PhD Thesis

Deep learning approach for segmentation of cervical arteries in CTA images

The accurate segmentation of cervical arteries from computer tomography (CT) images is a difficult challenge in radiology. The image to the right shows a projection of such a segmentation. Automation of the segmentation procedure will allow for a quantitative analysis of arterial geometrical structure for the use in large cohort patient studies. Although convolutional neural networks have achieved state-of-the-art results for numerous segmentation tasks in medical imaging, the large memory requirements for processing 3D CT angiography images as well as a lack of manually annotated training data prevent straightforward application.

universität

innsbruck

Groundtruth

dtruth

Aims and Methods

To circumvent the problem of high dimensional input data, we utilize a global-local segmentation approach. The global part consists of strongly downsampling the volume and roughly estimating the course and location of the artery using a 3D U-Net. Next we select a start patch within the volume based on the confidence of the global network. In a repetitive manner, we segment the part of the artery within the patch using again a 3D U-Net, estimate the further course of the artery by calculating the centerline and then extract the next patch according to the estimated course.

Partners

This is a joint project with M. Tiefenthaler, E.R. Gizewski, S. Mangesius and S. Pereverzyev Jr. from the Medical University Innsbruck. All images shown here were obtained in this collaboration.

Requirements

Aimed at students of engineering sciences, mathematics or computer sciences with a background in inverse problems and a good working knowledge in Python or Julia. Some knowledge of Tensorflow is beneficial.

Contact

Lukas Neumann (Lukas.Neumann@uibk.ac.at)