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Introduction

Objectives

To investigate the interaction between valley thermally driven winds
and urban climate employing idealized simulations at the mesoscale

In particular:

● To understand the impact of the along-valley city location on
thermal comfort and air quality;

● To quantify the impact of urban morphology on
thermally driven winds;

● To understand the physical processes of the interaction between
valley winds and cities.

How?

Employing idealized simulations with the WRF model, starting from
a benchmark nurban simulation.
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Methodology

Set up - DOMAINS

∆X1 = 3 km, ∆X2 = 1 km
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Methodology

WRF set-up

● 36 hours of simulation starting the 20th of March

● ∆z = from 5 m (surface) to 400 m (at 12000 m)

● IC: V0 = 0, U0 = 0, stable atmosphere

● NO Coriolis force, microphysics scheme

● Lat=46○ N Lon=11○ E

● k − ε− θ2 PBL scheme (Zonato et al., 2022, soon available in WRF)

● BEP +BEM urban canopy parameterizations

● coupling between BEP+BEM and k − ε − θ2 (Zonato et al., 2022,
under review QJRMS)

● 13 × 5 km cities with 15 × 15 m buildings
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Results

Valley thermal circulation - ASTER project
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Results

Urban Heat Island - City position dependence
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Results

Correlation UHI/Thermally driven wind
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Results

Daytime valley winds
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Results

Nighttime valley winds
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Results

Tracer timeseries
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Results

Along valley tracers dispersion - tracer outside city
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Results

Conclusions

● Urban heat island effect strongly depend on the position of the
valley (Influenced by daily thermally driven winds);

● Valley winds reduction mostly depend on increased roughness,
less dependent on nocturnal temperature gradients;

● Temperature gradients relevant in terms of air quality;

● Tracer concentrations strongly depend on the coupling between
roughness and temperature gradients.

1) A. Zonato, A. Martilli, P. A. Jimenez, J. Dudhia, D. Zardi, and L.
Giovannini. A new k − ε turbulence parameterization for mesoscale
meteorological models. Monthly Weather Review, 2022.

2) A. Zonato, A. Martilli, J. L. Santiago, D. Zardi, and L. Giovannini. On a

new one-dimensional k − ε turbulence closure for building-induced drag, Under

review at QJRMS.

Acknowledgments and funding: Atmospheric boundary-layer
modeling over complex terrain (ASTER) project.
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