

Model-Based Geological Prognosis in the Tunnel Information Model

The Digitalized Geological Prognosis – Basis for Geotechnical Planning and Interdisciplinary Execution Documentation Mag. rer. nat. Ines M. Massimo-Kaiser

Main Supervisor: Univ. Prof. Dipl.-Ing. Dr. Matthias Flora
Co-Supervisor: Ass. Prof. Bmstr. Dipl.-Ing. Dr. techn. Georg Fröch
Unit of Construction Management and Tunnelling
University of Innsbruck
ibt@uibk.ac.at | www.uibk.ac.at/ibt

ABSTRACT: This dissertation focuses on integrating geological planning processes into Building Information Modeling (BIM) and developing a Tunnel Information Model (TIM) for model-based geological prognosis. The dissertation demonstrates that the early determination of necessary geological and geotechnical properties, along with the continuous integration of these data into an updatable model, provides significant advantages for the planning and execution of tunnel construction projects.

Complete thesis: https://www.uibk.ac.at/de/ibt/lehre/dissertationen/

KEYWORDS: TIM, BIM, LOIN, Ground Model

1 INTRODUCTION

This dissertation analyzes and further develops model-based approaches for geological prognosis within the framework of TIM. A key focus is on defining and evaluating the Level of Information Need (LOIN) for geological properties across different project phases. The goal is to develop a digital 3D ground model that enables transparent, evaluable, and high-quality planning. This is intended to create an actionable TIM process that systematically considers geological and geotechnical requirements.

2 FUNDAMENTALS AND METHODS

BIM is a digital approach for planning, constructing, and operating structures. It encompasses 3D models that integrate geometric and alphanumeric data to enable efficient collaboration, cross-phase planning, and optimized resource utilization. Standards such as ÖNORM EN ISO 19650 and the definition of use cases (e.g., Level of Information Need – LOIN, see Fig. 1) promote structured execution and communication.

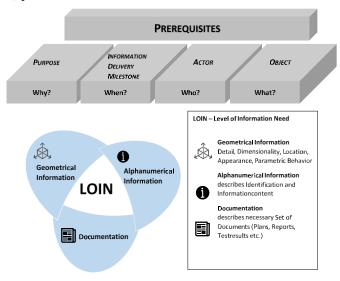


Fig. 1: Representation of the relationships of the Level of Information Need [6].

TIM transfers the BIM methodology to tunnel construction, where geological factors and uncertainties pose challenges.

The digital provision of geological data, based on standards such as Eurocode 7 and ÖGG guidelines, in a 3D ground model is demanding but enables a structured and continuously updated representation

3 MAIN SECTION

Through literature research and initial expert interviews, the status quo is determined, and deficiencies in the current BIM implementation are identified. The results are published in Article 1 [1] Based on these findings and the experiences gained from accompanying seven tunnel construction projects where the BIM method was already used in planning and execution, an evaluation of the social and economic impacts of BIM/TIM is conducted, documented in Research Article 1 [2]. For Conference Paper 1, a concept is developed for creating a digital schematic, parameterized ground model that illustrates causal relationships between geology and the structure [3]. Conference Paper 2 extends this overall process and presents a concept for construction-accompanying work preparation based on Tunnel Information Modeling (TIM) [4]. In Article 2, a digital workflow is developed and implemented to modelbased represent prognosis (un)certainty for shallow tunnels [5]. In Article 3, the research results are evaluated and interpreted, and the Level of Information Need (LOIN) for ground elements is defined to specifically answer the research question [6].

Supplementary interviews on the topic "What data do geotechnics require from geology in a 3D ground model?" revealed that experts largely agree with normative requirements on the fundamental aspects of geotechnical planning. However, differences exist in the required data depth, flexibility in parameter selection, and model handling. Experts prefer a pragmatic, project-specific approach tailored to specific requirements and conditions.

4 RESULTS

The research results on model-based geological prognosis based on applicable standards establish minimum requirements for geological-geotechnical key parameters, which should be fundamentally available and maintained for dynamic model creation and evolution (model progression) from project inception through geological forecasting to geotechnical

planning. However, it must be considered that the geological properties necessary for effective further planning should be determined project-specifically by clients and geological-geotechnical planning authorities.

By standardizing LOIN based on project-specific geologicalgeotechnical properties, model-based geological prognosis in the Tunnel Information Model can serve as the foundation for geotechnical planning.

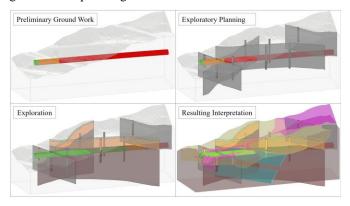


Fig. 2: Geological planning phases in a TIM model [5].

Application Objective:		Object:	Object:	Object:	Object:
Provision of geological-		Deep outcrop, borehole	Deep outcrop, borehole	Deep outcrop, borehole	Deep outcrop, borehole
geotechnical information		,			,,
for geotechnical planning					
Milestone Phase:		Phase 1a+b:	Phase 2:	Phase 3:	Phase 4:
		Basic data collection,	Exploration planning	Exploration	Interpretation for
		field survey, evaluation	based on the initial		geotechnics
			geological prognosis		
Actor: Geological specialists					
Geometrical Information	Detail	simplified	simplified	detailed	reduced to rock types (GA)
	Dimensionality	3D	3D	3D	3D
	Location	Absolut, coordinates	Absolute, coordinates,	Absolute, coordinates,	Absolute, coordinates,
			inclination/direction	ground surface and final	ground surface and final
			planned	depth	depth
	Appearance	Cylinder, schematic	Cylinder, schematic	Cylinder, realistic	Cylinder
	Parametric Behavior	yes	yes	yes	yes
Alphanumerical Information	Identification	Outcrop type, borehole	Outcrop type, borehole	Outcrop type, borehole	Outcrop type, borehole
		identification	identification	identification	identification Coordinates
	Information- content	 Coordinates: ground 	Coordinates: ground	Coordinates: ground	
	content	 surface and pipe top Diameter 	surface,	surface and final depth	- Diameter
			Inclination- Direction, and	Diameter	
		 Final depth according to 	planned final depth	Casing	Casing Usage
		borehole profile and	Borehole diameter	Usage	- Osuge
		evaluation	and planned casing		,
		Casing	Usage	,	
		Usage	Predicted laver	Geological description	description
			Predicted layer structure	Absolute water level	Geotechnical
		 Layer structure Geological 	Predicted geological	 Depth or coordinates of core samples and 	description
		description	description	in-situ/laboratory	Absolute water level
		Water level	Predicted water	tests	Depth or
		• water level	level	tests	coordinates of core samples and in-
			Planned in-situ and	1	samples and in- situ/laboratory tests
			laboratory tests	1	situriaudi atory tests
		Further properties	Further properties	Further properties	Further properties
		according to Phases	according to Phase 2 or	according to Phase 3 or	according to Phase 4 or
		1a+b or project-specific	project-specific	project-specific definition	project-specific
		definition	definition		definition
		Borehole profile	 Property 	Borehole profile	 Borehole profiles
		 Existing geological- 	 Ownership 	 Photo documentation 	 Borehole reports
		geotechnical reports	 Existing geological- 	 Borehole 	 Water level data
Documentation		 Field protocol 	geotechnical reports	measurements	 Test reports
		 Evaluation, 	 Installations 	 Water level data 	 Laboratory results
		deficiencies	1	 Existing geological- 	 Photo
		 Water level data 		geotechnical reports	documentation
			1	1	 Borehole core
					photos
			1	1	 Project-specific
			1	1	geological-
		1	1	1	geotechnical reports

Fig. 3: Level of Information Need for the Element Borehole [6].

Fig. 3 illustrates how LOIN can be defined and described for the element borehole.

5 SUMMARY AND OUTLOOK

The research demonstrates that a precise definition of the Level of Information Need (LOIN) for geological properties and the harmonization of relevant standards (e.g., Eurocode 7, ÖNORMEN) are crucial. The developed methods enable

structured, continuous integration of geological data into digital models, refining geotechnical planning and improving interdisciplinary collaboration in construction execution.

Future research should further test the application of the methods in practice, adapt geological base properties to specific projects, and utilize technologies such as machine learning and AI for automated model updates. Additionally, national and international harmonization of standards is sought to ensure cross-border consistent and interoperable geological models.

6 REFERENCES

- [1] Exenberger, Hans; et.al. (2022): Current developments of digital ground modelling in tunnelling. Gemechanics and Tunnelling 15/3, S. 284 289. http://dx.doi.org/10.1002/geot.202100065
- [2] Massimo-Kaiser, Ines; et.al. (2022): Streamlining Tunnelling Projects through BIM. Sustainability 14/18, Nr. 11433 http://dx.doi.org/10.3390/su141811433
- [3] Massimo-Kaiser, Ines; et.al (2023): From prognosis Ground Model to Tender Model and Tunnel Construction Framework Plan with Tunnel Information Modelling. Proceedings of the ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium, Salzburg, Austria, October 9-14, 2023. Austrian Society for Geomechanics: Salzburg. pp. 668-673, https://eposter.at/ISRM2023/data/PDF/1740.pdf
- [4] Exenberger, Hans; et..al. (2023): Concept for Tunnel Information Modelling based work-preview and documentation during construction at Tunnel Angath. Proceedings of the ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium, Salzburg, Austria, October 9-14, 2023. Austrian Society for Geomechanics: Salzburg. pp. 697-702, https://eposter.at/ISRM2023/data/PDF/1779.pdf
- [5] Massimo-Kaiser, Ines; et.al. (2023): Model based representation of geological prognosis (un)reliability for shallow tunnels / Modellbasierte Darstellung der Prognose(un)sicherheit bei seicht liegenden Tunneln. Geomechanics and Tunnelling 16/6, S. 661 667. http://dx.doi.org/10.1002/geot.202300033
- [6] Massimo-Kaiser, Ines; et.al. (2024): LOIN für Elemente des geologisch-geotechnischen Baugrundmodells. Bautechnik https://doi.org/10.1002/bate.202400052