

Current Source Inverter Drive System with Equivalent DC-Machine Control Characteristics

Spasoje Mirić, Predrag Pejović, Takanobu Ohno, Michael Haider

University of Innsbruck, Institute for Mechatronics Innsbruck Drives and Energy Systems Laboratory (iDES) Technikerstraße 13a, Floor 1, Office 128 https://www.uibk.ac.at/mechatronik/ides/

November 28, 2024

Introduction: VSI and CSI for Drive Systems

- Voltage Source Inverter (VSI) drive system → typically direct connection of the motor terminals to the switch node
 VSI generates pulsed voltage over motor windings → interturn overvoltage / harmonic losses / bearing currents / EMI / insulation aging

- Current Source Inverter (CSI) drive system → provides 'smooth' line voltages over the motor windings due to output filter capacitors
- Therefore, CSI 'could' potentially solve high-frequency issues typical for the VSI drive systems
- Blocking of voltage and current in both directions for CSI → Monolithic Bidirectional Power Transistors

Introduction: Input Buck of the CSI

- CSI needs a 'current DC-link' \rightarrow therefore, there is an input (buck) converter that controls the DC link current $i_{\rm dc}$ Compared to VSIs, this input converter represents an additional realization effort of the CSI

- In certain applications, like fuel-cell-supplied drive systems, VSIs also need an input converter due to large DC link voltage variation!
- Therefore, in such applications, VSIs and CSIs have similar realization effort!

Picture source: Antivachis, M., Bortis, D., Menzi, D., & Kolar, J. W. (2018, May). Comparative evaluation of Y-inverter against three-phase two-stage buck-boost DC-AC converter systems. In 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia) (pp. 181-189). IEEE.

innsbruck Drive and Energy Systems Laboratory

Introduction: CSI Drive System Control

- Speed-control CSI-based drive system → input buck controls the DC link current to typically constant value
- CSI 'modulates' the DC link current to provide the desired phase PMSM currents required to achieve the desired torque to manage speed

- The user of the CSI drive system has to 'deal with' the CSI modulation and control
- Challenge of the CSI acceptance in the industry → majority of engineers are familiar with VSI modulation but not with CSI

Motivation: CSI PMSM Drive Equivalent to DC Machine

- Simplify the control of the CSI drive \rightarrow mimics the CSI operation by fixing the modulation index of the CSI to M=1
- 'CSI Modulator' block alternates the phase currents according to the angle information provided by the encoder

- Fixed modulation index of the CSI → DC side of the CSI is equivalent to the DC machine armature
- The torque on the PMSM shaft → directly proportional to the DC link current
- This arrangement allows us to manage the torque&speed control with the input DC-DC converter, like for a DC machine
 The user does not have to 'deal with' the CSI → enabling faster spread of CSIs in drive systems

- **▶** DC-Side Equivalent Circuit of CSI
- **▶** DC-Side Speed-Torque Characteristic
- ► Equivalent DC Machine (E-DCM) Concept
- **►** Simulation Results
- **Conclusions**

- **▶** DC-Side Equivalent Circuit of CSI
- **▶** DC-Side Speed-Torque Characteristic
- Equivalent DC Machine (E-DCM) Concept
- **►** Simulation Results
- Conclusions

innsbruck Drive and Energy Systems Laboratory

DC-Side Equivalent Circuit of CSI

- Since we want to control the PMSM torque directly with the DC link current → equivalent circuit of the CSI DC-side
- **Equivalent circuit cover fundamental frequency range** \rightarrow neglect impact of the filter capacitors: $i_1 = i'_1$, $i_2 = i'_2$, $i_3 = i'_3$

Power Balance:
$$\bar{u}_b \cdot i_{dc} = u_1 \cdot i_1 + u_2 \cdot i_2 + u_3 \cdot i_3$$

- We derive the equivalent circuit based on the power balance between the DC and the AC side
- The voltage \bar{u}_h is the switching-frequency average of u_h
- The derivation is done for a general value of modulation index 'm'
- We assume sinusoidal waveforms for the voltages and currents on the AC side
- We derive the DC-side equivalent for: Resistance, Inductance, AC Voltage (back-EMF)

$$i_1 = m i_{dc} \cos(\theta_{el} + \theta_i)$$

$$i_2 = m i_{dc} \cos(\theta_{el} + \theta_i - \frac{2\pi}{3})$$

$$i_3 = m i_{dc} \cos(\theta_{el} + \theta_i + \frac{2\pi}{3})$$

$$u_{1} = R i_{1} + L \frac{di_{1}}{dt} + e_{1}$$

$$u_{2} = R i_{2} + L \frac{di_{2}}{dt} + e_{2}$$

$$u_{3} = R i_{3} + L \frac{di_{3}}{dt} + e_{3}$$

DC-Side Equivalent Resistance

lacktriangle We start from the power balance $ar{u}_{
m b}\cdot i_{
m dc}=u_1\cdot i_1+u_2\cdot i_2+u_3\cdot i_3$ and apply it for the resistance R

$$u_{1} = R i_{1}$$
 $u_{2} = R i_{2}$
 $u_{3} = R i_{3}$
 $\overline{u}_{b} i_{dc} = R (i_{1}^{2} + i_{2}^{2} + i_{3}^{2})$
 $\overline{u}_{b} i_{dc} = \frac{3}{2} R m^{2} i_{dc}^{2}$
 $\overline{u}_{b} = \frac{3}{2} m^{2} R i_{dc}$

$$i_1 = m i_{dc} \cos(\theta_{el} + \theta_i)$$

$$i_2 = m i_{dc} \cos(\theta_{el} + \theta_i - \frac{2\pi}{3})$$

$$i_3 = m i_{dc} \cos(\theta_{el} + \theta_i + \frac{2\pi}{3})$$

DC-Side Resistance: $R_{\rm dc} = \frac{3}{2}m^2R$

DC-Side AC-Side
$$R_{\rm dc} = \frac{3}{2} m^2 R \qquad \qquad Resistance$$

DC-Side Equivalent Inductance

lacktriangle We start from the power balance $ar{u}_{
m b}\cdot i_{
m dc}=u_1\cdot i_1+u_2\cdot i_2+u_3\cdot i_3$ and apply it for the inductance L

$$u_1 = L \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

$$u_2 = L \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u_3 = L \frac{\mathrm{d}i_3}{\mathrm{d}t}$$

$$\overline{u}_{b} i_{dc} = L \left(\frac{\mathrm{d}i_{1}}{\mathrm{d}t} i_{1} + \frac{\mathrm{d}i_{2}}{\mathrm{d}t} i_{2} + \frac{\mathrm{d}i_{3}}{\mathrm{d}t} i_{3} \right)$$

$$u_2 = L \frac{\mathrm{d}i_2}{\mathrm{d}t} \implies \overline{u}_{\mathrm{b}} i_{\mathrm{dc}} = L \left(\frac{\mathrm{d}i_1}{\mathrm{d}t} i_1 + \frac{\mathrm{d}i_2}{\mathrm{d}t} i_2 + \frac{\mathrm{d}i_3}{\mathrm{d}t} i_3 \right) \implies \overline{u}_{\mathrm{b}} i_{\mathrm{dc}} = L \frac{1}{2} \left(\frac{\mathrm{d}i_1^2}{\mathrm{d}t} + \frac{\mathrm{d}i_2^2}{\mathrm{d}t} + \frac{\mathrm{d}i_3^2}{\mathrm{d}t} \right) \implies \overline{u}_{\mathrm{b}} i_{\mathrm{dc}} = L \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left(i_1^2 + i_2^2 + i_3^2 \right)$$

$$\overline{u}_{\rm b} i_{\rm dc} = L \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left(i_1^2 + i_2^2 + i_3^2 \right)$$

$$\overline{u}_{\rm b} i_{\rm dc} = \frac{3}{2} L \frac{1}{2} \frac{d(m^2 i_{\rm dc}^2)}{dt}$$

$$\overline{u}_{\rm b} = \underbrace{\frac{3}{2} L m \frac{\mathrm{d}m}{\mathrm{d}t}}_{\mathrm{d}t} i_{\rm dc} + \underbrace{\frac{3}{2} m^2 L}_{\mathrm{d}t} \frac{\mathrm{d}i_{\rm dc}}{\mathrm{d}t}$$

$$\frac{\mathrm{d}f(t)^2}{\mathrm{d}t} = 2f(t)\frac{\mathrm{d}f(t)}{\mathrm{d}t}$$

DC-Side

AC-Side

$$R_{\rm x} = \frac{3}{2} L m \frac{\mathrm{d}m}{\mathrm{d}t} \quad L_{\rm dc} = \frac{3}{2} m^2 L \qquad \qquad L \qquad \qquad \text{Inductance}$$

DC-Side Equivalent Back EMF

■ We start from the power balance $\bar{u}_b \cdot i_{dc} = u_1 \cdot i_1 + u_2 \cdot i_2 + u_3 \cdot i_3$ and apply it for the back EMF

$$u_{1} = e_{1}$$

$$u_{2} = e_{2}$$

$$u_{3} = e_{3}$$

$$\overline{u}_{b} i_{dc} = e_{1} i_{1} + e_{2} i_{2} + e_{3} i_{3}$$

$$\overline{u}_{b} i_{dc} = \underbrace{\frac{3}{2} m \sin \theta_{i} \hat{E}}_{=E_{dc}} i_{dc}$$

$$e_1 = \omega \hat{\Psi} \cos(\theta_{el} + \frac{\pi}{2})$$

$$e_2 = \omega \hat{\Psi} \cos(\theta_{el} + \frac{\pi}{2} - \frac{2\pi}{3})$$

$$e_3 = \omega \hat{\Psi} \cos(\theta_{el} + \frac{\pi}{2} + \frac{2\pi}{3})$$

$$e_{1} = \omega \hat{\Psi} \cos(\theta_{el} + \frac{\pi}{2})$$

$$i_{1} = m i_{dc} \cos(\theta_{el} + \theta_{i})$$

$$i_{2} = \omega \hat{\Psi} \cos(\theta_{el} + \frac{\pi}{2} - \frac{2\pi}{3})$$

$$i_{3} = m i_{dc} \cos(\theta_{el} + \theta_{i} - \frac{2\pi}{3})$$

$$i_{3} = m i_{dc} \cos(\theta_{el} + \theta_{i} + \frac{2\pi}{3})$$

$$\psi_1 = \hat{\Psi}\cos(\theta_{\rm el})$$

$$\psi_2 = \hat{\Psi}\cos(\theta_{\rm el} - \frac{2\pi}{3})$$

$$\psi_3 = \hat{\Psi}\cos(\theta_{\rm el} + \frac{2\pi}{3})$$

$$E_{\rm dc} = \frac{3}{2}m\hat{E}\sin\theta_i$$

AC-Side

Summary of the DC-Side Equivalent Circuit of CSI

Equivalent circuit of the CSI-supplied PMSM with general modulation index m and the current angle θ_i values

- The AC inductance has equivalent resistance R_x on the AC side that exists only when the modulation index changes.
- The resistance R_x models the power necessary to increase/decrease the energy in the inductances.

Averaged DC Side Circuit	AC Side Circuit	
$R_{\rm dc} = \frac{3}{2}m^2R$	R	Resistance
$R_{\mathbf{x}} = \frac{3}{2} L m \frac{\mathrm{d}m}{\mathrm{d}t} L_{\mathbf{dc}} = \frac{3}{2} m^2 L$	L	Inductance
$E_{\rm dc} = \frac{3}{2} m \hat{E} \sin \theta_i$	$\begin{array}{ c c } \hat{E} \\ \hline + \\ \hline \end{array}$	Back EMF

- **▶** DC-Side Equivalent Circuit of CSI
- **▶** DC-Side Speed-Torque Characteristic
- Equivalent DC Machine (E-DCM) Concept
- Simulation Results
- Conclusions

DC-Side Speed-Torque Characteristic

- For the proposed Equivalent DC Machine (E-DCM) concept → constant modulation index m=M■ For constant modulation index → the dynamic resistance disappears: $R_{\rm X} = \frac{3}{2}L \cdot m \cdot \frac{{\rm d}m}{{\rm d}t} = 0$, since $\frac{{\rm d}m}{{\rm d}t} = \frac{{\rm d}M}{{\rm d}t} = 0$

■ For the derivation of the mechanical DC-side speed-torque characteristic, we assume steady state operation.

DC-Side Speed-Torque Characteristic

■ We start the derivation assuming steady-state conditions → in voltage equation we relate the current to torque and back EMF to mech. speed

$$U_{\rm a} = M^2 \frac{3}{2} R \frac{T}{M \sin \theta_I k_{\rm T}} + M \sin \theta_I k_{\rm T} \Omega$$

$$\Omega = \frac{1}{M \sin \theta_I k_{\rm T}} U_{\rm a} - \frac{3}{2} \frac{R}{\sin^2 \theta_I k_{\rm T}^2} T$$

- **DC-Side Speed-Torque characteristic is function of** M and θ_I
- *M* has the same effect is the number of rotor turns in a DC machine
- lacksquare has similar effect as the excitation flux in a DC machine

No-Load Speed

$$\Omega_0 = \frac{U_{\rm a}}{M \, \sin \theta_I k_{\rm T}}$$

Standstill Torque

$$T_0 = \frac{2}{3} \frac{\sin \theta_I k_{\rm T}}{M R} U_{\rm a}$$

- **▶** DC-Side Equivalent Circuit of CSI
- **▶** DC-Side Speed-Torque Characteristic
- ► Equivalent DC Machine (E-DCM) Concept
- Simulation Results
- Conclusions

Equivalent DC-Machine Concept (E-DCM)

- The equivalent DC-machine concept → DC link current directly proportional to the torque on the PMSM shaft
- For E-DCM, CSI modulation index \dot{M} and the current angle θ_I are kept constant

$$T = k_{
m Tdc} i_{
m dc}$$
 $k_{
m Tdc} = k_{
m T} M \sin \theta_I$

Reasonable choice of M and θ_I to maximize k_{Tdc} :

$$0 \le M \le 1$$
$$-1 \le \sin \theta_I \le 1$$

$$M=1$$
 and $\theta_I=rac{\pi}{2}$

$$k_{\rm Tdc} = k_{\rm T}$$

- Finally, for the analyzed E-DCM, the DC torque constant is equal to the PMSM torque constant $\rightarrow T = k_{\rm T} \cdot i_{\rm dc}$
- The voltage u_a is the 'Equivalent Armature Voltage'

- **▶** DC-Side Equivalent Circuit of CSI
- **▶** DC-Side Speed-Torque Characteristic
- ► Equivalent DC Machine (E-DCM) Concept
- **▶** Simulation Results
- **Conclusions**

E-DCM Speed Control Drive System

- With E-DCM concept → torque on the PMSM shaft managed by the DC link current
- Cascaded control system structure → Outer speed controller loop (0.8kHz), and inner current controller loop (4kHz)

- The DC link current reference directly calculated from the speed controller torque reference: $i_{dc}^* = \frac{T^*}{k_T}$
- For tuning the current controller, the sum of the DC link inductance $L_{\rm f}$ and the DC-side equivalent inductance $L_{\rm dc}$ are considered: $L_{\rm f} + L_{\rm dc}$
- The user has manage only the 'DC-side' like for a DC machine

$$L_{\rm dc} = \frac{3}{2}M^2L = \frac{3}{2}L$$

Simulation Results: E-DCM Speed Control

- Step speed reference of 3krpm \rightarrow speed controller applies the maximum possible torque during the acceleration (max. i_{dc} current of 30A)
- CSI modulation index and current angle are constant M=1 and $\theta_I=\frac{\pi}{2}$

$$n_{\rm mech} = \Omega \, \frac{30}{\pi}$$

Parameter	Symbol	Value
Buck		
Input voltage	U_{in}	$800\mathrm{V}$
Switching frequency	$f_{ m sw,b}$	$80\mathrm{kHz}$
CSI		
DC link inductance	$L_{ m f}$	$450\mu\mathrm{H}$
Output capacitance	$C_{ m f}$	$0.1\mu\mathrm{F}$
Switching frequency	$f_{ m sw}$	$140\mathrm{kHz}$
Max. DC link current	$I_{ m dc,max}$	$30\mathrm{A}$
PMSM		
Phase resistance	R	0.2Ω
Phase inductance	L	$1\mathrm{mH}$
Number of pole pairs	p	5
Flux linkage	$\hat{\Psi}$	$0.2\mathrm{Wb}$
Moment of inertia	J	$0.001\mathrm{kgm}^2$
Nominal mech. power	P_{mech}	$5\mathrm{kW}$
Nominal mech. speed	n_{mech}	$3000\mathrm{rpm}$
Controller gains		
C _i closed-loop bandwidth	$f_{ m cc}$	$4\mathrm{kHz}$
C _i proportional gain	$K_{ m pc}$	$49\mathrm{V/A}$
C _i integral gain	$K_{ m ic}$	10000V/(As)
C_{Ω} cross-over frequency	$f_{ m cs}$	$0.8\mathrm{kHz}$
C_Ω proportional gain	$K_{ m ps}$	$3.3\mathrm{sNm}$
C_Ω integral gain	$K_{ m is}$	$3400\mathrm{Nm}$

From PMSM flux linkage we can verify that the DC link current has the effect of the torque generating quadrature current, as it impacts only the ψ_{α} .

E-DCM for PMSM-Integrated CSI

- Integration of CSI together with encoder into the PMSM case → CSI can be run in open-loop to achieve E-DCM
- For the user the PMSM with integrated CSI appears like a DC machine if E-DCM is used

■ An opportunity for 'plug-and-play' CSI drive system → enabling wide adoption of CSI drive systems into various applications!

- **▶** DC-Side Equivalent Circuit of CSI
- **▶** DC-Side Speed-Torque Characteristic
- Equivalent DC Machine (E-DCM) Concept
- Simulation Results
- **▶** Conclusions

Conclusions

- CSIs can provide 'smooth' voltages over motor windings an advantage over VSIs
- > Input buck converter for DC link current regulation
- ightharpoonup Proposed E-DCM Concept: CSI with M=1 and $heta_I=rac{\pi}{2}$
- **E-DCM** allows PMSM torque management through DC link current
- DC-Side equivalent circuit of the PMSM
- DC-Side equivalent speed-torque characteristic of the PMSM
- **E-DCM** speed-controlled drive torque and speed control of the PMSM like for DC machine
- **E-DCM** concept is an enabler for wide adoption of CSIs in drive systems
- Future work: E-DCM concept hardware verification

CSI with
$$M=1$$
 and $\theta_I=rac{\pi}{2}$

Thank you!

