shared resources are locked step wise. For exam-
ple, if two threads want to transfer money between two accounts. Thread
one from A to B and thread two from B to A. The both lock their source
accounts and they try to lock the target account. Without further in-
formation they wait forever to get the target account locked. Potential
deadlocks happen to lock up rarely and are hard to fix. One solution is to
order resources, memory addresses, and lock them in an ordered manner.

Livelocks Livelocks are variants of Deadlocks where two threads aren’t waiting
for resources but checking the resource first and step back and try it again.
An analogy would be, if two persons want to pass but they try it on the

2If the program is executed in the same context

16

same side. If one changes the side, the other one does the same. This
could go on forever.

Being fast is not an optional feature for parallel algorithms as it is often the case
for sequential ones. The only reason to parallelize an algorithm is less runtime.
If an algorithm designer has sorted out all problems of the algorithm he is very
often faced with sub-optimal speed. Sources of slow downs in parallel programs
are [Akh06]:

Heavily Contented Locks Lock contention is when a thread tries to acquire a
lock that is already locked. Coarse grained locking often results in lock
contention of the locks, as described in Section 1.4.3. Waiting for contented
locks means less progress than possible. One solution to this problem is
to use finer grained locking and try to lock as less as possible [Tho94].

Overheads Scheduling threads has a small but noticeable overhead, especially
if lots of threads are used. A second source of overhead is the creation and
destruction time of threads and processes. A solution to both problems
is to use a thread/process pool that allows to define an upper limit of
threads and processes and allows to reuse already running threads/pro-
cesses [SV96, Sch98, PSCS01, LML00, KHYP08].

Priority Inversion If a process with a low priority holds a lock too long a pro-
cess with high priority gets blocked. This is called priority inversion.
It can be compared with a slow car blocking a fast car on a single lane
bridge [Nae05].

For this reasons parallel programming is considered hard, and researchers are
heavily searching for solutions for some of those problems. One such field is
automatic race condition detection. The amount of papers in this field shows
that this kind of problems are not easy to handle [BD96, EA03, FF01, NG92].

17

18

Chapter 2.

Urban Drainage Modelling

CityDrain3 is a software that allows to simulate the urban drainge waste wa-
tercycle. Various ways exist to approach simulation of urban drainage systems.
These approaches are called models. A model, as described earlier, is a formu-
lation of mathematical concepts and their connections to analyze system effects
virtually. Urban Drainge Modelling (UDM) is the intent of virtually describ-
ing the urban waste water processes by such models. This chapter describes the
conceptual foundations on which these models are based and the various models
researchers have found to calculate water flow and pollutant concentrations. A
short overview on the difference between hydrodynamic and hydrological simu-
lations is also given.

CityDrain3 is a reimplementaion of CITY DRAIN with a focus on speeding
up the simulations that use the underlaying models from CITY DRAIN. No
new models and neither the approach of running the models has changed since
CITY DRAIN. Therefore the following chapters are intended as an overview on
the matter to introduce the uninformed to the subject of UDM. Informations
of the following chapters were taken from [AMR07] and [RGK02] and form the
base for further investigation in the field of UDM.

2.1. Modelling Concepts

This section describes the mathematical background to UDM. Several processes
are used to describe the water and pollutant flow from rain and other flow sources
to the Waste Water Treatement Plant (WWTP). CityDrain3 was developed as
the framework to let civil engineers implement the models they are using in
their work. Therefore only some simple models were implemented so that it is
possible to work on parallel strategies and generate results. Therefore the list
of models following is neither thoroughly described nor complete (e.g. pollutant
transport and pollutant processes were left out completeley).

19

The modelling concepts that are needed to be taken account in UDM, which
are implemented in CITY DRAIN and are therefore possible to be implemented
n CityDrain3 are:

1. Rainfall runoff,
2. Hydraulic transport,
3. Pollutant transport and
4. Pollutant processes.

2.1.1. Rainfall Runoff

Rain is one of the sources of flow that an urban drainage system must handle.
Rain is the source of high flood peaks, during intensive rain events, in which the
quantity of flow sourcing from rain exceeds all other flows. Therefore rain is a
decisive factor that an urban drainage system must be able to handle.

Figure 2.1.: Schematic on the application of rainfall loss model [AMR07]

The amount of rain (i.e. stormwater) actually running of the ground is reduced
by various factors including

• wetting,
• depression loss,
• devaporization and
• infiltration.

A loss model transforms rainfall hn into the runoff hEn. This process is depicted
in Figure 2.1. Various methods exist to calculate the runoff at different levels
of details. Figure 2.2 shows three of them which are:

threshold method The threshhold method simply adheres to an initial loss (hi)
in which both, wetting and depression losses are included.

percentage method The percentage method contributes a permanent loss (hp)
in percentage to the threshhold method.

20

limit value method The limit value introduces a depression loss (hD) in form
of an exponential function.

(a) Threshold method (b) Percentage method (c) Limit value method

Figure 2.2.: Lossmodels [AMR07]

After the amount of runoff is known the effective flow of an urban area can
be calculated:

QNe =
hNe ·AEFF

∆t

where the effecitve area AEFF is influenced by the run off coefficient ϕ

AEFF = ϕ ·ATOT

2.1.2. Hydraulic Transport

After knowing what is the remaining rain, we need to transport this remaining
flow away. Two methods for calulating a flow are known, one is based on the
physical principals of continuity and the preservation of energy and the other is
based on conceptual relations between cause and effect.

The first one is known as the pyhsical flow model and involves solving the one
dimensional flow equations of St. Venant:

1

b
· ∂Q
∂x

+
∂h

∂t
= 0

∂Q

∂t
+

∂

∂x
·
(
Q2

A

)
+ g ·A · ∂h

∂x
+ g ·A · (IE − IS) = 0

21

The flow Q(x, t) and cross section A(x, t) are the unknowns in this equation.
The equation can be approximated by several layer of deatils with:

g · (IE − IS) = 0
∂Q

∂x
+ b · ∂h

∂t
= 0 . . . kinematic wave

g · ∂h
∂x

+ g · (IE − IS) = 0
∂Q

∂x
+ b · ∂h

∂t
= 0 . . . diffuse wave

∂v

∂t
+ v · ∂v

∂x
+ g · ∂h

∂x
g · (IE − IS) = 0

∂Q

∂x
+ b · ∂h

∂t
= 0 . . . dynamic wave

The kinematic wave is only able to modell translation due to the approximation
in which friction and energy slope equality (IE = IS). The diffuse wave is
able to calculate backwater and attenuation. The wave models damping and
translation. The diffuse wave is of second order, because of this two boundary
conditions (up- and downstream) are needed.

The second way to calculate the transport of flow is the conceptual modelling
approach. Conceptual modells (also known as hydrological modelling) are ap-
plied to various fields of hydraulic routing, some of these are now described,
where the mathematical formulations are just given for the musking routing
method because of its importance in this thesis:

Time area method (Isochronous Method) The time area method is used for
catchements where at each point the water requires a specific time to reach
the outlet. The catchement is divided into isochronous areas seperated by
lines after which a point needs the required time to reach the outlet (see
Figure 2.3a).

Qi =

n∑
j=i

Aj ·Ri−(j−1)

Linear hydraulic retention The linear hydraulic retention basin (see Fig-
ure 2.3b) is the simplest type of hydraulic retention where the retention
effect depends linearly on the stored volume.

QE(t) =
1

Ks
· V (t)

The outflow QE [m
3

s] depends on a storage constant Ks [s] and the stored
volume V (t) [m3] at the time t.

Cascading linear hydraulic retention An extension of the linear hydraulic re-
tention is the cascading linear hydraulic extensions where several linear
storages are combined as depicted in Figure 2.3c.

Muskingum method The muskingum method is the most important one in

22

this thesis, because it is used in many nodes that where implemented in
the version of CityDrain3 that is used for this thesis. The method is
used frequently in river and sewer hydraulics and was first applied to flow
control at the river muskingum. The storage is described as a function of
inflow QI and outflow QE where it may be shaped like a prisma and like
a prisma with a wedge atop (see Figure 2.4a and 2.4b)

V = K ·QE + K ·X · (QI −QE) (2.1)

with the constants K (time for a unit discharge wave to travel through
the reach) and X (wedge storage factor) describe the muskingum formular.
The first term (K ·QE) of Equation 2.1 is responsible for the prism storage
whereas the second term (K ·X · (QI −QE)) describes the wedge storage.

Its possible to extend the muskingum method in the same way the linear
storage retention method was extended by using arranging several sub-
reachers in a row as shown in Figure 2.4c.

(a) Isochronous area parti-
tioning

(b) Single linear
storage

(c) Cascading linear storage

Figure 2.3.: Routing Methods [AMR07]

(a) Steady-uniform flow (b) Flood-wave flow (c) Multiple subreaches

Figure 2.4.: Muskingum Routing Method [AMR07]

2.2. Integrated Urban Drainage Modelling

Integrated modelling is the intent to combine the traditionally seperated com-
ponents of the waste water cycle into a unified model that is able to indicate the

23

performance of the whole system [BS05]. The components and their interaction
are shown in Figure 2.5.

Figure 2.5.: Integrated drainage system (redrawn from [WJP+02])

These components were traditionally considered seperatly because of different
responsibilities for the management and planning of sewers, treatment plants
and rivers [WJP+02]. However a seperated view of these components can not
describe the full effects of the waste water system and can result in misleading
conclusions in various scenarios [BS05].

Because of the importance shown here, CityDrain3 has the goal to be able to
implement such integrated approaches. To make such an integrated approach
reasonable and show long-term effects an efficicent framework for running IUDM
simulations is needed.

2.3. Conceptual Modelling

As stated earlier conceptual modelling is different from using physical based
models where the exact physical mechanics are applied. These physical mod-
elling known as hydrodynamic approaches, often involve solving complex foru-
mations in form of differential equations as it is the case for the St. Venant
equations.

Instead conceptual modelling focuses on cause effect relations to reduce
the computational complexity which makes running long-term simulations un-
feasable. Section 2.1 showed the mathematical background of some conceptual
models, this section shows how such models are integrated into a framework for
running such model simulations.

2.3.1. State Space Modelling

The whole CityDrain3 model is based on the state space modelling approach
of CITY DRAIN. In CITY DRAIN a component of the waste water system is

24

called a block. Blocks have an input u, an output y and an internal state x as
depicted in Figure 2.6.

Figure 2.6.: Schematic description of a block

The output of a node is calculated by solving the discrete versions of the
differential equations shown in Section 2.1 with numerical methods. This type
of linear state space is described by the following equations

∂x

∂t
= A ·X + B · u

y = C · x + D · u

The block notation comes from the roots of CITY DRAIN - Matlab. In the
work of this thesis lots of graph theory was needed and used. Because of this it
is natural to speak about nodes not blocks. The output of a node is the input
of a downstream node. The whole system begins at the catchment and forms a
graph structure that ends at the treatment plant.

2.3.2. The Graph Structure of a Sewer System

A graph is a pair G = (V,E) of the set of vertices (V) and the set of edges (E).
The set of egdes are pairs so that E ⊆ [V]2, which means that the members of
the edges must be in the set of the vertices. Edges short notations of (xi, xj) is
xixj . The set of vertices are the nodes and the edges represent a connection of
two nodes. A graph is directed if we distinguish between the start and the end
of an edge. In other words a undirected graph that contains an edge must also
contain the reversed edge [Die05]:

(a, b) ∈ V → (b, a) ∈ V |a, b ∈ E

A path is a nonempty graph P = (V,E) of the form V = {x0, x1, . . . , xk}
P = {x0x1, x1x2, . . . , xk−1xk}. The length of the path is the number of edges
which is denoted by P k with a k-length. If P = x0 . . . xk−1is a path the C =
P + xk−1x0is called a cycle. A graph with no cycles is called acyclic. A graph
is called connected if there does not exist a pair of vertices which is connected
by a path [Die05].

25

If a graph is directed and is acyclic (DAG) there exists a non unique relation
R over the nodes of the graph such that xRy exists iff there exists a path from
x to y. The relation R is known as the topological order of a graph [Kah62].

In the case of an urban drainage simulation the simulation scenario is a graph,
the nodes are the conceptual entities of the waste water cycle and the receiving
water body. Because of the rather high abstraction of the urban drainage model
some entities form a group of elements. For example a catchment is a very highly
abstracted element, it represents an area where rain is catched and drained to
a single effluent sewer. In reality an area represented by a catchment contains
high amounts of buildings and sewer systems that must be treated differently.

The edges of the graph are the connections of the nodes. These connections
don’t exist in reality but allow to reuse certain algorithms with different param-
eters. A connection from a node x to a node y means that water is flowing from
x to y.

The graph representing urban drainage systems may be cyclic, directed graphs
but most of the time they are DAGs. In this thesis the focus was on speeding
up cycle free urban drainage systems, although the software is able to calculate
them without using parallel algorithms.

26

Chapter 3.

Methods and Implementation

CityDrain3 is a reimplementation of CITYDRAIN developed by [AMR07] with a
focus on speed. CITY DRAIN was based on a combination of Matlab/Simulink
which is broadly used by civil engineers. Simulink is a simulation system which
can be used to analyse multi-domain dynamic systems. It features a graph-
ical interface where a user can easily connect and arrange the blocks which
represent subsystems of the simulation system. Because of the Simulink based
implementation of CITYDRAIN it is very easy to model systems and extend
CITYDRAIN by implementing new blocks in Simulink. Due to the prototypical
nature of Matlab the speed of CITYDRAIN is slower than a native implemen-
tation with a simulation framework that is targeted at the needs of conceptual
models used in IUDM simulations.

CityDrain3 is implemented in C++ which should bring runtime advantages
over the Matlab based predecessor CITYDRAIN. Furthermore C++ was
choosen because it offers a more flexible memory model and allows to use
various ways to exploit modern multi-core CPU technologies.

The Matlab/Simulink environment provides a well performing simulation sys-
tem that must be reimplemented in C++. Although, the simulation system
needed by IUDM simulations is simple, various prototypes were needed to find
the best solution that fits IUDM and allows to parallelize the system.

An object oriented design (OOD) was choosen to allow extending and seper-
ated the concerns of the simulation. The following chapter shows the most
centeral parts of this OOD. Following the OOD design the algorithms and im-
plementations of the parallel simulations are described.

27

3.1. Design

OOD allows to divide the code and data on which the code is working to be
split up into seperate logical units called classes. A class normally represents a
noun of a software, for example Simulation, Node and Model. A class can be
seen as a template, whereas the object is an instance of a class. e.g. a human
beeing can be seen as a class whereas the instance gregor is an object of the the
type human (i.e. class Human).

Operations which belong to a class are called methods and are typically asso-
ciated to the verbs belonging to a software system. e.g.: we start a Simulation
, or we init and execute a Node. So by just talking about a peace of software it
is very easy to identify the classes and operations on the classes. The OOD of
a software are the identified classes, their relationships and how they interact.
This chapter shows briefly how CityDrain3 is designed in order to reach its goal,
usage of several cores on a modern CPU.

OOD can be seen as the low level design of a software, a common practice
when designing complex software systems is to group classes into a highlevel
architecture called Model View Controller (MVC). The model classes are used
to hold and change the data of a software system. The controller classes en-
capsulate the business logic of an application, i.e. they act on the model and
transform the data. The view is responsible for displaying the data. The design
of CityDrain3 focused on the controller and model aspects of the architecture.

Figure 3.1 shows a very high level overview of the classes and their relation-
ships used in CityDrain3.

3.1.1. Node

The Node class is the most central class in CityDrain3. A Node in CityDrain3
can be seen as a block in the Simulink based CITYDRAIN. In the modelling
jargon a Node can be seend as an identified and seperatable part of the system
we want to gain insights. But depending on the needs of the modelling process a
Node can also be seen as the combination of several distinct parts of the system
in order to have a more abstract view on the system, i.e. the Catchment often
contains various sub components of the waste water cycle, which would be to
complex to identify seperatly. Examples of Nodes implemented in CityDrain3
are:

• Catchment,

• Combined Sewer Overflow (CSO),

28

Figure 3.1.: Class Overview

• Sewer,

• Waste Water Treatement Plant (WWTP),

• but also virtual elements like a rain reader.

A Node has essential two methods - “init” and “f”. The method “init()” is
used to initialize the node, which involves setting internal states to a predefined
value, loading data, setting input- and output ports and naming the internal
states so that the simulation can access them for serialization or controlling
aspects.

The second method “f()” is responsible for updating the calculation based on
inputs and internal states. It is called at every time step. Before “f()” is run the
input ports are updated to represent the output values of preceding nodes, in
other words upstream elements of the urban drainage water cycle. After “f()”
is called the node needs to update the output ports for downstream nodes. As
an example: A mixer node has up to n input ports. The “f()” of a mixer mixes
these input flows and updates a single output port for the downstream nodes.

Inputs and outputs are distributed by ports. A port is tuple of a name and a
Flow (descriped in Section 3.1.4). It represents the connection with other nodes.
A node can have any number of input ports and any number of output ports.

Internal states of nodes are represented as a list of name value tuples. Values
are typed and can therefore be programmatically enumerated, read and updated.
This abstract implementation of internal states is used to implement controlling
behaviours and serialization of simulation states. Serialization of simulations

29

allows to restart a simulation with updated or calibrated values which in turn
allows the application to be controlled online [SSTW09].

To extend CityDrain3 with a new Node-type one needs to extend the abstract
Node class and implement the “f()” and “init()” methods. The exact procedure
to add new nodes to CityDrain3 is descriped in Chapter A.2.3.

Figure 3.2.: The Node Class

3.1.2. Model

As said earlier the term model is used in an ambigous way. A model used
in “modelling and simulating” is the mathematical abstracted description of a
complex system that somebody wants to experiment with by using simulations.
But a model is also known as the data definition in MVC. In which the model
is the data layer, the view the representation of the data and the controller the
executing logic that transforms and uses the data model. In this chapter term
model is used as in the MVC pattern.

A model represents the structure of a simulated system, it describes the used
nodes, how they are connected and what parameters are used for the model
nodes. In other words a model represents the urban drainage system which
researchers want to examine. From a computer science point of view the model
is a node container that allows to traverse the graph structure of an urban
drainage system.

A model is the input of a simulation run. It is loaded into the memory
from an external file which is structured by an xml file format. The model is
loaded on startup and handed over to an instance of the simulation class(see
Chapter 3.1.3).

30

Figure 3.3 shows an simplified overview of the Model class. addNode and
addConnection are used by the XmlLoader class. They are used to setup and
initialize the model. The next four operations are used by the various imple-
mentations of the Simulation interface. getSource/SinkNode are used to begin
the traversal of the graph structure at the sink or source nodes. Source nodes
are nodes with no input whereas sink nodes are nodes with no outputs. Us-
ing getNext/getPrevious the Simulations are able to traverse the graph step by
step. This frees a simulation to choose whatever direction it wants to traverse
the model.

Another feature of the model class not included in the class diagram in Fig-
ure 3.3is the ability to serialize the whole model including the states of the nodes.
This allows to restart a simulation run from a given time. The serialization for-
mat is presented in a human and machine readable format. This allows various
online and offline calibration scenarious and the ability to stop and restart long
running simulations.

Figure 3.3.: The Model Class

3.1.3. Simulation

The Simulation class defines an interface used to drive a simulation. It is kept
minimum so that the implementations aren’t too restricted by the interface.
The most important method is start, it is used to start and restart simulations.

The Simulation interface is implemented to use various simulation scenarious.
This includes the parallel strategies descriped in Chapter 3.3 and simulations
with variing time steps which are able to handle cycles in the graph structure.
Simulation implementations get an instance of the Model class. Based on the
implementation it traverses the Model graph, executes the “f” functions of the
Node instances and distributes the data exchange between the connected Nodes.
The data exchanged by Nodes is called a flow.

31

Figure 3.4.: The Simulation Class

3.1.4. Flow

The Flow class represents the simulation data which is exchanged by the nodes.
It represents the amount of water plus the concentrations in terms of pollutants,
sediments, etc.. In CITYDRAIN the flow as a seperate unit does not exist. The
exchange of flow was handled by using lists of values. The definition of a flow
an its concentrations was at a fixed position defined globally. In CityDrain3 the
Flow class is a little bit more flexible and allows each node to add and remove
concentrations on the fly. The elements of a flow are typed, have a unit and
are accessed by names. This catches errors and detects them early whereas in
CITYDRAIN they were left undetected.

Flow is exchanged between nodes on every timestep. Each node needs a
seperate copy of the Flow because it is not known what happens with the Flow in
the various Node implementations, e.g. the FileOut node just writes the values
of a Flow into a file whereas the Sewer node modifies its input. The exchange
and update of flow happens very often in the simulation framework. An efficient
implementation for the exchange of Flow is essential to a well performing parallel
implementation.

A copy on write (COW) mechanism was introduced to keep the copiing of a
flows data and its definition at the minimum. The values and meta informations
on the values, i.e. type, name and unit, were kept in seperate shared instances
of the class. If a Flow is exchanged the values and metainformations are shared
first. The values and meta informations are only copied if they are altered.
Chapter 4.6 shows the influences of such an implementation on the overall and
parallel performance.

3.2. Sequential Simulation Run

Knowing how the process of running a simulation takes place is essential for
understanding how this process can be broken up into different independent

32

parallel execution steps. This section describes a simple algorithm that runs a
simulation sequentially. This should make it clear what a simulation needs to
do.

In Line 1 of Algorithm 1 a typical main loop of a discrete time step simulation
can be seen. We run from starttime up to endtime in dt time steps. One step
of this for loop is called a timestep.

In each timestep a set N is initialized to contain all the nodes defined and in
the model of this particular simulation. We begin by choosing a single n out of
N . This n is then handed over to the recursive execute n procedure shown in
Algorithm 2.

When execute is finished n is removed from the set of N . Choosing a n from
N is done as long as the set N is not empty. If the set N is empty the simulation
is finished with this timestep and it is assured that all nodes were executed in
the right order, which gets assured by the execute algorithm.

Algorithm 1 The main loop of a simulation run.

1: for t← tstart to tstop in dt steps do
2: N ← all nodes in model
3: while N not empty do
4: choose n ∈ N
5: execute n
6: end while
7: end for

The procedure execute n shown in Algorithm 2 is a recursive algorithm which
exectus the node n. But before that can happen all nodes on which n depends,
i.e. which precede n in the model, must be executed first. This assures that n
runs only if all nodes upstream are already done. After n is executed it gets
removed from the set N which is the set of nodes that are not yet executed.

PN is the set of nodes that precede the node n i.e. the ones from which n gets
an input. PN is intersected with N so that PN is free of nodes that may have
already been executed. This is because the underlaying structure of a model is
not a perfect Tree but a DAG (see Chapter 2.3.2).

The here presented algorithms are highly simplyfied and are only presented
that the reader may get a better understanding of how a simple simulation
software running IUDM simulations is carried out.

33

Algorithm 2 The execute n procedure.

1: PN ← predecessor of n
2: PN ∩N
3: for all pn ∈ PN do
4: execute pn
5: set ouput of pn to input n
6: end for
7: execute n
8: N ← N \ n

3.3. Parallel Implementation

CityDrain3 was designed to be a very modular and flexible framework for ex-
perimenting with different parallel simulation execution strategies. Loading of
a Simulation class is done at runtime so that different parallel implementations
are easily tested and benchmarked against each other. This section describes
three different parallel strategies:

1. flow parallel,

2. pool pipeline and

3. ordered pipeline strategy.

The Flow Parallel Strategy (FPS) was implemented first. It tries to fit a data
parallel approach onto the tree like structure of the input sewer systems. The
idea behind this strategy was to keep the data of the parallel flows in a single
thread in order to reduce memory transfers between the cores. Figure 3.5 shows
a conceptual overview of this strategy. It shows how the data stays in the CPU
cores and in turn in the caches of the cores.

The second strategy the Pool Pipeline Strategy (PPS) tries to use a
task/pipelined parallel approach [GGK03]. A pool of nodes is used and the
time is pipelined through the threads. Figure 3.7 shows a conceptual overview
of this strategy.

The PPS showed very bad performance in initial tests. In order to overcome
this shortcomings the Ordered Pipeline Strategy (OPS) was implemented. It
tries to eliminate all randomness of PPS. Figure 3.8 shows an overview of the
OPS.

As stated earlier Simulations are loaded at runtime which makes them easily
exchangeable. This is done by specifying the simulation which should be used

34

in the input XML system. More information on how to define the simulation
parameters and the Simulation class can be found in Chapter A.1.2 and A.1.3.

3.3.1. Flow Parallel Strategy

1 catchment

7 catchment

10 catchment

14 catchment

17 catchment

2 sewer

8 sewer

11 sewer

15 sewer

18 sewer

9 sewer

12 sewer

16 sewer

3 sewer

19 sewer

4 mixer

13 mixer 5 mixer

tCPU,1 tCPU,2 tCPU,3 tCPU,4 tCPU,5 tCPU,6 tCPU,7

6 mixer

tCPU,8

cpu1

cpu2

cpu3

cpu4

cpu1

Figure 3.5.: Flow Parallel Strategy

Before any of the parllel strategies were implemented a standard straight-
forward simulation was written. In order to assure that the parallel imple-
mentations are correct the results were compared with the standard simulation
implementation. Also this standard implementation acted as a base for the first
parallel strategy the FPS.

The standard simulation starts a loop over the simulation time. Each node
has a counter which is initialized by the number of input connections. In case
of the “Mixer” node in Figure 3.6 this counter is set to two because it has two
input connections. Another loop is started over the source nodes (i.e. “Source
1” and “Source 2” in Figure 3.6). Before a node is able to be executed, i.e.
running the “f()” function, the counter must be decremented and it must have
the value zero in order to preserve the simulation defined calculation sequence.
After the “f()” function ran the simulation loops over all ouput connections and
again decrements the counter by one and checks if the downstream nodes are
able to be executed. This algorithm assures that all depending nodes, i.e. the
one with a downstream connection, are calculated first.

Figure 3.6 shows a sequence and the updated counter. The red node is always
the next node that runs.

The FPS is heavily based on the standard simulation. Algorithms 3, 4 and 5
show a pseudocode on how the FPS algorithm works. The FPS introduced two
changes to the standard implementation:

1. the loop over the source nodes was changed to a OpenMP parallel for loop,

35

Mixer
 counter=2

Sewer
 counter=1

Source 1
 counter=1

Source 2
 counter=1

(a) Initial State

Mixer
 counter=1

Sewer
 counter=1

Source 1
 counter=0

Source 2
 counter=1

(b) After Source 1

Mixer
 counter=0

Sewer
 counter=1

Source 1
 counter=0

Source 2
 counter=0

(c) After Source 2

Mixer
 counter=0

Sewer
 counter=0

Source 1
 counter=0

Source 2
 counter=0

(d) After Mixer

Figure 3.6.: Input Counter

Algorithm 3 flow parallel simulation

1: for t← tstart to tstop in dt steps do
2: PD ← get predecessors
3: for all sn ∈ sinknodes do
4: threaded(run flow(sn))
5: end for
6: end for

Algorithm 4 run flow(sn)

1: execute n
2: NS ← succesors of n
3: for all n succ ∈ NS do
4: set output of n into n succ
5: PD(n succ)← PD(n succ) \ {n}
6: if PD(n succ) = ∅ then
7: threaded(run flow(n succ))
8: end if
9: end for

36

Algorithm 5 get predecessors

1: N ← all nodes
2: PN ← ∅
3: for all node n in all nodes do
4: PN(n)← PN(n) ∪ PRED(n)
5: end for
6: return PN

2. and the counter update was protected by a OpenMP critical section

The greatest advantage of this strategy is the rather low number of changed
lines of code. The second advantage is that the exchanged Flows between the
nodes stay in the thread, and therefore in the core, as long as the thread does
not reach a node with a mixing behaviour. The fact that the data stays thread
local reduces the data migration costs from one core to another and allows to
take advantage of the available cache memory.

The FPS should run particularly fast on simulation systems with parallel
streams that offer long sequential flows. Because of this fact a testing sewer sys-
tem was introduced from which this parallel simulation implementation should
benefit the most. This simulation system shows the upperbound of what is the
maximum expected performance of the FPS.

Although the data transfer between the cores is lower when using the flow
parallel strategy the amount of parallelism which is usable by this parallel im-
plementation is limited by the parallel streams in the sewer system. Depending
on the drainage system this can have critical impacts on the parallel perfor-
mance. The worst model is one where there are no parallel streams at all. This
also means that the overall amount of threads to which this implementation can
scale is limited by the number of parallel streams. Because of this limitations
the set of testing systems includes such a sequential testing system.

Testing systems with a tree like structure offer lots of parallel streams at the
source nodes. But they collapse downstream into just a handfull of nodes and
moreoften into one - the WWTP. Therefore the parallel peformance drops when
the simulation advances downstream.

3.3.2. Pool Pipeline Strategy

FPS is not able to scale on a sequential testing system and only allows to
calculate parallel flows concurrently. Because of this limitations of FPS further
investigations were made into finding ways to exploit more parallelism out of

37

3

cpu1 cpu2 cpu3 cpu4

tSimulation,1

4

already computed

7

2

13

12

8 11 9

14 16 17

5 1 6

19

2 4 7

16

8

10

19

12

5 11 18

14 6 17

3 1 9

13 15

3 10 6

4

2

8

12

1

13 11 16

15 14 17

5 9 19

7 18

19 17 10

9

4

8

2

5

13 3 7

2 16 14

18 11 6

12 1

16 4 10

19

2

7

6

12

8 15 9

3 14 11

13 1 5

18 17

tSimulation,2 tSimulation,3 tSimulation,4 tSimulation,n

15 18

10

actually computed

Figure 3.7.: Pool Pipeline Strategy

Algorithm 6 pps main

1: N ← all nodes
2: for t← tstart to tstop in dt steps do
3: POOLt ← N
4: thread pool add task(pps run timestep(POOLt))
5: end for

the available sewer system. The characteristic of the FPS is that one time step
is completely finished before the next starts. This shortcoming manifests itself
into the limited scalability described before.

Searching for other ways to parallelize simulations of urban drainage systems,
it was discovered that another timestep can begin even if the first one is not yet
finished. This pipelining of timesteps through the sewer system gave the PPS
the name.

Algorithm 7 pps run timestep(POOLt)

1: PD ← get predecessors
2: while POOLt 6= ∅ do
3: n← choose random n ∈ POOLt
4: if PD(n) = ∅ then
5: execute(n)
6: for all ns ∈ SUCC(n) do
7: PD(ns)← PD(ns) \ {n}
8: end for
9: POOLt ← POOLt \ {n}

10: end if
11: end while

38

The (PPS) was the first Simulation which used this knowledge. Algorithm 6
shows the main loop of the simulation. Each parallel task is now responsible
for a single timestep. A pool (POOLt) is used to track which nodes are not yet
worked out. A thread randomly chooses a node from the pool and checks if all
dependencies are satisfied. The dependencies from the pool pipeline strategy
differ from the ones in the flow parallel, because nodes can now be in every
state. Algorithm 7 is the part of the algorithm which runs in a thread managed
by a thread pool.

All input depending nodes must be in timestep t+dt. And all output connect-
ing nodes must be in timestep t and not less than t. This extended dependencies
must be checked because the nodes can be in any timestep.If all the dependen-
cies are satisfied the nodes “f()” function is called and the node gets removed
from the threads pool. A thread is finished if its pool is empty.

The PPS uses simple threading, mutexes for critical regions and a thread pool
to reduce the startup and teardown costs of threads [Sch98]. The advantage
of this strategy is that it is able to gain from extra cores even if the are no
parallel streams at all. The limiting factor is the number of sequential nodes.
A big disadvantage of this strategy is that it randomly chooses from a pool.
Despite this weakness it was at first easy to implement. Another disatvantage
is that more data exchange happens between cores which reduces the memory
throughput of the CPU [Dre07].

3.3.3. Ordered Pipeline Strategy

tCPU,1

tCPU,2

tCPU,3

tCPU,4

tCPU,5

1 2 3 7 8 9 4 10 11 12 14 15 16 13 5 17 18 19 6

t1

1 2 3 7 8 9 4 10 11 12 14 15 16 13 5 17 18 19 6

t2 t1

1 2 3 7 8 9 4 10 11 12 14 15 16 13 5 17 18 19 6

t3 t2 t1

1 2 3 7 8 9 4 10 11 12 14 15 16 13 5 17 18 19 6

t4 t3 t2 t1

1 2 3 7 8 9 4 10 11 12 14 15 16 13 5 17 18 19 6

t4 t3 t2 t1

Figure 3.8.: Ordered Pipeline Strategy

To overcome the weaknesses of the PPS another pipelined simulation was
implemented. The idea was to force the random aspects of the PPS into an
ordered, linear structure, hence the “ordered” in the name. The idea of OPS

39

is to not randomly search for a next node to calculate, but grab it from a
linear container which was already set up prior the simulation. Each thread,
responsible for a timestep, then gets the nodes from this linear structure, runs
them and puts them in the same order into another instance of this linear
structure which is connected to the next thread (i.e. the next timestep).

The first problem which needs to be solved is to transform the DAG repre-
senting the model into a linear shape with all dependencies preserved. To get a
linear structure the DAG is sorted by introducing a node relation R. A node i
is said to be smaller than j; i ≤ j if the nodes are connected and i is the source
node and j is the sink node. In graph theory: we have a directed Graph G(V,E)
with V vertices and E ⊆ [V]2 edges, we say i, j ∈ V are smaller if (i, j) ∈ E.
Topological sorting is the problem of finding a linear extension of the relation
R, where iRj ⇐⇒ (i, j) ∈ E for i, j ∈ V [CLRS01, Kah62].

Algorithm 8 shows a way to find the topological sorting of a DAG G = (E, V).
S is first initialized to be the set of the source nodes in G, i.e. all nodes which
have no incomming connections: S = {n| @m, (m,n) ∈ E}. L is initialized to
be the empty linear structure holding the resulting sorted nodes, called a list.
Figure 3.9 shows an example DAG, the red nodes are the source nodes, Table 3.1

Algorithm 8 topological sort(G)

L← ∅ {list structure}
S ← set of source nodes of G
E ← set of edges of G
while S 6= ∅ do
n← n ∈ S
S ← S \ {n}
L� n {appends n to the back of the list}
for all m where (n,m) ∈ E do
E ← E \ {(n,m)}
if m has no more incomming edges in E then
S ← S ∪ {m}

end if
end for

end while
if E = ∅ then
return L

else
return ∅

end if

shows the steps to get to the final sort of L = {1, 3, 7, 2, 4, 5, 6}.

40

3 2

1

5

7 4 6

Figure 3.9.: An example DAG

step n S update of E L

1 S = {1, 3, 7} L = ()
2 n = 1 S = {3, 7} E ← E \ {(1, 2), (1, 5)} L = (1)
3 n = 3 S = {7, 2} E ← E \ {(3, 2)} L = (1, 3)
4 n = 7 S = {2} E ← E \ {(7, 4)} L = (1, 3, 7)
5 n = 2 S = {4} E ← E \ {(2, 4)} L = (1, 3, 7, 2)
6 n = 4 S = {6, 5} E ← E \ {(4, 6), (4, 5)} L = (1, 3, 7, 2, 4)
7 n = 5 S = {6} E ← E \ ∅ L = (1, 3, 7, 2, 4, 5)
8 n = 6 S = ∅ E ← E \ ∅ L = (1, 3, 7, 2, 4, 5, 6)

Table 3.1.: Example sort of DAG

41

The linear structure between the threads is an adapted queue from the Stan-
dard Template Library (STL).The STL queue was wrapped by a class tqueue in
order to be thread-safe and synchronize the threads if the queue becomes empty.
A thread which is blocked on an empty queue wakes up if a new node arrives.
Depending on underlaying thread implementation a core can be retargeted to
another thread while waiting for data in the queue.

template <typename T>
class tqueue {
public :

tqueue (){}
virtual ˜ tqueue (){}

void enqueue (T t) {
{

unique lock<boost : : mutex> l o ck (mut) ;
q . push (t) ;

}
wait . n o t i f y o n e () ;

}

T dequeue () {
unique lock<boost : : mutex> l o ck (mut) ;
while (q . empty ()) {

wait . wait (l o ck) ;
}
T f r o n t = q . f r o n t () ;
q . pop () ;
return f r o n t ;

}

private :
s td : : queue<T> q ;
boost : : mutex mut ;
boost : : c o n d i t i o n v a r i a b l e wait ;

} ;

Listing 3.1: The thread-safe queue

Listing 3.1 shows the implementation of the thread-safe queue. The data held
in the class are:

• The STL queue used as the underlying data structure. It has a First In
First Out (FIFO) semantic. This means that the order that one “pushes”
data into the queue is the same as the one “popping” the data out of the
queue.

42

• A mutex lock used to guarantee that “pushing” and “popping” is race
condition free if more then one thread accesses the queue.

• A wait condition used to make the “popping” thread sleep if the queue
is empty. A “push” into the queue is always followed by a notify so that
a waiting thread will be waken up.

The thread-safe lock has several advantages that benefit its performance and
also the elegance of the implementation of OPS. The greatest advantage is that
locking and synchronization is done in one place - in the queue. This means that
only the queue is responsible for locking and synchronization and synchroniza-
tion is not distributed throughout the code. Code using tqueue1 doesn’t need
to care about race-conditions or deadlocks, they just call push and pop the rest
is handled by tqueue. A queue is shared by only two threads, one responsible
for timestept and the other for timestept+1. This fact reduces the propability
of lock-contentions.

The ordered execution poses a more subtle problem when exchanging the
flow data. Figure 3.10 shows a simple DAG with five nodes. A topoligical
sort of this DAG is shown in Figure 3.11. If a node is executed it updates its
input ports and translates the data by using the internal node semantik into
an output that is provided at the output ports. The problem emerges when
the data from the input ports is fetched, it can not be assured that the data is
from the current timestep. This is because the fetched node could already be
in the next timestep due to the pipelined nature of this strategy. For example
we run nodes A, B and C, when we want to execute node D it fetches data
from A, B and C but this nodes could be in timestept+1 because they come
earlier in the queue. The problem also exists if instead of fetching the flows from
an executing node the nodes push the data after execution, because you can’t
know in which timestep the node is in, when “pushing”. The solution was to
use a buffering datastructure able to handle concurrent access to its elements
and that preserves the order in which data is “pushed” in. This sounds pretty
familiar to the tqueue which was used to solve the problem.

Algorithm 9 ops main

G← input Graph
L← topological sort(G)
Qstart−dt ← init with L
for t← tstart to tend in dt steps do

Qt ← init empty queue
thread pool add task(ops run timestep(t))

end for

1tqueue was also usefull in other places.

43

A

D EB

C

Figure 3.10.: Flow exchange problem DAG

Figure 3.11.: Flow exchange problem ordered

44

Understanding tqueue and its uses is essential for understanding the inner
workings of the OPS. Algorithm 9 shows the main loop of the OPS. First a
queue is set up with the contents of the topolical sorted nodes of G. This
queue is special because it is the connection from the mainloop to the first
timestep/thread. The use of this special queue allows the first timestep to be
exactly like any other timestep. For each timestep there is a queue, denoted
as Qt−dt and Qt for the timestep t, from wich the thread gets its nodes and to
which it pushes the finished nodes.

Algorithm 10 ops run timestep(t)

n← pop from Qt−dt
while n 6=⊥ do

fetch inputs for n
execute n
output results from n
push n into Qt

n← pop from Qt−dt
end while

Algorithm 10 shows the steps done in each thread, i.e. each timestep. A node
is “popped” from the queue of the preceding timestep, the inputs are updated
and the “f” function of the node is called. After the update of the output ports
the node is “pushed” into the queue that is connected to the successor timestep.

The advantage of the OPS is that it does not care of which shape the sewer
system is, as long as there are enough nodes in the system it is able to parallelize
up to the number of nodes in the system. Another advantage is that synchro-
nization and locking is handled in one piece of code, the tqueue. The threads are
loosely decoupled and connected by the tqueues which are used to communicate
the data between the threads. This makes the OPS a pretty elegant solution.
Locking of OPS is very fine grained, as shown earlier, a fine grained locking
solution has the potential to be more scalable.

3.4. Shared Flow

CityDrain3 simulates the flow of water including the concentrations of pollution
in the water. The combound of concentration and water is called the flow. Each
node then uses its input flow and transforms it. This transformations are de-
signed to require low computational power in order to run longterm simulations,
see Chapter 2.3 for more information on the characteristics of UDM simulations.
This means the flow of water is at the heart of the simulation. Nodes were cho-
sen to be the parallel units of work. The transfer of water between the nodes

45

is the most essential communication effort and it is not a minor one. Before
and after every calculation step, data has to be brought up to date at the nodes
ports.

Efficient handling of this communication was thought to be the key for good
performance in general and for good parallel performance in specific. A large
part of the design phase was dedicated into finding an efficient way to transfer
the data between the nodes.

Figure 3.12.: UML of the Flow class

The Flow class had to fulfill two conditions which influenced its design:

1. Accessing the elements of the flow should be easy and straight forward.
CITY DRAIN used lists to transfer the flow. A global table was used to
index into the array and find the elements of the flow. This is inconvinient
at best.

2. It should be fast to transfer, without worrying too much about data copy-
ing.

The first step was to get rid of a simple array based implementation. The
array to index the flow elements is now part of the Flow class. The Flow class
is a dynamic class which allows to add elements and update their values 2. An
overview of the class is shown in Figure 3.12.

The second problem was solved by introducting a Copy on Write (COW)
semantics to the Flow class. COW is essentially a delayed copy of a ressource.
If an involved party alters the ressource, the delayed copy is executed to be a real
copy. The COW semantic in the flow is handled by using an already proposed
standard extension to the C++ STL called shared ptr [Aus05].

2A flow element is essentially the class CalculationUnit with a value

46

A shared ptr is a wrapper class around a pointer that holds a use counter.
If the use counter becomes zero the data to which the pointer points to will
be deleted. Listing 3.2 shows the COW specific implementations of the Flow
class3.

Flow : : Flow () {
#ifde f SHARED FLOW

f = shared ptr<FlowPriv>(new FlowPriv ()) ;
fd = shared ptr<FlowDef in i t ion >(new FlowDef in i t i on ()) ;

#else
f = new FlowPriv () ;
fd = new FlowDef in i t i on () ;

#endif
}

Flow : : Flow (const Flow &other) {
#ifde f SHARED FLOW

f = other . f ;
fd = other . fd ;

#else
f = new FlowPriv (∗ other . f) ;
fd = new FlowDef in i t i on (∗ other . fd) ;

#endif
}

Flow Flow : : nul lFlow () {
Flow f ;
f . addUnit (” f low ” , CU: : f low , 0 . 0) ;
return f ;

}

Flow : : ˜ Flow () {
#ifndef SHARED FLOW

delete f ;
delete fd ;

#endif
}

Flow &Flow : : operator =(const Flow &other) {
#ifde f SHARED FLOW

f = other . f ;
fd = other . fd ;

#else
delete f ;
delete fd ;
f = new FlowPriv (∗ other . f) ;
fd = new FlowDef in i t i on (∗ other . fd) ;

3The #ifdef SHARED FLOW preprocessor directives are used to change the implementation
with on that does not use COW semantics

47

#endif
return ∗ this ;

}

#ifde f SHARED FLOW
void Flow : : copyData () {

i f (! f . unique ()) {
FlowPriv ∗ o ld = f . get () ;
f = shared ptr<FlowPriv>

(new FlowPriv (∗ o ld)) ;
}

}

void Flow : : copyDe f in i t i on () {
i f (! fd . unique ()) {

FlowDef in i t i on ∗ o ld = fd . get () ;
fd = shared ptr<FlowDef in i t ion>

(new FlowDef in i t i on (∗ o ld)) ;
}

}
#endif

Listing 3.2: Delayed copy in Flow

In the constructor a shared ptr member is initialized. The copy constructor
of Flow is overloaded and calls the assignement operator of the shared ptr class,
which in turn increases the usage count. Deleting the ressources is handled by
shared ptr so the descructor of the shared flow is empty. Assigning a flow is
equivalent to copiing it with the copy constructor, i.e. assigning the shared ptr.
Every method altering the internals of the class must call one of the two copy
methods, depending on what they change, i.e. FlowDefinition or FlowPriv. In
the copy method the flow checks if the shared ptr is actually shared by other
classes. If it is shared a copy of the member data is allocated and assigned.
After the copy function is called the data can be changed without disturbing
any other partys that have shared the data.

FlowDefinition and FlowPriv are sperated because the data of a flow, i.e.
FlowPriv, gets changed more often than the definition of the data. This further
reduces amounts of copied data.

Section 4.6 shows the difference of an implementation with and without a
shared flow. Further improvements could be made by introducing perfect hash-
ing as described by [Spr77]. The identification part of the flow is not changed
very often, therefore static perfect hashing could be a way to lower the lookup
of the flow and keep the comfortable string based lookups for the flow entities.

48

Chapter 4.

Results

This section presents the results of applying the identified parallel algorithms,
described in Chapter 3 to IUDM simulations. The different algorithms were run
on a variety of urban drainage systems, artificially generated for benchmark-
ing purposes. These systems are introduced in Section 4.1 by means of their
shape and purpose of showing effects of the algorithms. Beside showing what
has been benchmarked the hardware on which the tests were run is as impor-
tand as displaying their results. Chapter 4.2 gives an overview of the computer
systems used to gain the results which are presented in a per hardware split in
Chapter 4.5 and 4.4.

4.1. Benchmarked Systems

The algorithms presented in Section 3 have different characteristics which means
they perform better or worse on the posed input sewer system. The nodes used
in this systems are simple catchements which emit a constant dry wheather flow,
mixing nodes which combine several input flows into a single flow, CSOs which
emit waste water into the river if the input is beyound the capacity of the CSO,
simple sewer nodes using the muskinggum routing method and a fileout node
which writes the results of the simulation into a file.

The emphasis of these benchmark systems lies in the shape of the systems
and not which nodes were used. As long as there are parallel to calculate nodes
the runtime of a single node does not influence the parallel performance of the
strategies. Although the worst case would be if far downstream a single node
would block the whole timestep. OPS and PPS are not influenced by these
downstream slow nodes because they are able to pipeline the timesteps of the
slow nodes. FPS instead would block until this single, slow downstream node is
finished to begin a new timestep. This kind of situations were not reviewed in
the following tests.

49

Seweral different shapes where choosen inorder to show the strengths and
weaknesses of the algorithms. Its possible to divide the testing systems into two
categories with different purposes:

1. Aritificially shaped sewer systems in order to show the best or worst of an
algorithm and

2. Naturall shaped sewer systems to show how the algorithms would behave
on sewer system that are more or less structurally akin to real world sys-
tems.

Both categories are now described in detail before the runtimes of theses testing
systems are presented in the following sections.

4.1.1. Sequential Sewer System

FileOutCatchment Sewer ... SewerSewer

Figure 4.1.: Sequential Testing System

The sequential sewer system shown in Figure 4.1 can be seen as the simplest
and basic sewer system used for benchmarking. The system has only one sink
(an artificial source node emmitting some values without meanings) and source
node (a sink node which writes the inputs to a file. In between source and sink
nodes a different number of sewers were placed, ranging from ten up to a 1000
sequential nodes.

The purpose of this testing system is to show that the FPS is not able to scale
to more than one processor. This sounds pretty uninteresting but it also shows
the overhead of running more threads than can be used by the FPS. The OPS
should even gain in this scenario performance even though there are no parallel
flows.

4.1.2. Parallel Sewer System

The parallel sewer system, shown in Figure 4.2, consists of a number of parallel
flows. Benchmarked were four and eight parallel streams. Each parallel stream
of nodes consists of a number of sequential sewers like in the earlier introduced

50

Catchment Sewer

Catchment Sewer

Catchment Sewer

Catchment Sewer

... Sewer

... Sewer

... Sewer

... Sewer

Mixer Fileout

Figure 4.2.: Parallel Sewer Testing System

sequential sewer system. At the right end of the system a mixer compines the
parallel flows and a file output node writes the results into a file.

The purpose of this system is to show what the maximum performance gain
is by using the FPS. It can be seen as the counterpart to the sequential sewer
system in that the sequential was used to demonstrate the weaknesses of FPS
and the parallel sewer system is there to show its strenghts.

4.1.3. Treelike Sewer Testing System

Sewer

MixerSewer
Sewer

Mixer

Sewer

Sewer

MixerSewer

Sewer Mixer

Sewer

FileOut

Sewer Mixer

Sewer

Mixer
Sewer

Mixer

Sewer

Mixer

Sewer

Mixer

Mixer Sewer

Mixer Sewer

Mixer Sewer

Mixer Sewer

Mixer Sewer Mixer

Sewer

Catchment

Catchment

Catchment

Catchment

Catchment

Sewer

Sewer

Sewer

Sewer

Sewer

Sewer

Sewer

Catchment

Catchment

Catchment

Catchment

Catchment

Catchment

Catchment

Catchment Sewer

Catchment Sewer

Catchment Sewer

Catchment Sewer

Figure 4.3.: Treelike Sewer Testing System

The treelike sewer system, shown in Figure 4.3, is again an artificial system
although one that should be more natural than the two define earlier. Natural
suply system have always a shape like a tree. They start very small at the
households then the sewers get bigger and combine into the main sewer until
they reach the WWTP. This shape of a tree like structure was tried to replicate
by a, although, perfect tree. A script was able to generate trees at various

51

depths, two are included into the results one with small depth of four and one
big system with a depth of ten.

The purpose of this system is to show the effects of different parallelization
stragegies on a system which is more or less shaped like real-world sewer system.
The advantage of this artificial real world shaped system is that it is possible to
change it in size.

4.1.4. Real World Sewer System of Innsbruck

The last system that was used for benchmarking purpose is the model of Inns-
bruck sewer system. The system was first modelled in Karen by Kleidorfer in
[KMFRed]. The system was then converted into the native CityDrain3 format.
This combined sewer system consists of 53 catchments, a total runoff effective
area of 915 ha and a total basin volume of 5100m3. In the city of Innsbruck
live 165,000 population equivalents (PE) with a daily dry weather flow (DWF)
of 200 l

(PEd) . [KMFRed]

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

M
ix
er

C
S
O

M
ix
er

C
S
O

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

F
ile
O
ut

M
ix
er

C
S
O

M
ix
er

C
S
O

F
ile
O
ut

F
ile
O
ut

M
ix
er

C
S
O

M
ix
er

C
S
O

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

F
ile
O
ut

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

F
ile
O
ut

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

M
ix
er

C
S
O

S
ew
er

S
ew
er

M
ix
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

S
ew
er

M
ix
er

S
ew
er

S
ew
er

M
ix
er

S
ew
er

M
ix
er

S
ew
er

S
ew
er

M
ix
er

S
ew
er

M
ix
er

S
ew
er

C
S
O

F
ile
O
ut

S
ew
er

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

C
S
O

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

M
ix
er

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
S
O

C
at
ch
m
en
tC
S
S

F
ile
O
ut

M
ix
er

C
S
O

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

C
S
O

F
ile
O
ut

S
ew
er

S
ew
er

S
ew
er

S
ew
er

F
ile
O
ut

S
ew
er

S
ew
er

S
ew
er

S
ew
er

S
ew
er

F
ile
O
ut

F
ile
O
ut

S
ew
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

C
S
O

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

C
S
O

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

C
S
O

S
ew
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

C
S
O

F
ile
O
ut

S
ew
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

F
ile
O
ut

F
ile
O
ut

S
ew
er

S
ew
er

F
ile
O
ut

M
ix
er

C
S
O

S
ew
er

C
S
O

S
ew
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

S
ew
er

F
ile
O
ut

F
ile
O
ut

S
ew
er

S
ew
er

S
ew
er

S
ew
er

S
ew
er

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

F
ile
O
ut

C
S
O

M
ix
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

S
ew
er

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

C
at
ch
m
en
tC
S
S

F
ile
O
ut

S
ew
er

S
ew
er

M
ix
er

S
ew
er

S
ew
er

S
ew
er

S
ew
er

S
ew
er

M
ix
er

S
ew
er

S
ew
er

S
ew
er

M
ix
er

M
ix
er

C
S
O

M
ix
er

M
ix
er

M
ix
er

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

F
ile
O
ut

S
ew
er

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

S
ew
er

F
ile
O
ut

F
ile
O
ut

S
ew
er

M
ix
er

F
ile
O
ut

S
ew
er

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

C
S
O

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

M
ix
er

M
ix
er

S
ew
er

F
ile
O
ut

S
ew
er

S
ew
er

S
ew
er

M
ix
er

S
ew
er

R
ai
nR
ea
d

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

C
at
ch
m
en
tC
S
S

R
ai
nR
ea
d

M
ix
er

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

C
S
O

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

R
ai
nR
ea
d

F
ig

u
re

4.
4.

:
R

ea
l

W
or

ld
T

es
ti

n
g

S
y
st

em

4.2. The Benchmark Environment

The benchmarks were run on an up-to-date Linux (Ubuntu Intrepid Ibex). The
distribution was targeted at the x86-64 architecture which has 64-bit wide reg-
isters. The CityDrain3 binaries were compiled to run on the 64-bit architecture.
Two compilers were used to develop and test CityDrain3. The Gnu Compiler
Collection (GCC) at version 4.4.0 and 4.3.1 and the Intel Compiler Suite at ver-
sion 11. Both compilers are able to automatically parallelize some parts of the
source code as part of the compiler optimizations. These features were turned
of because this would have biased the outcomes of the benchmarks.

The compilers which were used for developing and testing was the GCC shiped
with Ubuntu Intrepid Ibex at version 4.3.1. This compiler features OpenMP
version 2.5 [RS09]. The compilers used for the benchmarking were the Intel
Compiler Suite at Version 11. The OpenMP compiler of Intel conforms to the
OpenMP 3.0 specification [Int09]. The Intel compilers were chosen because
internal test showed that the their OpenMP implementation performs better
than the GNU OpenMP (GOMP).

Two different machines were used for running the benchmarks, both in the
higher end consumer class available at that time. This kind of machines are
normally used by civil engineers, the target users of the software. The first
machine was an Intel(R) Core(TM)2 Quad CPU @ 2.40GHz with four GB of
DDR2 main memory. This CPU has four cores and a 4MB L2 cache. The second
processor was an Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz with six GB DDR3
ram and eight MB L2 cache. This CPU has four hyperthreaded cores, which
means up to eight hardware threads four beeing completely independent. The i7
CPU has two major advantages which should help boost parallel performance:

• L3 shared cache should lower the latency and amount of memory transfer
between the cores and the mainmemory in case of cache misses.

• three memory channels allows more parallel access of the main memory.

• a faster DDR3-capable memory controller.

The model which was provided to the cd3 binary has a fixed simulation time
from 0 to 7200 with dt = 300. This is a simulation of two hours with a five
minute timestep. The simulation time is constant because all the paralleliza-
tion strategies are based on a structural decomposition of the urban drainage
systems, therefore the simulation time does not influence the parallel behaiv-
iour of the strategies and was choosen small enough to reduce the runtime of a
benchmark run.

54

(a) Intel Core i7 (b) Intel Core2Quad

Figure 4.5.: Die Shots of the Two Processors used for Benchmarking

Each simulation system is run with a different number of allowed maximum
threads. This was done in order to show how much time is used if more threads
are added and allows in a certain way to predict the scalibility if more threads
are possible to run, maybe with future manycore CPUs having 32 cores [KAO05,
ABC+06]. The benchmarks are repeated eight times and the minimum of the
eight is the resulting runtime presented in the graphs in Section 4.5 and 4.4.

For each simulation system two graphs are shown. The x-axis is always the
maximum number of threads the strategy is allowed to use. The left side graph
is the runtime graph. It shows the time in milliseconds it takes a strategy to
simulate a given drainage system. In the graph on the right hand side the
speedup chart is shown. This chart shows the amount of speedup a strategy is
able to gain by adding more threads. The base case of the speedup calculation is
the single thread performance of the strategy. The speedup is calculated using
the following formulas:

speedupn threads =
runtime1 thread
runtimen threads

The best speedup of using n threads is n and is also shown in the charts.

The meassured time on which all the runtime and speedup charts are based is
the time a strategy takes to run the simulation, only the simulation. This time
does not include setting up the simulation, like reading the XML-Model files.
The time measurement start just before the first node is called and just after
the last node finished the calculation of the last timestep.

55

4.3. Performance Tools

Throughout the course of programming CityDrain3 various tools were used to
analyze the performance of the application. This section lists them and notes
on which aspect of performance they were used.

Valgrind uses a virtual machine approach for performance measurements.
This approach allows various applications of the tool and allows them to be
very exact. The dissadvantage of this is that the application runs several degrees
slower [NS07, NS03]. Valgrind was used for profiling which allows to find weak
performance spots, measure cache behaiviour and it was used to find memory
leaks.

A second set of tools which are not as heavy weight as Valgrind are the Google
perf-tools. perf-tools offer a CPU profiler, a heap checker to detect memory
leaks and a heap profiler for detecting excessive allocations. The perf-tools are
targeting exact thread profiling.

The last tool is relativly new and was released as CityDrain3 was already
finished. Because of that the tool was only used for result interpretation. The
tools is called mutrace and is avaliable at http://0pointer.de/blog/projects/

mutrace.html. It shows the contention, and other information, of locks used in
multithreaded programs. An output of the program can be seen in Listing 4.1.
It shows the number of contentions, i.e. how often a lock was tried to lock when
it was already locked, the total wait time for the lock, etc.

$ mutrace . / bu i ld /cd3 −v 1 data/models /paper / long−100−ordered . xml
. . .
mutrace : Showing 10 most contended mutexes :

Mutex # Locked Changed Cont . to t . Time [ms] avg . Time [ms] max . Time [ms] Flags
196 237 203 9 0 .126 0 .001 0 .001 Mx.−−.
118 222 204 3 0 .114 0 .001 0 .002 Mx.−−.
192 204 111 3 0 .116 0 .001 0 .002 Mx.−−.
92 207 131 2 0 .133 0 .001 0 .005 Mx.−−.
80 204 131 2 0 .139 0 .001 0 .003 Mx.−−.

157 264 203 1 0 .188 0 .001 0 .002 Mx.−−.
97 298 197 1 0 .703 0 .002 0 .517 Mx.−−.
96 276 167 1 0 .177 0 .001 0 .002 Mx.−−.

148 211 144 1 0 .141 0 .001 0 .002 Mx.−−.
159 204 123 1 0 .132 0 .001 0 .002 Mx.−−.
. | | | | | |

/ | | | | |
Object : M = Mutex , W = RWLock / | | | |
State : x = dead , ! = i n c on s i s t e n t / | | |

Use : R = used in r ea l t ime thread / | |
Mutex Type : r = RECURSIVE, e = ERRRORCHECK, a = ADAPTIVE / |

Mutex Protoco l : i = INHERIT, p = PROTECT /
RWLock Kind : r = PREFER READER, w = PREFER WRITER, W = PREFER WRITER NONREC

. . .

Listing 4.1: Output of mutrace

The Google perf-tools and mutrace use an interception library approach,
see [God02, NT05] for more information on interception libraries.

56

http://0pointer.de/blog/projects/mutrace.html
http://0pointer.de/blog/projects/mutrace.html

4.4. Results for the Core2Quad CPU

The results presented here ran on an Intel Core 2 Quad presented in Chapter 4.2.
This processor is able to run four threads independently. Although two threads
share a L2 cache. The benchmark results ran up to ten threads in total. This
was done in order to show what happens if the algorithm is allowed to use more
threads than the hardware is able to run in parallel.

Sequential Sewer Systems

1 2 3 4 5 6 7 8 9 10

number of threads

0

50

100

150

200

250

300

350

400

450

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d
u
p

OPS

FPS

PPS

(b) speedup

Figure 4.6.: Sequential (10)

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.7.: Sequential (100)

Figure 4.6, 4.6 and 4.8 show the results of the sequential sewer system with
ten, 100 and 1000 consecutive nodes. FPS has a good single thread performance,
better than OPS, in the small systems of ten and hunderet nodes. But FPS is
per definition not able to scale on sequential systems because it tries to calculate
parallel sewer sub-systems in parallel. The sequential testing system don’t offer
parallel sewer sub-systems.

57

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

30000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.8.: Sequential (1000)

After exceeding the thread count the hardware is able to run natively the
performance of FPS seems to degrade. This effect could be caused by memory
stalls due to cache misses which arise when the OpenMP thread scheduler de-
cides to put a thread on a core which was previously calculated on a different
core. A CPU with a shared L3 cache like the i7 system offers could compensate
this effect. And indeed, this effect is not as dramatically on the i7 system.

The longer, i.e. bigger, the system the less this effect carries weight. Figure 4.8
shows the system with 1000 sequential nodes in which FPS stays steady in the
runtime with more threads added.

OPS is not as good in single thread performance than FPS. This is because
the management of the nodes is done by a queue and even in single threading
the queue is protected by a lock in order to prevent corruption of the internal
data structures. OPS holds a queue between two timesteps. The testing systems
have all the same simulation time from t = 0 . . . 7200 in dt = 300 steps. This
results in 24 simulation runs and therefor 24 queues.

Beside the fact that OPS is a little slower in single thread performance it
scales even on the most sequential structure a sewer system can be. Even on
small systems (Figure 4.6) OPS offers very good performance on this quad-core
system. The bigger the systems get the more stable the results get.

PPS was mentioned to be not that efficient due to its random nature and the
coarse grain locking. It gets even worse when the node count increases, because
there are even more nodes to check for satisfied preconditions. Preconditions
that need to be satisfied inorder to run a selected node. It shows some scaling
in Figure 4.8 but the best runtime at four threads does not even reach single
thread performance of FPS or OPS.

58

Parallel Sewer Systems

1 2 3 4 5 6 7 8 9 10

number of threads

0

100

200

300

400

500

600

700

800
ru

n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d
u
p

OPS

FPS

PPS

(b) speedup

Figure 4.9.: Parallel (2-10)

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

3000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.10.: Parallel (2-100)

Figure 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 show the parallel sewer systems
with two parallal ten sequential, two parallel 100 sequential, four parallel ten
sequential, four parallel 100 sequential, eight parallel ten sequential and eight
parallel 100 sequential. The number of nodes in the systems are s∗p+2 because
there are p parallel streams, each parallel stream contains s consecutive nodes
plus one mixer and one fileout node.

Figures 4.9 and 4.10 show the expected result that the FPS scales only for
two threads. The performance plateaus for the third and fourth thread added.
After the forth thread the same effect as in the sequential systems shows up,
the performance drops.

Figure 4.11 and 4.12 are the most optimal simulation system for FPS. Four
parallel streams every one able to be computed by the four availabel cores of the
CPU. In the small system (Figure 4.11) the performance is well but degrades
again after four threads. In the big systems shown in Figures 4.12 and 4.14 FPS

59

1 2 3 4 5 6 7 8 9 10

number of threads

0

200

400

600

800

1000

1200
ru

n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.11.: Parallel (4-10)

1 2 3 4 5 6 7 8 9 10

number of threads

0

1000

2000

3000

4000

5000

6000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.12.: Parallel (4-100)

1 2 3 4 5 6 7 8 9 10

number of threads

0

200

400

600

800

1000

1200

1400

1600

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.13.: Prallel (8-10)

60

1 2 3 4 5 6 7 8 9 10

number of threads

0

2000

4000

6000

8000

10000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.14.: Parallel (8-100)

shows its strengths on the parallel testing system and beats or is at least as fast
as OPS up until four threads. Although the performance is exceptional well for
this system, chances are small that such a system is ever researched beside in
this work.

OPS scales very well on all ranges of parallel sewer systems. But the more
nodes the system contains the better OPS scales, because the overhead of the
queues gets neglectable. If a system of parallel sewers is as large as in Figure 4.14
the difference of FPS and OPS are minor and they both scale very well.

PPS is again not able to gain any speedup by adding more threads and parallel
hardware. The parallel sewer systems show the same results as the sequential
ones, the performance rises exponentially after three additional threads.

Treelike Sewer Systems

1 2 3 4 5 6 7 8 9 10

number of threads

0

50

100

150

200

250

300

350

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.15.: Tree (two generations)

61

1 2 3 4 5 6 7 8 9 10

number of threads

0

100

200

300

400

500

600

700

800

900
ru

n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.16.: Tree (four generations)

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

3000

3500

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.17.: Tree (seven generations)

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.18.: Tree (ten generations)

62

Figure 4.15, 4.16, 4.17 and 4.18 show tree sewer systems with two, four,
seven and ten generations. The number of nodes in a system is 2g+1 − 1 for g
generations. This results in 23− 1 = 7 nodes for Figure 4.15 and 211− 1 = 2047
nodes for Figure 4.18. The number of parallel streams starts with the number
of leaf nodes in a perfect binary tree and halves at each level down to one. The
number of leaf nodes can be calculated using 2g for g generations which is 22 = 4
for two generations and 210 = 1024 for ten generations.

FPS performs well on all ranges of trees. The bigger the tree the better
the scaling of FPS. On the small system FPS has again better single thread
performance but performance degrades after four threads. At five threads it is
even worse than PPS which is otherwise the worst in all tests. The performance
drop after four threads is noticable at all ranges of tree sizes, but it gets better
if the tree is bigger.

OPS is again in all tests the fastest with the most stable results throughout the
tested tree systems. Even the small systems show good scaling on more threads.
Figure 4.17 and 4.18 show better results for FPS in the speedup charts, a view
on the left side reveals that the overall performance of OPS is better than FPS.
On thread count from one to four FPS and OPS are on par.

PPS is again the worst with no increase at all in speed at neither tree system.

Realworld Testingsystem Innsbruck

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.19.: Innsbruck

Figure 4.19 shows the real world sewer system of Innsbruck. It has enough
parallel streams to get a speedup with the FPS. The OPS performs best at this
sewer system and reaches a speedup of up to 3.3. OPS has the better single
thread performance and the better peak performance. OPS shows a performance

63

degrade after four threads which it does not in other testing systems. PPS does
not scale in this test either.

OpenMP Scheduling Effects

As mentioned earlier OpenMP shows weak performance on the quad core system
when the thread count rises above the physical available core count of four. Test
results for small systems are highly influenced by this effect. It is weaker on the
bigger testing systems and almost gone on the i7 system because of a shared L3
cache.

The described effect arises because chances are high that a thread that has
previously been executed on a core will be scheduled on another core. If that
happens the thread must be migrated from one core to another. Table 4.1
shows a round robing scheduling of five threads on four cores. Even at the first
step migration of thread one from core one to four is needed. Table 4.2 shows

step core 1 core 2 core 3 core 4

1 thread 1 thread 2 thread 3 thread 4
2 thread 5 thread 1 thread 2 thread 3
3 thread 4 thread 5 thread 1 thread 2
...

...
...

...
...

Table 4.1.: Thread Scheduling with three threads

the same scheduling but now with an optimal thread count of four. There
are no migrations at all. The same is true for two threads (optimal thread
scheduling assumed). Figure 4.12 shows the results of a not optimal thread-

step core 1 core 2 core 3 core 4

1 thread 1 thread 2 thread 3 thread 4
2 thread 1 thread 2 thread 3 thread 4
3 thread 1 thread 2 thread 3 thread 4
...

...
...

...
...

Table 4.2.: Thread Scheduling with four threads

scheduling performed by the OpenMP implementation of the Intel Compilers.
At first sight the results are very good because they show a small super linear
speedup. Super linear speedups are possible due to an effective bigger cache size
from the additional cores [AJS07], but this effect is not based on these facts.
Examined closely, Figure 4.12 unveils the cause of the superlinear speedup to
be an exceptional slow single thread execution time. Because the speedup is

64

calculated with the single thread runtime at the base case, this system shows a
superlinear speedup. This effect occours only at some systems, parallel systems
with four parallel streams and 100 sequential (Figure 4.11) and the big tree
systems (Figure 4.17 and 4.18). The slow performance is caused by excessive
scheduling of the single thread on all available cores. CPU usage is at 25% of
all cores instead of 100% on a single core.

Disabling the thread affinity of the OpenMP scheduler solves this problem.
This can be done by setting the envrionment variable KMP AFFINITY to the
value “noverbose , disabled”. Figure 4.20, 4.21, 4.22 show the results of the
effected systems with the OpenMP scheduler disabled.

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.20.: Parallel system with OpenMP scheduler disabled(4-100)

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

3000

3500

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.21.: Tree system with OpenMP scheduler disabled (seven generations)

Disabling thread affinity influences the overall performance of FPS in a posi-
tive way, FPS offers better performance than OPS at four threads with thread
affinity disabled. Although the performance is better on this system, it is a
totally different situation on other CPUs with different core layouts and is not
further explored in this work.

65

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.22.: Tree system with OpenMP scheduler disabled (ten generations)

The scheduling effects that were described are not effecting OPS because OPS
does not use OpenMP and the threads are scheduled by the operating system
instead of OpenMP. The underlying reasons for this regressions are not known,
they could as well be caused by the linux thread scheduler used in desktop
systems.

4.5. Results for the i7 CPU

This section describes the results for the Intel Core i7 (i7) hardware testing
system. The i7 is a little bit different compared to the Core2Quad system. This
differences should benefit the parallel performance of CityDrain3. The biggest
advantage of this processor is a 8MB big shared L3 cache. The cache forms
a third level in the memory hierarchy. The cache is shared and used by all
four cores. This shared characteristics of the cache should speedup the inter-
core communication and should reduce the costs of migrating a thread. Cache
related impacts of processors on the performance of computer programs can be
further read in [Dre07].

The tests ran with up to ten threads because this processor provides eight
hardware threads, although each pair of thread shares the ressources of a core.

Sequential Sewer Systems

Figure 4.23, 4.24 and 4.25 show the result for the ten, 100 and 1000 sequential
testing system running on the i7 system.

66

1 2 3 4 5 6 7 8 9 10

number of threads

0

20

40

60

80

100

120

140

160

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.23.: Sequential (10)

1 2 3 4 5 6 7 8 9 10

number of threads

0

200

400

600

800

1000

1200

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d
u
p

OPS

FPS

PPS

(b) speedup

Figure 4.24.: Sequential (100)

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.25.: Sequential (1000)

67

As already mentioned before, FPS can not scale when executed on sequential
testing systems. Although it does not scale on this architecture it shows less
overhead compared to the Core2Quad system shown in Figure 4.6. In the small
system (in Figure 4.23) a little peak can be seen at four threads. FPS is the
fastest strategy at single thread performance for the small system, the bigger the
systems get the less bumpy the runtime curve of FPS becomes and the single-
thread performance difference between OPS and FPS diminishes. This means
that the overhead from using more threads than FPS can handle is getting lesser
the bigger the system becomes. For the long sewer system of 1000 nodes the
overhead is not even recognizable, see Figure 4.25.

OPS and PPS have almost the same single thread performance at the small
system of ten nodes (Figure 4.23). FPS has the best single thread performance.
This changes in the system with 100 nodes (Figure 4.24) and has the worst
outcome for PPS at the testing system with 1000 nodes (Figure 4.25), where
PPS is six times slower on a single thread than OPS.

The reason PPS is that slow on large sequential systems is because the propa-
bility of randomly finding a node that is able to run is getting smaller and
smaller the bigger the systems get. In case of the sequential systems this can be
easily calculated. At the first node the propability of finding a node that is able
to run is to select one node out of the pool of the un-run nodes. This means 1

np

for np as pool size which is 1
1000 = 0.001 for the large system. Finding the right

node is the overhead of this strategy. This overhead is too big for achieving a
speedup, in fact the overhead slows the strategy down enormously.

OPS performed best in this testing systems. Even the small system shows
good results. The results are getting better the bigger the systems get. The
speedups are 3.0 for ten nodes, 3.5 for 100 nodes and 3.8 for 1000 nodes. The
performance of OPS is best at four threads for the small systems, at six threads
for 100 nodes and eight threads for 1000 nodes.

Parallel Sewer Systems

The parallel testing systems for the i7 are shown in Figure 4.26, 4.27, 4.28, 4.29,
4.30 and 4.31.

Figure 4.26 and 4.27 show the expected effect of FPS not getting faster after
two threads because these system don’t provided more than two parallel streams.
The thread scheduling effects described in Section 4.4 are not recognizable on
this machine because of a shared L3 cache that is available for the i7 CPU.

At the system with four parallel streams FPS performs very good and is on

68

1 2 3 4 5 6 7 8 9 10

number of threads

0

50

100

150

200

250

300

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.26.: Parallel (2-10)

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d
u
p

OPS

FPS

PPS

(b) speedup

Figure 4.27.: Parallel (2-100)

1 2 3 4 5 6 7 8 9 10

number of threads

50

100

150

200

250

300

350

400

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.28.: Parallel (4-10)

69

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

3000

3500

4000
ru

n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.29.: Parallel (4-100)

1 2 3 4 5 6 7 8 9 10

number of threads

0

100

200

300

400

500

600

700

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d
u
p

OPS

FPS

PPS

(b) speedup

Figure 4.30.: Prallel (8-10)

1 2 3 4 5 6 7 8 9 10

number of threads

0

1000

2000

3000

4000

5000

6000

7000

8000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.31.: Parallel (8-100)

70

par with OPS. In the systems with eight parallel streams FPS needs the bigger
system to get good results comparable to OPS.

OPS performs best at all systems and has a small edge ahead of FPS. In all
systems even the small ones with ten sequential nodes the OPS performs well
and scales well to the four available cores.

Treelike Testing Systems

1 2 3 4 5 6 7 8 9 10

number of threads

0

20

40

60

80

100

120

140

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.32.: Tree (two generations)

1 2 3 4 5 6 7 8 9 10

number of threads

50

100

150

200

250

300

350

400

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.33.: Tree (four generations)

The tree testing systems are shown in Figure 4.32, 4.33, 4.34 and 4.35 for two,
four, seven and ten generations.

FPS, due to its limitations, can only scale at the big systems, above four
generations. FPS shows a small peak around five threads in all the big systems.
This is due to the scheduling of the OpenMP threads.

71

1 2 3 4 5 6 7 8 9 10

number of threads

0

500

1000

1500

2000

2500

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.34.: Tree (seven generations)

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

OPS

FPS

PPS

(b) speedup

Figure 4.35.: Tree (ten generations)

72

OPS shows good results on all systems, but also shows a small degrade, al-
though not as big as in FPS, around five threads. The speedups of OPS are 2.9
for two, 3.3 for four, 3.5 for seven and 4.2 for ten generations.

The speedup of 4.2 of OPS is above the physical core count which means that
OPS benefits of the extra parallelism provided by the hyper-threaded cores in
the i7. Although there is a degrade in performance at four threads with the
small system performance recovers at higher thread counts, this is in contrast
to the Core2Quad system shown in Figure 4.15.

Realworld Sewersystem Innsbruck

1 2 3 4 5 6 7 8 9 10

number of threads

0

2000

4000

6000

8000

10000

12000

ru
n
ti

m
e
 (

m
s)

OPS

FPS

PPS

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d
u
p

OPS

FPS

PPS

(b) speedup

Figure 4.36.: Innsbruck

Figure 4.36 shows the results for the real-world testing system of Innsbruck.
This system has essentially a shape of an existing sewer system which can be
found under the city of Innsbruck. This system represents one statistical sample
of a real sewer system. That is why this system is the most essential one and the
results of this system are there to show how much speedup is able on systems
engineers need to work with everyday.

FPS an OPS are on par up until three threads. From there on OPS scales
up to 4.19 at eight threads and FPS up to 2.15 at three threads. Both perform
very well although OPS has a slight edge ahead. FPS is not as fast as OPS
because this model which can be seen in Figure 4.4 has lots of mixing and
splitting elements which forces to tear down and start up new OpenMP threads
in FPS. This heavy switching of threads causes an overhead that leads to a less
optimal performance of FPS in real-world systems that are similar to that found
in Innsbruck.

73

4.6. Shared Flow Comparisons

Section 3.4 showed the implementation details of the Flow class and in special
how it offers a lazy copy on write semantics which is called the shared flow. This
section compares simulation runs with the shared flow semantics enabled and
disabled. Wheather it is beneficial for the overall runtime and/or the speedup
to use a shared flow in urban drainage modelling.

The results are presented with charts showing how the implementations scale
by using more threads. On the left side are the runtime charts and on the right
side the speedup charts. In a chart a single system ran by a single parallel
strategy with shared flow enabled and disabled.

This section deliberatly shows only two systems (Innsbruck and the tree sys-
tem with ten generations) and the two good working strategies (FPS and OPS).

4.6.1. Shared flow results for Core2Quad CPU

1 2 3 4 5 6 7 8 9 10

number of threads

0

2000

4000

6000

8000

10000

12000

ru
n
ti

m
e
 (

m
s)

nonshared

shared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.37.: Innsbruck OPS

In the Innsbruck testing system, shown in Figure 4.37 and 4.38, both strategies
show a massive runtime gain and a small speedup gain when the shared flow
is enabled. OPS shows more fluctuations when the shared flow is enabled after
exceeding the four cores. OPS benefits more with a speedup from around 2 to
over 3, while FPS improved from 2 to nearly 3.

Figure 4.39 and 4.40 show the shared flow comparisons with the big tree
system of ten generations. These graphs are a lot smoother than the one of the
Innsbruck system. At both strategies the non shared variants are able to speed
up after the four threads but aren’t able to reach the speedups when shared
flow enabled. FPS with a shared flow shows almost linear speedup until four

74

1 2 3 4 5 6 7 8 9 10

number of threads

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

ru
n
ti

m
e
 (

m
s)

shared

nonshared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.38.: Innsbruck FPS

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

30000

35000

ru
n
ti

m
e
 (

m
s)

shared

nonshared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.39.: Tree (10 Generations) OPS

threads when the shared flow is used and gains a lot more by using a shared
flow. Speedup doubled from 2 to 4 at FPS and from 2 to over 3 with OPS.

4.6.2. Shared flow results for the i7 CPU

This section describes the shared flow results for the i7 CPU which features
a large L3 cache that is shared by the four cores. Because of this the effects
of copying around large amounts of flow should be not as dramatically as in a
system without a L3 cache.

Figure 4.41 and 4.42 show the results for Innsbruck respectivly for OPS and
FPS. The overall runtime has been reduced dramatically by using a shared flow.
The runtime more than halves by using a shared flow. The speedup is almost
identically although OPS showed a speedup improvement at eight threads. FPSs
speedup is identicall for shared vs. nonshared flows.

Figure 4.43 and 4.44 show the results for the tree testing system with ten

75

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

30000

35000

ru
n
ti

m
e
 (

m
s)

nonshared

shared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.40.: Tree (10 Generations) FPS

1 2 3 4 5 6 7 8 9 10

number of threads

0

1000

2000

3000

4000

5000

6000

7000

8000

ru
n
ti

m
e
 (

m
s)

nonshared

shared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.41.: Innsbruck OPS

generations. Again the overall runtime is more than cut in halve. On this
testing system both FPS and OPS benefit from using a shared flow with a
better speedup.

4.6.3. Conclusion

It seems that the overall runtime of the systems is halved, even more in some
tests. This concludes that using a shared flow reduces the runtime even on single
thread performance. The speedup gains also from using a shared flow, although
not as dramatically as the runtime. The i7 system doesn’t speed up a lot more
on shared flow whereas the Core2Quad system doubled the speedup in the tree
system with ten generations.

76

1 2 3 4 5 6 7 8 9 10

number of threads

0

1000

2000

3000

4000

5000

6000

7000

ru
n
ti

m
e
 (

m
s)

shared

nonshared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.42.: Innsbruck FPS

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

ru
n
ti

m
e
 (

m
s)

nonshared

shared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9
sp

e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.43.: Tree (10 Generations) OPS

1 2 3 4 5 6 7 8 9 10

number of threads

0

5000

10000

15000

20000

25000

ru
n
ti

m
e
 (

m
s)

shared

nonshared

(a) runtime

0 2 4 6 8 10

number of threads

0

1

2

3

4

5

6

7

8

9

sp
e
e
d

u
p

shared

nonshared

(b) speedup

Figure 4.44.: Tree (10 Generations) FPS

77

78

Chapter 5.

Conclusion

CityDrain3 was developed with the aim of speeding up urban drainage simulations by
exploiting the available multi-core architectures. CityDrain3 steps into the footsteps
of CITY DRAIN, a Matlab based urban drainage modelling toolkit. With regards
to urban drainage simulations CITY DRAIN and CityDrain3 are feature equivalent.

Three different parallelization strategies have been found and put into tests by
various different testing systems. These testing systems were choosen such that
the weak and sweet spots of the strategies were hit hard. The testing systems
even included a real world stystem, representing the sewer system of Innsbruck,
developed for CITY DRAIN and converted into CityDrain3s native input format.
Beside the real world system, a sequential system, a parallel system and a tree shaped
system were used to analyse the strategies. Sewer systems that included waste water
treatment plants were not included. Results of this kind of systems are interesting
in the future especially if the processes in the treatment plant are complex.

The three parallel strategies are the flow parallel, pool pipeline and the ordered
pipeline strategy. The flow parallel strategy was used to investigate the possibility
of calculating parallel flow streams concurrently. The pool pipeline strategy exploits
the fact the time discrete simulations may be split up on a timely based manner.
This allows to even parallelize sequential sewer systems which aren’t able to be
sped up by the flow parallel strategy. The pool pipeline strategy maintains a pool
of nodes for each discrete timestep. A single thread is responsible for randomly
choosing a node out of the pool, checking for satisfied dependencies based on the
sewer system and performing the nodes calculations. A timestep is finished if his
pool is empty. Initial tests showed very weak performance of this strategy. An
improved version of the pool pipeline strategy is the ordered pipeline strategy, as the
name suggests it attempts to order the calculations. The sewer system is ordered in
a topological manner. Topological sorting of the sewer system preserves a correct
sequential execution order of the sewer system. This sequential ordering is fed into
thread safe queues maintaiend between threads calculating different timesteps.

79

The different testing systems were used to compare the runtime and speedup
behaviour of the three strategies. The flow parallel strategy exposed good re-
sults for all testing systems except for the sequential system. The pool pipeline
strategy showed poor performance in initial tests. On all tests the pool pipeline
strategy showed severe performance losses when more threads were used. The
ordered pipeline strategy exposed very good results on all range of input sewer
systems including the sequential ones. It showed the best performance of all
three strategies without any losses in speed.

Parallel computing in urban drainage is possible and shows good results if
the used parallel strategy does not employ any kind of nondeterminism. The
ordered pipeline strategy could be used without any worrying of a slow down
on some obscure sewer system. Due to its time pipelined fashion it allows to
calculate a lot more in parallel than the hardware parallelism that was available
at the time of the writing. It should also be possible to scale to the many-core
CPUs if the input sewer system is large enough.

80

Appendices

81

Appendix A.

CityDrain3 Manauls

A.1. Users Manual

This manual describes the usage of CityDrain3. It first describes common terms
and concepts which are also interesting for extenders of CityDrain3. It also
guides through defining new XML model files, and how to start CityDrain3
to run the newly created models in a simulation. At the end it shows the
usage of plugindoc and how one can extract the needed informations from this
application. The python module cd3modelgen.py is described and how it is used
the effort to create a model XML file.

A.1.1. Terms and Concepts

Node

A node is the central processing unit. Each node has its own algorithm imple-
mented. A node is a one to one mapping of the natural urban drainage elements.
Currently there are several nodes implemented:

Null does nothing (demo usages)
ConstSource source node which emits a constant static flow.
FileOut writes the values of a flow per time step into a specified file.
Mixer mixes n flows.
Splitter splits one flow into two by a factor.
CSO combined sewer overflow (simple implementation).
Catchment combined sewer catchment.
Sewer simple sewer implementing muskingum flow routing.
RainRead read ixx rain files.

Its possible to extend CityDrain3 by providing new node implementations. Sec-
tion A.2.3 and A.2.3 shows how this can be done.

83

In CityDrain3 a node is a pretty abstract construct. It gets input in shape
of a flow. The implemented algorithm takes this inputs and produces a output
also in shape of a flow. A node can have internal states which are accumulated
by the run of the simulation. The nodes algorithm can also be parametrized.
All these concepts are now described in detail.

Parameters are static values which are loaded before the node is initialized.
The values are set in the XML model file. Depending on these parameters a node
can behave differently, can have different kind of internal states or can have a
different number of inputs or outputs. Therefore node parameters are set before
the node initializes itself and are static throughout the simulation. Parameters
can have default values which are set in the nodes constructor. Parameters have
names, types and default values.

Examples of parameters are:

• in FileOut a parameter specifies where to write the results.

• in the Mixer node a parameter specifies how many Flows will be mixed,
which influences the number inputs.

• the Sewer node allows to specify how many sub reaches the sewer has and
the muskingum parameters like X and K.

• the RainRead gets the path of the rain file by a parameter.

• the catchment has lots of parameters defining the area of the catchment
or the dry weather flow, etc..

Internal States are used as intermediate results of the nodes calculations.
They must be specified by the node in order to get written out if a simula-
tion needs to save the states. Section A.1.2 shows how to save the states of a
simulation. States have names, types and values. Examples of internal states
are:

• The fill level of a CSO.

• The volumes of the sub reaches stored in the a sewer.

• The fill level of the loss basin in a catchment.

some node don’t have internal states like the Splitter, Mixer and ConstSource
node. These nodes are therefore referential transparent and the output of their

84

calculation only depends in inputs.

Inputs and Outputs are named ports. A port is essentially a named flow.
Inputs and output ports need to be specified by the node. They can be dynam-
ically created, e.g. in the Mixer node. A Mixer node can have an unlimited
number of input ports and has one output port. A flow travels from the output
port of a node (i.e. the source) to the input port of another node (i.e. the sink).

Connection

Connections are used to describe the flow exchange of nodes. A Flow travels
from one node to the other by the sources output port into the sink input port.

A connection is a collection of references:

1. A reference to the source node,

2. a reference to the sink node,

3. the name of the source nodes port and

4. the name of the sink nodes port.

Connections can behave differently depending on the used simulation type.
For example a node can buffer flows if nodes implement variable time steps.
More information on the different Simulation types can be found in Sec-
tion A.1.1.

Flow

The flow is the manifestation of the data exchange between the nodes. It rep-
resents an exchange of water including concentrations between nodes per time
step. A flow is a list of values. Each value (floating point) has a name and a
corresponding unit (e.g. the flow of water named flow with the unit l

δt)

At the moment the following three units are allowed to be part of a flow:

1. flow : Is the amount of water travelling through the sewer system with the
unit l

δt .

2. rain: Is the amount of rain in mm
δt .

85

3. concentration: Is the amount of pollutant travelling in the water in g
m3 .

Internally its a C++ class which allows to enumerate the concentrations and
get/ set the values of the items. All values have names, an a value of double
precision floating point type.

Simulation

A simulation is a class which controls the run of the simulation. Because var-
ious scenarios have been identified in where different simulations may be used,
simulations can be loaded dynamically by the plug-in system.

Various Simulation types are already implemented:

• VarDt

• Standard

• FlowParallel

• OrderedPipeline

The last two are parallel implementations which are able to use the extra
power of multi-core processors.

Controller

A controller is a function which is called every time step. It allows to over-
ride/extend the behaviour of the chosen simulation class. There are two con-
trollers implemented: The first can be activated to write the internal states of
the nodes at every time step, the second one is used to write the progress of the
simulation to the terminal.

Controllers may either be written as C++ code (described in Section A.2.3)
or it can be written as a collection of ECMAScript functions.

Model

A model is the collection of all nodes and their parameters, connections and
the additional information needed to run a single simulation instance. A model
describes the structural properties of a sewer system under research.

86

A model is loaded into CityDrain3 by specifying a XML model file at the
command line prompt. After the model is loaded the simulation is, run and
depending on the model the results are written to dedicated files on the hard
disk, ready for further processing and analyses.

Section A.1.3 gives a step by step guide how to write such XML model files,
ready to be used and consumed by CityDrain3.

A.1.2. Starting CityDrain3

CityDrain3 is a terminal application, this means that you need to be comfortable
starting applications in the terminal environment. If you haven’t done that, its
not a big deal.

cd3 used several libraries. These libraries must be available for the applica-
tion. On Windows all the libraries are in the win32 sub directory. Starting the
application from here should work.

On Linux the Qt libraries should be installed globally in your system 1. Setting
the right paths to find the non-Qt libraries is done by sourcing the source-me.sh
file:

$ source source−me. sh

CityDrain3s executable is named cd3. If it gets started without a parameter
it shows a simple help message displayed in Figure A.1. A user must at least
provide a path to the model file which should be calculated. CityDrain3 has
several examples which show how to write models but also allows to experiment
with the binary. Section A.1.3 shows how to write models.

CityDrain3 has several parameters which allows the application to behave
differently. these are:

-h Shows the help message with a rough overview of the parameters.

-m This is the flag which allows to provide the model path. This parameters
can be omitted if its placed on the end of the command line as the last
parameter.

-d Following this flag the user can provide a directory name (must not exist)
where CityDrain3 stores the internal states of the nodes per time steps.
(described in Section A.1.1). This behaviour can also be implemented by

1They are in almost all cases

87

Figure A.1.: Starting CityDrain3 without parameters.

using a hand crafted controller, see Section A.1.1 and A.2.3. For example
one can dump the states only at predefined time steps.

-r This flag can only be used in combination with -d. A user specifies a time
step on where the simulation restarts. The time step must be available in
the specified states directory.

-l This flag is used if the log needs to be saved into a file. The name following
the -l flag must be a path to a non existing file.

-v Is used to specify the maximum loglevel. Log message below the specified
level are ignored. The levels range from 0 - all messages to 3 - silent mode.

For example if one wants to store all the node states in a states sub directory
and run a model called thesis-model.xml, cd3 is started by:

$. / cd3 −d s t a t e s t h e s i s−model . xml

Which would be the same as:

$. / cd3 −m t h e s i s−model . xml −d s t a t e s

restarting at time step 100000 is done by:

88

$. / cd3 −m t h e s i s−model . xml −d s t a t e s −r 100000

A.1.3. Writing a Model

As described earlier a model is a XML file containing all the information for
running a simulation. A XML model file is the least parameter CityDrain3 needs
in order to run the simulation. This sections gives a very short introduction
into the XML format in general and after that it shows the structure of the
CityDrain3 XML file format.

XML is a simple textual file format. It allows to structure complex infor-
mation into a format which can be consumed and interpreted by machines and
human beings. Although its said to be easier to read by machines.

Elements are the containing pieces in a XML file. A element has a name
which comes directly after the opening of the tag. Listing A.1 shows a real basic
XML example. The containing elements of the document are:

1. book, which is the root element,

2. person,

3. surename,

4. familyname and

5. married.

book is the root element. A root element must be single on its level, this means
after the closing </book> there is nothing more allowed. person and married
have attributes. attributes are named values separated by an equal sign which
are placed into the start tag of an element. An element can contain other
elements of CDATA which stands for character data (i.e. text). surename and
familyname are such elements only containing text.

<book>
<person s i d=”3227”>

<surename>Gregor</surename>
<familyname>Burger</ familyname>
<married s t a t e=” f a l s e ” />

</ person>
</book>

Listing A.1: simple xml file

89

A XML document is said to be well formed if it follows the XML format,
informally described above. Well formdness alone is not enough, because sure-
name can also be chosen to be sname. A designer of an XML format has to
choose the structure of the XML document which should be machine readable.
In order to fix the structure and names, XML allows to specify a document type
description (DTD). A DTD is a contract which specifies which elements and
attributes are allowed and in which arrangement. A XML document is said to
be valid if it full fills the contract setup by a DTD.

To check an XML file for well formdness and validate it against a DTD several
tools exist. One is xmllint, it comes with almost all Linux distributions.

$ xml l i n t −−path dtd −−v a l i d −−noout models / t e s t−sewer . xml

Listing A.2 displays a simple model on which the following descriptions to
write your own model are based.

<?xml version=” 1 .0 ”?>
< !DOCTYPE c i t y d r a i n SYSTEM ” . . / dtd/model . dtd”>

<c i t y d r a i n version=” 1 .0 ”>

<plug inpath path=” nodes ” />

<s imu la t i on c l a s s=” Defau l tS imulat ion ”>
<time s t a r t=”0” stop=”7200” dt=”300” />

</ s imu la t i on>

<model>
<n o d e l i s t>

<node id=” cons t source ” c l a s s=” ConstSource ”>
<parameter name=” c o n s t f l o w ” kind=”complex” type=”Flow”>

<f l ow>
<uni t name=”Q” kind=”Flow” value=” 234 .0 ” />
<uni t name=”C0” kind=” Concentrat ion ” value=” 0 .1 ”/>
<uni t name=”C1” kind=” Concentrat ion ” value=” 0 .2 ”/>

</ f low>
</ parameter>

</node>

<node id=” f i l e o u t ” c l a s s=” FileOut ”>
<parameter name=” o u t f i l e n a m e ” type=” s t r i n g ”

value=”tmp/ sewerout . txt ” />
</node>

<node id=”musk1” c l a s s=”Sewer” />

</ n o d e l i s t>

90

<c o n n e c t i o n l i s t>

<connect ion id=”con1”>
<source node=” cons t source ” port=” out ” />
<s ink node=”musk1” port=” in ” />

</ connect ion>

<connect ion id=”con2”>
<source node=”musk1” port=” out ” />
<s ink node=” f i l e o u t ” port=” in ” />

</ connect ion>

</ c o n n e c t i o n l i s t>
</model>

</ c i t y d r a i n>

Listing A.2: a simple model

The first two lines describe some general aspect about the XML file. Its com-
monly known as the XML header. The second line describes the name and
path of the file containing the DTD. In the CityDrain3 source code the DTD is
contained in the path cd3-1/dtd.

<c i t y d r a i n version=” 1 .0 ”>

<plug inpath path=” nodes ” />

<s imu la t i on c l a s s=” Defau l tS imulat ion ”>
<time s t a r t=”0” stop=”7200” dt=”300” />

</ s imu la t i on>

Listing A.3: xml header of model file

The root node of a model XML document is citydrain. Its only attribute is a
version. This version id may be used in upcoming releases to identify changes
in model file. Zero or more pluginpath nodes are the first child of the citydrain
root node. They provide a single attribute named path on where CityDrain3 can
find plug ins. These plug ins contain all the implemented node and simulation
types. The path to the dll or shared object so must be specified either in portal
format like in the example or as an fully specified path. The portable notation
adds .dll on windows an libname.so on linux. Next comes the simulation tag.
The single attribute class states the name of the simulation class to load and
run the model. The time element defines the simulation time. The simulation
starts at the time start runs each time step with a length of dt and stops if the
simulation time reaches the value of stop.

<node id=” cons t source ” c l a s s=” ConstSource ”>
<parameter name=” c o n s t f l o w ” kind=”complex” type=”Flow”>

91

<f l ow>
<uni t name=”Q” kind=”Flow” value=” 234 .0 ” />
<uni t name=”C0” kind=” Concentrat ion ” value=” 0 .1 ”/>
<uni t name=”C1” kind=” Concentrat ion ” value=” 0 .2 ”/>

</ f low>
</ parameter>

</node>

<node id=” f i l e o u t ” c l a s s=” FileOut ”>
<parameter name=” o u t f i l e n a m e ” type=” s t r i n g ”

value=”tmp/ sewerout . txt ” />
</node>

<node id=”musk1” c l a s s=”Sewer” />

Listing A.4: the node list

The node nodelist contains all the nodes and their parameters. Every node
has a unique id. This id can be found in the node elements start tag as the
id attribute. This id is important for connecting nodes. Two nodes forming a
connection are referenced by these ids. class is the same as in the simulation tag
it specifies which C++ class must be loaded. Example classes are: CSO, Sewer,
Catchment etc.. node accepts parameter elements as childrens. A parameter
is per default a simple parameter if one wants to specify basic data types like
int,double, bool or string. Specifying a flow like in the ConstSource node requires
to state complex as the kind value. In case of a complex parameter the value
attribute is not necessary. Parameters must not be stated if the default value
are satisfied by the needs of the model. An example is the Sewer node with
id=musk1.

<connect ion id=”con1”>
<source node=” cons t source ” port=” out ” />
<s ink node=”musk1” port=” in ” />

</ connect ion>

<connect ion id=”con2”>
<source node=”musk1” port=” out ” />
<s ink node=” f i l e o u t ” port=” in ” />

</ connect ion>

Listing A.5: the connection list

The last part of the document is the list of connections in the connectionlist. A
connection has, similar to the node, a unique id. The first child of connection
is source it references the id and a port of connections source. sink behaves
equally, it just describes the sink part of the connection.

92

JavaScript Nodes C++ is a compiled language designed for high performance
and not for ease of use. Because of this CityDrain allows to implement nodes
in JavaScript programming language. JavaScript is interpreted and therefore
there is no need to compile it before running it.

A JavaScript node is somehow special. The first thing different is that you
need to specify a script attribute and use the node class QSWNode. The second
thing is you need to write a script file which replaces the init and f functions of
a standard C++ node. Beside that a script node behaves exactly like any other
node, has states and accepts predefined parameters. Section A.2.3 shows how
to write a script that can be specified to be used by QSWNode.

<node id=” f i l e o u t 2 ” c l a s s=” FileOut ”>
<parameter name=” o u t f i l e n a m e ” type=” s t r i n g ”

value=”tmp/ j s s p l i t t e r 2 . txt ” />
</node>

Listing A.6: using a JavaScript node

Controller A controller is a JavaScript or C++ code which is called before and
after a time step is completed. A controller can:

• set internal states of nodes,

• write the states to a file,

• load the states from a file and

• can even stop the whole simulation if needed.

Listing A.7 shows how to specify such a JavaScript controller. How to write a
controller script can be found in the programmers manual in section A.2.3.

<s imu la t i on c l a s s=” Defau l tS imulat ion ”>
<time s t a r t=”0” stop=”72000” dt=”300” />

</ s imu la t i on>

<c o n t r o l l e r s c r i p t=” s c r i p t s / c o n t r o l l e r . j s ” />

<model>

Listing A.7: specifying a controller script

Cycles are handled by adding a cycle break attribute to a connection where
its needed to break up a cycle. The cycle break connection is typically the one

93

where the the flow enters the cycle back into the beginning. Listing A.8 shows
how one specifies such a cycle break connection.

<model>
<n o d e l i s t>

<node id=” ConstSource−0” c l a s s=” ConstSource ”>
<parameter name=” c o n s t f l o w ” kind=”complex” type=”Flow”>

<f l ow>
<uni t name=”Q” kind=”Flow” value=” 100.000000 ” />
<uni t name=”C2” kind=” Concentrat ion ” value=” 3.000000 ” />
<uni t name=”C1” kind=” Concentrat ion ” value=” 5.000000 ” />
<uni t name=”C0” kind=” Concentrat ion ” value=” 1.000000 ” />

</ f low>
</ parameter>

</node>

<node id=”Mixer−0” c l a s s=”Mixer”>
<parameter name=”num inputs” type=” i n t ” value=”2” />

</node>

<node id=” S p l i t t e r −0” c l a s s=” S p l i t t e r ”>
<parameter name=” r a t i o ” type=” double ” value=” 0 .5 ” />

</node>

<node id=” FileOut−0” c l a s s=” FileOut ”>
<parameter name=” o u t f i l e n a m e ” type=” s t r i n g ”

value=”tmp/ genout . txt ” />
</node>

<node id=”Sewer−0” c l a s s=”Sewer”>
<parameter name=”N” type=” i n t ” value=”11” />
<parameter name=”K” type=” i n t ” value=”300” />
<parameter name=”X” type=” double ” value=” 0 .1 ” />

</node>

<node id=”Sewer−1” c l a s s=”Sewer”>
<parameter name=”N” type=” i n t ” value=”11” />
<parameter name=”K” type=” i n t ” value=”300” />
<parameter name=”X” type=” double ” value=” 0 .1 ” />

</node>

</ n o d e l i s t>
<c o n n e c t i o n l i s t>

94

<connect ion id=”con−ConstSource−0−Mixer−0”>
<source node=”ConstSource−0” port=” out ” />
<s ink node=”Mixer−0” port=” inputs [0] ” />

</ connect ion>

<connect ion id=”con−Mixer−0−S p l i t t e r −0”>
<source node=”Mixer−0” port=” out ” />
<s ink node=” S p l i t t e r −0” port=” in ” />

</ connect ion>

<connect ion id=”con−S p l i t t e r −0−Sewer−0”>
<source node=” S p l i t t e r −0” port=” out1 ” />
<s ink node=”Sewer−0” port=” in ” />

</ connect ion>

<connect ion id=”con−S p l i t t e r −0−Sewer−1”>
<source node=” S p l i t t e r −0” port=” out2 ” />
<s ink node=”Sewer−1” port=” in ” />

</ connect ion>

<connect ion id=”con−Sewer−1−Mixer−0” c y c l e b r e a k=” true ”>
<source node=”Sewer−1” port=” out ” />
<s ink node=”Mixer−0” port=” inputs [1] ” />

</ connect ion>

<connect ion id=”con−Sewer−0−FileOut−0”>
<source node=”Sewer−0” port=” out ” />
<s ink node=” FileOut−0” port=” in ” />

</ connect ion>

</ c o n n e c t i o n l i s t>

Listing A.8: specifying a cycle break attribute in a connection

A.1.4. Using cd3modelgen.py

cd3modelgen.py is a python module which allows to easy create XML module
files programmatically. This approach has several advantages:

• converter scripts may be written which read other file formats and convert
them into the CityDrain3 model file,

95

• models maybe generated using stochastic methods generating artificial
systems,

• the tedious work of writing XML files is covered by just a few python
method calls,

• python scripts are more readable than XML files,

• etc..

The python module allows to define in an object oriented manner the structure
of the file. It is completely independent of the CityDrain3 C++ source code. It
just prints the XML file based in its input. No checking or other sanitizing of
the input is done.

Python is a scripted programming language. It is famous for its ease of
programming and productivity. The language is easy to learn and lots of infor-
mation regarding python is on the Internet.

Listing A.9 shows a simple script which generates a model with a ConstSource,
Sewer and a FileOut to show the results. Each C++ node has a python pendant
with the same name. 2 Connections are handled by the Connection class. The
parameters of the Constructor are:

1. the source node

2. the sink node

3. the source port (optional, default ”out”)

4. the sink port (optional, default ”in”)

Simulation is the class which collects the nodes into the nodes array and the
connections into the cons array. After all nodes and connections have been
added to the simulation the render method prints the XML to the terminal.
The output can then simply written in a file by redirecting the output of the
script.

$ python gent e s t . py > gent e s t . xml

from cd3modelgen import ∗

cons t source=ConstSource ()
sewer=Sewer ()

2As the cd3modelgen.py does not use the C++ code it must be extended if new nodes are
added later on.

96

f i l e o u t=FileOut (”tmp/ t e s t o u t . txt ”)

con1=Connection (constsource , sewer)
con2=Connection (sewer , f i l e o u t)

sim=Simulat ion ()
sim . nodes += [constsource , sewer , f i l e o u t]
sim . cons += [con1 , con2]

sim . render ()

Listing A.9: simple python script

Listing A.10 shows the output of the script in Listing A.9.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
< !DOCTYPE c i t y d r a i n SYSTEM ” f i l e : . . / dtd/model . dtd”>

<c i t y d r a i n version=” 1 .0 ”>

<plug inpath path=” . / l i bnode s . so ” />
<s imu la t i on c l a s s=” Defau l tS imulat ion ”>

<time s t a r t=”0” stop=”7200” dt=”300” />
</ s imu la t i on>
<model>

<n o d e l i s t>

<node id=” ConstSource−0” c l a s s=” ConstSource ”>
<parameter name=” c o n s t f l o w ” kind=”complex”

type=”Flow”>
<f l ow>

<uni t name=”Q” kind=”Flow” value=” 100.000000 ” />
<uni t name=”C2” kind=” Concentrat ion ”

value=” 3.000000 ” />
<uni t name=”C1” kind=” Concentrat ion ”

value=” 5.000000 ” />
<uni t name=”C0” kind=” Concentrat ion ”

value=” 1.000000 ” />
</ f low>

</ parameter>
</node>

<node id=”Sewer−0” c l a s s=”Sewer”>
<parameter name=”N” type=” i n t ” value=”11” />

97

<parameter name=”K” type=” i n t ” value=”300” />
<parameter name=”X” type=” double ” value=” 0 .1 ” />

</node>

<node id=” FileOut−0” c l a s s=” FileOut ”>
<parameter name=” o u t f i l e n a m e ” type=” s t r i n g ”

value=”tmp/ t e s t o u t . txt ” />
</node>

</ n o d e l i s t>
<c o n n e c t i o n l i s t>

<connect ion id=”con−ConstSource−0−Sewer−0”>
<source node=”ConstSource−0” port=” out ” />
<s ink node=”Sewer−0” port=” in ” />

</ connect ion>

<connect ion id=”con−Sewer−0−FileOut−0”>
<source node=”Sewer−0” port=” out ” />
<s ink node=” FileOut−0” port=” in ” />

</ connect ion>

</ c o n n e c t i o n l i s t>
</model>

</ c i t y d r a i n>

Listing A.10: output of simple python script

A full documentation of the python module can be generated by typing:

$ pydoc cd3modelgen

A.1.5. plugindoc Application

Due to the high abstraction level in CityDrain3s design its possible to generate
a documentation for the nodes which a plug-in contains.

plugindoc is such an application which uses the CityDrain3 infrastructure to
generate the list of nodes, their parameter, their states and the input and output
ports. The applications parameter is the portable library name of the plug ins
which should be inspected:

98

$. / p lug indoc / plug indoc nodes

The output of the documentation application with the default node plug-in is
shown in Listing A.11.

Nodes:
CSO:

parameter : Q Max
parameter : V Max
s t a t e : s tored volume
i n p o r t : in
o u t p o r t : out
o u t p o r t : over f l ow

CatchmentCSS:
parameter : n ra in conc
parameter : K
parameter : N
parameter : permanent loss
parameter : X
parameter : r u n o f f c o e f f
parameter : i n i t i a l l o s s
parameter : area
s t a t e : V[1]
s t a t e : V[0]
s t a t e : V[2]
s t a t e : l o s s b a s i n
i n p o r t : r a i n i n
i n p o r t : p a r a s i t e i n
i n p o r t : q upstream
i n p o r t : dwf in
o u t p o r t : out

ConstSource :
parameter : c o n s t f l o w
o u t p o r t : out

F i l eOut :
parameter : o u t f i l e n a m e
i n p o r t : in

Mixer :
parameter : num inputs
i n p o r t : inputs [0]
i n p o r t : inputs [1]
o u t p o r t : out

N u l l :
o u t p o r t : out

99

RainRead:
parameter : f i l e n a m e
parameter : base date
s t a t e : r a in
o u t p o r t : out

Sewer:
parameter : K
parameter : N
parameter : X
s t a t e : V[6]
s t a t e : V[1]
s t a t e : V[0]
s t a t e : V[5]
s t a t e : V[4]
s t a t e : V[8]
s t a t e : V[3]
s t a t e : V[7]
s t a t e : V[9]
s t a t e : V[2]
s t a t e : V[1 0]
i n p o r t : in
o u t p o r t : out

S p l i t t e r :
parameter : r a t i o
i n p o r t : in
o u t p o r t : out2
o u t p o r t : out1

TestNode:
s t a t e : t e s t
s t a t e : i n t v a l u e
s t a t e : doub le va lue
s t a t e : s t r i n g v a l u e
i n p o r t : in
o u t p o r t : out

S i m u la t i o n s :
De fau l tS imulat ion
OrderedPipeSimulat ion
P a r a l l e l S i m u l a t i o n
P ipe l inedS imu la t i on
VarDTSimulation

Listing A.11: Node documentation

100

A.2. Programmers Manual

This section describes the internals of CityDrain3 to allow a user to extend
and implemente further features into CityDrain3. The frist chapter deals with
compiling CityDrain3. The second chapter deals with the design and implemen-
tation details which are needed to extend CityDrain3. Extending CityDrain3 is
covered in the last chapters.

A.2.1. Compiling CityDrain3

Tested compilers

CityDrain was mainly developed on Linux, which always ship with high quality
and up-to-date compilers. The compilers used on Linux were gcc and Intel,
which both work very well. Compiler that are known to not work are Visual
Studio 6 and gcc 3.4, both in Windows. Unfortunately the compiler that is
shiped with the Qt SDK is gcc 3.4 that does not work.

Compiler Platform status

gcc 3.4 Windows fails
gcc 4.4.0 Windows works
Intel C++ 11 Windows works
Visual Studio 2008 3 Windows works
gcc 3.4 Linux works
gcc 4.4 Linux works
Intel C++ 11 Linux wokrs

Toolset

Several steps (on Windows) are needed in order to get CityDrain3 compiled:

1. Install a git client. Windows binaries are at http://code.google.com/p/

msysgit/

2. Install the Qt libraries. For windows users just download the Qt SDK
from http://www.qtsoftware.com.

3. Install an up to date MinGW GCC compiler (found at: http://www.

tdragon.net/recentgcc/).

101

http://code.google.com/p/msysgit/
http://code.google.com/p/msysgit/
http://www.qtsoftware.com
http://www.tdragon.net/recentgcc/
http://www.tdragon.net/recentgcc/

4. Get the source code by cloning the git repository. Open the Git Bash and
type:

$ g i t c l one g i t : //138 . 232 . 95 . 43/ cd3−1. g i t

5. Download and install CMake from http://www.cmake.org/

6. Start the CMake Gui from within the “MinGW Command Prompt”, found
in the MinGW folder of the start menu after installation.

7. Point the cmake in the gui to the source of cd3.

8. Hit the “configure” button twice, then the “generate” button.

9. switch into the “MinGW Command Prompt” windows and start mingw32-
make in the cmake build directory (typically the source directory of cd3).

You now have the up to date CityDrain3 source code, hopefully error free
compiled. If you want to update to the latest commit use these commands in
the ”git bash” of the cd3 top level directory:

$ g i t p u l l o r i g i n master

The preffered compiler on windows is either Visual Studio 2008, in this case
the Visual Studio Qt integration tools are very handy, or a MinGW gcc version
4.4 which can be downloaded from http://www.tdragon.net/recentgcc/. If a
different compiler than the one included in Qt SDK is used the path to the
compiler must be specified on the Project view in the ”Build Envrionment”
settings. Point the path variable as first entry to your installed compiler bin
directory, as shown in Figure A.2.

CityDrain3 uses Qt for handling JavaScript integration and XML file read-
ing. Qt 4.5 got further feature enhancements in the QtScript module on which
CityDrain3 heavily depends, therefore Qt 4.5 is needed.

The minimum version of Qt is 4.5 and MinGW gcc 3.4 on windows
shiped with Qt SDK does not work.

A.2.2. Design Overview

Directory Layout

The first thing a new developer of CityDrain3 needs to know is where to find
stuff in the directory tree of CityDrain3. This section describes the directories

102

http://www.cmake.org/
http://www.tdragon.net/recentgcc/

Figure A.2.: Setting the Path for the MinGW compiler

and their contents used in CityDrain3.

The root of the directory cd3-1 contains the following directories:

3rdparty contains all 3rdparty libraries which are shipped with CityDrain3.
Currently only the boost library is contained here. Qt must be installed
globally.

src/app contains the main of the cd3 executable.

bench contains scripts to run benchmarks with the different simulation classes.
The scripts also create charts to show the results of the benchmarks graph-
ically.

src/cd3core is the most important directory. It contains the framework of
CityDrain3. It contains the code and interfaces which are at the heart of
the application.

doc contains a doxygen script for generating a navigable reference documenta-
tion of the C++ code.

data/dtd contains the model.dtd file used to check the XML model files for
validity and well formdness.

data/models is the directory where example and test models are stored. The
folder also contains the python scripts used by cd3modelgen.py.

src/nodes is the home of all implemented nodes and simulation classes source
code.

103

Figure A.3.: Overview of the essential interfaces

src/plugindoc contains the source code of the plugindoc application.

data/scripts contains all the JavaScript scripts.

win32 contains the executable and libraries of a Windows build.

tmp contains compiled intermediate files and results of the demo models are
stored here typically.

Class Overview

Figure A.3 shows an overview of the essential interface classes and their interac-
tion. The Model (see Figure A.4) class is a collection of Nodes (see Figure A.6)
and the Connections between nodes. The Simulation (see Figure A.5) interface
is used by an application to start the simulation and add controllers if needed.
The Simulation class used the Model to navigate through the Directed Graph
(DG) that represents the model under research. Classes which extend from
Node are then responsible for calculating urban drainage algorithms based on
the inputs. They produce side effects called states and output their results on
the output ports.

The Model class has the notion of source and sink nodes. The collection of
source nodes are all node which don’t have input ports. Equivalently, sink nodes
are all nodes which have no source port. By using the getNext method one can
query all connection start by the specified node. getSinkNodes and getNext
allows to iterate the whole graph from sinks to sources. The other way around
is done by using getSinkNodes and getPrevious.

104

Figure A.4.: The Model class

Figure A.5.: The Simulation class

Figure A.6.: The Node class

105

The class diagrams shown in this Section are heavily simplified in order to
focus on the important stuff.

A.2.3. Extending CityDrain3

CityDrain3 was designed with a focus on extensibility. An extension writer
can choose between an easy do deploy JavaScript extension mechanism or write
native plug ins in C++. The latter involves more knowledge of the surrounding
tools and the C++ language, but allows to control and inspect all most all
aspects of a simulation. Although the the JavaScript extension are easier to
develop they are somehow limited in their scope and application. For example
one can not inspect the Graph representing the connections and nodes of a sewer
system. The big advantage of JavaScript is that it is interpreted and allows to
have short turnover times. This fits perfectly for a rapid prototyping approach.
Once the algorithms are settled it is easy to port the JavaScript code to C++
because the names and conventions are almost the same.

This section describes in a step by step manner how one can adapt CityDrain3
to the modelling needs of the simulation with both C++ and JavaScript meth-
ods.

JavaScript notes

JavaScript is an interpreted, prototype based dynamic, weakly typed program-
ming language with first class functions. It was invented to allow dynamic
contents of web pages. It is known as the scripting language of the web. Due to
the Web 2.0 wave dynamic web applications and therefore JavaScript got hyped
a lot and drove inventions in the language.

JavaScript has objects which are associative arrays: that means that the state-
ments obj.x = 10 and obj [’ x ’] = 10 are equivalent. Every script has a global
object associated. This is the name space where all variables and functions get
defined. This means that there does not exist an explicit main function, the
execution begins at the glob name space. dynamic weakly typing means that
types are bound to values not to variables. A variable x can at one line point
to a value of an int and at the next line to a string. Support for first class
functions means that a function is just another value, although callable, which
can be passed around. Prototype based objects are different than class based
objects in that they completely miss classes. Objects are instantiated and func-
tions and properties are added. If one wants to inherit in a prototype based

106

language he just clones the parent, the parent is then the prototype of the child
object.

In CityDrain3 most features are ignored. There exist only a few objects,
namely Flow, Node and CalculationUnit4. Every script is compiled first and
all the global variables defined here can be used later if the callback functions
are invoked. A callback function can be init, f, controllBefore or controllAfter
depending on what aspect of CityDrain3 is extended.

Implementing a JavaScript Node

Implementing a node in CityDrain3 using the JavaScript language involves ba-
sically two things. Define a node in the model with the class QSWNode and
pass it a path to a JavaScript script file. The second thing to do is to implement
the script file. Listing A.12 shows the minimum code needed for a script file.
A script must implement a init function which is called once, and a f function
which is called at least once per time step.

//define parameters , in/out ports, states and globals here.

function i n i t (s ta r t , stop , dt) {
//init node based on parameters

}

function f (time , dt) {
//calculate ouputs based on inputs

//from ports, states and time

return dt
}

Listing A.12: JavaScript node template

Before these functions are called the script gets loaded and interpreted by the
JavaScript engine. After this step all globals (defined before init) and the func-
tions in the script are known. Globals have a lifetime from the first interpretation
of the script until the simulation is destroyed (i.e. the simulation is stopped).
This is different to the behaviour in the older CITY DRAIN implementations
where states and globals were passed around via function arguments.

x=0
function i n i t (s ta r t , stop , dt) {

x = dt
}
4A calculation unit is just a triple of a name, a unit and a description (e.g. (flow, m2/s, the

flow of water)).

107

function f (time , dt) {
x = x + (dt / 10)
return dt

}

Listing A.13: global state example

The code in Listing A.13 shows this effect with a global variable x. x gets
initialized with zero, after init it has the value of dt. At every time step the
value of x is incremented by dt

10 . If the value of x influences the outputs it
must be added to the states of the node. If for example the previously defined
x is added to the states on needs to call the addState() function as shown in
Listing A.14. The parameter must be the a string with the variable name one
wants to add. Now x gets saved and loaded if a simulation is restarted.

x=0
addState (’ x ’)
function i n i t (s ta r t , stop , dt) {

x = dt
}

function f (time , dt) {
x = x + (dt / 10)
return dt

}

Listing A.14: adding a state

Adding input and output ports is done by calling addInPort or addOutPort
respectively. The node in Listing A.15 leads a flow through the node without
touching it. Such a behaviour could be used if one wants to protocol the flow
reaching through the node.

f low = Flow ()
function i n i t (s ta r t , stop , dt) {

addInPort (’ in ’ , f l ow)
addOutPort (’out ’ , f l ow)

}

function f (time , dt) {
return dt

}

Listing A.15: adding ports

108

Implementing a simple Splitter in JavaScript

The node we want to develop, as an example implementation of a working
JavaScript node, is a simple Splitter. It splits two streams into halve, leaving
the concentrations untouched.

var i n f l o w = Flow ()
var out1 = Flow ()
var out2 = Flow ()

addInPort (’ in ’ , i n f l o w)
addOutPort (’ out1 ’ , out1)
addOutPort (’ out2 ’ , out2)

function i n i t (s ta r t , stop , dt) {
//nothing here

//note behaves pretty static

}

function f (time , dt) {
out1 . copy (i n f l o w)
out2 . copy (i n f l o w)
qhalve = i n f l o w . g e t I th (f low , 0) / 2 .0
out1 . s e t I t h (f low , 0 , qhalve)
out2 . s e t I t h (f low , 0 , qhalve)
return dt

}

Listing A.16: A simple Splitter in JavaScript

As we can see in Listing A.16 we need one in-port (in) and two out port (out1,
out2). init is empty because the node doesn’t need a parameter nor does it use
internal states. In the f function we have to copy the values of input to the
two outputs. This must be done to leave the concentrations. Then we grab the
water amount per seconds of the flow (i.e. the flow unit of the flow), halve it
and set it in the outputs.

Implementing a JavaScript Controller

Controllers may not behave as expected if a parallel simulation is
used. This is because the timestep are started and stop not sequen-
tially and not synchronosly. This could mean that a timestep has
already began before the last one has stopped.

109

Implementing a controller is similar to implementing node. The first thing to
do is to point to a script file in the model using the controller element. The
controller has a single attribute path which points to the script file. The element
must be after simulation and before the model element.

<s imu la t i on c l a s s="DefaultSimulation">
<time s t a r t="0" stop="72000" dt="300" />

</ s imu la t i on>

<c o n t r o l l e r s c r i p t="scripts/controller.js" />

<model>

Listing A.17: placement of the controller element

The script file must contain two functions with the names

• controllAfter(time) and

• controllBefore(time)

which are called either before each time step and after a time step. A sample
script is depicted in Listing A.18. It shows basically what a controller can do.

//globals

function c o n t r o l l B e f o r e (time) {
//stops the simulation after time 5100

i f (time >= 5100) {
s topS imulat ion ()

}
}

function c o n t r o l l A f t e r (time) {
//gets the flow with name "V[0]" of node "musk1"

v0 = getFlow (”musk1” , ”V[0] ”)
//and prints the concentration "C1"

pr in t (v0 . getValue (”C1”))
//write state into the directory "/tmp/states"

s e r i a l i z e (”/tmp/ s t a t e s ”)

}

Listing A.18: JavaScript controller example

110

JavaScript API Reference

The JavaScript Application Interface (API) includes four classes at the time of
writing the manual:

1. Node

2. Controller

3. Flow

4. CalculationUnit

A Node class which is implicitly inherited if one implements a JavaScript node
can call the following functions:

addInPort(name, flow) adds a flow as input port,
addOutPort(name, flow) adds a flow as output port,
addParameter(name, value) adds a parameter with initial value,
addState(name) adds a state,
print(value) prints a value.

All names must be of type string, values can have all basic types + Flow.

A Controller class which is implicitly inherited if one implements a JavaScript
controller can call the following functions:

stopSimulation() stops a simulation,
serialize(dir) writes internal sates to dir,
deserialize(dir, time) loads internal states from dir,
setInt(node, state, value) sets state of node to a value,
getInt(node, state) returns value of state from node,
setDouble(node, state, value)
getDouble(node, state)
setString(node, state, value)
getString(node, state)
setBool(node, state, value)
getBool(node, state)
setFlow(node, state, value)
getFlow(node, state)
print(value) prints a value.

A value of type Flow can be instantiated using the Flow constructor function.
The Flow class has the following methods:

111

clear() clear the flow to an initial state,
addUnit(name, unit, value) adds a unit with name, unit and a value,
setValue(name, value) sets a unit value,
getValue(name) returns a unit value,
setIth(unit, i, value) sets the value of the ith unit (when you don’t know the

name),
getIth(unit, i) return the ith value of unit,
getNames() get all added names,
getUnitNames(unit) get all names with the unit.
copy(flow) copy the values from a flow (assignment workaround)

Node and Controller have globally defined names for the units of Calculatio-
nUnit (i.e.. flow, calculation and rain).

Adding more API calls is as easy as adding them to the corresponding C++
classes (prefixed with QSW). If a method should be callable from JavaScript
it must be added into the ”public Q SLOTS:” section in order to be picked
up by QtScript engine. More information on QtScript is available at http:

//doc.qtsoftware.com/4.5/qtscript.html.

Implementing a C++ Controller

Controllers in C++ are handled differently than in JavaScript. They do not
even follow the implement a subclass extension paradigm. Instead, a controller is
just a receiver of a boost::signal which is comparable to a Qt signal. A receiver of
such a signal is called a slot. It must be a callable with a fixed set of parameters.
A callable is either a function pointer or a standard C++ class with the ”()”
operator, the function call operator, overloaded. Listing A.19 shows how an
implementation looks, acceptable as a slot.

struct PerStateHandler {
PerStateHandler (const std : : s t r i n g d i r) {

s t a t e d i r = d i r ;
}
void operator () (IS imulat ion ∗s , int time) {

(void) time ;
s−>s e r i a l i z e (s t a t e d i r) ;

}
private :

s td : : s t r i n g s t a t e d i r ;
} ;

struct ProgressHandler {
ProgressHandler (IS imulat ion ∗sim) {

sp = sim−>getSimulat ionParameters () ;
l a s t p = 0 ;
l ength = sp . stop − sp . s t a r t ;
count = 0 ;
t = QTime : : currentTime () ;

}
void operator () (IS imulat ion ∗s , int time) {

(void) s ;
int newp = (time / length) ∗ 100 ;
count ++;
i f (newp <= la s tp)

return ;

112

http://doc.qtsoftware.com/4.5/qtscript.html
http://doc.qtsoftware.com/4.5/qtscript.html

QTime tmp t (QTime : : currentTime ()) ;
Logger (Standard) << " P r o g r e s s : " << newp << " % " << count << " dt : " << t . msecsTo (tmp t) ;
l a s t p = newp ;
count = 0 ;
t = tmp t ;

}
double p fa c to r ;
int l a s t p ;
int count ;
f loat l ength ;
QTime t ;
Simulat ionParameters sp ;

} ;

Listing A.19: Two example slots

The simulation class provided two signals: timestep after and time step before.
Signals and slots are connected by using the connect method of the signal.
Listing A.20 shows how a signal and a slot are connected.

s−>t i m e s t e p b e f o r e . connect (ProgressHandler (s)) ;

Listing A.20: connecting signals and slots

A slot receives the current Simulation instance and the current time step
value. Using these two parameters a Controller can access all informations and
control all aspects of the simulation.

The API a controller can use are actually the internals of CityDrain3. This
allows greater flexibility but also has several risks of unknown unintentional side
effects.

Implementing a C++ Node

Listing A.21 and A.22 show the header an implementation of a node imple-
mented in C++. The macro CD3 DECLARE NODE does all the sub classing
and class header declaration which are needed for the plug-in handling. The
macro is just a convenient and less error prone way to declare a node, beside
that everything is standard C++.

The node interface offers two virtual method that a subclass must override.
The first one is init, it is called once before the simulation starts. Before init
is called values of parameters are loaded from the XML model file. The second
method a new node must override is f. This is the method where the calculations
of the node should happen. It is called once per time step and all input ports
are brought up to date before init. After f has finished the output ports are
picked up and forwarded to the next node.

#include <node . h>
#include <f l ow . h>

113

CD3 DECLARE NODE(Nul l)
public :

Nul l () ;
int f (int time , int dt) ;

private :
Flow out ;

} ;

Listing A.21: Null node header

CD3 DECLARE NODE NAME(Null)

Nul l : : Nul l () {
addOutPort ("out" , &out) ;
out = Flow : : nul lFlow () ;

}

int Null : : f (int time , int dt) {
(void) time ;
return dt ;

}

Listing A.22: Null node implementation

#include <cd3g l oba l s . h>

extern "C" {
void CD3 PUBLIC reg i s t e rNode s (NodeRegistry ∗ r e g i s t r y) {

r e g i s t r y−>addNodeFactory (new NodeFactory<ConstSource > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<FileOut > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<Mixer > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<Sewer > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<RainRead > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<TestNode > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<QSWNode, true > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<CSO> ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<S p l i t t e r > ()) ;
r e g i s t r y−>addNodeFactory (new NodeFactory<CatchmentCSS > ()) ;

Listing A.23: Register nodes in a dynamic library

Parameters are set by calling the addParameter method defined in Node. The
macro ADD PARAMETERS is again a convenient way of declaring a param-

114

eter and stating its name in one step. If a pointer parameter is used then
ADD PARAMETERS P macro must be used.

in = new Flow () ;

Listing A.24: Registering parameters

Parameters are ordinary class members of the node. They are filled between
the constructor call and the init call. Parameters were introduced to allow a
more dynamic behaviour of the nodes (e.g. the Mixer node uses a parameter to
specify how many inputs it must mix). The values of the parameters come from
the XML model file, in which they are defined in the node/parameter element.
The name of the parameters in the XML file and the C++ class are the same if
the ADD PARAMETERS macros are used.

Ports are registered using the addInPort and addOutPort methods. Again
using the ADD PARAMETERS or ADD PARAMETERS P macros so that the
names can be picked up. Ports can be registered in the constructor or in the init
method. Adding ports in the constructor is the preferred way , because then
they show up in the plugindoc application. If ports depend on parameters then
they belong into the init method. Listing A.25 shows both static and dynamic
ports which depend on the num inputs parameter.

Mixer : : Mixer () {
num inputs = 2 ;
addParameter (ADD PARAMETERS(num inputs)) ;
out = new Flow () ;
addOutPort (ADD PARAMETERS P(out)) ;

}
void Mixer : : i n i t (int s t a r t , int end , int dt) {

(void) s t a r t ;
(void) end ;
(void) dt ;
for (int i = 0 ; i < num inputs ; i++) {

Flow ∗tmp = new Flow () ;
s td : : o s t r ing s t r eam name ;
name << "inputs[" << i << "]" ;
addInPort (name . s t r () , tmp) ;
inputs . push back (tmp) ;

}
}

Listing A.25: Registering ports

115

States are pretty similar to ports and parameters. They are registered using
the addState method. Again if static the registering calls belong in the con-
structor and if dynamic in the init method. In Listing A.26 the Sewer node
registers the volumes stored in the sewer sub reaches. This state depends on the
parameter N which states the number of sub reaches in the sewer.

Step by Step

1. create newnode.h and newnode.cpp

2. declare node with CD3 DECLARE NODE in header (see nodes/null.h)

3. declare name with CD3 DECLARE NODE NAME (see nodes/null.cpp)

4. implement f and init

5. register static ports, parameters and states in the constructor

6. register dynamic ports, parameters and states in init

7. create dll entry points like in nodes/nodes.cpp (see Listing A.23)

8. register node in dll entry points (see Listing A.23).

for (int i = 0 ; i < N; i++) {
V. push back (new Flow ()) ;
addState (s t r (format ("V[%1%]") % i) , V[i]) ;

}

Listing A.26: Registering states

Implementing a Simulation

Implementing a simulation is similar to a node. The difference is that one now
inherits from ISimulation class instead of Node. A simulation implementation
can choose to just implement the run method:

virtual int run (int time , int dt) = 0 ;

This one is the called by the ISimulation class. If more is needed then the start
method must be overridden:

virtual void s t a r t (int time) ;

116

In the second case more attention has to be paid, for example the signals of the
controllers must be called. Registering of a simulation is shown in Listing A.27
and comparable to registering a node.

void CD3 PUBLIC reg i s t e rType s (TypeRegistry ∗ r e g i s t r y) {
(void) r e g i s t r y ;

}

void CD3 PUBLIC r e g i s t e r S imu l a t i o n s (S imulat ionReg i s t ry ∗ r e g i s t r y) {
r e g i s t r y−>addSimulationFactory (new Simulat ionFactory<DefaultS imulat ion > ()) ;
// r e g i s t r y - > a d d S i m u l a t i o n F a c t o r y (new S i m u l a t i o n F a c t o r y < V a r D T S i m u l a t i o n > ()) ;

Listing A.27: Register simulations in a dynamic library

C++ API Reference

An API reference is not included in this document, but it can be generated by
using the doxygen automatic documentation generation tool. It can be gener-
ated by calling doxygen in the docs sub directory.

117

118

Submitted Papers

[BFKR09] Gregor Burger, Stefan Fach, Heiko Kinzel, and Wolfgang Rauch. Par-
allel computing in integrated urban drainage simulations. In 8UDM
& 2RWHM, pages 366–367. IWA, September 2009.

[BFKR10] Gregor Burger, Stefan Fach, Heiko Kinzel, and Wolfgang Rauch.
Parallel computing in conceptual sewer simulations. Water Science
and Technology, 2010. accepted.

119

Parallel computing in conceptual sewer simulations

G. Burger*), S. Fach**), H. Kinzel***) and W. Rauch**)

*Institute of Computer Science, University of Innsbruck,
Technikerstr. 21A, A-6020 Innsbruck, Austria (E-mail: gregor.burger@uibk.ac.at)
** Unit of Environmental Engineering, University of Innsbruck, Technikerstr. 13,

A-6020 Innsbruck, Austria (E-mail: stefan.fach@uibk.ac.at, wolfgang.rauch@uibk.ac.at)
*** hydro-IT GmbH, Technikerstr. 13, A-6020 Innsbruck, Austria

(E-mail: Kinzel@hydro-it.com)

ABSTRACT
Integrated urban drainage modelling is used to analyze how existing urban drainage systems
respond to particular conditions. Based on these integrated models, researchers and engineers are
able to e.g. estimate long-term pollution effects, optimize the behaviour of a system by comparing
impacts of different measures on the desired target value or get new insights on systems
interactions. Although the use of simplified conceptual models reduces the computational time
significantly, searching the enormous vector space that is given by comparing different measures or
that the input parameters span, leads to the fact, that computational time is still a limiting factor.
Due to the stagnation of single thread performance in computers and the rising number of cores one
needs to adapt algorithms to the parallel nature of the new CPUs to fully utilize the available
computing power. In this work a new developed software tool named CD3 for parallel computing in
integrated urban drainage systems is introduced. From three investigated parallel strategies two
showed promising results and one results in a speedup of up to 4.2 on an eight-way hyperthreaded
quad core CPU and shows even for all investigated sewer systems significant run-time reductions.

KEYWORDS
CD3, conceptual model, parallel strategy, integrated urban drainage modelling, multi-core, parallel
computing

INTRODUCTION
Whilst in the past the processors (CPUs) got significantly more powerful (and thus faster),
nowadays it is not the single CPU that can be improved further but instead the number of processors
is increased. Multi-core systems are the future of desktop computing. Single thread performance is
stagnating, but the number of cores is rising (Kongetira et al., 2005). To fully utilize that available
computing power one needs to adapt algorithms to the parallel nature of these new CPU-
architectures. Therefore a framework for integrated urban drainage models named CITY DRAIN 3
(CD3) was developed that exploits these additional computational resources of multi-core CPU-
architectures. CD3 is a further development of the existing non multi-core capable CITY DRAIN 2
(Achleitner et al., 2007). The objective was to program a framework capable to be extended for all
kind of integrated urban drainage models, like waste water treatment plant processes and river
quality models. In a first step CD3 is limited to conceptual sewer systems.

The need of computational power for urban drainage simulations
Integrated urban drainage modelling (IUDM) combines the main subsystems of urban drainage
systems (e.g. natural and urban catchments, sewers, receiving water bodies and waste water
treatment plants) of the urban (waste) water cycle into one single model (Rauch et al., 2002; Butler
and Schütze, 2005). The main use of those models is to analyze how existing urban drainage

systems respond to particular conditions (Butler and Davies, 2004). Generally, deterministic models
are used which always produce the same output for a specific set of input data. With these models
engineers and scientists are able to fully reason about sewer system performance, discharge to the
receiving water body and river water quality. Based on these integrated models, researchers are able
to e.g. estimate long-term pollution effects (Rauch et al., 1998), optimize the behaviour of a system
by comparing impacts of different measures on the desired target value or get new insights on
systems interactions.

IUDM models are often formulated in a simplified manner applying e.g. hydrological routing
instead of hydrodynamic wave equations to calculate the waste water transport in the sewer.
Supplementary the originally complex conversion process of a rainfall hyetograph into a surface
runoff hydrograph is often reduced to a simplified model with initial and continuing losses. The
resulting effective rainfall hyetograph is then transformed into a surface runoff hydrograph using
also simple models, e.g. (synthetic) unit hydrographs, time-area diagrams or reservoir models.
Using these simplified conceptual models reduces the computing time significantly. A simulation
run of a moderate sized system, over several decades with time steps in the order of minutes, only
takes few seconds on recent computers. Nevertheless searching the enormous vector space, that is
given by comparing different measures (e.g. spatial configuration of CSOs or tanks or stormwater
infiltration devices) or that the input parameters span (e.g. for auto calibration or Monte Carlo
simulation for uncertainty analysis), leads to the fact, that computing time is still a limiting factor,
even with sophisticated searching algorithms. So speed is the limiting factor for an efficient use of
existing auto calibration tools, such as CALIMERO (Kleidorfer et al., 2009a) or PEST (Doherty et
al., 1994). Hence the development of simulation code that can be executed faster is still an
important issue in integrated urban drainage modelling. For example Feyen et al. (2007) used
parallel computing to implement a conceptual rainfall runoff model named LISFLOOD which
simulates the river discharge in large drainage basins as a function of spatial information on
topography, soils and land cover.

Parallel computing
Parallel Computing is a term used in computer science which describes a way to solve a
computationally expensive problem by dividing it into subtasks. These subtasks are then distributed
on different independent computational units and run concurrently (in parallel). Splitting up
problems into parallel parts is called decomposition. There exists a huge variety of decomposition
techniques, like recursive decomposition, data decomposition, exploratory decomposition and
speculative decomposition (Grama et al., 2003).

The performance of parallel implementations is calculated using speedups. Speedup is defined as
the ratio between the computational time needed for the best sequential algorithm divided by the
computational time required for the parallel algorithm (Akhter, 2006):

)nlg(parallela

lgbestseqa
t

t
time

time
)n(speedup = (1)

Scalability of an algorithm is how far it can be parallelized and how well it works on more parallel
entities. Linear scalability is the theoretically best achievable condition, it means adding n entities
makes the run-time n-times better.

Different parallel computing entities exist depending on the parallel computing environment, e.g.
cores of a multi-core CPU or servers in a clustered environment, for which the algorithm was
designed for. Martins et al. (2001) give an overview and compare several common used parallel
computing environments. Choosing the suited platform is generally critical and depends on several
impact factors. Urban drainage simulations are characterized by many small computations with a
high amount of dependencies. The architecture of single chip multiprocessors (commonly known as

multi-core processors) fulfils the hope of having the best outcome with respect to parallel
performance (Olukotun et al., 1996). Furthermore these multi-core systems are cheap available at
the consumer market. With regard to the software OpenMP (OpenMP Architecture Review Board,
2008) and the standardized portable operating system interface [for Unix] threads (POSIX-threads)
were used to implement the parallel strategies. POSIX is set of standardized libraries and tools that
allow writing portable applications.

Communication and synchronization in parallel computing is the exchange of information between
concurrent tasks. Depending on the need of synchronization, a programmer can choose between
locks, semaphores, monitors, conditional-variables, messages, fences and barriers. Synchronization
errors are subtle, hard to find and hard to fix, because a near infinite number of situations can occur
depending on the race of the threads. These errors are mostly unknown in classical sequential
programming and have names like “race condition”, “dead locks” and “live locks“ (Akhter, 2006).

Finding parallel strategies with good communications and avoiding concurrency errors are critical
for high performance of parallel systems.

METHODS
In this chapter the parallel strategies developed for conceptual sewer systems are described that
were used to accelerate the computation of the processes. For demonstration purposes the
conceptual sewer system consisted of a reduced set of nodes: a catchment for the constant dry
weather flow, a sewer for the routing process, a mixer and a file-out node for writing the simulation
results into a file. In total three strategies were found. The first one is the flow parallel strategy
(FPS) which uses a data parallel decomposition. The second, pool pipeline strategy (PPS) and third
one, ordered pipeline strategy (OPS) are based on a pipelined method in which the nodes are
pipelined through the threads.

Flow parallel strategy
The flow parallel strategy combines data parallel and task parallel model described in Grama et al.
(2003). The flow chart of Fig. 1 illustrates the depending computations of the sewer system for one
simulation time step. On each input flow originated by a catchment a new thread is started (see Fig.
1). Each sequential node after the input node is then calculated by this thread. If several flows are
merged due to a mixer node all threads except one are shut down. This thread continues to compute
the merged downstream flow.

Fig. 1. Flow parallel strategy realized on a quad core CPU

At the mixer node which functions as a junction, synchronization is required. Each mixer node
contains a counter starting with the number of input flows, i.e. number of connected links. If a

thread reaches a mixer node its counter is decremented by one. The thread which decrements the
counter to zero continues the calculation of the nodes following the mixer node downstream.

The number of threads is limited by the number of input flows. At each mixer node at least two
flows are merged. This effect impacts the possible parallel streams to be calculated, i.e. the more the
flow of sewer sections downstream is already calculated the less parallelization is possible. Due to
this fact this strategy is not able to fully utilize all cores over the entire sewer system.

The arrows in Fig. 1 are symbolizing the data transfer between the nodes. The ones which start and
end in different colours are data transfers between the CPU cores. The ones which start and end in
the same colour are data transfers in the cores. Data transfers between CPU cores causes CPU
flushes and memory stalls which are expensive with regard to CPU cycles (Drepper, 2007). The
advantage of this strategy is that the data needed for downstream computations is more likely to
remain in the cores, as can be seen in Fig. 1.

Pool pipeline strategy
The second strategy starts a thread per simulation time step (see Fig. 2). The goal for the thread is to
get all nodes of the sewer system executed. A node can execute the implemented algorithms, e.g.
Muskingum routing, if all its upstream nodes are in the same time step. Each thread maintains a
private set of nodes, called a pool, which were not yet processed. The next node to be processed is
chosen randomly from this pool and gets executed if the dependencies are figured out. If the pool is
empty the simulation time step is finished and the thread computing the step can be reallocated for
the next time step.

Fig. 2. Pool pipeline strategy realized on a quad core CPU

Ordered pipeline strategy
The goal of the OPS was to get rid of the non deterministic behaviour of the PPS. As in the PPS a
thread is responsible for a time step. Instead of randomly choosing the next node to be executed, the
execution order is determined prior the simulation run (see Fig. 3). The execution order is
calculated by applying a topological sorting algorithm onto the sewer system (Kahn, 1962). The
topological sorting assures that the nodes are executed with all dependencies satisfied. Each thread
is connected to the thread executing the next time step by a first in first out (FIFO) queue. If a node
is finished in time step dt it is fed into the queue of the time step dt+1. An empty queue means that
the responsible thread is finished with this time step. The thread can then move on to calculate a
new pending time step.

In the pipelined strategies PPS and OPS the number of threads to be utilized is the highest number
of sequential nodes in the sewer system. OPS can even run all nodes in parallel by intelligently

buffering the nodes data exchange. This means that the pipelined strategies are able to handle more
cores than the FPS. The disadvantage of these pipelined strategies is that every single data exchange
between nodes is carried out between threads and therefore CPU cores.

Fig. 3. Ordered pipeline strategy realized on a quad core CPU

URBAN DRAINAGE SYSTEM USED FOR TESTING
CD3 is a reimplementation of the MATLAB based CITY DRAIN software tool (Achleitner et al.,
2007) with a focus on performance. Therefore in CD3 the same mathematical models are used as in
CITY DRAIN. On the other hand the benchmark of CD3 against CITY DRAIN is meaningless due
to the fact that CD3 has been realised outside the MATLAB environment which has a significant
impact on the computational performance. On the other hand CD3 cannot be benchmarked with
other software tools because of the different model approaches, i.e. runoff generation, surface
routing and sewer flow implemented. Artificial testing systems were generated to highlight the
advantages and disadvantages of the different parallel strategies. Furthermore, one converted and
adapted system of the city of Innsbruck was used to show how well the parallel implementation can
handle real world scenarios. The software was benchmarked to demonstrate the increase of
computational performance with the above mentioned testing systems.

Artificial urban drainage systems
Generally the structure of urban drainage systems complies with an inverted tree. The artificial
testing systems chosen differ in complexity and degree of reality. The first artificial testing system
is a sequential line of sewer sections starting with an input node and ending in a file out node
delivering the results in a CSV format (see Fig. 4). With this testing system it is possible to
demonstrate the benefits of parallelization even for simple conceptual models. The sequential nature
of this testing system is well suited to show the communication overhead of the FPS. The second
testing system is used to point out the theoretical upper bounds reached by the FPS. Several
sequential sewer sections in parallel are mixed together at the end (see Fig. 5). The third testing
system is chosen due to its close scheme to natural drainage structures which have the shape of an
inverted binary tree (see Fig. 6). Two sewers sections are mixed up and connected to a sewer
section downstream.

Fig. 4. Artificial testing system consisting of a sequential line of sewer sections

Fig. 5. Artificial testing system consisting of a several sequential sewer sections in parallel

Fig. 6. Detail of the artificial testing system with a binary tree structure

Real world case study of Innsbruck
To have one real world example as testing system, the sewer system of the city of Innsbruck used
by Kleidorfer et al. (2009b) was converted into the native CD3 input format. This combined sewer
system consists of 53 catchments, a total runoff effective area of 915 ha and a total CSO tank
volume of 5100 m³. In the city of Innsbruck live 165,000 population equivalents (PE) with a daily
dry weather flow (DWF) of 200 l/(PE d).

Fig. 7. Sewer system of the city of Innsbruck implemented in KAREN (Kleidorfer et al., 2009b)

Looped systems
Although looped systems can occur in real world structures the framework of CD3 was evaluated
firstly on systems based on more or less tree like structures. In principle the algorithms used in CD3
should be capable to compute looped systems by breaking up the circular structure.

RESULTS AND DISCUSSION

Benchmark Environment
The hardware on which CD3 was benchmarked is an Intel (R) Core(TM) i7 CPU 920 @ 2.67GHz
equipped with four hyperthreaded cores. The software was compiled with the Intel (R) Compiler
Suite v11. Each testing system was run with a different count of allowed threads from one to ten. As
benchmark results the minimum of four simulation runs was taken. The processor has eight virtual
threads, two hyperthreaded per core. Due to parallel strategies are based on structural
decomposition and not on time decomposition the simulation time of the runs was two hours with
five minutes time steps. The results are presented using two kinds of diagrams. The diagrams on the
left depict the total time the simulation takes. The diagrams on the right show the speedups. For
speedup calculations the single thread performance is equivalent to the best sequential algorithm as
is apparent from equation 1. The x-axis is always the number of threads that a strategy is allowed to
use.

Computational calculation time for artificial urban drainage systems
The testing system of Fig. 8 consists of 1000 sequential sewer sections. Despite the fact that this
sewer system is intrinsic sequential the implementation of the OPS seems to gain a speedup using
more threads. Although the implementation of the FPS cannot scale in this testing system the
communication overhead in such situations is insignificant.

Fig. 8. Results of 1000 sequential sewer sections

Fig. 9. Results of eight parallel streams each 100 sewer sections long

Fig. 9 shows the results of the parallel testing system with eight parallel streams each 100 sewer
sections long. This testing system should give particularly good results for the FPS, but also the
implementation of the OPS seems to scale pretty well to the four available cores. Because of the
unusable bad computational performance of the PPS the results are not explained further in the
discussion chapter.

Fig. 10. Results of a binary tree system with ten generations

In Fig. 10 the results of the binary tree with ten generations and 2047 nodes are depicted. This tree
offers enough parallel streams that the FPS and OPS are able to reduce the run-time on more cores,
although the FPS has a slight edge ahead. Even with a smaller testing system consisting of two
generations and seven nodes (not depicted here) the OPS showed significant time reductions by
using more cores.

Computational calculation time for real world case study of Innsbruck
Fig. 11 shows the results from the real world case study of the sewer system of Innsbruck. The
ordered pipelined strategy performs obviously better than the other strategies. On the right hand
side of Fig. 11 the implementation of the ordered pipelined strategy is given separately.

Fig. 11. Results of the real world sewer system of the city of Innsbruck

CONCLUSION AND OUTLOOK
This paper demonstrates the possibility of parallel computing to decrease the run time of urban
drainage simulations. Three parallel strategies were tested by means of different benchmark
systems. The implementation of the PPS was the one which performed worst. No speedup could be
seen in a single test. The randomized characteristic of the PPS was identified to be the weak spot.
Getting rid of this randomization resulted in the well performing OPS. The OPS achieved good
results throughout all testing systems, from small binary tree to sequential and real world testing
systems. In the sequential testing system the implementation of the OPS had the highest speedup of
3.9 on eight threads. In the tree testing system with ten generations the FPS and OPS were on par
with a maximum speedup of around 3.8. In the real word sewer system of Innsbruck OPS gained a
maximum speedup of 4.1.

The sewer testing systems used in the benchmarks included also worst case scenarios to emphasize
the weak spot of the parallel strategies, i.e. their worst performance. Therefore it can be concluded

that OPS due the good results on all testing systems should also perform good on other sewer
systems not investigated in this paper.

OPS should benefit from an optimized lock-free queue implementation as described in Fober et al.
(2001) and Fober et al. (2002) because this strategy has a high usage of queues for communication.
Although the FPS performed well on some testing systems, the performance was lower than
expected. A parallel computing trace tool revealed high amounts of lock usages implicitly emitted
by OpenMP.

REFERENCES
Achleitner, S.; Möderl, M.; Rauch, W. (2007): CITY DRAIN©–An open source approach for simulation of integrated urban drainage
systems. In: Environmental Modelling and Software, Vol. 22(8), p. 1184-1195.

Akhter, S. (2006): Multi-core Programming: Increasing Performance Through Software Multi-threading. Intel Press

Butler, D.; Davies, J. (2004): Urban drainage. Spon Press, London

Butler, D.; Schütze, M. (2005): Integrating simulation models with a view to optimal control of urban wastewater systems. In:
Environmental Modelling and Software, Vol. 20(4), p. 415-426

Doherty, J.; Brebber, L.; Whyte, P. (1994): PEST manual. In: Watermark Computing, Corinda, Australia

Drepper, U. (2007): What every programmer should know about memory. In: Proceedings of the Red Hat Summit, Nashville, USA,
21.11.2007

Feyen, L.; Vrugt, J.; Nualláin, B.; van der Knijff, J.; De Roo, A. (2007): Parameter optimisation and uncertainty assessment for large-
scale streamflow simulation with the LISFLOOD model. In: Journal of Hydrology, Vol. 332(3-4), p. 276-289

Fober, D.; Letz, S.; Orlarey, Y. (2002): Lock-Free Techniques for Concurrent Access to Shared Objects. In: Proceedings of the JIM
Actes des Journes d’Informatique Musicale, Marseille, France, p. 143–150

Fober, D.; Orlarey, Y.; Letz, S. (2001): Optimised Lock-Free FIFO Queue. Technical Report-01-01-01 Grame

Grama, A.; Gupta, A.; Karypis, G. (2003): Introduction to Parallel Computing. 0002. Ed., Addison Wesley Pub Co Inc

Kahn, A. B. (1962): Topological sorting of large networks. In: Communications of the ACM, Volume 5(11), p. 558-562

Kleidorfer, M.; Leonhardt, G.; Mair, M.; McCarthy, D.T.; Kinzel, H.; Rauch, W. (2009a): CALIMERO - A model independent and
generalized tool for autocalibration. In: Proceedings of the 8th International Conference on Urban Drainage Modelling, Tokyo,
Japan, 7. - 11.09.2009

Kleidorfer, M.; Möderl, M.; Fach, S.; Rauch, W. (2009b): Optimization of measurement campaigns for calibration of a conceptual
sewer model. In: Water Science and Technology, Vol. 59(8), p. 1523-1530

Kongetira, P.; Aingaran, K.; Olukotun, K. (2005): Niagara: A 32-Way Multithreaded Sparc Processor. In: IEEE Micro, Vol. 25(2), p.
21-29

Martins, S.D.L.; Ribeiro, C.C.; Rodriguez, N. (2001): Parallel Computing Environments. In: Proceedings of the Handbook of
Applied Optimization

Olukotun, K.; Nayfeh, B.A.; Hammond, L.; Wilson, K.; Chang, K. (1996): The Case for a Single-Chip Multiprocessor. In:
Proceedings of the IEEE Computer, p. 2-11

OpenMP Architecture Review Board (2008): OpenMP application program interface 3.0. http://www. openmp. org

Rauch, W.; Aalderink, H.; Krebs, P.; Schilling, W.; Vanrolleghem, P. (1998): Requirements for integrated wastewater models –
driven by receiving water objectives. In: Water Science and Technology, Vol. 38(11), p. 97–104

Rauch, W.; Bertrand-Krajewski, J.L.; Krebs, P.; Mark, O.; Schilling, W.; Schütze, M.; Vanrolleghem, P.A. (2002): Deterministic
modelling of integrated urban drainage systems. In: Water Science and Technology, Vol. 45(3), p. 81-94.

Parallel computing in integrated urban drainage simulations

G. Burger*), S. Fach**), H. Kinzel***) and W. Rauch**)

*Institute of Computer Science, University of Innsbruck,
Technikerstr. 21A, A-6020 Innsbruck, Austria (E-mail: gregor.burger@uibk.ac.at)
** Unit of Environmental Engineering, University of Innsbruck, Technikerstr. 13,

A-6020 Innsbruck, Austria (E-mail: stefan.fach@uibk.ac.at, wolfgang.rauch@uibk.ac.at)
*** hydro-IT GmbH, Technikerstr. 13, A-6020 Innsbruck, Austria

(E-mail: Kinzel@hydro-it.com)

ABSTRACT
Integrated urban drainage modelling is used to analyze how existing urban drainage systems
respond to particular conditions. Based on these integrated models, researchers and engineers are
able to e.g. estimate longterm pollution effects, optimize the behaviour of a system by comparing
impacts of different measures on the desired target value or get new insights on systems
interactions. Although the use of simplyfied conceptual models reduces the computational time
significantly, searching the enormous vector space that is given by comparing different measures or
that the input parameters span, leads to the fact, that computational time is still a limiting factor.
Due to the stagnation of single thread performance in computers and the rising number of cores one
needs to adapt algorithms to the parallel nature of the new CPUs to fully utilize the available
computing power. In this work a new developed software tool named CD3 for parallel computing in
integrated urban drainage systems is introduced. From three investigated parallel strategies two
showed promising results and one results in a speedup of up to 4.2 on an eight-way hyperthreaded
quad core CPU and shows even for all investigated sewer systems significant run-time reductions.

KEYWORDS
CD3, conceptual model, flow parallel strategy, integrated urban drainage modelling, parallel
computing, pipeline strategy

INTRODUCTION
While in former days the processors (CPU’s) got significantly more powerful (and thus faster),
nowadays it is not the single CPU that is developed further but instead the number of processors is
increased. To fully utilize that available computing power one needs to adapt algorithms to the
parallel nature of these new CPU-architectures.

The need of computational power for urban drainage simulations
Integrated urban drainage modelling (IUDM) combines the main subsystems of urban drainage
systems (e.g. natural and urban catchments, sewers, receiving water bodies and waste water
treatment plants) of the urban (waste) water cycle into one single model (Rauch et al., 2002; Butler
and Schütze, 2005). The main use of those models is to analyze how existing urban drainage
systems respond to particular conditions (Butler and Davies, 2004). Generally, deterministic models
are used which always produce the same output for a specific set of input data. With these models
engineers and scientists are able to fully reason about sewer system performance, discharge to the
receiving water body and river water quality. Based on these integrated models, researchers are able
to e.g. estimate longterm pollution effects (Rauch et al., 1998), optimize the behaviour of a system
by comparing impacts of different measures on the desired target value or get new insights on
systems interactions.

IUDM models are often formulated in a simplified manner applying e.g. hydrological routing
instead of hydrodynamic wave equations to calculate the waste water transport in the sewer.
Supplementary the originally complex conversion process of a rainfall hyetograph into a surface
runoff hydrograph is often reduced to a simplified model with initial and continuing losses. The
resulting effective rainfall hyetograph is then transformed into a surface runoff hydrograph using
also simple models, e.g. (synthetic) unit hydrographs, time-area diagrams or reservoir models.
Using these simplyfied conceptual models reduces the computing time significantly. A simulation
run of a moderate sized system, over several decades with timesteps in the order of minutes, only
takes few seconds on recent computers. Nevertheless searching the enormous vector space, that is
given by comparing different measures (e.g. spatial configuration of CSOs or tanks or stormwater
infiltration devices) or that the input parameters span (e.g. for auto calibration or Monte Carlo
simulation for uncertainty analysis), leads to the fact, that computing time is still a limiting factor,
even with sophisticated searching algorithms. So speed is the limiting factor for an efficient use of
existing auto calibration tools, such as CALIMERO (Kleidorfer et al., 2009a) or PEST (Doherty et
al., 1994). Hence the development of simulation code that can be executed faster is still an
important issue in integrated urban drainage modelling. For example Feyen et al. (2007) used
parallel computing to implement a conceptual rainfall runoff model named LISFLOOD which
simulates the river discharge in large drainage basins as a function of spatial information on
topography, soils and land cover.

Parallel computing
Parallel Computing is a term used in computer science which describes a way to solve a
computational expensive problem by dividing it into subtasks. These subtasks are then distributed
on different independent computational units and run concurrently (parallel). Splitting up problems
into parallel parts is called decomposition. There exists a huge variety of decomposition techniques,
like recursive decomposition, data decomposition, exploratory decomposition and speculative
decomposition (Grama et al., 2003).

)nlg(parallela

lgbestseqa
t

t
time

time
)n(speedup = (1)

S
sS

speedupmax
−

+
=

1
1 (2)

The performance of parallel implementations is calculated using speedups. Speedup is defined as
the quotient of the computational time needed for the best sequential algorithm divided by the
computational time required for the parallel algorithm (equation 1). Both algorithms deliver the
same result. An upper limit of the speedup can be calculated using Amdahls Law (equation 2)
(Akhter, 2006). Scalability of an algorithm is how far it can be parallelized and how well it works
on more parallel entities. Linear scalability is the theoretically best achievable condition, it means
adding n entities makes the runtime n-times better.

Different parallel computing entities exist depending on the parallel computing environment, e.g.
cores of a multi-core CPU or servers in a clustered environment, for which the algorithm was
designed for. Martins et al. (2001) give an overview and compare several common used parallel
computing environments. Choosing the suited platform is generally critical and depends on several
impact factors. Urban drainage simulations are characterized by many small computations with a
high amount of dependencies. The architecture of single chip multiprocessors (commonly known as
multi-core processors) fulfils the hope of having the best outcome with respect to parallel

performance (Olukotun et al., 1996). Furthermore these multi-core systems are cheap available at
the consumer market.

Communication and synchronization in parallel computing is the exchange of information between
concurrent tasks. Depending on the need of synchronization, a programmer can choose between
locks, semaphores, monitors, conditional-variables, messages, fences and barriers. Synchronization
errors are subtle, hard to find and hard to fix, because a near infinite number of situations can occur
depending on the race of the threads. These errors are mostly unknown in classical sequential
programming and have names like “race condition”, “dead locks” and “live locks“ (Akhter, 2006).

Finding parallel strategies with good communications and avoiding concurrency errors are critical
for high performance of parallel systems.

Multi-core
The efforts of this work focuses on implementing CD3 on a multi-core system in the consumer
class. PCs of the consumer class are cheap, available and usable from the users of the simulation
community. Beside that multi-core systems are the future of desktop computing. Single thread
performance is stagnating, but the number of cores is rising (Kongetira et al., 2005). OpenMP
(OpenMP) and POSIX threads were used to implement the parallel strategies.

METHODS
In this chapter the parallel strategies used are described. The following strategies were identified to
possibly accelerate the computational time, implemented in the newly developed software tool CD3
and benchmarked to demonstrate the increase of computational performance. The first strategy can
be classified as a data parallel model. The second and third strategies are pipeline models.

Flow parallel strategy
The flow parallel strategy combines data parallel and task parallel model. On each input flow
originated by a catchment a new thread is started (see Fig. 1). Each sequential node after the input
node is then calculated by this thread. If several flows of different characteristics are mixed up to a
single flow due to a mixer node one thread waits until all others are finished. The thread waiting for
the other threads to be finished continues to compute the nodes after the mixer node.

Fig. 1. Flow parallel strategy realized on a quad core CPU

At the mixer node which functions as a junction, synchronization is required. Each mixer node
contains a counter starting with the number of input flow, i.e. number of connected links. If a thread
reaches a mixer node its counter is decremented by one. The thread which decrements the counter
to zero continues the calculation of the nodes following the mixer node downstream.

The number of threads is limited by the number of input flows. At each combining element, e.g.
mixer at least two flows are merged. This effect impacts the possible parallel streams to be
calculated, i.e. the more the flow of sewer sections downstream is already calculated the less
parallelization is possible. Due to this fact this model is not able to fully utilize all cores over the
entire model.

The advantage of this model is that the data needed remains in the cores, i.e. in the caches as can be
seen in Fig. 1. The arrows symbolizing the data transfer, the ones which cross the CPU boundaries
are transfers between the CPU cores. Data transfer between CPU cores causes CPU flushes which
are expensive with regard to CPU cycles (Drepper, 2007).

Pool pipeline strategy
The second strategy starts a thread per time step. The goal for the thread is to get all nodes of the
model into the specified state, i.e. time step. A node can execute the implemented algorithms, e.g.
Muskingum mixing, if all the nodes connected are in the same state needed to compute (see Fig. 2).
Each thread has a private set of nodes, called a pool, which were not processed before. The next
node to be processed is chosen randomly from this pool and gets executed if the dependencies are
figured out. If the pool is empty the thread will be finished.

Fig. 2. Ordered pipeline strategy realized on a quad core CPU

Ordered pipeline strategy
The ordered pipeline strategy is implemented to get the non deterministic characteristics out of the
pool pipeline strategy. As in pool pipelining a thread is responsible for each time step, but instead of
randomly choosing the next node to be executed, the execution order is determined prior the
simulation run. First in first out (FIFO) queues are spanned between threads executing neighbouring
timesteps, i.e. timestep (dt) and timestep (dt+1). If a node is finished in timestep (dt) it is fed into
the queue of the timestep (dt+1). Due to the fact that in IUDM the models are directed acyclic
graphs, the ordering is determined by the sorting of topology. In the pipelined strategies, i.e. pool
pipeline strategy and ordered pipeline strategy the number of threads to be utilized is the highest
number of sequential nodes in the model. Theoretically, the pipelined strategies are able to handle
more cores than the flow parallel strategy.

The disadvantage of these parallel strategies is that every single data exchange between nodes is
carried out between threads and therefore CPU cores. This effect can be seen in Fig. 2 by the amount
of arrows crossing the CPU boundaries.

URBAN DRAINAGE SYSTEM USED FOR TESTING
CD3 is a reimplementation of the MATLAB based CITY DRAIN software tool (Achleitner et al.,
2007) with a focus on performance. Therefore in CD3 the same mathematical models are used as in
CITY DRAIN. On the one hand side the benchmark of CD3 against CITY DRAIN is meaningless
due to the fact that CD3 has been realised outside the MATLAB environment which has a
significant impact on the computational performance. On the other hand CD3 cannot be
benchmarked with other software tools because of the different model approaches, i.e. runoff
generation, surface routing and sewer flow implemented. Artificial testing systems were generated
to highlight the advantages and disadvantages of the different parallel implementations.
Furthermore, one converted and handcrafted system of the city of Innsbruck was used to show how
well the parallel implementation can handle real world scenarios.

Artificial urban drainage systems
Generally the structure of urban drainage systems complies with an inverted tree. The artificial
testing systems chosen differ in complexity and degree of reality. The first artificial testing system
is a sequential line of sewer sections starting with an input node and ending in a file node which
delivers the results in a CSV format (see Fig. 3). With this testing system it is possible to
demonstrate the benefits of parallelization even for simple conceptual models. This testing system is
also suited to show how much communication overhead the implementation of the flow parallel
strategy produces. The second testing system is used to point out the theoretically upper bounds
reached by the flow parallel strategy. Several sequential sewer sections in parallel are mixed
together at the end (see Fig. 4). The third testing system is chosen due to its close scheme to natural
drainage structures which have the shape of an inverted binary tree (see Fig. 5). Two sewers
sections are mixed up and connected to a sewer section downstream.

Fig. 3. Artificial testing system consisting of a sequential line of sewer sections

Fig. 4. Artificial testing system consisting of a several sequential sewer sections in parallel

Fig. 5. Detail of the artificial testing system with a binary tree structure

Real world case study of Innsbruck
To have one real world example as testing system the conceptual sewer system of the city of
Innsbruck developed by Kleidorfer et al. (2009b) was used and converted into the native CD3 input
format. This combined sewer system consists of 53 catchments, a total runoff effective area of
915 ha and a total basin volume of 5100 m³. In the city of Innsbruck live 165,000 population
equivalents (PE) with a daily dry weather flow (DWF) of 200 l/(PE d).

RESULTS AND DISCUSSION
Benchmark Environment
The hardware on which CD3 was benchmarked is an Intel (R) Core(TM) i7 CPU 920 @ 2.67GHz
Quad Core. The software was compiled with the Intel (R) Compiler Suite v11. Each model was run
with threads limited from one to ten. As benchmark results the average of four simulation runs are
taken. The processor has eight virtual threads, two per core hyperthreaded. Due to parallel strategies
are based on structural decomposition and not on time decomposition the simulation time of the
runs was two hours with five minutes time steps.

Computational calculation time for artificial urban drainage systems
The left side of Fig. 6 shows the results of the parallel testing system with eight parallel streams
each 100 sewer sections long. This testing system should give particularly good results for the flow
parallel strategy, but also the implementation of the ordered pipelined strategy seems to scale pretty
well to the four available cores. Because of the unusable bad computational performance of the
pipelined parallel strategy the results are not explained further in the discussion chapter.

Fig. 6. Run-time for eight parallel streams each 100 sewer sections long (left side) and for 1000 sequential sewer

sections (right side)

The second testing system (see right side of Fig. 6) consists of 1000 sequential sewer sections.
Despite the fact that this model is intrinsic sequential the implementation of the ordered pipelined
strategy seems to gain a speedup using more threads. Although the implementation of the flow
parallel strategy cannot scale in this testing system the communication overhead in such situations
is insignificant.

In Fig. 7 two binary tree testing systems were benchmarked. These systems differ in the number of
generations. The results of the tree with two generations and four nodes is depicted on the left,
whereas the results of a tree with ten generations and 1024 nodes is illustrated on the right. The
small tree is used to examine if all strategies also perform well for small systems. Even with this
small testing system the ordered pipelined strategy showed significant time reductions by using
more cores. The big tree offers enough parallel streams that the implementation of the flow parallel
strategy is able to reduce the run-time on more cores.

Fig. 7. Run-time for a binary tree system with two generations (left side) and with ten generations (right side)

Computational calculation time for real world case study of Innsbruck
Fig. 8 shows the results from the real world case study of the sewer system of Innsbruck. The
ordered pipelined strategy performs obviously better than the other strategies. On the right hand
side of Fig. 8 the implementation of the ordered pipelined strategy is given separately.

Fig. 8. Run-time of the real world sewer system of the city of Innsbruck (left side) for all strategies and for the

ordered pipeline strategy (right side)

Maximum achieved speedups
In the sequential testing system (see Fig. 6 left side) the implementation of the ordered pipeline
strategy has the highest speedup of 3.9 times on eight threads. On the binary tree system with ten
generations the ordered pipelined strategy has the maximum speedup of 3.8 followed by the flow
parallel strategy with a speedup of 3.3. In the real word scenario of the sewer system of Innsbruck
the implementation of ordered pipeline strategy has a maximum speedup of 4.2.

CONCLUSION AND OUTLOOK
In this paper we investigate the option of parallel computing to increase the computational speed in
urban drainage simulations. Several parallelisation strategies are tested by means of benchmark
systems. The implementation of the pooled pipeline strategy is the one which performed worst, as
no speedup is seen in a single test. The randomized characteristics of the pool pipelined algorithm
have been identified to be the weak spot. This randomization was removed and restricted to ordered
calculations which lead to the ordered pipeline implementation. The ordered pipeline strategy
performed well on all testing systems, from small binary tree to sequential sewer and real world
systems. Due to the shared calculation units of two hyperthreads on a core, e.g. floating point unit
(FPU) and arithmetic and logic unit (ALU) etc. and the almost exclusive floating point calculations
used in IUDM simulations, scaling above four threads is almost impossible. Nevertheless, the
ordered pipeline strategy reaches a speedup of 4.2 in some testing systems.

Further enhancements can be achieved by using lock-free algorithms (Fober et al., 2002).
Especially, the implementation of the ordered pipeline strategy should benefit from an optimized
lock-free queue implementation as described in Fober et al. (2001). Although the flow parallel
strategy performed well on some testing systems, the performance was lower than expected. A hand
crafted interception library revealed high amounts of lock usages implicitly emitted by OpenMP
(OpenMP).

REFERENCES
Achleitner, S.; Möderl, M.; Rauch, W. (2007): CITY DRAIN©–An open source approach for simulation of integrated
urban drainage systems. In: Environmental Modelling and Software, Vol. 22(8), p. 1184-1195.
Akhter, S. (2006): Multi-core Programming: Increasing Performance Through Software Multi-threading. Intel Press

Butler, D.; Davies, J. (2004): Urban drainage. Spon Press, London

Butler, D.; Schütze, M. (2005): Integrating simulation models with a view to optimal control of urban wastewater
systems. In: Environmental Modelling and Software, Vol. 20(4), p. 415-426

Doherty, J.; Brebber, L.; Whyte, P. (1994): PEST manual. In: Watermark Computing, Corinda, Australia

Drepper, U. (2007): What every programmer should know about memory. In: Proceedings of the Red Hat Summit,
Nashville, USA, 21.11.2007

Feyen, L.; Vrugt, J.; Nualláin, B.; van der Knijff, J.; De Roo, A. (2007): Parameter optimisation and uncertainty
assessment for large-scale streamflow simulation with the LISFLOOD model. In: Journal of Hydrology, Vol. 332(3-4),
p. 276-289

Fober, D.; Letz, S.; Orlarey, Y. (2002): Lock-Free Techniques for Concurrent Access to Shared Objects. In:
Proceedings of the JIM Actes des Journes d’Informatique Musicale, Marseille, France, p. 143–150

Fober, D.; Orlarey, Y.; Letz, S. (2001): Optimised Lock-Free FIFO Queue. Technical Report-01-01-01 Grame

Grama, A.; Gupta, A.; Karypis, G. (2003): Introduction to Parallel Computing. 0002. Ed., Addison Wesley Pub Co Inc

Kleidorfer, M.; Leonhardt, G.; Mair, M.; McCarthy, D.T.; Kinzel, H.; Rauch, W. (2009a): CALIMERO - A model
independent and generalized tool for autocalibration. In: Proceedings of the 8th International Conference on Urban
Drainage Modelling, Tokyo, Japan, 7. - 11.09.2009

Kleidorfer, M.; Möderl, M.; Fach, S.; Rauch, W. (2009b): Optimization of measurement campaigns for calibration of a
conceptual sewer model. In: Water Science and Technology, Vol. 59(8), p. 1523-1530

Kongetira, P.; Aingaran, K.; Olukotun, K. (2005): Niagara: A 32-Way Multithreaded Sparc Processor. In: IEEE Micro,
Vol. 25(2), p. 21-29

Martins, S.D.L.; Ribeiro, C.C.; Rodriguez, N. (2001): Parallel Computing Environments. In: Proceedings of the
Handbook of Applied Optimization

Olukotun, K.; Nayfeh, B.A.; Hammond, L.; Wilson, K.; Chang, K. (1996): The Case for a Single-Chip Multiprocessor.
In: Proceedings of the IEEE Computer, p. 2-11

OpenMP, C. C++ application program interface. In: For further details see http://www. openmp. org

Rauch, W.; Aalderink, H.; Krebs, P.; Schilling, W.; Vanrolleghem, P. (1998): Requirements for integrated wastewater
models – driven by receiving water objectives. In: Water Science and Technology, Vol. 38(11), p. 97–104

Rauch, W.; Bertrand-Krajewski, J.L.; Krebs, P.; Mark, O.; Schilling, W.; Schütze, M.; Vanrolleghem, P.A. (2002):
Deterministic modelling of integrated urban drainage systems. In: Water Science and Technology, Vol. 45(3), p. 81-94.

List of Figures

1.1. Ways to study a system.(redraw from [LK97]) 3

2.1. Schematic on the application of rainfall loss model [AMR07] . . . 20

2.2. Lossmodels [AMR07] . 21

2.3. Routing Methods [AMR07] . 23

2.4. Muskingum Routing Method [AMR07] 23

2.5. Integrated drainage system (redrawn from [WJP+02]) 24

2.6. Schematic description of a block 25

3.1. Class Overview . 29

3.2. The Node Class . 30

3.3. The Model Class . 31

3.4. The Simulation Class . 32

3.5. Flow Parallel Strategy . 35

3.6. Input Counter . 36

3.7. Pool Pipeline Strategy . 38

3.8. Ordered Pipeline Strategy . 39

3.9. An example DAG . 41

3.10. Flow exchange problem DAG . 44

3.11. Flow exchange problem ordered 44

3.12. UML of the Flow class . 46

137

4.1. Sequential Testing System . 50

4.2. Parallel Sewer Testing System . 51

4.3. Treelike Sewer Testing System . 51

4.4. Real World Testing System . 53

4.5. Die Shots of the Two Processors used for Benchmarking 55

4.6. Sequential (10) . 57

4.7. Sequential (100) . 57

4.8. Sequential (1000) . 58

4.9. Parallel (2-10) . 59

4.10. Parallel (2-100) . 59

4.11. Parallel (4-10) . 60

4.12. Parallel (4-100) . 60

4.13. Prallel (8-10) . 60

4.14. Parallel (8-100) . 61

4.15. Tree (two generations) . 61

4.16. Tree (four generations) . 62

4.17. Tree (seven generations) . 62

4.18. Tree (ten generations) . 62

4.19. Innsbruck . 63

4.20. Parallel system with OpenMP scheduler disabled(4-100) 65

4.21. Tree system with OpenMP scheduler disabled (seven generations) 65

4.22. Tree system with OpenMP scheduler disabled (ten generations) . 66

4.23. Sequential (10) . 67

4.24. Sequential (100) . 67

138

4.25. Sequential (1000) . 67

4.26. Parallel (2-10) . 69

4.27. Parallel (2-100) . 69

4.28. Parallel (4-10) . 69

4.29. Parallel (4-100) . 70

4.30. Prallel (8-10) . 70

4.31. Parallel (8-100) . 70

4.32. Tree (two generations) . 71

4.33. Tree (four generations) . 71

4.34. Tree (seven generations) . 72

4.35. Tree (ten generations) . 72

4.36. Innsbruck . 73

4.37. Innsbruck OPS . 74

4.38. Innsbruck FPS . 75

4.39. Tree (10 Generations) OPS . 75

4.40. Tree (10 Generations) FPS . 76

4.41. Innsbruck OPS . 76

4.42. Innsbruck FPS . 77

4.43. Tree (10 Generations) OPS . 77

4.44. Tree (10 Generations) FPS . 77

A.1. Starting CityDrain3 without parameters. 88

A.2. Setting the Path for the MinGW compiler 103

A.3. Overview of the essential interfaces 104

A.4. The Model class . 105

139

A.5. The Simulation class . 105

A.6. The Node class . 105

140

List of Algorithms

1. The main loop of a simulation run. 33
2. The execute n procedure. 34
3. flow parallel simulation . 36
4. run flow(sn) . 36
5. get predecessors . 37
6. pps main . 38
7. pps run timestep(POOLt) . 38
8. Topological sorting . 40
9. ops main . 43
10. ops run timestep(t) . 45

141

142

List of Tables

3.1. Example sort of DAG . 41

4.1. Thread Scheduling with three threads 64

4.2. Thread Scheduling with four threads 64

143

144

Bibliography

[ABC+06] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, and S. W.
Williams. The landscape of parallel computing research: A view
from berkeley. Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, Technical Report No. UCB/EECS-
2006-183, December, 18(2006-183):19, 2006.

[ADE92] J. L. Armstrong, B. O. Da, and S. S. Erlang. IMPLEMENTING
a FUNCTIONAL LANGUAGE FOR HIGHLY PARALLEL REA
IME APPLICATIONS. SETSS, 1992.

[AJS07] Ayaz Ali, Lennart Johnsson, and Jaspal Subhlok. Scheduling fft
computation on smp and multicore systems. In ICS ’07: Proceed-
ings of the 21st annual international conference on Supercomputing,
pages 293–301, New York, NY, USA, 2007. ACM.

[Akh06] S. Akhter. Multi-core Programming: Increasing Performance
Through Software Multi-threading. Intel Press, June 2006.

[AMR07] Stefan Achleitner, Michael Möderl, and Wolfgang Rauch. CITY
DRIN c© - an open source approach for simulation of integrated
urban drainage systems. Environmental Modelling & Software,
22(8):1184–1195, August 2007.

[Aus05] M. Austern. Proposed draft technical report on c++ library ex-
tensions. Technical report, Technical Report PDTR 19768, n1745
05-0005, ISO/IEC, 2005.

[BBG09] Johannes Borgström, Karthikeyan Bhargavan, and Andrew D. Gor-
don. A compositional theory for stm haskell. In Haskell ’09: Pro-
ceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages
69–80, New York, NY, USA, 2009. ACM.

[BD96] M. Bishop and M. Dilger. Checking for race conditions in file ac-
cesses. Computing systems, 2(2):131–152, 1996.

[BD04] D. Butler and J. W. Davies. Urban drainage. Spon Pr, 2004.

145

[BDH03] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The
google cluster architecture. IEEE micro, 23(2):22–28, 2003.

[Bor07] Shekhar Borkar. Thousand core chips: a technology perspective.
In DAC ’07: Proceedings of the 44th annual Design Automation
Conference, pages 746–749, New York, NY, USA, 2007. ACM.

[Bos92] H. Bossel. Modellbildung und Simulation. Konzepte, Verfahren und
Modelle zum Verhalten dynamischer Systeme: Ein Lehr-und Ar-
beitsbuch mit Simulations-Software. Vieweg Braunschweig, 1992.

[BS05] David Butler and Manfred Schütze. Integrating simulation models
with a view to optimal control of urban wastewater systems. Envi-
ronmental Modelling & Software, 20(4):415 – 426, 2005. Vulnerabil-
ity of Water Quality in Intensively Developing Urban Watersheds.

[BV05] R. Buyya and S. Venugopal. A gentle introduction to grid computing
and technologies. CSI Communications, 29(1):9–19, 2005.

[CBM+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
transactional memory: Why is it only a research toy? Queue,
6(5):46–58, 2008.

[CKM+01] B. Chocat, P. Krebs, J. Marsalek, W. Rauch, and W. Schilling.
Urban drainage redefined: from stormwater removal to integrated
management. Water Science & Technology, 43(5):61–68, 2001.

[CLRS01] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to algorithms. MIT press Cambridge, MA, USA, Cambridge,
MA, USA, 2001.

[Dav09] Beazley David. Inside the python GIL, June 2009.

[Die05] R. Diestel. Graph theory, volume 173 of graduate texts in mathe-
matics. Springer, Heidelberg, 91:92, 2005.

[DJ97] Butler D and Parkinson J. Towards sustainable urban drainage.
http://www.iwaponline.com/scripts/dtSearch/dtisapi6.dll?cmd=

getdoc&DocId=9512&Index=E%3a%5cdtIndex%5cIW%5fWST&HitCount=

4&hits=17b+17c+17d+17e+&SearchForm=D%3a%5ciwaponline%

5csearch%5csearch%2ehtm, May 1997.

[Dre07] U. Drepper. What every programmer should know about memory.
2007.

146

http://www.iwaponline.com/scripts/dtSearch/dtisapi6.dll?cmd=getdoc&DocId=9512&Index=E%3a%5cdtIndex%5cIW%5fWST&HitCount=4&hits=17b+17c+17d+17e+&SearchForm=D%3a%5ciwaponline%5csearch%5csearch%2ehtm
http://www.iwaponline.com/scripts/dtSearch/dtisapi6.dll?cmd=getdoc&DocId=9512&Index=E%3a%5cdtIndex%5cIW%5fWST&HitCount=4&hits=17b+17c+17d+17e+&SearchForm=D%3a%5ciwaponline%5csearch%5csearch%2ehtm
http://www.iwaponline.com/scripts/dtSearch/dtisapi6.dll?cmd=getdoc&DocId=9512&Index=E%3a%5cdtIndex%5cIW%5fWST&HitCount=4&hits=17b+17c+17d+17e+&SearchForm=D%3a%5ciwaponline%5csearch%5csearch%2ehtm
http://www.iwaponline.com/scripts/dtSearch/dtisapi6.dll?cmd=getdoc&DocId=9512&Index=E%3a%5cdtIndex%5cIW%5fWST&HitCount=4&hits=17b+17c+17d+17e+&SearchForm=D%3a%5ciwaponline%5csearch%5csearch%2ehtm

[EA03] D. Engler and K. Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. ACM SIGOPS Operating Systems
Review, 37(5):237–252, 2003.

[FF01] C. Flanagan and S. N. Freund. Detecting race conditions in large
programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering,
pages 90–96. ACM New York, NY, USA, 2001.

[Fos95] I. Foster. Designing and building parallel programs: concepts and
tools for parallel software engineering. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1995.

[Gee05] D. Geer. Chip makers turn to multicore processors. Computer,
38(5):11–13, 2005.

[GGK03] Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to Parallel Computing. Addison Wesley Pub Co Inc, 0002 edition,
February 2003.

[God02] A. Godber. Linux Function Interception. 2002.

[Guj06] W. Gujer. Siedlungswasserwirtschaft. Springer, 2006.

[Guj08] Willi Gujer. Systems Analysis for Water Technology. Springer,
October 2008.

[Int09] Intel Corporation. Intel R© C++ Compiler Professional Edition 11.1
for Linux, In Depth, 2009.

[Kah62] A. B. Kahn. Topological sorting of large networks. Commun. ACM,
5(11):558–562, 1962.

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun.
Niagara: A 32-way multithreaded sparc processor. IEEE Micro,
25(2):21–29, 2005.

[KGNC02] H. Korving, P. Van Gelder, J. Van Noortwijk, and F. Clemens. Influ-
ence of model parameter uncertainties on decision-making for sewer
system management. In Proc. 5th Int. Conf. on Hydroinformatics,
ID Cluckie, D. Han, JP Davis and S. Heslop, eds, volume 2, pages
1361–1366, 2002.

[KHYP08] DongHyun Kang, Saeyoung Han, SeoHee Yoo, and Sungyong Park.
Prediction-based dynamic thread pool scheme for efficient resource
usage. In CITWORKSHOPS ’08: Proceedings of the 2008 IEEE

147

8th International Conference on Computer and Information Tech-
nology Workshops, pages 159–164, Washington, DC, USA, 2008.
IEEE Computer Society.

[KMFRed] Manfred Kleidorfer, Michael Möderl, Stefan Fach, and Wolfgang
Rauch. Optimization of measurement campaigns for calibration of
a conceptual sewer model. Water Science and Technology, accepted.

[LHK+04] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govin-
daraju, Ian Buck, Cliff Woolley, and Aaron Lefohn. Gpgpu: general
purpose computation on graphics hardware. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Course Notes, page 33, New York, NY,
USA, 2004. ACM.

[LK97] A. M. Law and W. D. Kelton. Simulation modeling and analysis.
McGraw-Hill Higher Education, 1997.

[LML00] Yibei Ling, Tracy Mullen, and Xiaola Lin. Analysis of optimal
thread pool size. SIGOPS Oper. Syst. Rev., 34(2):42–55, 2000.

[MLG07] D. Manocha, M. C. Lin, and N. Govindaraju. GPGPU to Many-
Core processing: Higher performance for mass market applications.
In Manycore Computing Workshop, 2007.

[Mus08] D. Muschalla. Optimization of integrated urban wastewater systems
using multi-objective evolution strategies. Urban Water Journal,
5(1):59–67, 2008.

[Nae05] Gustaf Naeser. Priority inversion in multi processor systems due to
protected actions. Ada Lett., XXV(1):43–47, 2005.

[NG92] R. Netzer and S. Ghosh. Efficient race condition detection for
shared-memory programs with post/wait synchronization. Univer-
sity of Wisconsin-Madison, Computer Sciences Dept., 1992.

[NL91] B. Nitzberg and V. Lo. Distributed shared memory: A survey of
issues and algorithms. Computer, 24(8):52–60, 1991.

[NM92] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some
issues and formalizations. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(1):74–88, 1992.

[NS03] N. Nethercote and J. Seward. Valgrind a program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2):44–
66, 2003.

148

[NS07] N. Nethercote and J. Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 2007
PLDI conference, volume 42, pages 89–100. ACM New York, NY,
USA, 2007.

[NT05] M. Nichols and D. Taylor. A mechanism for visualizing TCP-socket
interactions. In Proceedings of the 2005 conference of the Centre for
Advanced Studies on Collaborative research, pages 212–224. IBM
Press, 2005.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson,
and Kunyung Chang. The case for a single-chip multiprocessor. In
IEEE Computer, pages 2–11, 1996.

[PSCS01] Irfan Pyarali, Marina Spivak, Ron Cytron, and Douglas C. Schmidt.
Evaluating and optimizing thread pool strategies for real-time corba.
In LCTES ’01: Proceedings of the ACM SIGPLAN workshop on
Languages, compilers and tools for embedded systems, pages 214–
222, New York, NY, USA, 2001. ACM.

[PTM96] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed
shared memory: Concepts and systems. IEEE Parallel Distrib.
Technol., 4(2):63–79, 1996.

[RGK02] W. Rauch, W. Gujer, and P. Krebs. Grundlagen der sied-
lungsentwässerung. Skript zur Vorlesung Siedlungsentwässerung der
ETH Zürich, 2002.

[RS09] The GCC community RM Stallman. The GNU OpenMP implemen-
tation. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA, 4.3.3 edition, 2009. accessd at http://gcc.gnu.org/onlinedocs/.

[Sch98] D. C. Schmidt. Evaluating architectures for multithreaded object
request brokers. 1998.

[SMSW09] Michael F. Spear, Maged M. Michael, Michael L. Scott, and Peng
Wu. Reducing memory ordering overheads in software transactional
memory. In CGO ’09: Proceedings of the 2009 International Sym-
posium on Code Generation and Optimization, pages 13–24, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[Spr77] Renzo Sprugnoli. Perfect hashing functions: a single probe retriev-
ing method for static sets. Commun. ACM, 20(11):841–850, 1977.

[SSTW09] Achleitner S, Fach S, Einfalt T, and Rauch W. Nowcasting of

149

rainfall and of combined sewage flow in urban drainage systems.
http://www.iwaponline.com/wst/05906/wst059061145.htm, March
2009.

[ST97] Nir Shavit and Dan Touitou. Software transactional memory. Dis-
tributed Computing, 10(2):99–116, February 1997.

[SV96] D. Schmidt and S. Vinoski. Comparing alternative programming
techniques for multi-threaded CORBA servers: Thread-per-Object.
C++ Report, 8(6), 1996.

[Tho94] Alexander Thomasian. On a more realistic lock contention model
and its analysis. In Proceedings of the Tenth International Confer-
ence on Data Engineering, pages 2–9, Washington, DC, USA, 1994.
IEEE Computer Society.

[Vin07] Steve Vinoski. Concurrency with erlang. IEEE Internet Computing,
11(5):90–93, 2007.

[WJP+02] Rauch W, Bertrand-Krajewski J, Krebs P, Mark O, Schilling W,
Schtze M, and Vanrolleghem P. Deterministic modelling of in-
tegrated urban drainage systems. Water science and technology,
February 2002.

[WKP+02] J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J. Kircher,
B. L. Krauter, P. J. Restle, B. A. Zoric, and C. J. Anderson. The
circuit and physical design of the POWER4 microprocessor. IBM
Journal of Research and Development, 46(1):27–51, 2002.

150

	Introduction
	Motivation
	Urban Drainage
	Modelling and Simulation
	System
	Model
	Simulation

	Parallel Computing
	Overview
	Parallel Algorithm Design
	Communication
	Parallel Architectures
	Multi-core Processors
	Parallel Performance Metrics
	Challenges of Parallel Programming

	Urban Drainage Modelling
	Modelling Concepts
	Rainfall Runoff
	Hydraulic Transport

	Integrated Urban Drainage Modelling
	Conceptual Modelling
	State Space Modelling
	Sewer Structure

	Methods and Implementation
	Design
	Node
	Model
	Simulation
	Flow

	Sequential Simulation Run
	Parallel Implementation
	Flow Parallel Strategy
	Pool Pipeline Strategy
	Ordered Pipeline Strategy

	Shared Flow

	Results
	Benchmarked Systems
	Sequential Sewer System
	Parallel Sewer System
	Treelike Sewer Testing System
	Real World Sewer System of Innsbruck

	The Benchmark Environment
	Performance Tools
	Results for the Core2Quad CPU
	Results for the i7 CPU
	Shared Flow Comparisons
	Results Core 2 Quad
	Results i7
	Conclusion

	Conclusion
	Appendices
	CityDrain3 Manauls
	Users Manual
	Terms and Concepts
	Starting CityDrain3
	Writing a Model
	Using cd3modelgen.py
	plugindoc Application

	Programmers Manual
	Compiling CityDrain3
	Design Overview
	Extending CityDrain3

	Submitted Papers
	List of Figures
	List of Tables
	Bibliography

